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1 Introduction

The development and/or the maintenance of any kind of device or
system requires some kind of knowledge about its possible states. To
reveal the connections among properties of different events and to try
to predict certain characteristics of the future quantitative mathemati-
cal models are successfully applied. These models usually describe only
selected properties of the real process, but from an application point of
view in most cases it is enough.

The operation of more complicated systems such as living organisms
can often be described by complex phenomena, and for the modelling
of quantities changing in space and/or in time dynamical systems are
the most commonly applied tools. Therefore, this type of modelling has
become an intensively studied and frequently applied tool in systems
biology.

In many real life problems for example in economic systems, pop-
ulation dynamics or biochemical systems the variables are physically
constrained to have only nonnegative values, and therefore the theory of
nonnegative systems [1] needs to be applied for their characterization.
A dynamical system is called nonnegative if its trajectories remain in
the nonnegative orthant whenever the initial value is nonnegative. (If
strict positivity is required then it is called a positive system.) A wide
subclass of dynamical systems can be transformed into nonnegative form
by shifting the coordinates into the nonnegative orthant and then in a
further transformed version of the model the trajectories can be kept in
a given region, see [2].

A more special class of nonnegative dynamical systems is formed
by the quasi polynomial (QP) systems, which was first introduced in
[3]. The author has also shown that most smooth dynamical models can
algorithmically be transformed into QP form, which property makes such
systems suitable for the modelling of dynamical systems belonging to a
much wider class.

If the right hand side of the ordinary differential equations of the sys-
tem can be given in the form of a multivariate polynomial as well, then
it is called a polynomial system. The aim of this thesis is the structural
and computational analysis of a certain type of nonnegative polynomial
systems called kinetic systems, that can describe the dynamics of chemi-
cal reaction network (CRN) models obeying the mass action law. Despite
the fact that kinetic systems are rather special polynomial systems, these
models are versatile tools in modelling. Furthermore, by using suitable
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model transformations the majority of nonnegative dynamical systems
can be transformed into kinetic form [3, 4].

The different types of dynamical systems and possible transforma-
tions between them are shown on the diagram in Figure 1.

quasi−polynomial systems

nonnegative polynomial systems

nonnegative systems

kinetic systems

time rescaling

Lotka−Volterra systems

monomial dynamics

translation and QP embeddingdynamical systems

Figure 1: Classes and transformations of dynamic systems.

Chemical reaction networks obeying the mass action law can be orig-
inated from the dynamical modelling of chemical and biochemical pro-
cesses, but they can be applied to describe various kinds of dynamical
phenomena. Their applications appear in several different fields of science
and engineering, such as the modelling of electrical networks, transporta-
tion problems or the spreading of epidemics, therefore these models are
so-called universal descriptors [5, 2].

The class of kinetic systems is defined by chemical reaction network
models, but for the verification of the kinetic property it is not necessary
to compute a suitable CRN, it is enough to examine just the sign pattern
of the monomial coefficients, see [6].

It is known that in general there are many realizations and differ-
ent reaction graph structures corresponding to a given kinetic dynamics.
This phenomenon is called macro-equivalence or dynamical equivalence
[7]. There is also a generalization of dynamical equivalence called lin-
ear conjugacy, where a positive definite diagonal linear transformation
is applied to the state variables working as if the units of measurement
were individually scaled [8]. It is easy to see that linear conjugacy pre-
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serves the kinetic property of the system and also the main qualitative
dynamical properties like stability, multiplicities or the boundedness of
solutions. However, due to the larger degree of freedom introduced by the
transformation parameters, in general, it allows a larger set of possible
structures compared to dynamical equivalence.

There is a widely applied structure oriented representation of CRNs
that is a weighted directed graph called the Feinberg-Horn-Jackson
graph. It depicts the reactions which are present in the network, and
some other parameters of the network as well that are easier to describe
with graph properties. Furthermore, in some cases there is a relation
between the dynamics of the network and the reaction graph structure,
without considering the actual reaction rates. This has become an impor-
tant research area in chemical reaction network theory since the 1970s,
see [7]. In this topic there are several practice oriented results as well as
beautiful mathematical designs.

To determine a possible reaction network structure of a given kinetic
system a symbolic method was proposed in [6]. Since this method re-
turns only one particular dynamically equivalent realization called the
canonical realization, a different approach must be applied to determine
others.

