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1 Introduction
The most important driving forces in the development of wireless

communications are the need for higher link throughput, higher network
capacity and improved reliability. The limiting factors of such systems
are equipment cost, radio propagation conditions and frequency spec-
trum availability. The ever increasing need for higher transmission rates
motivated researchers to develop new methods and algorithms to reach
the Shannon capacity limit of single transmit and receive antenna wire-
less systems. Research in information theory [8] has revealed that im-
portant improvements can be achieved in data rate and reliability when
multiple antennas are applied at both the transmitter and receiver sides,
referred to as MIMO systems [9]. The key feature of MIMO systems is
the ability to turn multipath propagation, traditionally a pitfall of wire-
less transmissions, into a benefit for the user, thus, the performance of
wireless systems is improved by orders of magnitude at no cost of ex-
tra spectrum use. The probability of error in a MIMO system can be
minimized by transmitting different representations of the same data
stream on different parallel transmit branches, i.e., controlled redun-
dancy in both space and time is introduced. The capacity of the radio
link in a MIMO system can be increased by transmitting independent
data streams on different transmit branches simultaneously and within
the same frequency band.

The complexity of MIMO detectors used over different receiver struc-
tures depends on many factors, such as antenna configuration, modula-
tion order, channel, coding, etc. In order to achieve optimal Bit Error
Rate (BER) for Additive White Gaussian Noise (AWGN) channels Max-
imum Likelihood (ML) detection has to be used. The exhaustive search
implementation of ML detection has a complexity that grows exponen-
tially with both the number of elements in the signal set and the num-
ber of antennas, thus, this technique is not feasible in real systems. The
Sphere Detector (SD) seems to be a promising solution to reduce sig-
nificantly the search space. The fundamental aim of the SD algorithm
is to restrict the search to lattice points that lie within a certain sphere
around a given received symbol vector. The search space reduction does
not affect the detection quality because the closest lattice point inside
the sphere will also be the closest lattice point for the whole lattice. The
drawbacks of the SD algorithm are: (i) the complexity still suffers of
an exponential growth, when increasing the number of antennas or the
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modulation order, (ii) the SD detection transforms the MIMO detec-
tion problem into a depth-first tree search that is highly sequential, and
(iii) during every tree search several different paths have to be explored
leading to a variable processing time.

When MIMO is applied to multi-user communication systems, spa-
tial diversity can be achieved even if the Mobile Stations (MSs) are not
equipped with multiple antennas. However, since the MSs do not know
other users’ channels, the entire processing task must be done at the Base
Station (BS), especially symbol precoding to cancel multi-user interfer-
ence. The approach of finding the optimal solution for detection and pre-
coding requires a computational complexity that grows extremely high
for larger MIMO systems. However, it might happen that the theoretical
performance can be determined only by high complexity simulations. In
this case the efficient use of Massively Parallel Architectures (MPAs) can
significantly decrease the processing time.

Another approach is to precondition or preprocess the problem, and
afterwards perform lower complexity signal processing algorithms (i.e.
linear detection, precoding). A promising preprocessing technique that
can be applied for both precoding and detection is the Lattice Reduction
(LR) of the channel matrix. Recent research shows that the performance
of linear and non-linear MIMO precoding and detection achieves full di-
versity order even with less-complex linear detection methods when used
in conjunction with LR. The computational cost of LR algorithms can
become critical for very large MIMO arrays. In this case the complexity
or the processing time is mostly influenced by the preprocessing algo-
rithms. In conclusion we get that the price that has to be paid when
using MIMO systems is the increased complexity of hardware compo-
nents and signal processing algorithms and most of these algorithms can
not be efficiently mapped to modern parallel architectures because of
their sequential components.

Due to the major advances in computing architectures and program-
ming models the production of relatively low-cost, high-performance
MPAs such as GP-GPUs or Field Programmable Gate Arrays (FPGAs)
have been introduced. Research conducted in several scientific areas has
shown that the GP-GPU approach is very powerful and offers a consid-
erable improvement in system performance at a low cost. Furthermore,
market leading smartphones have sophisticated GP-GPUs, and high-
performance GP-GPU clusters are already available. Consequently, com-
plex signal processing tasks can be offloaded to these devices. With these
powerful MPAs the relatively high and variable computational complex-
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ity algorithms could be solved for real-time applications or they could
speed-up the time of long running simulations.

