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Agnus Dei, qui tollis peccáta mundi, miserére nobis.
Agnus Dei, qui tollis peccáta mundi, miserére nobis.

Agnus Dei, qui tollis peccáta mundi, dona nobis pacem.

29altera die videt Iohannes Iesum venientem ad se et ait ecce agnus Dei qui tollit peccatum mundi
30hic est de quo dixi post me venit vir qui ante me factus est quia prior me erat 31et ego nesciebam

eum sed ut manifestaretur Israhel propterea veni ego in aqua baptizans (Jn 1,29-31)

29Másnap, amikor János látta, hogy Jézus feléje tart, így szólt: „Nézzétek, az Isten Báránya! Ő

veszi el a világ bűneit. 30Róla mondtam: A nyomomba lép valaki, aki nagyobb nálam, mert előbb

volt, mint én. 31Én sem ismertem, de azért jöttem vízzel keresztelni, hogy megismertessem Izraellel”

(Jn 1,29-31)

29The next day, he saw Jesus coming towards him and said, ’Look, there is the lamb of God that

takes away the sin of the world. 30It was of him that I said, "Behind me comes one who has passed

ahead of me because he existed before me." 31I did not know him myself, and yet my purpose in

coming to baptise with water was so that he might be revealed to Israel.’ (Jn 1,29-31)
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Kivonat

Új, neurális hálózat alapú algoritmusokat mutatok be infokommunikációs környezetben előfor-

duló NP-nehéz problémák szuboptimális megoldására. A disszertáció három fő tématerületet érint:

előírt minőséget (QoS-t) biztosítani képes útvonalválasztó algoritmusokat unicast és multicast

esetekre, melyek tipikusan IoT, WSN és streaming alkalmazásokban fordulnak elő; problémákat,

melyek megfogalmazhatóak diszkrét kvadratikus optimalizálási feladatként (UBQP), úgy mint

ütemezési, skálázási és többfelhasználós detekciós (MUD) feladatokat elosztott kommunikációs

rendszerekben. Illetve egy általános mintakeresési eljárást zajos és torzított adatokra.

A QoS-t biztosítani képes algoritmusoknak olyan hálózatokban van jelentősége, ahol a hálózat

állapota nem ismerhető meg teljesen. Ez a bizonytalanság egyrészt a forgalom véletlenszerű

fluktuációjából, másrészt a hierarchikusan szerveződő protokollok információ aggregálásából

származik. Ezt a bizonytalanságot az általam javasolt algoritmusok valószínűségi változók segít-

ségével beépítik a modelljükbe. Ennek következtében olyan útvonalakat keresnek, melyek maxi-

mális valószínűséggel teljesítik az adott QoS kritériumot (pl. végpontok közti késleltetés). Az

új algoritmusokat mind unicast, mind multicast útvonalválasztás esetre bemutatom. A modell

feltételezi, hogy a link leírókat modellező valószínűségi változók vagy gaussi eloszlásúak, vagy

a nagy eltérések elmélete alapján modellezhetőek, így választják ki az optimális útvonalakat.

A javasolt algoritmusok képesek optimális(unicast) illetve szuboptimális(multicast) útvonalak

megtalálására polinomiális időben, miközben az előírt QoS kritériumot teljesítik. Továbbá a

jelzési folyamatok optimalizálását is bemutatom információ elméleti mértékek segítségével.

A kvadratikus optimalizálási problémákra (UBQP) hipergráf alapú reprezentáción, neurális

hálózatok által kezelhető dimenzió csökkentő és növelő algoritmusokat definiálok. Ezzel a

módszerrel hatékonyan kereshető jó minőségű szuboptimális megoldás. A javasolt algoritmu-

sok közvetlenül alkalmazhatóak jelen kommunikációs technológiai problémákra, mint például

“cloud computing”-beli ütemezési vagy skálázási problémákra illetve többfelhasználós detekciós

problémákra (MUD). Az ütemezési probléma esetén a javasolt algoritmusok az összehasonlítás-

ban jobb “Weighted Tardiness" értékeket érnek el, míg a MUD esetén a bithiba arány (BER)

megközelíti az elméleti határt. Az algoritmusok teljesítőképességét szintén összevetem tradi-

cionális algoritmusokkal (DDT, HNN, LS, TS és SDR) illetve megvizsgálom egy referencia

problémahalmazon is (ORLIB), mely igazolja hogy az új algoritmusok jobban teljesítenek a

hasonló komplexitású algoritmusokhoz képest.

A mintakeresési feladat megoldására egy lineáris kódolási eljárást javasolok, mellyel egy előre-

csatolt neurális hálózat(FFNN) számára készíthető tanulóhalmaz. Az eljárással nem-parametrikus

módon lehet mintaillesztést végezni, melyet a CDMA rendszerekben előforduló, ismert MUD

problémán mutatok be. Ezzel együtt az eljárás könnyen kiterjeszthető más mintakeresési feladatra

is. Az új kódolási eljárás egyrészt növeli a kommunikációs hálózat áteresztő képességét, miközben

a neurális hálózat komplexitását is csökkenti. Bizonyítom, hogy aszimptotikusan optimális tel-

jesítmény érhető el a javasolt algoritmussal, ami kihasználható a spektrális hatékonyság (SE)

növelésére. Az állításokat szimulációval támasztom alá, melyben a javasolt algoritmusok közel

teljesítenek az elméleti optimumhoz valós csatornamodellekre (COST-207).
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Abstract

Novel neural network based algorithms are introduced for approximating the solutions of

NP-hard discrete optimization problems in InfoCommunication Technology (ICT). Three main

topics are addressed: QoS providing routing strategies in unicast and multicast scenarios typically

found in IoT and streaming applications; problems that can be translated into UBQP including

scheduling, MUD, scaling in distributed computing environments; and general Bayesian pattern

matching for noisy and distorted data.

The QoS aware routing algorithms are for networks where link states are characterized by in-

complete information. Incompleteness in link state can either be due to random traffic fluctuations

or to aggregation in link description because of hierarchical protocols. This incompleteness is

taken into account by characterizing the link states with random variables subject to a certain PDF.

