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Introduction 
Terahertz sensing is a relatively new modality in medicine. Its clinical usage 

started in July 2012 by inspecting specific cancer diseases of dermal origin 

(TeraView – Cambridge, UK). However, terahertz imaging still has a long 

way to go to become an accepted technique in diagnostics. The possible 

applications require the fast observation of large areas with high sensitivity. 

For this, the large-scale integration and the overall noise suppression of the 

measurement system are indispensable. 

In the Institute for Computer Science and Control of the HAS, research on 

CMOS based terahertz sensors has been carried out since 2008. Room 

temperature, antenna coupled, FET plasma wave detectors were in the focus 

of the research project I got the chance to join in 2009. 

With my work, I target the above-mentioned questions – scalability and 

overall system performance – by studying sensing in a holistic, application 

oriented manner: I consider the integrated focal plane antenna array, the 

detectors, the read-out circuitry and the post-processing as a whole. 

Fig 1 shows two simple experimental measurement setup and Fig 2 depicts 

the main components of the system that were modeled together primarily 

from the aspect of their noise performance. 

CMOS based power detectors are promising solutions for low cost, high 

resolution, room temperature terahertz detection. However, the system level 

integration of these plasma wave detectors is less matured. 

 

 
Fig. 1  A transmissive and a reflective setup is depicted on the left and right side, respectively; the main 

components are: a) Terahertz continuous wave (CW) source: amplifier-multiplier chain (AMC) and 

yttrium iron garnet (YIG) oscillator, b) off-axis parabolic mirrors, c) target object d) detector chip 
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Fig. 2  The study covers some parts of both the hardware (architecture of the antenna array, read-out 

organization) and the software (post-processing, image reconstruction): a) focal plane antenna arraywith 

the detectors; b) top view of a single antenna; c) cross section of the chip (antenna at the top and the 

MOS FET detector in the middle); d) the scheme of the studied system (considering a single detector 

element) – the components are represented with appropriate noise models to be able to handle them 

together, in a holistic way to evaluate design choices on a quantitative base 

My work brings terahertz imaging closer to the application fields with 

investigating the possibilities that compressed sensing and holistic (software 

and hardware level) optimization could provide for FET based sensor arrays 

to mitigate their low SNR. 
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Methods 

Compressed sensing 
The compressive sampling of a discrete signal is represented as the 

multiplication: 

 𝚽𝒙 = 𝒚 (1) 

where 𝚽 is an M by N random matrix containing only binary values with 

equal distribution. ′𝒙′ is the signal vector and 𝐲 is the vector of 

measurements. The signal can be reconstructed if a proper basis exists, in 

which the representation of the observed signal is sparse: 

 𝚿𝒂 = 𝒙. (2) 

Here Ψ is the matrix of the special basis and a is the sparse representation 

of the signal x. Exploiting this extra information one can minimize according 

to the L0 norm, that is finding an a vector with the most zero components. 

Substituting (2) into (1), the problem formulated as: 

 𝒂∗ = arg min
𝒂

‖𝒂‖0  𝑠. 𝑡.  𝚽 𝚿𝒂 = 𝒚. (3) 

To solve the combinatorial problem above several techniques were 

examined. For instance the L2 and L1 optimization and alternating projection 

methods based on smoothed zero norm functions. 

We call the signal k-sparse if 𝒂∗ has only k number of non-zero elements or 

in practice k number of elements that are less than a given ε. 

L0, L1 and L2 norm of the vector 𝒗: 

 ‖𝒗‖0 ={# of 𝑣𝑖-s that are greater than 0} (4) 

 ‖𝒗‖1 = ∑|𝑣𝑖|

𝑛

𝑖=1

 (5) 

 ‖𝒗‖2 = √∑ 𝑣𝑖
2

𝑛

𝑖=1

 (6) 
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The sparsity is denoted by 𝑠 and 𝑠 = ‖𝒗‖0. I note that the “L0 norm” is 

not a true norm from the mathematical sense, as it does not fulfill all the 

axioms of a norm. The smoothed-L0 norms utilize some function f – other 

than the absolute value – in order to make the problem treatable: 

 ‖𝒗‖𝑠0 = ∑ 𝑓(𝑣𝑖)

𝑛

𝑖=1

 (7) 

Cross validation 
Cross validation (CV) has several applications within CS and has rigorous 

mathematical background. However these works focus mainly on the 

approximation error estimation, and aiding the choice of parameters like the 

number of measurements or the assumed sparsity. 