The trend of using MPAs in several heavy signal processing tasks
is visible. Computationally heavy signal processing algorithms like de-
tection [10], [11], decoding [12], [13] and precoding [14] are efficiently
mapped on to GP-GPUs.

The underlying architecture is seriously influencing the processing
time and the quality of the results. Since the existing algorithms are
mostly sequential, it is necessary to redesign completely the existing al-
gorithms in order to achieve peak performance with the new MPAs. By
using these powerful devices new limits are reached, so in this thesis
my goal is twofold: (i) to design efficient and highly parallel algorithms
that solve the high complexity ML detection problem and (ii) to design
and implement highly parallel preconditioning algorithms, such as lat-
tice reduction methods that facilitates the use of low complexity signal
processing algorithms without degrading significantly the overall system
performance.
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2 Methods used in research

The goal of my research was to solve computationally demanding
signal processing problems in the field of wireless communications with
modern MPAs, such as GP-GPUs, and multi-core CPUs. The main chal-
lenge was to identify and develop the mathematical and algorithmic
transformations of the sequential, high-complexity problems in such a
way that an efficient mapping to these parallel architectures became
possible.

In the first part of my thesis I consider the optimal hard-output
ML detection in MIMO systems. The complexity of the ML detector
increases exponentially with the number of antennas and the modulation
order. In order to significantly reduce the complexity, the SD algorithm
was proposed in [15] and applied in a decoding context in [16]. The
fundamental aim of the SD algorithm is to restrict the search to lattice
points that lie within a certain sphere around a given received symbol
vector. The search space reduction does not affect the detection quality
because the closest lattice point inside the sphere will also be the closest
lattice point for the whole lattice.

During detection the optimum search path for the symbol vectors
is different. Since different parts of the search tree are explored by the
detection algorithm, a variable processing time is expected. In order to
moderate the effects of the variable complexity (i) a column norm based
ordering method shown in [17] and (ii) a dynamic computing load distri-
bution strategy were applied. Specifying the order of symbol detection,
based on metrics involving the channel matrix, was shown to lead to less
computations. The probability of choosing the right search path on the
top levels of the tree can be increased by first detecting symbols with
higher post-detection SNR or SINR. Consequently, a non-optimal sym-
bol detection on a lower level does not lead to a major step-back on the
tree.

The variable processing time of the symbol vectors leads to an im-
balance in the execution time of the thread blocks of a kernel. Until the
execution of the thread blocks is not finished the GP-GPU resources
allocated to a kernel will not be freed. The long-time resource alloca-
tion prevents the overlapping execution of multiple kernels on different
streams. With a dynamic load balancing method the tail effect is negligi-
ble, thus, the overlapping execution of multiple kernels becomes possible
and the goal of alleviating the variable processing time is achieved.

In the second part of my thesis the focus is on a powerful preprocess-
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ing tool, namely the LR method [18]. Lattice reduction aims to find a
”better” basis whose vectors are more orthogonal and shorter than the
original ones, in the sense of Euclidean norm. Lattice reduction improves
the condition number, the orthogonality defect and the Seysen measure.
Several LR algorithms exist in the literature that differ in computational
complexity and achieved performance. However, the most extensively
used polynomial-time algorithm is the Lenstra-Lenstra-Lovász (LLL) al-
gorithm introduced in [19]. Because of its wide applicability and several
favorable properties, my research focused on improving this method and
making it suitable for MPAs.

In [20] it was shown that the performance of linear and non-linear
detectors can be improved when used in conjunction with LR techniques
and full diversity order is achieved with the reduced basis. Since many
detection schemes heavily rely on the usage of the channel matrix, it
is straightforward to regard the channel matrix as a lattice generator
matrix.

In MISO systems the multi-user interference must be canceled at the
transmitter, this method is referred to as precoding. According to [21] lin-
ear methods, such as Zero-Forcing precoding, and non-linear methods,
such as Tomlinson-Harashima precoding and vector perturbation tech-
niques perform better if the channel matrix is not badly conditioned.
Moreover, full diversity is achieved even for very large systems.