As a result, routing amounts to seeking paths satisfying a given end-to-end QoS requirement (e.g.

end-to-end delay) with maximal probability. Novel algorithms are proposed to provide optimal

paths satisfying given end-to-end requirements with maximal probability in the case of single-

and multicast routing. The proposed algorithms are based on either assuming Gaussian link delay

distribution or using large deviation theory to find the most likely path. The proposed methods are

capable of QoS routing in polynomial time. Furthermore the optimization of the in-band signaling

is taken into consideration by modeling it with entropy-like quantities.

For the quadratic optimization problems - commonly referred to as UBQPs - the proposed

methods are based on hypergraph representation and recursive dimension reduction or addition

of the search space. In this way, efficient and fast search can be carried out and high quality

sub-optimal solutions can be obtained in real-time. The new algorithms can directly be applied to

the problems of present day communication technologies, such as scheduling in cloud computing

environments or MUD for improved performance. In the case of scheduling better Weighted

Tardiness can be achieved by running the proposed algorithms while in the case of MUD, the

achieved BER can approximate the Bayesian optimum. The methods are also tested on large scale

quadratic problems selected from ORLIB and the solutions are compared to the ones obtained by

traditional algorithms, such as DDT, HNN, LS, TS and SDR. As the corresponding performance

analysis reveals the proposed methods can perform better than the traditional ones with similar

complexity.

For the general pattern detection problem I propose linear coding techniques for implementing

non-parametric neural network based detectors. I present it on the well known MUD problem in

CDMA systems, however it can be easily extended to general pattern detection problems. These

new encoding schemes on one hand can increase the data speed over the channel and reduce the

complexity of the FFNN based detector on the other. It is proven that asymptotically optimal

detection performance can be achieved by the proposed algorithms. It will be also demonstrated

that the data rate can be increased and the complexity of the corresponding neural network at the

receiver side can be decreased by the novel coding schemes. This allows us to improve SE as well

while maintaining the performance of the methods. Extensive simulations demonstrate that the

performance of the proposed algorithms are near optimal on real channel models (COST-207).
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1 Introduction

Due to recent and vast improvement in sensor technology and to the yet unfailing trend set by

Moore’s law, multitude of novel fields opened up for new applications. The platform carrying

these novel applications are at the same time required to support mobility and flexibility at the

end user side. As the applications become evermore complex their supporting systems have to

deal with more demands. These (such as their own communication networking subsystem, central

processing units or the devices in the background network which they communicate with) have

to act more intelligently and adapt to the new demands arriving from the upper layers. Also

the majority of the end user devices are portable and use battery as a power source, it becomes

increasingly important to take this into consideration at the widest range of system design possible.

Typically into these areas we could count in the IoT based applications, monitoring and

intervening systems that are based on WSNs [2], peer-to-peer and “broadcast" type relaying and

processing systems dealing with multimedia streams (let that be video or audio) or most of the

cloud based services [136]. These services and systems have the common aspect of providing a

certain QoS, while their resources are time and location dependent and also limited [157]. On

inherent shared resources like on the radio subsystem these constraints appear even more stringent.

Furthermore scheduling tasks efficiently in these distributed environments are imperative.

Networking technologies used today are following a layered structure [84] and most of them

form packet switched communication networks. In these networks typically there are no separate

resource dedicated for signaling and controlling, but without these processes providing a required

QoS can be mostly done in a best effort manner if possible at all. Requiring these crucial processes

to be present means that they have to isolate an additional portion from the resources bearing the

payload to themselves. Thus the total capacity from the end user perspective further diminishes

in contrast to their signaling-less counterparts. The best effort like structures which build up

the traditional packet switched networks do not or rarely use signaling to govern their internal

mechanisms in respect to QoS. These structures consist of protocols defined by OSI in several

layers. Examples for these in the lower OSI layers (physical, data-link, network) are the Ethernet

[1], the 802.11 [82] or the IP. Although their design does not incorporate providing QoS directly

[112, 90], they are widespread because of their reliability and usability [90]. One of the base

questions of the packet switched networks is to find an appropriate path and scheduling for the

data packets to traverse through the network from the source to the destination. [131, 90, 107, 19,

18]. Applications using wireless technologies in the physical layer face even more constraints due

to the shared nature of the radio media, which has to be accounted for if one requires to provide

QoS.

In the light of this the open questions that this dissertation aims to answer are:

• How can one find an appropriate path in a packet switched network which provides a QoS.

(QoS unicast, multicast routing)

• How can one perform scheduling tasks in communication networks efficiently with algo-

rithms which lend themselves to parallelization. (scheduling)

• How can one solve at the physical layer which use wireless technologies near optimally the

1
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MUD problem in a parallelized fashion. (Multiuser Detection)

1.1 Applied methodology

This dissertation uses the following general approach to investigate the problems and bring up

possible solutions as theses:

Problems:
• QoS routing
• MUD
• scheduling

mathematical modelling by:
• Graph theory methods
• Queuing theory
• Quadratic Programming
• Nonparametric Bayesian decision methods

methods used for the solutions:
• Information theoretic metrics
• Large deviation theory
• Hopfield networks
• Feed forward neural networks

performance analysis:
• implementing reference algorithms
• implementing the proposed new algorithms
• numerical performance evaluation and comparison

evaluating and ranking the results

The summary of the problems, the used algorithms, theories and used tools can be found at
Table 1.

technological
challenges

model
formulation and
problem category

theoretical performance used methods and
algorithms

related
theses

Unicast
routing

using random link
descriptors and
LAS reducing the
problem to
additive and
bottleneck type
metrics

The path of choice is capable of
providing a QoS

Queuing models ,
Markov modulated
Poisson
distributions,
Gaussian
approximation,
Large deviation
theory

Thesis I.1
Thesis I.2

Optimizing
LAS

Applying
information
theoretic metrics
(Link Entropy
and Signaling
Entropy) as
constrains in
optimization

Using the resulting LAS the
bandwidth of the signaling process in
the network can be bound and kept
under a predefined value while at the
same time the uncertainty of the link
states in the network is also kept under
a well defined value.

