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1 Introduction
Microprocessor design has faithfully followed Moore’s Law for the

past forty years. While the number of transistors on a chip has been
doubling approximately every two years, other characteristics have been
undergoing dramatic changes; due to increasing leakage and practical
power dissipation limitations, frequency scaling ground to a halt by 2005.
It had become clear that in order to maintain the growth of computa-
tional capacity it would be necessary to increase parallelism; multi-core
CPUs appeared and supercomputers went through a dramatic increase
in processor core count. There is also a resurgence of vector processing;
CPUs feature increasingly wide vector processing capabilities, and the
emergence of accelerators took these trends to the extreme; GPUs and
Intel’s Xeon Phi feature many processing cores that have very simplistic
execution circuitry compared to CPUs, but contain much wider vector
units, they support and expect a high amount of parallelism.

While the economics of processor development has pushed them to
gain increasingly higher performance, the economics of memory chip de-
velopment favoured increasing capacity, not performance. This is quite
apparent in their development; while in the 1980’s, memory access times
and compute cycle times were roughly the same, at present there is
at least two orders of magnitude difference, and accounting for multi-
ple cores in modern CPUs, the difference is around a 1000×. Serially
executed applications and algorithms therefore face the Von Neumann
bottleneck; vast amounts of data have to be transferred through the
high-latency, low-bandwidth memory channel, throughput may be much
smaller than the rate at which the CPU could work.

The cost of data movement - in terms of energy and latency - is
perhaps the greatest challenge facing computing, and therefore locality
is of paramount importance. Deep memory hierarchies are introduced
in modern architectures to avoid moving data from off-chip memory,
which is often several orders of magnitude more expensive than floating
point operations. By overlapping computations with data movement,
parallelism can also be used to combat latency: this is the approach
that GPUs take. At the same time, a further increase in parallelism
is necessary to maintain the growth of computational capacity; due to
the lack of single-core performance scaling, the departmental, smaller-
scale high performance computing (HPC) systems in a few years will
consist of the same number of processing elements as the world’s largest
supercomputers today [1]. Finally, huge parallel processing capabilities
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Figure 1: Evolution of processor characteristics

and deep memory hierarchies inevitably result in load balancing issues
between concurrent, dependent tasks. These are the three fundamental
obstacles to programmability according to [22].

Programming languages still being used today in scientific comput-
ing, such as C and Fortran, were designed decades ago with a tight
connection to the execution models of the hardware of the time. Code
written using these programming models was trivially translated to the
hardware’s execution model and then into hardware instructions. Over
time, hardware and execution models have changed, but mainstream
programming models remain the same, resulting in a disparity between
the user’s way of thinking about programs and what the real hardware
is capable and suited to do. While compilers do their best to hide these
changes, decades of compiler research has shown that bridging this gap
is extremely hard.

There is a growing number of programming languages and exten-
sions that aim to address these issues, but at the same time it is increas-
ingly difficult to write scientific code that delivers high performance and
is portable to current and future architectures, because often in-depth
knowledge of architectures is required, and hardware-specific optimisa-
tions have to be applied. Therefore, there is a push to raise the level of
abstraction; describing what the program has to do instead of describing
how exactly to do it, leaving the details to the implementation of the lan-
guage. Ideally, such a language would deliver generality, productivity and
performance, but of course, despite decades of research, no such language
exists. Recently, research into Domain Specific Languages (DSLs) applied
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to different fields in scientific computing has shown that by sacrificing
generality, it is possible to achieve performance and productivity. A DSL
defines an abstraction for a specific application domain, and provides an
Application Programming Interface (API) that can be used to describe
computational problems at a higher level. Domain-specific knowledge can
then be used to for example re-organise computations to improve local-
ity, break up the problem into smaller parts to improve load-balancing,
or map execution to different hardware, applying architecture-specific
optimisations. A popular way of classifying these domains is via the 13
dwarfs identified at Berkeley [23]; OP2 [16] is such a domain specific
abstraction and library targeting unstructured grid computations, being
developed at the University of Oxford.