The tools used to solve the above mentioned computationally chal-
lenging signal processing tasks were modern multi-core CPUs, such as
Intel Core i7-3820, Intel Xeon X5680, Intel Xeon E5-2650 v3, and mas-
sively parallel architectures, such as NVIDIA GeForce GTX 690 and
NVIDIA Tesla C2075 and K20 GP-GPUs. A number of parallel pro-
gramming models were employed to support the hierarchical parallelism
present in modern computer systems. For coarse-grained shared mem-
ory parallelism I used simultaneous multithreading using OpenMP. For
fine-grained parallelism Single Instruction Multiple Threads (SIMT) was
implemented using CUDA.
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3 New scientific results

Thesis group I. Design of new parallel Sphere Detector algo-
rithms achieving hard-output true-ML performance and their
efficient mapping to multi-core and many-core architectures.

(Related articles [1], [3].)

Thesis I.a.

I proposed a new Parallel Sphere Detector (PSD) algorithm to
achieve true-ML bit error rate performance in hard-output MIMO
detection. The high degree of parallelism of the PSD algorithm is
based on a novel hybrid tree traversal where depth-first search and
breadth-first search methods are efficiently combined, furthermore, at
each intermediate stage, path metric based parallel sorting networks
are employed to achieve a faster convergence. I showed that the PSD
algorithm achieves an efficient work distribution in a highly multi-
threaded environment reducing the number of visited tree nodes by a
single thread with 88% − 96%, and the speed-up factor of the detection
throughput of the PSD algorithm in 4× 4 MIMO systems is 2− 50 times
higher for different signal-to-noise ratios compared to the sequential case.

The real-valued MIMO system model is described as

y = Hst + v

where y ∈ RM is the received symbol vector, v ∈ RM is the additive
channel noise, st ∈ ΩN is the transmitted symbol vector, Ω is the symbol
set, and the superposition of the transmitted symbols is modeled by the
channel matrix H ∈ RM×N . The optimal hard-output ML detector is
defined as

ŝML = arg min
s∈ΩN

‖y−Hs‖2.

The ML estimate of the transmitted symbol vector is found by solving
an integer least-squares problem which is analogous to finding the closest
lattice point of lattice Λ = {Hs|s ∈ ΩN} to a given point y.

With the unconstrained least-squares solution ŝ = H†y, where H†
denotes the Moore–Penrose pseudoinverse, and the QR factorization of
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the channel defined as H = QR, the ML detection problem can be re-
formulated as

ŝML = arg min
s∈ΩN

‖R(s− ŝ)‖2.

The lattice point Hs is included by the sphere S(y, d) with center point
y and radius d if the following inequality is satisfied ‖R(s− ŝ)‖2 6 d2,∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
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6 d2.

Starting with dimension N , the elements of the symbol set are inserted
into the partial symbol vector and the inequality condition is evaluated.
The search process is analogous to a depth-first tree search that is highly
sequential, consequently, this problem cannot be efficiently solved in a
multi-threaded environment.

The PSD completely eliminates the sequential parts of the SD algo-
rithm. The tree traversal of the PSD algorithm is implemented by a novel
hybrid tree search method, where the algorithm parallelism is assured
by the efficient combination of depth-first search and breadth-first search
algorithms. Because of the hybrid tree search only distinct levels of the
tree are evaluated that are denoted by the parameter lvlx. On these
levels the number explvlx

of partial symbol vectors are expanded simul-
taneously. During the expansion of a partial symbol vector (lvlx−1−lvlx)
number of new symbols are added to the original symbol vector. The si-
multaneous expansion of explvlx−1 number of partial symbol vectors on
level lvlx−1 will create evallvlx = explvlx−1 · |Ω|(lvlx−1−lvlx) number of
new partial symbol vectors on level lvlx. Note, that a hybrid search is
realized at this point, because with parameters explvlx

the extent of the
breadth search, while with parameters lvlx the extent of the depth search
is controlled. Since several new (partial) symbol vectors are created after
the expansion stage, the parallel path metric update becomes possible,
thus, the resources of an MPA can be efficiently exploited.