Information
theoretic measures,
exhaustive search,
general nonlinear
constrained
optimization
methods

Thesis I.4

Multicast
routing

using random link
descriptors search
for a CGSMT in
the network and
reformulating the
search of the
CGSMT as an
UBQP

Sending streams through the paths
from the source and destination points
provide the prescribed QoS, while
they perform optimally in the sense
that they strain the chosen resource
minimally. These constraints posed on
the resources are like minimal energy
consumption or minimal total used
bandwidth to deliver the payload.

Gaussian
approximation, large
deviation theory,
Hopfield network,
binary quadratic
programming
methods

Thesis I.3

- continuing on the next page -
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Table 1 – continued from previous page –

technological
challenges

model
formulation and
problem category

theoretical performance used methods and
algorithms

related
theses

Multiuser
Detection
(MUD)

UBQP and
non-parametric
Bayesian
detection

The exact solution of the UBQP is the
optimal solution of the problem. The
proposed UBQP “solvers" lend
themselves to parallelization well,
since they are made up from simple
nonlinear computing units. They give
well performing sub-optimal solutions
with fast convergence time. In case of
the non-parametric models the
proposed algorithm can arbitrarily
approximate the optimal decision at
the expense of increasing its
complexity.

Algorithms
operating on a
hypergraph based
dimension reduction
and dimension
addition, Hopfield
network, binary
quadratic
programming
methods, Feed
Forward Neural
Network (FFNN),
logarithmic search

Thesis II.1
Thesis III.1

Scheduling UBQP Exact solution to the UBQP is the
optimal solution to the problem. The
proposed “solvers" give sub-optimal
solutions at fast convergence speeds.

Hopfield networks,
binary quadratic
programming
methods

Thesis II.1

Table 1: Problems investigated, used algorithmic tools and the related theses

1.2 Numerical analysis framework

Throughout the dissertation several numerical results are presented. These results were obtained

by using computer simulations. The framework in which the algorithms were evaluated was written

by the author mostly in the Matlab™ programming language and was evaluated in the same

runtime environment.

The codebase was almost entirely implemented by the author. It includes the tools used for the

mathematical modeling, the reference and the newly developed algorithms, the communication

network simulation framework and the neural network implementations. For consistent visual

presentation the figures were also produced in the same environment. I license the codebase

under creative commons license “Attribution-NonCommercial” (CC BY-NC), thus can be used

freely for non-commercial purposes and distribute derivatives under the same license. A copy can

be requested from the author or can be found with the hard printed version of the dissertation.

Although 3rd party toolboxes were also used and referenced, they are also freely available and can

be used according to their own copyrights.

Three main frameworks were written corresponding to the three main thesis groups that this

document presents. Also note that the codebase is the result of several years of work during which

the author gained experience and knowledge about bad and better programming patterns and

solutions. Consequently the code is neither consistent in terms of used methodology nor thought

to be error free, but validates the predictions of the theoretical models.
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1.3 Structure of the dissertation

This dissertation presents the problems and the theses in three groups in three sections.

I) In the first group at section 2, I elaborate on the route searching problem providing QoS in

packet switched networks both for unicast and multicast cases and propose novel methods

to solve or approximate them. In this section I also investigate the link scaling problem and

propose a method for the optimization using information theoretical measures.

The theses in this group can be found:

• Thesis I.1 on page 13

• Thesis I.2 on page 19

• Thesis I.3 on page 27

• Thesis I.4 on page 31

II) In the second group at section 3, I elaborate on the Multiuser Detection (MUD) and

scheduling problems in communication technologies. I formulate these tasks as Binary

Quadratic Programming (BQP) and I propose a family of algorithms which act as a sub-

optimal solver to the BQP problem. These algorithms lend themselves to parallelization

well because of their inherent structure.

Thesis II.1 can be found on page 54

III) In the third group at section 4, I propose an FFNN based algorithm which performs

comparably to the non-parametric optimal Bayesian decision for the MUD problem defined

for the wireless networks PHY layer.

Thesis III.1 can be found on page 77.

Each thesis group has the following structure:

• A short introductory section where the base problems and the open questions are posed.

• Introducing the models for the problems.

• Elaborating on the models then making statements of the theses in the thesis group.

• Investigating the performance of the proposed methods through applications.

At the end of the dissertation in section 5 conclusions are drawn and possible extensions and

development directions are named.

In Appendix A the theses are stated in a self consistent manner for easier overview.

The details of the proposed algorithms, description of the CGSMT problem and a brief overview

of the used neural networks were also moved to the appendices to not draw attention away from

the main course of discussion, however they are integral part of this document. The brief overview

of the neural networks aims to summarize the common modes how these networks are used in

this document and to emphasize their usability in modern day communication systems.
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2 Thesis group I - routing with incomplete information in unicast
and multicast scenarios

In this thesis group I propose novel solutions to the problem of unicast and multicast QoS

routing with incomplete information. These new methods are capable of finding a sub-optimal

path and a multicast route set in polynomial time. Also in this thesis group I provide a solution to

the OLS task by using information theoretical measures, such as “signaling entropy” and “link

entropy”. The corresponding publication of the author is titled “Multicast Routing in Wireless

Sensor Networks with Incomplete Information”[161]

2.1 Problem of finding QoS fulfilling paths in unicast and multicast scenarios.

In networks where is no dedicated channel for signaling or controlling purposes (typical in IoT,

networks using IP) these procedures consume additional resources. As a result it diminishes the

capacity available for information transfer, however at the same time services heavily demand

the speed and reliability of the underlying communication stack. This gives rise to the problem

of finding QoS fulfilling paths. For example in the IoT vision every device can send and receive

information and might act as an intermediate node. From an angle these devices can be seen

forming a WSN. If the network contains battery operated devices then the applications also

require reliable communication while keeping energy consumption at a minimal level (e.g.

consider a smart home application where the user should not be forced to change the batteries

frequently or a smart agricultural application where battery change might not be feasible at all).