My main motivation is to address the programming challenges in
modern computing; parallelism, locality, load balancing and resilience.
For my research, I have chosen to focus on the field of unstructured grid
computations. Thus, the aim of this dissertation is to present my research
into unstructured grid algorithms, starting out at different levels of ab-
straction where certain assumptions are made, which in turn are used to
reason about and apply transformations to these algorithms. They are
then mapped to computer code, with a focus on the dynamics between
the programming model, the execution model and the hardware; inves-
tigating how the parallelism and the deep memory hierarchies available
on modern heterogeneous hardware can be utilised optimally.

Figure 2 shows the structure of the dissertation, the first part of my
research studies the Finite Element Method, therefore starts at a rela-
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tively high level of abstraction, allowing a wide range of transformations
to the numerical methods involved. I present results involving changes to
the balance of computations, communications, and data structures (The-
sis I.1 and I.2). My research into the linear solve phase of the method
yields results that contribute not only to the FEM and unstructured
grids but to the related field of sparse linear algebra as well (Thesis
I.3). Following the first part that focused on challenges in the context
of the finite element method, I broaden the scope of my research by ad-
dressing general unstructured grid algorithms that are defined through
the OP2 domain specific library[16]. I have started contributing to the
project a year after its launch, carrying out research on different areas,
the results of which form Thesis groups II. and III. OP2’s abstraction
for unstructured grid computations covers the finite element method,
but also others such as the finite volume method. The entry point here,
that is the level of abstraction, is lower than that of the FEM, thus there
is no longer control over the numerical method, however it supports a
much broader range of applications. The second part of my research
investigates possible transformations to the execution of computations
defined through the OP2 abstraction in order to be able to address the
challenges of resiliency (Thesis II.1), locality (Thesis II.2), and utilisa-
tion of resources (Thesis II.3) at a higher level, that is not concerned
with the exact implementation. Finally, the third part of my research
presents results on how an algorithm defined once through OP2 can be
automatically mapped to a range of contrasting programming languages,
execution models and hardware, such as GPUs (Thesis III.1), CPUs, and
the Xeon Phi (Thesis III.2). I show how execution is organised on large
scale heterogeneous systems, utilising layered programming abstractions,
across deep memory hierarchies and many levels of parallelism.

2 Methods and Tools

During the course of my research a range of numerical methods and
analytical methods were used in conjunction with different programming
languages, programming and execution models, and hardware. Indeed,
one of my goals is to study the interaction of these in today’s complex
systems. The first part of my research (Thesis group I.) is based on a pop-
ular discretisation method for Partial Differential Equations (PDEs); the
Finite Element Method - I used a Poisson problem, implemented loosely
based on [21]. During the study of the solution of sparse linear systems,
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I used the Conjugate Gradient iterative method preconditioned by the
Jacobi and the Symmetric Successive Over-Relaxation (SSOR) method
[24]. The sparse matrix-vector multiplication, as the principal building
block for sparse linear algebra algorithms, is studied in further detail.
This initial part of my research served as an introduction to unstruc-
tured grid algorithms, gaining invaluable experience that would later be
applied to the rest of my research.

The second and third parts of my research are based on the OP2 Do-
main Specific Language (or “active library”), introduced by Prof. Mike
Giles at the University of Oxford [16], its abstraction carried over from
OPlus [18]. There is a suite of finite volume applications that were writ-
ten using the OP2 abstraction and are used to evaluate the algorithms
presented in this dissertation; a benchmark simulating airflow around the
wing of an aircraft (Airfoil) [25], a tsunami simulation software called
Volna [20], and a large-scale production application, Hydra [19], used by
Rolls-Royce plc. for the design and simulation of turbomachinery. While
I do not claim authorship of the original codes, I did do most of the work
transforming the latter two to the OP2 abstraction. OP2 and the Airfoil
benchmark are available at [17].