On the one hand, I investigate cross validation as a tool for reducing the 

noise of the reconstruction. In the end, this increases the SNR of the 

resulting images. 

On the other hand, the low incident radiation implies we have to consider 

over sampling as well. I suggest, cross validation as an efficient way to 

integrate oversampling data with the compressed sensing based 

reconstruction framework. This way we can improve on the standard L2 

minimization (or least squares solution) results. 

By usual compressed sensing imaging thorough cross validation is too 

expensive. Yet, in our case N is relatively small, meaning that the arising 

computational burden is tractable despite of the O(L·N·log(N) ) or in best 

case O(L·N) algorithms (here L is the order of CV). 

By the suggested cross validation I divide the measured data set, D into two 

subsets D1 and D2. I perform the reconstruction using only D1 (ignoring the 

elements of D2) and may estimate the error of the candidate solution based 

on D2, then I repeat the process with a different subset of another division. 

These iterations result in several ‘candidate’ solutions that can be combined 

on various ways to create the final image e.g. substitute the median of pixels 

or sum them weighted by their calculated error. The described technique 

belongs to thesis 1.2. 
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Figure of merit 
The performance of terahertz detectors is characterized by the noise 

equivalent power (NEP), since it incorporates both the noise power level of 

the detector and its responsivity as well: 

 
𝑁𝐸𝑃𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 =  

𝑛𝑜𝑖𝑠𝑒 𝑝𝑜𝑤𝑒𝑟

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑖𝑡𝑦
=  

𝑃𝑛𝑜𝑖𝑠𝑒

𝑈𝑥

𝑃𝑖𝑛
|

𝑥=0

 (8) 

where 𝑈𝑥 is the voltage response of the detector at 𝑥 input power. NEP 

assumes 1 Hz sampling frequency that means 0.5s integration time. 

In this work I concentrate on the noise part of this performance indicator, 

thus it is easier to handle the different components by their noise figure 

(NF): 

  𝑁𝐹 = 10 𝑙𝑜𝑔
𝑆𝑁𝑅𝑖𝑛

𝑆𝑁𝑅𝑜𝑢𝑡
= 10 𝑙𝑜𝑔

𝑇𝑜𝑓𝑓 +  𝑇𝑜𝑛

𝑇0
 (9) 

 𝑇 =
𝑃𝑛𝑜𝑖𝑠𝑒

𝐵𝑘𝐵
 (10) 

The noise figure of a component depends on the presented load and the given 

formula regards to the matched case. 𝑇𝑜𝑓𝑓, 𝑇𝑜𝑛 are the noise temperature of 

the component in OFF and ON state respectively, where as 𝑇0 = 290𝐾 is 

the reference noise temperature. 𝐵 stands for the bandwidth at which the 

noise figure measurement is carried out and 𝑘𝐵 is the Boltzmann constant. 

The noise temperature (𝑇) assumes additive, white noise. In this case, it is 

an acceptable estimation to handle the noises in a lumped form, if the 

measured bandwidth is restricted to a narrow portion of the frequency range, 

because flicker noise can be significant. To make easy comparisons to other 

indicators (e.g. NEP), one can use the following approximation, to calculate 

the noise power of the low noise amplifier: 

 𝑃𝑛𝑜𝑖𝑠𝑒 ≈ 𝑇0 ( 10
𝑁𝐹
10 − 1) 𝐵𝑘𝐵 (11) 
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However in an application environment the specification of the imaging 

system is usually described at a higher level, controlling only the quality of 

the results. 

The resulting image SNR is taken as the main figure of merit regarding 

image quality. It is calculated according to the standard form: 

 SNRresult = 10 𝑙𝑜𝑔10  
‖𝐱1‖2

‖𝐱𝟏 − 𝐱𝐫𝐞𝐬‖2
 (12) 

where 𝐱1 is the original image (represented as a column vector) and 𝐱res is 

the result of the processing. 