On the other hand in an application where the energy consumption might not be a problem

(e.g. a smart fridge, automotive application or a factory with smart production appliances) other

types of reliability criteria exist that the (sub)networks must meet. Among others, these can be

robustness to communication shortage, redundancy, efficient use of the communication bandwidth,

responsiveness, etc. One can also consider peer-to-peer applications, e.g. video on demand services

or voice over IP services, where large quantity of data needs to be reliably transported to the

peers. In these scenarios both unicast and multicast type communication is common. Data is to be

transmitted to a single or a set of destination nodes with the packets routed in a multi-hop manner

where intermediate nodes are also used for packet forwarding.

Legacy network structures which were not designed for QoS but mostly for best effort usually

have no dedicated channel for signaling. Examples of these protocols in the lower OSI layers

(physical, data-link, network) are the Ethernet, 802.11 or IP. Despite they can not provide

QoS natively by their design[112, 90], they are widespread because of their reliability and

interoperability[90]. Nevertheless, there is a need to run QoS communication over these best

effort platforms. One of the major challenges in IP networking is to ensure QoS routing, which

selects paths to fulfill end-to-end delay or bandwidth requirements [131, 90, 107, 19, 18] as

opposed to traditional shortest path routing. Because of the manifold optimization criteria[85],

even in the unicast case QoS routing can prove to be much harder than the problem of finding

optimal paths based on merely the hop count [85]. Protocols striving to provide QoS need to

have some knowledge about the state of the network. This information has to be propagated also

(signaling). QoS-aware routing protocols often propose a method to reduce the amount of state
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information that have to be kept synchronized among routers, called topology aggregation (e.g. in:

QOSPF, PNNI). Thus, routing information describing a certain domain of the network have to

be aggregated, which acts as another source of uncertainty of resource availability information.

Another source of uncertainty is introduced when multiple hierarchical levels are connected. Such

a pattern is inevitable from the base rules of the network design. These hierarchical levels are

introduced because these networks connects through inter-domains.

Incorporating QoS into routing has been long studied[90]. For example an extension to the

classical IP over ATM system to support application level QoS is studied in [112]. Also QoS

aware routing algorithms exist in many levels, such as in inter-domain level [89], in MPLS based

network parts [111], inside ASs [131], but routing is done mostly by a hierarchical manner. In

networks following the OSI model the routing is done in the 3rd (network) layer. The OSPF

routing protocol offers two, while PNNI offers many levels, where routing can be performed

in a hierarchical manner [55]. Subnetworks on a given level of the hierarchy are abstracted as

“nodes” for a higher layer and delay information in those subnetworks are aggregated into an

average QoS parameter. On the other hand, randomly fluctuating traffic load on links can also

result in random delays. Thus link delays are periodically advertised when the delay surpasses a

given threshold (e.g. in PNNI and QOSPF standards, see [3, 55]). These thresholds are defined in

advance. This prompts us to take delays into account as random variables characterized by their

probability distribution functions over the interval between two reported thresholds [58, 146, 103].

The distribution of these thresholds (and therefore the length of the intervals over which the link

delay is not fully characterized) can be equidistant or non-equidistant. In practice non-equidistant

thresholds are used, since in this case the impact on network utilization by sending only signaling

information (part of the available bandwidth is used for carrying information about link delays) is

minimized.

The phenomena described above give rise to the task of routing with incomplete information.

Namely, how to select paths to fulfill end-to-end delay requirements in the lack of the exact values

of link delays [58, 19, 18]. Routing is then perceived as an optimization problem to search over

different quality paths, where the quality of a path is determined by the probability of meeting

the end-to-end QoS requirement [99, 58]. Unfortunately, routing with incomplete information

in general cannot be reduced to the well-known Shortest Path Routing (SPR), thus it cannot be

solved in polynomial time in general.

The multicast scenario can be seen as an extension of the previous problem and can be treated

as the well-known GSMT problem, which has proved to be NP-hard even for deterministic link

descriptors and cost functions[93]. The CGSMT problem is even more difficult, where the minimal

cost tree is sought by guaranteeing a given QoS at the same time. This has proved to be NP-hard

as well[94]. On the other hand, common multicast routing algorithms utilize stored network

state information[87], which can quickly become obsolete due to the changing fading radio

environment or traffic pattern. Link state information in clustered networks can also be incomplete

due to aggregation. Heuristic algorithms for finding Multicast Trees are published in [144],

however the computational complexity becomes overwhelming as the number of nodes increases

in the network. That is why, we would like to benefit from the fast optimization properties of the
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HNN [130]. The execution time of such algorithms only depends on the interconnectivity of the

network because every neuron represents an edge in the graph.

The QoS over an obtained path, however strongly depends on the “incompleteness” of link

descriptors which is determined by the thresholds initiating Link State Advertisement (LSA)s.

These thresholds are referred to as a Link Advertisement Scheme (LAS). The process of defining

LASs over the network is called link scaling, which can be subject to further optimization in order

to economize on signaling bandwidth. The smaller these intervals are, the smaller is the measure

of “incompleteness” under which a path is selected. As a result, the routing performance is higher.

On the other hand, small intervals forces more frequent announcements of the values of the link

descriptors throughout the network, which implies that considerable portion of bandwidth is used

up for transmitting signaling information. Thus, the optimization of the size of these intervals is a

crucial task for network management. This problem is referred to as OLS. As can be seen, OLS is

a constrained optimization problem, in which one has to maximize routing performance under the

constraint of keeping the signaling bandwidth bellow a given threshold.

2.2 Routing with incomplete information - the model

Because of the aforementioned reasons the state of the traffic link called link descriptor is

usually modeled by a random variable [58, 146]. This gives rise to the extension of the traditional

minimum-hop based routing problem to a procedure where statistical and information theoretical

metrics has to be also considered. Consequently routing becomes a task to find a path or set of

paths on which the data flow satisfy the predefined QoS criteria with a certain probability[58, 146,

145, 99, 59].