Figure 1 shows the average number of expanded nodes per thread for
different MIMO systems and symbol set configurations. The signal space
of real-equivalent 8× 8 MIMO with symbol set size of |Ω| = 8 has about
1.6×107 symbol vectors. For an SNR of 5 dB the PSD expands into about
310 nodes per thread while the Automatic Sphere Detector expands into
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Figure 1: Comparison of the average number of expanded nodes per
thread for 4× 4 MIMO systems and |Ω| = 8 for the sequential, parallel
and automatic Sphere Detector algorithms.
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Figure 2: The comparison of the average detection throughput of (i) the
Parallel Sphere Detector algorithm implemented on a GP-GPU archi-
tecture and (ii) the sequential Sphere Detector executed on every thread
of a multi-core CPU.
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about 7500 nodes per thread. Consequently, the total workload of a
thread running the PSD algorithm is reduced by 96%.

In Fig. 2 the average detection throughput achieved with (i) the PSD
algorithm implemented on the GTX690 GP-GPU and (ii) the sequential
SD executed simultaneously on every thread of an Intel Xeon CPU E5-
2650 v3 was compared. At 30 dB SNR for a 4×4 MIMO and |Ω| = 4 the
detection throughput is increased 6 times, and for |Ω| = 8 the throughput
is increased 50 times by the GP-GPU.

Thesis I.b.

I defined highly parallel, dynamic building blocks for the Expansion
and Evaluation pipeline of the PSD algorithm as a function of available
parallelism. Based on the building blocks, I identified a set of parameters
that determine the extent of parallelism and memory footprint. I showed
that the achieved average detection throughput of the GP-GPU mapping
outperformed every existing true-ML detector and many non-ML
GP-GPU, ASIC, DSP and FPGA implementations.

Throughout the detection process the most heavily used operations
are the vector expansion and evaluation. In order to remove every pos-
sible bottleneck and to make a parallel implementation possible, I have
introduced a the Expansion and Evaluation pipeline (EEP). The stages
of the EEP are defined as: (i) the Preparatory Block, (ii) the Selecting,
Mapping and Merging Block, (iii) the Path Metric Evaluation Block, and
(iv) the Searching or Sorting Block as shown in Fig. 3.

In the Preparatory Block virtual identifiers are computed simultane-
ously by tt number of threads where the k-th thread is denoted by tkid.
The virtual identifiers are computed in the following manner:

V T k
lvlx

= {vtlvlx
|vtlvlx

= (tkid + n · tt) mod |Ω|(lvlx−1−lvlx),

n = 0 : devallvlx
/tte − 1},

V Bk
lvlx

= {vblvlx
|vblvlx

= b(tkid + n · tt)/|Ω|(lvlx−1−lvlx)c,
n = 0 : devallvlx

/tte − 1}.

In the Selecting, Mapping and Merging block previously evaluated
partial symbol vectors are selected and further expanded. In the Selecting
phase, previously evaluated partial symbol vectors sN

lvlx−1
are selected

based on the thread’s virtual block identifiers vblvlx
∈ V Bk

lvlx
. In the
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Figure 3: The Expand and Evaluate pipeline of the PSD algorithm.

Mapping phase the virtual thread identifiers vtlvlx
∈ V T k

lvlx
are mapped

to slvlx−1−1
lvlx

partial symbol vectors. Finally, in the Merging phase each
selected vector sN

lvlx−1
and mapped symbol vector slvlx−1−1

lvlx
is merged as

sN<j>
lvlx

= (slvlx−1−1<j>
lvlx

, sN<j>
lvlx−1

).
In the Path Metric Evaluation block, the path metric of the ex-

panded partial symbol vectors is updated. This is one of the most time-
consuming steps, however, to reduce the time required the path metrics
are updated in parallel by several threads.