However I calculated also the L1 distance as well, which is proved to 

approximate the image quality better: 

 𝐿1 errorresult = 20 𝑙𝑜𝑔10  
∑|𝐱1|

∑ |𝐱𝟏 − 𝐱𝐫𝐞𝐬|
 (13) 
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Summary of conclusions 

Thesis 1 SNR enhancement of imaging systems with 
compressed sensing 

I have shown that the application of compressed sensing (CS) as a 

measurement scheme and a post-processing framework can increase 

the overall signal to noise ratio (SNR) of field effect transistor (FET) 

based terahertz imaging systems. 

 

Publication related to the thesis: [1] 
 

Using CS in such an environment, where the theoretical conditions of the 

CS reconstruction (sparsity, 𝑀 > 𝑠 ∙ log(𝑁)) do not hold is not obvious. The 

guaranteed reconstruction error bounds are not valid or are so loose that 

makes them impractical for this scenario. (Determining the constants of 

upper bounds is also unreliable for such small images.) 

To reconstruct moderately structured (not sparse) and small images (16×16 

- 4×4 pixels) from noisy measurements is a challenge. Fig. 3 and Fig. 4 

demonstrate this phenomenon. These figures summarize the outcome of 

numerous simulated CS measurements and image reconstructions, which 

mimic sensors with various signal-to-noise ratio and reconstructions 

involving different amount of measurement data relative to the total pixel 

count. The colorbar shows the resulting image SNR in dB. If we compare 

the output images to the original one, then the yellow part of the field 

indicates the region, which already has visually acceptable quality in these 

executions. 

Fig 4 illustrates the effect of increasing high frequency components in the 

sample image. On the left part one can see the outcome of another assembly 

of simulations producing a similar image as Fig. 3, but here, visualized as a 

surface. On the right part of the figure the same simulation executed on an 

input image with higher entropy. The two object have similar maxima, but 

the right one is much sharper indicating that the CS framework tolerates 

noise much less in this case. 
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To prove that the reconstruction works under these harsh conditions I have 

tested the performance of CS reconstruction algorithms whether they are 

capable to outperform the least-square solution of the problems or not. 

I have investigated the parameter space determined by the noise variance, 

the size of the image, the M/N ratio and the entropy of the sampled image. I 

found that even with general algorithms there exist a small space where 

computationally more intensive methods yield considerable gain against L2 

 
Fig. 3  It shows the usual performance (SNR in dB) of a CS algorithm on a structured target. On the 

vertical axis the sensor noise deviation is given relative to the maximal signal value in Y. The 

horizontal axis shows the number of measurements relative to the total number of pixels. 

 
Fig. 4  These example CS reconstructions give an insight to the effect of low sparsity. On the left one 

can see the image SNR depending on the image size and image noise. On the right, I depicted the 

resulting SNR of the same algorithm, but sampling an image with higher entropy – indicating a richer 

surface texture. Their maximums are close to each other, but the latter became much sharper that is, 

it tolerates noise much less. 
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minimization. This is visualized in Fig. 5, where an obvious case is shown 

of a less structured object that was reconstructed with a smoothed-L0 

minimization algorithm. 

 

The potential of the CS technique for reconstruction in case 

of serially connected sensors 

Thesis 1.1 I have shown that even a general smoothed L0-norm based 

algorithm can achieve gain over least-square reconstruction in 

case of small (0.25-3 kpixel), moderately structured (sparsity 

around 0.75N) images if the sensor noise deviation is below 

0.01 and the compression ratio is between 0.1 and 0.3. 

 

The SNR of the investigated system is approximately 46 dB at free space 

(given the SNR as a voltage ratio). However, it drops rapidly either in 

transmissive or reflective configuration by scanning a specimen that has 

greater spatial extension or includes dispersive layers. 

The numerical simulations indicate that a system SNR between 31-36 dB is 

the practical lower limit of applying classical CS. These basic results gave 

grounds to further investigations. 

 
Fig. 5  SNR gain of an alternate projecting algorithm over L2 minimization. (The colorbar shows the 

gain in dB). On the vertical axis the sensor noise deviation is given relative to a fixed maximal signal 
value of Y. The horizontal axis shows the number of measurements relative to the total number of 

pixels. This example makes obvious that for this type of application, even the classical CS based 

algorithms have advances in a restricted region. 
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Constructive algorithm to help exploiting the gain from the 

CS post-processing: 

Thesis 1.2 I have given a general post-processing algorithm for terahertz 

measurements involving cross validation (CV) and maximal 

entropy driven filtering that increases the overall SNR of the 

CS reconstruction in the presence of noise. 