Therefore the communication network is modeled by a graph

G V E u v F u v x (2.1)

• where nodes are denoted by index u V and links referred to as node pairs u v E

• each link u v E has a QoS link descriptor u v which is assumed to be a random

variable subject to a CDF F u v x u v x

• random variable u v is referred to as "bottleneck measure" if the smallest link measure

determine the quality of the route ( u v is a "bandwidth-like" variable); It is also referred

to as "bottleneck measure" if the largest link measure determine the quality of the route

( u v is a "energy consumption-like" variable)

• random variable u v is referred to as "additive measure" if the sum of link measures

contained in the path determine the quality of the path ( u v is a "delay-like" variable)
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Figure 1: Graph model of the network

2.2.1 Finding optimal paths in the unicast scenario

The objective is to find an optimal path R̃ from all possible paths s d , which most likely

fulfills the given QoS criterion, namely:

R̃ argmax
R s d

min
u v R

u v B (2.2)

in the case of a bottleneck measure or

R̃ argmax
R s d u v R

u v T (2.3)

in the case of an additive measure. The path R̃, introduced above, will be referred to as the

Most Likely Path (MLP). In case of having additive link measures, I will refer to this problem

as Additive Routing with Incomplete Information (ARII). It is well known that Shortest Path

Routing (SPR) can be solved in polynomial complexity by Dijkstra or Bellman-Ford algorithms.

Therefore, mapping an MLP problem into an SPR is equivalent with proving that MLP can be

solved in polynomial time. The corresponding link measure on which basis the SPR algorithm

selects the shortest path is, in general, denoted by u v u v E. As a result, our aim is to prove

that under certain circumstances the search for MLP can be done by an SPR algorithm by finding

the appropriate mapping u v u v .

2.2.2 Finding optimal trees in the multicast scenario

In this case the information source, typically a Base Station, is denoted by src V and the

set of multicast destination nodes by M m1 m2 mN V . In this case the objective is to

find an optimal tree Ã from all multicast trees src M which most likely fulfills the given QoS

criterion, namely:

Ã1 argmax
A src M

max
u v A

u v P (2.4)

for the bottleneck type measure or

Ã2 argmax
A src M

max
Rsrc m A u v Rsrc m

u v T (2.5)
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for the additive type measure. Note that for the multicast bottleneck case the problem is formulated

differently than in the unicast case, because the link descriptor is typically power consumption like

quantity in WSNs, thus the bottleneck in this case is the most consuming element. But the derived

conclusions are also applicable to a bandwidth-like link descriptor with minor modifications.

2.2.3 Optimizing the link scaling - Signaling bandwidth versus routing performance

An advertisement of a link state change happen when the current value of link descriptor steps

out from an interval defined by two threshold values, which is called Link State Advertisement

(LSA). Figure 2 depicts an LSA in case the link descriptor is of delay type. When a link advertise-

delay on link u v

t0 t1 ti 1 ti ti 1
current delay

last advertised LAS entry

delay on link u v

t0 t1 ti 1 ti ti 1
delay at at some future time

newly advertised LAS entry

Figure 2: LSA in case the link descriptor is of delay type.

ment is received, the receiver could assume that the link descriptor of the sender node is within

the new interval. The finer the threshold grid is defined on the link descriptors the more precise

the receiver can be about the current state of the sender, but on the other hand it also means the

frequency of the advertisement to increase. Here our objective is to strike an optimal balance

between the signaling bandwidth and routing performance. To capture the underlying phenomena

two information theoretical measures are introduced: the Signaling Entropy (SE) and the Link

Entropy (LE).

Since link state advertisement occurs when randomly jumping over one (or several) advertise-

ment threshold, it can be regarded as an information theoretical source denoted by u v with

values t0 t1 1Z 1 covering the axis of the link descriptor with probabilities p̂0 p̂1 p̂Z 1.

The source does not emit any symbol (inactive) with probability P̂ 1 Z 1
i 0 p̂i. These prob-

abilities are governed by the randomly fluctuating link traffic (i.e. by the varying queue length

in the buffer as each link is perceived as a buffer). Assuming optimal source coding, the nec-

essary bandwidth to distribute the link state information is related to the conditional entropy

H u v u v 1 of u v , where the Bernoulli random variable u v describes whether the

source is active or not. The link entropy on the other hand is the measure which quantifies the

uncertainty about state of link u v if ti ti 1 interval was advertised for this link ( u v i).

Using these two quantities the bandwidth and the quality of the signaling processes can be kept at

bay.

link entropy: H u v u v (2.6a)

signaling entropy: H u v u v (2.6b)
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Note that both u v and u v depends on the choice of the LAS. The underlying question is,

how can we choose a LAS, so that the signaling bandwidth does not exceed a given threshold and

at the same time the link entropy (the uncertainty about the state of the network) is minimal.

2.3 Solution for the unicast routing problem

The main contribution of this section is that I provide the necessary conditions and the appro-

priate mappings u v u v for finding an MLP in case of having bottleneck or additive link

measures. Using the mapping the routing task can be solved by an SPR algorithm.

2.3.1 Solution for the bottleneck routing problem in unicast case

The following lemma establishes that an MLP with bottleneck measure can easily be solved by

using traditional SPR algorithms.

Lemma 1. The solution of

R̃ argmax
R s d

min
u v R

u v B (2.2 revisited)

is equivalent to solving a traditional shortest path problem with the metric assigned to link u v

being u v ln u v B if the link descriptors are independent.

Proof. We seek the path

R̃ argmax
R s d

min
u v R

u v B (2.2 revisited)

which is equivalent to

R̃ argmax
R u v R

u v B (2.7)

If u v -s are independent, then

u v R
u v B

u v R
u v B (2.8)

thus one can write

R̃ argmin
R u v R

log u v B (2.9)

Therefore assigning measure to link u v as u v : log u v B , MLP routing can

indeed be solved by SPR.