The Searching or Sorting block of the EEP is one of the most impor-
tant stages during the detection. Depending on the level of processing,
either sorting or a minimum search is performed. The minimum search
is applied only when the detection has reached the last processing level,
while sorting is applied on all other levels. The sorting is done with the
use of sorting networks. Due to their data-independent structure, their
operation sequence is completely rigid. This property makes this algo-
rithm parallelizable for the GP-GPU architecture. The minimum search
algorithm relies on the parallel prefix sum algorithm.
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As a result, I elaborated a highly parallel expansion and evaluation
pipeline where no frequent thread synchronization is required. This en-
ables a very efficient utilization of an MPA. I compared the average
detection throughput of the PSD algorithm achieved with optimal ML
implementations known from the literature. The PSD algorithm outper-
formed each of them. Further comparison was made with non-optimal
FPGA, DSP, ASIC and GP-GPU implementations. The average detec-
tion throughput of the PSD was better in the majority of cases. Al-
though, some FPGA and VLSI based non-optimal detectors showed a
better performance, but those solutions suffer from a loss in BER per-
formance.

Thesis I.c.

I proposed a dynamic computing load scheduling algorithm that
combines in a very efficient manner the system level and device level
parallelism. The result of the elaborated scheduling is a dynamic binding
between the symbol vectors and the thread blocks, that allows to configure
grids with significantly less thread blocks. By reducing the size of the
grids, the resources of the streaming multiprocessors are shared between
several grids, thus, the concurrent executions of kernels on multiple
streams are enhanced. Thereby, the idle time of the processing units,
caused by the variable complexity of the symbol detection, is minimized
and the average detection throughput achieved is increased.

The system level parallelism is implemented by the parallel processing
of fading blocks of a received frame. Consequently, the number of kernels
launched is equal to the number of independent channel realizations.
Every grid assigned to a kernel launches several thread blocks (TBs) and
the detection of the symbol vectors associated to one channel realization
is done by the threads of the TBs. The configuration of the grids, namely
the binding of the TBs and symbol vectors, is critical since this influences
the concurrent execution of the kernels.

A straightforward binding requires a high number of TBs, because the
resources of the GP-GPU will be available for a long time duration only
for one kernel, thus, the concurrent execution of the kernels of different
streams is limited. By reducing the number of TBs and keeping the
load constant, the varying detection time of the different symbol vectors
could amplify the tail effect. This means that only a few TBs of a grid
are working and the resources of the streaming multiprocessors are not
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Figure 4: The Parallel Sphere Detector average detection throughput for
(a) 2 × 2, (b) 4 × 4 MIMO systems obtained with single stream and
multiple stream kernel executions.

freed up.
In the proposed dynamic computing load scheduling algorithm the

number of TBs in a grid is significantly smaller compared to the straight-
forward binding case. The work for a TB is dynamically distributed,
namely, when the detection of one symbol vector is finished, the PSD
algorithm executed by the threads of the TB evaluates the next un-
processed symbol vector. By means of this technique, the tail effect in-
troduced by the varying processing time of different symbol vectors is
balanced. As a result, the device level parallelism, namely, the concurrent
execution of multiple kernels on different streams, is enhanced.

The effect of dynamic computing load scheduling is shown in Fig. 4
for a 2×2 and a 4×4 MIMO system where the size of the symbol sets are
|Ω| = 2, 4 and 8. An increase of 15%−30% for |Ω| = 2, 4 and 38%−64%
for |Ω| = 8 of average detection throughput have been achieved.

Thesis group II. Channel preprocessing techniques for true-ML
hard-output MIMO detection.

(Related articles [1], [3].)
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Thesis II.a.

I experimentally proved that the computational complexity of the
PSD algorithm is reduced considerably by defining the detection order
based on the inverse channel row norms. The aim of ordering is to detect
symbols with lower signal strength on levels where a full breadth-first
search is performed. This approach maximizes the probability that the
best path metric partial symbol vector is the optimal choice on these
levels. I showed that the applied inverse channel based row norm ordering
increases the average detection throughput and decreases the number of
expanded nodes.

Detectors based on successive interference cancellation are seriously
influenced by the order of detected symbols. In case if the detected sym-
bol is different from the symbol sent then symbol cancellation introduces
noise instead of lowering the number of interferers. Several ordering met-
rics have been introduced in the literature [17]. The most important or-
dering metrics are based on the (i) signal-to-interference plus noise ratio
(SINR), (ii) signal-to-noise ratio (SNR), and (iii) channel matrix column
norms.