 
Image noise cancels out by the addition of the pixel values, but sensor noise 

is a challenge for the sparsity driven reconstruction. 

According to this, I have proposed to take more measurements than M by 

the acquisition. Then, one has the chance to create different datasets of the 

same size. Each candidate solutions 𝑥𝑀1
, 𝑥𝑀2

, … , 𝑥𝑀𝑘
  should be within the 

proven error of the reconstruction (an L2 ball). This is easy to see, for 

instance with the measure presented by Malioutov: assuming independent 

measurements, the new collection should induce always the same stopping 

condition. 

Assuming that reconstruction error results in equal distribution of the 

candidates within the above mentioned volume, averaging of appropriate 

candidates should decrease the error of the final result. The noise tolerance 

of the CV based post-processing can be seen in Figure 6. 

However, the averaging of the candidate solutions coming from the CV 

rounds ends up with an image that is low pass filtered too heavily. Therefore, 

I have suggested maximum entropy based filtering or weighting to increase 

the entropy of the image to a more natural level with those pixels that have 

enough support among the results increasing the SNR of the outcome. 

According to this, we choose from the different candidate solutions those 

having the greatest entropy or rather weight them inversely proportional to 

their entropy at the averaging. 
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Fig. 6  Comparison of the different optimizations used for the reconstruction of moderately structured 

images. On the horizontal axis the standard deviation of the additive noise can be seen assuming 
normalized pixel values. The vertical axis shows the achieved image SNR relative to the noise free case. 

Figure 7 compares the normalized SNR of the proposed maximum entropy 

based filtering regarding a reweighting algorithm that works optimally, 

selecting the weights of the candidate solutions based on the original picture. 

 
Fig. 7  The comparison of the different reconstruction algorithms: L1, CV and the CV + entropy based 

filtering at σ = 0.015. The proposed algorithm increases the robustness of the CV based reconstructions. 
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Thesis 2 Relation of CS to physical implementations of 
terahertz imaging systems – holistic approach 

I have shown, that in practical implementations of integrated FET based 

terahertz imagers, holistic optimization (system level, including both 

hardware structures and post-processing) results in SNR gain over the 

conventional component based optimization. 

Publication related to the thesis: [2] 

Serial, CS based THz FET detectors have advantage over 

uniform arrays 

Thesis 2.1 I have proved, that serially connected sensors are 

advantageous in VLSI implementations of FET based, 

integrated terahertz imagers if special conditions hold for the 

detector NEP and the noise figure of the integrated LNA. 

 
By utilizing the partially serialized coarse grain structures the total noise 

power of the system modifies to: 

 𝑃𝑡𝑜𝑡𝑎𝑙 = (𝑃𝑑𝑒𝑡 +
1

𝑁𝑝𝑐
𝑃𝐿𝑁𝐴)

𝑁𝑝𝑐𝑀𝑝𝑐𝑁 𝑓𝑝𝑠

 𝑡𝑖𝑛𝑡  𝑟 𝑓𝑠  (𝑁𝑐𝑠𝜂)2
 (14) 

where the sample count of a generated pattern is: 

 
𝑆 =

𝑟 𝑓𝑠 

𝑀𝑝𝑐

𝑁𝑝𝑐
𝑁 𝑓𝑝𝑠

 (15) 

𝑃𝑑𝑒𝑡 = √𝐵 𝑁𝐸𝑃 and 𝑃𝐿𝑁𝐴 ≈ 𝑇0𝑘𝐵𝐵 (10
𝑁𝐹

10 − 1) stand for the detector noise 

power and the LNA noise power, respectively. The other notations are 

indicated in Table 1. If the ratio fulfills the criteria 
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𝑃𝐿𝑁𝐴

𝑃𝑑𝑒𝑡
>

(𝑁𝑐𝑠𝜂)2  −  𝑁𝑝𝑐𝑀𝑝𝑐

 𝑀𝑝𝑐  − (𝑁𝑐𝑠𝜂)2
  (16) 

then the SNR advance (in dB) of the solution takes the form: 

 10 log (
1+ K

1+ 
K

Ncs
 

Npcη2

  Npc
) , where  K = tint  

PLNA

Pdet
 (17) 

Table 1  Summary of the used notations 

Lisauskas investigated the theoretical effect of induced current and proved 

that the sensor SNR increases at most to 1.35 times the unbiased detector 

transistor. Later on, Földesy gave a new model for the in-circuit behavior of 

FET detectors and proved that the measured value can be only smaller than 

that of the intrinsic open drain response and current does not affect the 

photoresponse. 