Note that similarly

R̃ argmin
R u v R

log u v P (2.10)

can be used if the link descriptor is a “power consumption-like” measure.

Based on this lemma, seeking an MLP with respect to bandwidth requirement becomes a

relatively easy task.
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2.3.2 Novel algorithms for ARII

If the link descriptor is delay, then QoS routing yields an intractable problem stated by the

following lemma:

Lemma 2 (Guerin at al.). The find a solution to ARII

R̃ argmax
R s d u v R

u v T (2.3 revisited)

in general is NP hard.

The proof is based on the fact that the problem of finding a path which fulfills

u v R
u v T (where 0 1 is some given threshold) is NP hard. For further

details, see [58].

One way to make ARII tractable is to reduce it to the bandwidth problem. This gives rise to

"rate based" routing algorithms [58]. In practice, under certain scheduling scenarios (such as

Weighted Fair Queuing Scheduler, Rate Controlled Earliest Deadline First schedulers), end-to-end

delay on an n hop route R can be approximated as

d R
c n

r u v R
d u v (2.11)

Where is the size of the flow’s burst, c is the maximum packet length for the flow , whereas

d u v is a static link propagation delay and r is the minimal rate that can be guaranteed to the flow

at each link along the path. Thus, in this case ARII reduces to the following problem of finding

R̃ : argmaxR d R T [58].

Unfortunately, this problem is still NP hard as shown in [58]. But assuming that d u v can take

their values from a discrete set and the link descriptor is the available bandwidth and by setting

d u v R d u v , the problem can still be solved by SPR, as was shown in [58]. In this way, rate

based routing can still be performed in polynomial time.

Unfortunately, rate based bounds are rather crude, thus the method above yields only sub-

optimal solutions.

In this section I demonstrate that ARII can be solved in polynomial time under certain assump-

tions. Let us suppose that links in each time instant (this time instant is set up by the network

operator) advertise their delay to the nodes, in the following fashion:

• The delay axis (the set of possible values of the link delays) is covered with a grid

ti i 1 Z .

• At each time instant link u v advertises the last ti value its link delay have exceeded,

which implies that u v ti ti 1 .

On these premises I derive new algorithms which can find an MLP in polynomial time.

Solving ARII under Gaussian hypothesis Based on the description above, I assume that the

concrete delay is unknown in the interval u v ti ti 1 , after advertising that the link delay
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has surpassed level ti. This prompts us to regard u v as a Gaussian random variable, which

has normal distribution over the interval ti ti 1 . One must note, that assuming normal delay

distribution is not restrictive, as it is at the modeler’s liberty to choose any PDF which lends itself

to analytic tractability. Despite the fact that a Gaussian distribution is defined over an infinitely

long interval, one can fit a Gaussian distribution m ˜ over a finite interval with an error by

solving the following approximation task:

˜ Solve
ti 1

ti

1
2

e
x m 2

2 2 dx 1 where m ti
ti 1 ti

2
ti 1 ti

2
(2.12)

Based on the normal assumption the following theorem can be proved.

Theorem 1. If u v is a subject to a normal distribution with parameters ˜ u v m u v , then

the solution of ARII

R̃ argmax
R s d u v R

u v T (2.3 revisited)

is equivalent to minimizing the objective function

R̃ argmin
R u v R

m u v (2.13)

by using the Bellman-Ford algorithm in polynomial time.

Remark 1. One must note that the LAS is fully characterized on link u v if and one boundary

(ti) of an interval is set numerically. and ti sets m and , since the Gaussian distribution is

symmetric and m and ti sets ti 1. So the LAS can be computed recursively from the numerically

given interval boundary.

Remark 2. Also this means that in this case the Link Advertisement Scheme (LAS) is a non-

uniform one, as the changing variance u v m u v indicates that the larger the the delay

becomes (large expected value) the larger the inaccuracy becomes in its reported state. See

Figure 3 for an example.

Figure 3: An example LAS with Gaussian approximation

Proof. In case of Gaussian link descriptors the aggregated link descriptor, q R u v R u v
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is also Gaussian (due to the additive nature of delays), thus

q R
u v R

m u v
u v R

2
u v (2.14)

implying that

q R T

T
u v R

m u v

u v R

2
u v

(2.15)

Because of the relationship u v m u v equation can be rewritten as

R̃ argmax
R

q R T (2.16)

argmax
R

T u v R m u v

u v R m u v
(2.17)

By introducing a new variable M :
u v R

m u v we obtain

R̃ argmax
R

q R T argmax
R

T M
M

(2.18)

Now it is easy to point out that if T 0 and 0, T M
M

is a monotone decreasing function

of M as
d T M

M

dM
T M

M

T
M

M

2 M
0

where x : 1
2

e
1
2 x2

. Therefore, minimizing M will force T M
M

to be as large as possible,

which indeed leads to the objective function Ropt : minR u v R m u v . This objective function is

additive, thus the Bellman-Ford algorithm can select optimal path in polynomial complexity.

THESIS I.1 (unicast routing with incomplete information by Gaussian approximation). In

Theorem 1, I gave a mapping for the link descriptors under the condition that the link descriptors

have normal distributions with parameters m and ˜ u v m u v and also the LAS follows

m ti 1 ti
2 . Using these assumptions the ARII problem can be reduced to a deterministic traditional

SPR.

The thesis is restated in a self consistent way in Appendix A at Thesis I.1 (page 84).