The metrics based on SINR and SNR involve complex computations.
A simpler metric based on the column norms of the channel matrix can
be represented as:

y = Hst + v = h1s1 + h2s2 + · · ·+ hnsn + v (1)

where hi represents the i-th column of the channel matrix H. The order-
ing metric is based on the norms of the column vectors ‖hi‖. As a result,
the received signal strength is proportional with the ordering metric.

Algorithms based on successive interference cancellation require to
detect the strongest symbols first. However, the PSD starts the detec-
tion process with the symbols having the lowest metric, because at the
top of the tree a full breadth-first search is performed and the search is
continued with the best path metric symbol vectors. Since every possi-
bility is examined the error probability introduced by the lower signal
strength is minimized.

The effect of matrix preprocessing based on decreasing ordering of the
norms of the row vectors of the inverse channel matrix was evaluated. By
applying channel preprocessing an extra increase of 5− 10% in average
detection throughput was achieved, as shown in Fig. 4.
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Thesis group III. Complexity reduced parallel Lattice Reduc-
tion algorithms mapped to massively parallel and heteroge-
neous platforms.

(Related articles [2], [4], [5].)

Thesis III.a.

I proposed a parallel Cost-Reduced All-Swap LLL (CR-AS-LLL)
lattice reduction algorithm where the cost reduction consists in delaying
the update of the off-diagonal Gram-Schmidt coefficients when the size
reductions and column swaps are performed. I elaborated a GP-GPU
mapping of the CR-AS-LLL algorithm relying on a two-dimensional
thread block configuration. I showed that efficient work distribution,
memory access, inner product and size reduction computation are
achieved with the proposed mapping. The average computational time of
the GP-GPU mapping achieves one order of magnitude improvement
compared to the multi-core CPU mapping.

After every size reduction or column swap the Gram-Schmidt co-
efficients are updated in the original parallel All-Swap LLL algorithm.
However, a lot of unnecessary computations are performed, because the
frequent size reductions and column swaps change the value of the Gram-
Schmidt coefficients several times. In the proposed CR-AS-LLL algo-
rithm only the µk,k−1 Gram-Schmidt coefficients are updated regularly
because the evaluation of the LLL conditions depend only on these pa-
rameters. The rest off the coefficients are updated after finishing the
swaps and size reductions operations.

When mapped to GP-GPU, the performance of the CR-AS-LLL algo-
rithm depends on the efficiency of the work distribution among the avail-
able GP-GPU threads and the implementation of the most frequently
used operations, such as dot products, size reductions and column swaps.
Figure 5 presents a possible mapping for the main parts of the CR-AS-
LLL algorithm. The kernel is launched with a one dimensional grid whose
size is determined by the number of lattice basis processed simultane-
ously. The thread blocks TB(Tx, Ty) launched have a two dimensional
configuration, where Tx and Ty denote the number of threads in the x
and y dimension. The number of threads Ty is defined based on the size
of the original basis, i.e., Ty = min (n/2, 32). By enabling the usage of
Tx = min (n, 32) threads in the x dimension, the threads that belong to
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the same y dimension will form a warp. Consequently, the elements of
matrices B,B∗ stored in the global memory are accessed through the
coalesced memory pattern exploiting the available memory bandwidth.
The size of the low latency shared memory is limited. Thus, only those
Gram-Schmidt coefficients are stored in this memory which are required
to evaluate the LLL conditions. Shared memory also plays an important
role in computing the dot products and in the column swap procedures.

Figure 6 compares the average computational time of the CR-AS-
LLL mapped on a GP-GPU and a CPU. The GP-GPU outperforms the
CPU for every matrix dimension with speed-up ranging from 6 to 15.

Thesis III.b.