Chemical reaction networks have a simple algebraic characterization,
which makes it particularly appealing to develop computational meth-
ods for their dynamical and structural analysis [9, 1] or even control
[10]. Realizations of a given kinetic dynamics can be defined by linear
constraints, that suggests the application of linear optimization meth-
ods. Since this is in general a very simple model, several computational
methods have already been developed to find linearly conjugate or, as a
special case, dynamically equivalent realizations of kinetic systems and
also having preferred properties such as density/sparsity , maximal or
minimal realizations, complex or detailed balance, weak reversibility or
minimum deficiency.

2 Basic notions
For clarity the most important notions and tools considering the topic

of the thesis are introduced in this section.
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The general form of a polynomial system is defined by a function
x : R → Rn, a coefficient matrix M ∈ Rn×p and a monomial-type
vector-mapping ϕ : Rn → Rp with coordinate functions of the form
ϕj(x) =

∑
x
βij

i , where βij ∈ N for all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}.
Using these notations the dynamical equations of the polynomial system
can be written as

ẋ = M · ϕ(x) (1)
By definition a nonnegative polynomial system is called kinetic if

there is a chemical reaction network (CRN) with the given dynamical
behaviour. A chemical reaction network can be characterized by
three sets.

species: S = {Xi | i ∈ {1, . . . , n}}
complexes: C = {Cj =

n∑
i=1

αji ·Xi | αji ∈ N}

reactions: R ⊆ {(Ci, Cj) | Ci, Cj ∈ C}

The rate of the reaction (Ci, Cj) for i, j ∈ {1, . . .m}, i 6= j is deter-
mined by the corresponding reaction rate coefficient kij ∈ R+. This
reaction is present in the reaction network if and only if kij > 0 holds.

The quantitative properties of chemical reaction networks can be
characterized by special matrices. The linear combinations defining the
structures of the complexes are decoded by the complex composition
matrix Y ∈ Nn×m, where

[Y ]ij = αji i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} (2)

The structure of the reaction network is described through the reaction
rates by the Kirchhoff matrix Ak ∈ Rm×m of the CRN as follows:

[Ak]ij =

kji if i 6= j

−
m∑

l=1,l 6=i
kil if i = j

(3)

Let the function x : R → Rn+ describe the concentrations of the species
depending on time. Assuming mass-action kinetics the dynamics of the
concentrations can be characterized by a polynomial system:

ẋ = Y ·Ak · ψY (x) (4)

where ψY : Rn → Rm is the monomial function of the CRN. The
monomials, i.e. the coordinate functions correspond to the complexes
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and they are defined as

ψYj (x) =
n∏
i=1

x
Yij

i j ∈ {1, . . . ,m} (5)

A polynomial system (1) is called kinetic if there exists a chemical re-
action network characterized by the matrix pair (Y,Ak) that is governed
by the same dynamics, i.e. the following equation holds.

M · ϕ(x) = Y ·Ak · ψY (x) (6)

In this case the CRN (Y,Ak) is called a dynamically equivalent real-
izations of the kinetic system (1).

The notion of dynamical equivalence can be extended to the case
when the state variable x is transformed by a positive definite diagonal
matrix T ∈ Rn×n to the form x̄ = T−1 · x (i.e. x = T · x̄).

The reaction network (Y,Ak) is a realization of the transformed
model and is called a linearly conjugate realization of the kinetic
system (1) if there exists a positive definite diagonal matrix T ∈ Rn×n
so that the following equation holds

Y ·Ak · ψY (x) = T−1 ·M · ΦT · ϕ(x) (7)

where ΦT ∈ Rp×p is also a transformation matrix depending on T . It has
to be mentioned that dynamically equivalent realizations form a special
case among linearly conjugate realizations when the matrix T is the unit
matrix.

The CRN defined by the sets S, C,R and reaction rate coefficients
kij for all i, j ∈ {1, . . . ,m}, i 6= j can be represented by the directed
graph G(V,E) with weight function w : E(G) → R+ as its reaction
graph if
the vertices correspond to the complexes – V (G) = C
the directed edges represent the reactions – E(G) = R
the weights are the reaction rate coefficients – w((Ci, Cj)) = kij

Then there is a directed edge in the reaction graph if and only if
the corresponding reaction considering the direction takes place in the
reaction network and its weight is the reactions rate constant. If the
reaction rates are not considered in the graph then it is called a reaction
graph structure.