Computer code was implemented using either the C or the Fortran
language, using the CUDA’s language extensions when programming for
GPUs. Python was used to facilitate text manipulation and code gener-
ation. A number of parallel programming models were employed to sup-
port the hierarchical parallelism present in modern computer systems;
at the highest level, message passing for distributed memory parallelism,
using MPI libraries. For coarse-grained shared memory parallelism I used
simultaneous multithreading (SMT), using OpenMP and CUDA thread
blocks. Finally for fine-grained shared memory parallelism I used either
Single Instruction Multiple Threads (SIMT) using CUDA, or Single In-
struction Multiple Data (SIMD) using Intel vector intrinsics.

A range of contrasting hardware platforms were used to evaluate the
performance of algorithms and software. When benchmarking at a small
scale, single workstations were used, consisting of dual-socket Intel Xeon
server processors (Westmere X5650, Sandy-Bridge E2640 and E2670).
The accelerators used were: an Intel Xeon Phi 5110P, and NVIDIA Tesla
cards (C2070, M2090, K20, K20X, K40). For large-scale tests the follow-
ing supercomputers were used: HECToR (the UK’s national supercom-
puting machine, a Cray XE6, with 90112 AMD Opteron cores), Emer-
ald (the UK’s largest GPU supercomputer, with 372 NVIDIA M2090
GPUs, 512 cores each) and Jade (Oxford University’s GPU cluster, with
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16 NVIDIA K20 GPUs, 2496 cores each). Timings were collected using
standard UNIX system calls, usually ignoring the initial set-up cost (due
to e.g. file I/O) because production runs of the benchmarked applications
have an execution time of hours or days, compared to which, set-up costs
are negligible. In most cases, results are collected from 3-5 repeated runs
and averaged. Wherever possible, I provide both absolute and relative
performance numbers, such as achieved bandwidth (in GB/s), compu-
tational throughput (109 Floating Operations Per Second - GFLOPS),
and speedup over either a reference implementation on the GPU or a
fully utilised CPU, not just a single core.

3 New scientific results

Thesis group I. (area: Finite Element Method) - I have introduced
algorithmic transformations, data structures and new implementations
of the Finite Element Method (FEM) and corresponding sparse linear
algebra methods on GPUs, in order to address different aspects of the
concurrency, locality, and memory challenges and quantified the trade-
offs.

Related publications: [4, 9, 12, 13].

Thesis I.1. - By applying transformations to the FE integration that
trade off computations for communications and local storage, I have de-
signed and implemented new mappings to the GPU, and shown that the
redundant compute approach delivers high performance, comparable to
classical formulations for first order elements, furthermore, it scales bet-
ter to higher order elements without loss in computational throughput.

Through algorithmic transformations to the Finite Element integra-
tion, I gave per-element formulations that have different characteristics
in terms of the amount of computations, temporary memory usage, and
spatial and temporal locality in memory accesses. The three variants are:
(1 - redundant compute), where the outer loop is over pairs of degrees
of freedom and the inner loop over quadrature points recomputing the
Jacobian for each one, (2 - local storage) structured as (1) but Jacobians
are pre-computed and re-used in the innermost loop, effectively halving
the number of computations, and (3 - global memory traffic), that is
commonly used in Finite Element codes, where the outermost loop is
over quadrature points, computing the Jacobian once, and then the
inner loop is over pairs of degrees of freedom, adding the contribution

7



1 2 3 4
10

5

10
6

10
7

10
8

10
9

A
ss

em
b
le

d
 e

le
m

en
ts

 /
 s

ec
o
n
d

Degree of polynomials

 

 

Local storage

Global traffic

Redundant compute

CPU

(a) FE integration
transformations

1 2 3 4

10
1

10
2

C
G

 i
te

ra
ti

o
n
s 

/ 
se

co
n
d

Degree of polynomials

 

 

ELLPACK

LMA

CSR

CUSPARSE

CPU ELL

(b) Iterative solution
and data structures

Figure 3: Performance of Finite Element Method computations
mapped to the GPU

from the given quadrature point to the stiffness values. As illustrated in
Figure 3a, I have demonstrated that approach (1) is scalable to high de-
grees of polynomials because only the number of computations changes,
whereas with (2) the amount of temporary storage, and with (3) the
number of memory transactions also increase. Implementations of these
variants in CUDA applied to a Poisson problem show that for low
degree polynomials (1) and (2) perform almost the same, but at higher
degrees (1) is up to 8× faster than (2), and generally 3× faster than (3).
Overall, an NVIDIA C2070 GPU is demonstrated to deliver up to 400
GFLOPS (66% of the ideal1), it is up to 10× faster than a two-socket In-
tel Xeon X5650 processor, and up to 120× faster than a single CPU core.