I proposed the Cost-Reduced Modified-Block LLL (CR-MB-LLL)
algorithm where two levels of parallelism are identified and exploited
enhancing the lattice reduction of higher dimensional lattice basis. The
higher level parallelism follows the block reduction concept where the
original lattice basis is divided into several smaller sized sub-matrices
and, on the lower level, the parallel lattice reduction of the sub-matrices
is done by the CR-AS-LLL algorithm. I showed that for large matrices
the CR-MB-LLL algorithm is more efficient than the CR-AS-LLL
algorithm.

The problem division to several sub-problems that can be executed
concurrently can be regarded as one level of parallelism. In addition, if
a sub-problem could benefit from a multi-threaded environment it can
be regarded as a second level of parallelism. Previous parallel LR im-
plementations have focused only on multi-core architectures. The main
drawback of the low number of threads offered by modern CPUs (com-
pared to GP-GPUs) is that low-level parallelism cannot be exploited in
an efficient manner. During the algorithm design, low-level parallelism is
usually omitted and the levels of parallelism are also restricted. In case
of GP-GPUs, the high number of CUDA cores makes the parallel execu-
tion of a high number of threads possible offering significant performance
improvements.

The CR-MB-LLL algorithm is designed to exploit the benefits of a
highly multi-threaded environment. The CR-MB-LLL algorithm splits
the original basis into several sub-problems with lower dimension and
performs parallel LLL reduction on them. Because the LLL reduction
of the subgroups and the boundaries check can be done independently,
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no frequent synchronization is required. Thus, coarse grained parallelism
is achieved by creating the sub-problems. The GP-GPU mapping of the
CR-MB-LLL algorithm is similar to the one presented in case of the CR-
AS-LLL algorithm, because the procedures used are performed with a
two dimensional TB configuration even in the case of a boundary check.

The CR-MB-LLL algorithm reduces further the computational com-
plexity of the MB-LLL algorithm. In the MB-LLL algorithm, the sub-
matrices affected by boundary swap have to be LLL reduced and the
Gram-Schmidt coefficients have to be updated. The complexity reduc-
tion in the CR-MB-LLL algorithm is achieved by eliminating the GS
coefficients update in the submatrices after the execution of the CR-AS-
LLL and with the simplified swap procedure.

As shown in Fig. 6, the computational time of the CR-MB-LLL is
25− 40% lower in case of small and medium-sized matrices compared to
the MB-LLL algorithm. Furthermore, the block concept implemented in
the CR-MB-LLL achieves 30% speed-up for large matrices compared to
the CR-AS-LLL.

Thesis III.c.

I proposed a heterogeneous platform and a suitable mapping for
the Cost-Reduced Modified-Block LLL algorithm where the scheduling
of kernels is implemented by a CPU and the processing tasks are
executed by GP-GPU kernels. I compared the performance of the
proposed heterogeneous platform with a dynamic parallelism based
GP-GPU mapping and a parallel CPU implementation. I showed that
the average computational time is better by one order of magnitude for
smaller and middle sized matrices when a heterogeneous platform is used.

The schematic of the heterogeneous platform is shown in Fig. 7.
The CPU threads launch (i) the CR-AS-LLL kernels in order to LLL
reduce the sub-matrices, (ii) the Boundary Check kernels for checking
the LLL conditions at the boundaries of the sub-groups and (iii) the
Coefficients Update kernel to update the Gram-Schmidt coefficients and
to perform the size reductions wherever it is required.

The control logic of the dynamic scheduling is implemented by the
CPU threads. A different CUDA stream is assigned for every CPU
thread, making the concurrent kernel execution possible and reducing
the idle time of the CUDA cores. The status of the sub-matrices is up-
dated continuously in the GP-GPU global memory and it is communi-
cated to the CPU, thus, the size of the grids assigned to CR-AS-LLL
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Figure 7: Kernels scheduling on the heterogeneous platform for the Cost-
Reduced Modified-Block LLL lattice reduction algorithm.
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and Boundary Check kernels is dynamically adjusted according to the
number of modified sub-matrices in every iteration. The Coefficients Up-
date kernel starts after all the matrices assigned to one CPU thread are
completely processed.