In spite of these facts, I have studied the characteristics of biased detection 

at CS based architectures and I have given a general upper bound of the 

current loss in the CS case using the Földesy detector model and the results 

of thesis 2.1: 

𝑡𝑖𝑛𝑡 relative integration time after the LNA 𝜂   efficiency of summation (here ~0.8) 

𝑡𝑖𝑛𝑡2  
in-pixel integration time (relative to the time 
Pdet was measured in) 

𝐵 bandwidth of the measurement 

𝑓𝑠  sampling frequency 𝑇0 290 K 

𝑃𝑡𝑜𝑡𝑎𝑙  total noise power 𝑘𝐵 Boltzmann constant 

𝑁  number of pixels in the array 𝑁𝐹 noise figure of the LNA 

𝑀  
number of CS measurements; M ≈ 4s log(N), 
if the image is s-sparse (value for the whole 
image) 

𝑆 sample count (for non-CS: Npc = 1) 

𝑓𝑝𝑠  image acquisition speed (frame per second) 𝑘 number of pixel bunches 

𝑀𝑝𝑐   number of needed CS measurements per 
cluster, Mpc < Npc 

𝑟 number of A/D converters 

𝑁𝑝𝑐   =
𝑁

𝑘
; number of  pixels per cluster 𝑁𝑐𝑠 

the average number of active pixels in CS 
patterns within  𝑡𝑖𝑛𝑡 
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 𝐿(𝑁𝑝𝑐 , 𝐹𝑑𝑒𝑡) ≤ 10 log (
𝐹𝑑𝑒𝑡 ∙ 𝑁𝑝𝑐 + 1 + 2√𝐹𝑑𝑒𝑡 ∙ 𝑁𝑝𝑐

𝑁𝑝𝑐 + 𝐹𝑑𝑒𝑡 + 2√𝐹𝑑𝑒𝑡 ∙ 𝑁𝑝𝑐

 ) (18) 

This bound is sharp, it equals the loss at 
𝑃𝐿𝑁𝐴

𝑃𝑑𝑒𝑡
= √F𝑑𝑒𝑡𝑁𝑝𝑐. This bound gives 

a maximal loss of 2.79 dB for 𝐹𝑑𝑒𝑡 = 3 and  𝑁𝑝𝑐 = 16. 

However, if the low noise amplifier is efficient, for instance 𝐹𝐿𝑁𝐴 = 1.2, the 

loss is less than 13 %. The open drain efficiency of the summation (𝜂) is 

only 0.8. However, summation efficiencies of at least 0.9 are expected based 

the reported measurements of Elkhatib at appropriate gate-bias and load. 

Such efficiencies can balance the mentioned loss. Therefore, I conclude 

detector biasing can be a rational design choice. 

Induced current in integrated systems 

Thesis 2.2 I have proved that induced current can enhance overall system 

SNR in application oriented implementations of FET based 

FPAs. 

 

In addition, current mode helps the system integration of the THz FET based 

FPAs, because the significantly greater drain current strengthens the driving 

capability of the detector allowing higher input load from the read-out 

circuitry and increases the signal level, what can make the LNA 

implementation easier. In the end, the current mode sensor tolerates the 

environmental noises better. 

Biasing promises to cancel the loading effect implied losses of serial pixel 

blocks and enables greater pixel clusters. With this, current mode can further 

reduce the number of LNAs, the LNA noise contribution and enhance the 

compression ratio. 
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Fields of application 
The results of thesis one can be applied for any CS based post-processing 

scheme, where small size, moderately structured, noisy images are to be 

reconstructed. Integrated FET based terahertz imaging is of this kind, 

especially, because the sensing is SNR critical and computationally 

expensive post-processing is acceptable. 

Thesis two focuses on the overall performance of integrated arrays and helps 

the design of CS based terahertz focal plane arrays. It gives a guideline to 

determine the specifics of the built in LNA, exhibits the effect of a chosen 

read-out organization, and makes easier to calculate the achievable image 

SNR with a given configuration. It reveals the advances of CS architectures 

and delimit the parameter region, where it is applicable. 
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