Thesis I.2. - I introduced a data structure for the FEM on the GPU,
derived storage and communications requirements, shown its applicability
to both the integration and the sparse iterative solution, and demonstrated
superior performance due to improved locality.

One of the key challenges to performance in the FEM is the
irregularity of the problem and therefore of the memory accesses, which
is most apparent during the matrix assembly and the sparse iterative
solution phases. By storing stiffness values on a per-element basis laid
out for optimal access on massively parallel architectures, I have shown
that it is possible to regularise memory accesses during integration by
postponing the handling of race conditions until the iterative solution

1The same card delivers 606 Giga Floating Operations per Second (GFLOPS) on
a dense matrix-matrix multiplication benchmark
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Table 1: Performance metrics on the test set of 44 matrices.
CUSPARSE Fixed rule Tuned

Throughput single GFLOPS/s 7.0 14.5 15.6
Throughput double GFLOPS/s 6.3 8.8 9.2
Min Bandwidth single GB/s 28.4 58.9 63.7
Min Bandwidth double GB/s 38.7 54.0 56.8
Speedup single over CUSPARSE 1.0 2.14 2.33
Speedup double over CUSPARSE 1.0 1.42 1.50

phase, where it can be addressed more efficiently. This approach, called
the Local Matrix Approach (LMA), consists of a storage format and
changes to the FE algorithms in both the assembly and the solution
phases, and is compared to traditional storage formats, such as CSR and
ELLPACK on GPUs. I show that it can be up to two times faster during
both phases of computations, due to reduced storage costs, as shown
in Figure 3b, and regularised memory access patterns. A conjugate
gradient iterative solver is implemented, supporting all three storage
formats, using a Jacobi and a Symmetric Successive Over-Relaxation
(SSOR) preconditioner, performance characteristics are analysed, and
LMA is shown to deliver superior performance in most cases.

Thesis I.3. - I have parametrised the mapping of sparse matrix-vector
products (spMV) for GPUs, designed a new heuristic and a machine
learning algorithm in order to improve locality, concurrency and load
balancing. Furthermore, I have introduced a communication-avoiding al-
gorithm for the distributed execution of the spMV on a cluster of GPUs.
My results improve upon the state of the art, as demonstrated on a wide
range of sparse matrices from mathematics, computational physics and
chemistry.

The sparse matrix-vector multiplication operation is a key part of
sparse linear algebra; virtually every algorithm uses it in one form or
another. The most commonly used storage format for sparse matrices is
the compressed sparse row (CSR) format; it is supported by a wide range
of academic and industrial software, thus I chose it for the basis for my
study. By appropriately parametrising the multiplication operation for
GPUs, using a dynamic number of cooperating threads to carry out the
dot product between a row of the matrix and the multiplicand vector, in
addition to adjusting the thread block size and the granularity of work
assigned to thread blocks, it is possible to outperform the state of the
art CUSPARSE library.
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I have introduced an O(1) heuristic that gives near-optimal values
for these parameters that immediately results in 1.4-2.1× performance
increase. Based on the observation that in iterative solvers, the spMV
is evaluated repeatedly with the same matrix, I have designed and
implemented a machine learning that tunes these parameters and
increases performance by another 10-15% in at most 10 iterations,
achieving 98% of the optimum, found by exhaustive search. Results are
detailed in Table 1. I have also introduced a communication avoiding
algorithm for the distributed memory execution of the spMV, that
uses overlapping graph partitions to perform redundant computations
and decrease the frequency of communications, thereby mitigating the
impact of latency, resulting in up to 2× performance increase.

Thesis group II. (area: High-Level Transformations with OP2) -
I address the challenges of resilience, the expression and exploitation
of data locality, and the utilisation of heterogeneous hardware, by in-
vestigating intermediate steps between the abstract specification of an
unstructured grid application with OP2 and its parallel execution on
hardware; I design and implement new algorithms that apply data trans-
formations and alter execution patterns.