5



3 Computational methods
By modifying the description of the kinetic system, and fixing the set

of complexes one can get an equivalent form of Equation (7) as:

Y ·Ab = T−1 ·M (8)

where Ab = Ak · ΨT
−1 is also a Kirchhoff matrix and it represents the

same reaction graph structure as Ak. Since the matrices Y and M are
fixed, both sides of the equation are linear functions. From this equation
and the properties of the matrices can the linear programming model
characterizing linearly conjugate realizations be formed.

The known parameters of the model are the matrices M and Y that
define a kinetic system with a fixed set of complexes. While the optimiza-
tion variables are the entries of the matrices Ab and T−1, since these are
more convenient variables and they uniquely define the reaction network.
To ensure linear conjugacy Equation (9) must be fulfilled. It is equivalent
to Equation (7), where 0n×m ∈ Rn×m is a zero matrix. The Equations
(10), (11) and (12) are necessary to ensure that the matrices Ab and T−1

meet their definitions.

Y ·Ab − T−1 ·M = 0n×m (9)
m∑
j=1
j 6=i

[Ab]ji = −[Ab]ii i ∈ {1, . . . ,m} (10)

[Ab]ij ≥ 0 i, j ∈ {1, . . . ,m}, i 6= j (11)
[T−1]ll > 0 l ∈ {1, . . . , n} (12)

If a realization with special properties is required to be determined,
further linear constraints can be added to the model, and the objec-
tive function of the optimization can also be defined according to the
additional requirements.

For solving an LP problem there are several polynomial time al-
gorithms, the first provably correct solution is the Simplex Algorithm
developed by Dantzig in 1947. This algorithm works in most of the prac-
tical applications very efficiently. Later several other algorithms have
also been designed for the efficient computation of linear optimization
problems, such as the criss-cross method or the ellipsoid method [11].

6



The computation of some special realizations might require the using
of integer and continuous variables at the same time, which transforms
the model into a mixed integer linear programming (MILP) problem.
This problem is known to be NP-complete, which means in practical ap-
plications that there is no polynomial-time method for solving it. There
are several approximative methods, such as solving the LP-relaxed ver-
sion, but also exact methods such as the cutting plane method and the
Branch and Bound method. Despite the many possible solutions it is still
desired to avoid the application of integer variables, since there are much
more efficient methods for solving linear optimization problems defined
on continuous variables.

4 New scientific results
The problem of computing dense realizations can be formed at first

sight as a MILP problem. In the literature there are still only non-
polynomial time solutions or ones that work in polynomial-time but
only under certain restrictions. However, the application of convex ge-
ometry changes the problem to be solvable. The results considering dense
realizations are formed in Thesis I.

Weakly reversible realizations form an intensively studied class of
CRN realizations where there is a connection between structure and dy-
namics. One of the most important results in this area is the Deficiency
Zero Theorem [12], which states that weakly reversible realizations un-
der some further conditions have locally and in some special cases glob-
ally stable equilibrium points. For this reason it is important to have a
method for computing even linearly conjugate weakly reversible realiza-
tions. The results are summarized in Thesis II.

Is it possible to give a computationally efficient algorithm for deter-
mining all possible reaction graph structures representing linearly con-
jugate CRN realizations of a given kinetic system? The answer is yes,
the corresponding results are introduced in Thesis III.

A generalization of kinetic systems has been introduced that is suit-
able for handling uncertain parameters and also additional linear con-
straints, whenever the possible values of the unknown parameters can be
represented as points of a convex polyhedron. Due to the similar model
structure several results developed for the case of non-uncertain kinetic
systems can be proven for uncertain models as well. The results are listed
in Thesis IV.
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Thesis I. I have proven new results regarding to dense realiza-
tions of kinetic systems, using a geometric approach.
The realizations represented as points in the Euclidean space form a
convex polyhedron, and this property can be utilized efficiently from a
computational point of view.
Thesis I.a I have proven that a dense linearly conjugate real-
ization of a kinetic system with a fixed set of complexes and an
additional finite set of linear constraints determines a super-
structure considering all realizations of the constrained model.
The superstructure property is essential for the correct operation of all
the algorithms presented in this dissertation.
The results are described in detail in [14], [18], [19] and in Section 3.1.
Thesis I.b I have developed a novel polynomial-time algorithm
to compute a dense linearly conjugate realization of a kinetic
system with a fixed set of complexes and fulfilling an additional
finite set of linear constraints.
The advantage of the method is that it applies linear optimization meth-
ods, it avoids the use of integer variables, and it works for every kinetic
system without restrictions on the variables. I have proven that the al-
gorithm returns the dense linearly conjugate realization, or as special
case the dense dynamically equivalent realization of any kinetic system.
This algorithm is applied as a subroutine in the algorithms presented in
Theses II, III.a, III.b and IV.b.
I have shown that even if there are arbitrarily predefined upper bounds
considering the variables the set of possible reaction graph structures
representing linearly conjugate realizations is the same as in the un-
bounded case, therefore the computer implementations of the algorithms
presented in this dissertation can work accurately.
The results are described in detail in [14], [18] and in Section 3.2.