Finding optimal paths by the Chernoff inequality In this section, I develop QoS routing

algorithms by using well-known statistical inequalities from large deviation theory to estimate the

tail of the aggregated delay of a path. Our objective can be reformulated to be more suitable for
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the following discussion. It can be seen that the original problem

R̃ argmax
R s d u v R

u v T (2.3 revisited)

is equivalent to:

R̃ argmin
R u v R

u v T (2.19)

Theorem 2. Using the logarithm of the moment generating function (log-moment generating

function)

u v s ln exp s u v ln exp sx dF u v x (2.20)

or in case of a discrete random variable

u v s ln exp s u v ln
i 1

exp sxi pi (2.21)

the solution of the ARII is equivalent with minimizing the objective function

R̃ argmin
R u v R

u v ŝ (2.22)

where the optimal ŝ parameter is

ŝ inf
s

u v R̃
u v s sT (2.23)

Proof. The probability u v R u v T can be upper-bounded by the Chernoff inequality

u v R
u v T exp R s sT (2.24)

where R s is the log-moment generating function of the aggregated delay, given as R s

u v R u v s . Therefore instead of minimizing the original quantity I minimize the upper-

bound,

R̃ argmin
R

exp
u v R

u v s sT (2.25)

which yields

R̃ argmin
R u v R

u v s (2.26)

This last problem is an SPR with metric u v u v s .

I name the method based on the Chernoff inequality with a given “s” as “Simple Chernoff

Algorithm”. One must note that a bound is minimized instead of the true objective function. Thus,
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the path found by this method can only be asymptotically optimal. More precisely, since

u v R
u v T 1 exp R s sT (2.27)

one can state that the QoS requirement is met at least with probability 1 where

exp R s sT . Thus this method can quantify the likelihood of satisfying the given QoS

parameters, therefore may still prove to be useful from engineering point of view.

The other problem regarding the method is to find the proper value of s which yields the

tightest bound. As was seen ŝ depends on the path itself. Therefore, choosing an arbitrary s1 and

carrying out the corresponding BF algorithm, it may yield a false result (with another s2 a totally

different path can be found which might yield a better result). This gives rise to Algorithm 1, the

“exhaustive-s” algorithm.

Remark 3. Note that for all practical examples u v s sT has a minimum and can be found

via a simple gradient method. A proof can be found for any finite support discrete variable at

Appendix D. At the same time with similar reasoning it can be extended to most of the common

continuous random variables.

Algorithm 1 Exhaustive-s algorithm

Input: G V E u v F u v x src dst
Define a grid on the set of possible values of s denoted by si si 0 i 1 M .
for all i 1 M do

Pick si .
Perform path selection Ri by an SPR algorithm with link measures

u v si : ln exp si u v .
Based on the selected path Ri determine

ŝi Solve
u v R̃i

d u v s
ds

T s (2.28)

and calculate the bound

Bi : exp
u v Ri

u v ŝi ŝiT (2.29)

end for
Find the path which belongs to minimal bound

R̃ j : j argmin
i

Bi (2.30)

Output: R̃ j chosen path between src and dst

It is obvious that the complexity of this algorithm is O M V 2 which can be overwhelming if

M is large. Furthermore, since parameter s can take any positive value but grid is finite, the best

path may have been missed by simply ignoring some of the s parameters not being contained by

grid . The numerical complexity of the algorithm can be relaxed by making the assumption that

in each LAS interval the link descriptor behaves the same, for all u v link, which is to say that
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the delay follows the same PMF over interval ti ti 1 for any i and any u v . This assumption is

of course quite stringent and introduces errors, but it in enables us to execute the computation fast.

For this the original link descriptor u v is transformed and discretized into u v by splitting

every LAS interval into the same number and relatively same length internal intervals.

Figure 4 shows this process. On the top left the original distribution of u v is depicted. On

the bottom left the conditional distributions are depicted when it is known which LAS interval is

active. On the top right the individual conditional distribution pieces are scaled to the interval

0 1 . This “generalized” interval will be split into K internal segments. On the picture for the sake

of clarity K 4, but the larger K the approximation of the underlying distribution becomes more

precise. The “discretized” distribution (depicted with green stairs) is taken over the intervals

which matches the general behavior of all original conditional distributions. will be the basis of

the link independent log-moment generating function. For the sake of clarity on the bottom right

picture, is mapped back to the original conditional variable intervals. Note that this example is

depicted for a continuous random variable, but it can also be applied to a discrete one.

t 0 t 1 t 2 t 3 t 4

0

0.1

0.2

0.3

t 0 t 1 t 2 t 3 t 4
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Figure 4: Discretization of the link descriptor

Let us write the conditional pmf of in a slightly different way:

u v ti j i ti was advertised Pi j i

i ti 1 ti; j 0
1

i

2

i
1

1

i
; ti 1 i ti 1

(2.31)

Let us offset and squeeze every u v ti was advertised into the 0 1 interval:

u v i j u v ti j i ti was advertised (2.32)

The assumption I made is that u v i depends neither on i (the interval advertised) nor

on u v (the link on which it was advertised). If the assumption would hold and was known,

u v ti could be used as the new metric. In general u v i does depend on i and u v ,

but by introducing a discretized and generalized version of it one one hand one can utilize the

benefits of it, on the other hand it will introduce another source of error.

I create this generalized from u v i by splitting up the domain 0 1 into K equal small
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intervals: k
K

k 1
K k 0 K 1. Furthermore the probabilities for the generalized are needed.

k Pk k 0 K 1 (2.33)

Pk could be taken as an appropriate value from the ensemble u v i for the small interval

indexed by k. For example the mean value of the event:

Pk mean
u v i

u v i is in
k
K

k 1
K

C (2.34)

where C is a constant that ensures that k Pk 1. Note that the simplest form of this discretization

is to choose K 1, so every LAS interval becomes a “flat” distribution with P0 1 for every

interval. Using the PMF of the link descriptor in any LAS interval is given by:

u v a u v Pk (2.35)

where k is used to index the small interval within the LAS interval ti ti 1 and the currently

advertised felt boundary of the interval is denoted by a u v ti Then u v is given as

u v s ln
K 1

k 0
Pk exp s a u v k (2.36)

which yields

u v s s a u v s (2.37)

where

s : ln
K 1

k 0
Pk exp s k (2.38)

is a link independent general log-moment generator function. Based on this assumption, the

following lemma can be stated:

Lemma 3. For the QoS of a given path R the sharpest bound can be obtained as:

u v R
u v T exp

u v R
u v s̃ s̃T (2.39)

where

s̃

1 T
u v R

a u v

R
(2.40)

In the expression above 1 x is the inverse of the derivative of the link independent log-

moment generating function s , which always exist since I am modeling non negative link

descriptors (see D) and R indicates the number of hops in path R.