Related publications [2, 3, 5, 10]
Thesis II.1. - I have designed and implemented a checkpointing

method in the context of OP2 that can automatically locate points during
execution where the state space is minimal, save data and recover in the
event of a failure.

As the number of components in high performance computing
systems increases, the mean time between hardware or software failures
may become less than the execution time of a large-scale simulation. I
have introduced a checkpointing method in order to provide means to
recover after a failure, that relies on the information provided through
the OP2 API to reason about the state space of the application at
any point during the execution and thereby to (1) find a point where
the size of the state space is minimal and save it to disk and (2) in
case of a failure, recover by fast-forwarding to the point where the last
backup happened. This is facilitated by the OP2 library, in a way that is
completely opaque to the user, requiring no intervention except for the
re-launch of the application after the failure. This ensures the resiliency
of large-scale simulations.
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Thesis II.2. - I gave an algorithm for redundant compute tiling in
order to provide cache-blocking for modern architectures executing gen-
eral unstructured grid algorithms, and implemented it in OP2, relying on
run-time dependency analysis and delayed execution techniques.

Expressing and achieving memory locality is one of the key chal-
lenges of high performance programming; but the vast majority of
scientific codes are still being designed and implemented in a way that
only supports very limited locality; it is common practice to carry out
one operation on an entire dataset and then another - as long as the
dataset is larger than the on-chip cache, this will result in repeated
data movement. However, doing one operation after the other on just a
part of the dataset is often non-trivial due to data dependencies. I have
devised and implemented a tiling algorithm for general unstructured
grids defined through the OP2 abstraction, that can map out these data
dependencies, as illustrated in Figure 4a, and enable the concatenation
of operations over a smaller piece of the dataset, ideally resident in
cache, thereby improving locality. The tiling algorithm can be applied
to any OP2 application without the intervention of the user.

Thesis II.3. - I gave a performance model for the collaborative, hetero-
geneous execution of unstructured grid algorithms where multiple hard-
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ware with different performance characteristics are used, and introduced
support in OP2 to address the issues of hardware utilisation and energy
efficiency.

Modern supercomputers are increasingly designed with many-core
accelerators such as GPUs or the Xeon Phi. Most applications run-
ning on these systems tend to only utilise the accelerators, leaving
the CPUs without useful work. In order to make the best use of
these systems, all available resources have to be kept busy, in a way
that takes their different performance characteristics into account.
I have developed a model for the hybrid execution of unstructured
grid algorithms, giving a lower bound for expected performance in-
crease and added support for utilising heterogeneous hardware in OP2,
validating the model and evaluating performance, as shown in Figure 4b.

Thesis group III. (area: Mapping to Hardware with OP2) - One
of the main obstacles in the way of the widespread adoption of domain
specific languages is the lack of evidence that they can indeed deliver
performance and future proofing to real-world codes. Through the Air-
foil benchmark, the tsunami-simulation code Volna and the industrial
application Hydra, used by Rolls-Royce plc. for the design of turboma-
chinery, I provided conclusive evidence that an unstructured grid appli-
cation, written once using OP2, can be automatically mapped to a range
of heterogeneous and distributed hardware architectures at near-optimal
performance, thereby providing maintainability and longevity to these
codes.

Related publications: [2, 3, 5, 6, 8, 11, 14, 15]

Thesis III.1. - I have designed and developed an automated mapping
process to GPU hardware that employs a number of data and execution
transformations in order to make the best use of limited hardware re-
sources, the multiple levels of parallelism and memory hierarchy, which
I proved experimentally.