Thesis II. I have proposed a new algorithm for computing a
weakly reversible linearly conjugate realization of a kinetic sys-
tem by extending the method introduced in [13].
I have proven that the algorithm runs in polynomial time, and it returns
a dense weakly reversible linearly conjugate realization of the kinetic
system, if it exists.
I have also shown that the computed dense realization defines a super-
structure among all linearly conjugate weakly reversible realizations of
the kinetic system.
The results are described in detail in [14], [18], [19] and in Chapter 4.
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Thesis III. I have achieved new results on computing all pos-
sible reaction graph structures representing linearly conjugate
realizations of a kinetic system.
Thesis III.a I have proven the correctness of a new algorithm
for computing all possible reaction graph structures represent-
ing linearly conjugate realizations of a kinetic system on a fixed
set of complexes.
The algorithm is the first method in the literature for computing all the
reaction graph structures realizing a given kinetic dynamics.
The computation might require exponential time because of the large
number of possible structures, however, between the determination of
two different structures polynomial time is elapsed. Furthermore, it is
possible to apply parallel implementation of the algorithm using e.g.
many core architectures.
The results are described in detail in [15], [20], [21] and in Section 5.1.
Thesis III.b I have designed a new efficient algorithm for com-
puting all structurally different linearly conjugate realizations
of a kinetic system.
I have proven that this algorithm also returns all possible reaction graph
structures representing linearly conjugate realizations of a kinetic sys-
tem.
I have also shown that the algorithm returns every realization only once,
furthermore, it is also suitable for parallel implementation.
The performance of the new algorithm has been compared to that of the
algorithm in Thesis III.a, and considering all the examples the number
of required optimization steps decreased by more than 80% in the case
of the new algorithm.
The results are described in detail in [16], [22] and in Section 5.2.

Thesis IV. I have proven new results regarding to special un-
certain kinetic system models, where the parameters are in a
convex polyhedron.
The introduced model is a generalization of the original kinetic model
that can include a finite set of additional linear constraints as well.
Thesis IV.a I have shown that the superstructure property of
dense realizations holds also in the case of uncertain kinetic
systems.
This property depends on the fact that the set of solutions of an uncertain
kinetic model is a convex polyhedron.
The results are described in detail in [17], [23] and in Section 6.1.2
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Thesis IV.b I have proven that the algorithms designed for com-
puting the dense realization, the set of core reactions and all
realization structures of a given kinetic system can be extended
for the case of uncertain kinetic systems.
I have also shown that the algorithm developed for computing all struc-
turally different realizations and presented in Thesis III.b is suitable for
parallel implementation.
The results are described in detail in [17], [23] and in Section 6.2.

5 Application possibilities
The possibilities of applying existing algorithms is wide, since these

can often be used as parts of other computational methods. The algo-
rithm developed for computing dense realizations has already been ap-
plied as subroutine in all the other algorithms introduced in this thesis.

The algorithm extended for the computation of weakly reversible lin-
early conjugate realizations is the first method for solving this problem,
which will possibly generate some new ideas and interesting structure
based results considering these special realizations. For example one can
take advantage of the fact that the algorithm returns the dense weakly
reversible realization which defines a superstructure among weakly re-
versible realizations of the kinetic system. Furthermore, the algorithm
can be generalized to the case of constrained kinetic systems, and by
using this kind of computation steps it is possible to design an algorithm
for determining every weakly reversible realization corresponding to a
given kinetic system.

The algorithms designed for determining the set of possible reac-
tion graph structures can be applied for the accurate computation of
realizations which are more difficult to characterize, for example sparse
realizations. An other application of this computational method might
be the CRN design based on dynamics.

It is clear that the kinetic model defined with uncertain parameters
has the biggest potential in practical applications. For example in the
case of a system model identified by the application of noisy measure-
ments the kinetic model with polyhedric uncertainty introduced in this
thesis can be defined using the estimated values of the parameters.
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