Figure 8 shows the computational times of the MB-LLL algorithm
based on three different architectures for different matrix dimensions.
The performance was evaluated on a Tesla K20 GP-GPU and an Intel
Core i7-3820 processor. The heterogeneous platform clearly outperforms
the solutions based on dynamic parallelism in the case of small matri-
ces and the CPU for all of the cases. The processing times show similar
performance for large matrices when the GP-GPU is involved. The con-
clusion is that the data transfer between CPU and GP-GPU required
by the heterogeneous system is less time consuming than the overhead
of the kernel launch with dynamic parallelism and the limitation of the
concurrent execution of kernels on different streams.

4 Application of the results
Lattice reduction is a powerful concept for solving diverse problems

involving point lattices. It is a topic of great interest, both as a theoretical
tool and as a practical technique. Since point lattices and lattice reduc-
tion plays a key role in numerous fields of applications, my goal was to
enhance the performance of the polynomial-time LLL lattice reduction
algorithm.

The results presented in Thesis group III. prove that my goal was suc-
cessfully achieved, since I reduced the complexity of the LLL algorithm, I
identified and exploited several levels of parallelism that lead to efficient
algorithm mapping to different parallel architectures and heterogeneous
platforms. By exploiting the resources of this powerful architectures the
processing time of the LR was significantly decreased. The following enu-
meration gives a brief summary where the results of Thesis group III.
can be applied.
• In the field of wireless communications my results could enhance: (i)

the equalization of frequency-selective channels [22], (ii) the equaliza-
tion in precoded orthogonal frequency division multiplexing systems
[23], (iii) the source and channel coding in scenarios with multiple ter-
minals [24], and the preprocessing of sphere decoding [25]. When used
in conjunction with LR methods, lower complexity linear and non-
linear detection and precoding methods achieve full diversity order
[20], [21]. The computational complexity of these methods is mostly
determined by the preprocessing LR algorithm, however, my results
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presented in Thesis group III. significantly reduce the complexity of
the LLL algorithm achieving a better processing time.
• My results can be applied in the field of image processing for improving

the speed of radar imaging, magnetic resonance imaging and color
space estimation in JPEG images as shown in [26] and [27].
• In the field of combinatorial mathematics it is possible to phrase many

different problems as questions about lattices. Lattice problems arise
in integer programming [28], subset sum problems [29], factoring poly-
nomials with rational coefficients [19], and diophantine approximation
just to name a few of them. My results presented in Thesis group III.
could speed-up the solution of these problems.
• As shown in [30] methods based on LR have been used in cryptography

where the processing time has a critical role.
Research in information theory has revealed that important improve-

ments can be achieved in data rate when multiple antennas are applied
at both the transmitter and receiver sides [8]. Unfortunately, with the
increased performance the complexity of the associated signal processing
problems is also increased. The complexity of the optimal ML detection
in MIMO systems increases exponentially with the number of transmit
antennas and modulation order, thus, its use in practical systems is pro-
hibitive. The SD algorithm was developed and refined in [15], [29], [25]
in order to significantly reduce the search space. However, the sequential
components of the SD algorithm are a serious limitation in a parallel
environment.

In Thesis group I. with the PSD algorithm, I proposed a highly paral-
lel algorithm that eliminated the sequential components and bottlenecks
of the SD algorithm and the efficient mapping to massively parallel ar-
chitectures could be realized. In Thesis group II., I further improved
the performance of the PSD algorithm by defining a detection ordering
based on the inverse channel matrix row norms. These results made pos-
sible to significantly improve the computation time of the optimal BER
curves in larger MIMO systems under different circumstances that was
very time-consuming until now.

It was shown that the SD algorithm is analogous to the closest lattice
point (CLP) problem, or equivalently, the shortest vector problem (SVP)
[25], [31], [32]. Since optimal LR techniques, such as the Minkowski
and Hermite-Korkine-Zolotareff LR algorthms, iterativetly perform CLP
searches and cryptography problems can be traced back to CLP and SVP
problems, my results presented in Thesis groups I. and II. can be applied
to enhance the solution of these problems.
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[1] Csaba M. Józsa, Géza Kolumbán, Antonio M. Vidal, Francisco

J. Mart́ınez-Zald́ıvar, and Alberto González. “Parallel Sphere De-
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