Mapping execution to GPUs involves the use of the Single Instruc-
tion Multiple Threads (SIMT) model, and the CUDA language. I have
created an automatic code generation technique that, in combination
with run-time data transformation, facilitates near-optimal execution
on NVIDIA Kepler-generation GPUs. I show how state-of-the-art
optimisations can be applied through the code generator, such as the
use of the read-only cache, or data structure transformation from
Array-of-Structures (AoS) to Structure-of-Arrays (SoA), in order to
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Figure 5: The challenge of mapping unstructured grid computations to
various hardware architectures and supercomputers

make better use of the execution mechanisms and the memory hierarchy.
These are then deployed to a number of applications and tested on
different hardware, giving 2-5× performance improvement over fully
utilised Intel Xeon CPUs. Performance characteristics are analysed,
including compute and bandwidth utilisation, to gain a deeper under-
standing of the interaction of software and hardware, and to verify that
near-optimal performance is indeed achieved. I discuss how OP2 is able
to utilise supercomputers with many GPUs, by automatically handling
data dependencies and data movement using MPI, and I demonstrate
strong and weak scalability on Hydra.

Thesis III.2. - I have designed and implemented an automated map-
ping process to multi- and many-core CPUs, such as Intel Xeon CPUs
and the Intel Many Integrated Cores (MIC) platform, to make efficient
use of multiple cores and large vector units in the highly irregular setting
of unstructured grids, which I proved experimentally.

Modern CPUs feature increasingly longer vector units, their utili-
sation is essential to achieving high performance. However, compilers
consistently fail at automatically vectorising irregular codes, such as un-
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structured grid algorithms, therefore low-level vector intrinsics have to
be used to ascertain the utilisation of vector processing capabilities. I
have introduced a code generation technique that is used in conjunction
with C++ classes and operator overloading for wrapping vector intrin-
sics and show how vectorised execution can be achieved through OP2,
by automatically gathering and scattering data. Performance is evalu-
ated on high-end Intel Xeon CPUs and the Xeon Phi, and a 1.5-2.5×
improvement is demonstrated over the non-vectorised implementations.
In-depth analysis reveals what hardware limitations determine the per-
formance of different stages of computations on different hardware. I
demonstrate that these approaches are naturally scalable to hundreds
or thousands of cores in modern supercomputers, evaluating strong and
weak scalability on Hydra.

4 Applicability of the results
The applicability of the results related to the Finite Element Method

are many-fold; the practice of designing algorithms that have differ-
ent characteristics in terms of computations, memory requirements and
memory traffic is useful in different contexts as well, but the results can
be directly used when designing a general-purpose Finite Element li-
brary. There are already some libraries, such as ParaFEM [26], which
take a similar matrix-free approach as LMA, therefore my results are
directly applicable, should GPU support be introduced, or the need for
more advanced sparse linear solvers arise. Results concerning the sparse
matrix-vector product are pertinent to a much wider domain of appli-
cations: sparse linear algebra. The heuristic published in [9] was subse-
quently adopted by the NVIDIA CUSPARSE library [27], and the run-
time auto-tuning of parameters is a strategy that, though few libraries
have adopted, could become standard practice as hardware becomes even
more diverse and thus performance predictions become more uncertain.
During my internship at NVIDIA, I have developed the distributed mem-
ory functionality of the sparse linear solver software package that became
AmgX [28], incorporating many of the experiences gained working on the
FEM, designing it from the outset in a way so that optimisations such as
redundant computations for avoiding communications could be adopted.

Results of the research carried out in the context of the OP2 frame-
work are immediately applicable to scientific codes that use OP2; af-
ter converting the Volna tsunami simulation code [20] to OP2, it was
adopted by Serge Guillas’s group at the University College London and
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subsequently by the Indian Institute of Science in Bangalore, and it is
currently being used for the simulation of tsunamis in conjunction with
uncertainty quantification, since the exact details of the under-sea earth-
quakes are often not known. Similarly, the conversion of Rolls-Royce
Hydra [19] to OP2 is considered a success, performance bests the origi-
nal, and support for modern heterogeneous architectures is introduced,
thereby future-proofing the application; discussions regarding the use of
the OP2 version in production are ongoing. However, many of these re-
sults, especially the ones under Thesis II that describe generic algorithms
and procedures, are relevant to other domains in scientific computations
as well; our subsequent research into structured grid computations is
going to be employing many of these techniques, and some are already
used in research on molecular dynamics carried out in collaboration with
chemical physicists that resulted in [7].
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