Proof. To obtain the sharpest bound, s has to be optimized as follows:

s̃ : inf
s

u v R
u v s sT
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This can be achieved by differentiation (see [102, 78], D), yielding

s̃ : inf
s

u v R

d u v s
ds

T

Taking into account that u v s sa u v s and performing the differentiation, one can

obtain

u v R
s̃ T

u v R
a u v

which indeed yields

s̃
1 T u v R a u v

R

Based on Lemma 3 one can easily calculate the s̃ which belongs to path R. To illustrate this

dependence, I will use the notation s̃ R in the forthcoming discussion.

Due to the optimization of s according to Lemma 3, another method can be proposed to find an

MLP, which I will refer to as "Recursive Path Finder - s Finder Algorithm". The name originates

from the fact that with a given s first it finds an optimal path R s then for this path it determines

s̃ R and searches for a new path with that updated s parameter, ...etc.

Algorithm 2 The Recursive Path Finder - s Finder Algorithm

Input: G V E u v F u v x src dst
Pick s a positive starting value
compute the path independent s
repeat

Associate measure u v s to each link u v E.
Perform the SPR algorithm to find the optimal path R̃ s for parameter s.
For the obtained R̃ determine s̃ by expression

s̃

1 T
u v R

a u v

R
(2.40 revisited)

s s̃.
until R̃ s̃ R̃ s

Output: R̃ s chosen path between src and dst

From Algorithm 2 it is clear that in each step either the quality of the path is improved (for a

given s it finds an optimal R̃) or the quality of the bound is improved (for a given path it finds an

optimal s̃). Therefore, by carrying out the algorithm recursively, the solution is always improved.

The algorithm will settle in a fix point if the following equation holds :

R̃ s̃ R̃ s (2.41)

meaning that for a given s the optimal path R̃ remains the same as the path provided by the BF
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algorithm which is run again with the optimized s̃ R̃ . (The convergence of this algorithm can be

proved by demonstrating that R s : u v R u v s sT is a Lyapunov function associated

with the “Recursive Path Finder - s Finder Algorithm”.)

The method given above relies on the fact that the optimal s̃ can be calculated for a given path

R relatively simply. This simplicity can be maintained if the log-moment generating function of

link delays are calculated as u v s sa u v s ,where s is the link independent part

(see (2.38)).

THESIS I.2 (unicast routing with incomplete information by recursive path finder algorithm). In

Algorithm 1 and Algorithm 2, I gave procedures that can find routes in a packet switched network

which satisfy the required QoS parameter with a given probability . The algorithms are based on a

transformation of the random link descriptors using the large deviation theory which is described

in Theorem 2.

The thesis is restated in a self consistent way in Appendix A at Thesis I.2 (page 84).

2.4 Multicast routing in WSN applications with incomplete information

The main contribution of this section is the method to transform the original probabilistic link

descriptors into deterministic measures, which reduces the multicast routing with incomplete

information into a GSMT search. Then I apply the HNN which ensures fast convergence to a

sub-optimal solution[161].

To investigate the problem with realistic quantities, a multicast scenario is used on a WSN

where the QoS metrics are of the same bandwidth or delay type but with the extension that we

need to deal with the power consumption of the individual nodes. To prolong node lifetime we

need to minimize the radio transmission. This specific scenario can be generalized to other types

of applications as well. I use a simple model for the radio communication between the nodes in

base station

m1

m2

mN

m3

regular node

multicast node

ACK

packet forwarding

v

u
δuvCuv

ζ

ξ

Figure 5: A typical Wireless Sensor Network, with Base Station denoted as a gray box, multicast
nodes as gray circles and regular nodes as white circles.

the network. It is assumed that equal transmission power is used by each node

PTX
uv g u v E (2.42)
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The probability of successful packet reception is calculated by using the Rayleigh fading

model [60] as follows

packet reception by u from v puv exp
2
z duv

g
(2.43)

where is a hardware related threshold, 2
z represents the noise power, duv denotes the distance

between node u and v, and is the path loss exponent.

A communication scheme is assumed where receiver nodes use ACKs, and it is assumed that

the number of ACKs are not limited. Table 2 shows a sequence of packet transmissions between

source node u and destination v, where v can either receive or fail to receive the data packet, which

cases are denoted by 1 and 0 respectively. The ACK can also be decoded correctly by u or not.

The communication ends when both packets are received correctly. Let us denote the event of

Table 2 A sequence of packet reception until both data and ACK are received.

Events Outcomes
Reception of data from u to v 1 0 1 . . . 1 1
Reception of ACK from v to u 0 0 0 . . . 0 1

successful data reception followed by no ACK reception – first column – with and the event of

unsuccessful data reception – second column – with . The corresponding distributions can be

expressed as follows

uv m 1 pvu
m pvu and (2.44)

uv n
puv pvu 1 puv

n

1 puv puv pvu
n 1 (2.45)

Let us define as the random variable corresponding to the power consumption over the link

u v until successful data transmission

uv uv 2g uv g 2g (2.46)

Cuv the expected value of the transmit power over link u v then is

Cuv : uv uv PTX
uv PTX

vu uv PTX
uv PTX

uv PTX
vu

uv 2g uv g 2g (2.47)

In this case the distribution of the delay u v on link u v can be calculated as follows:

uv l puv pvu 1 puv pvu
l 1 l 1 2 (2.48)

Due to incomplete information about the link states in the network, link metrics u v are

described by random variables. These link metrics are not additive thus the deterministic multicast

tree search algorithms are not applicable. We transform the random link metrics into deterministic

descriptors which can be fed to the traditional or heuristic algorithms. In order to do this, I
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introduce two type of common requirements for designing a multicast tree: a bottleneck type and

an end-to-end additive type requirement.

The deterministic bottleneck Steiner tree problem is formulated (see subsection E.1) as

max
u v A

PTX
uv A (2.49)

where is the set of all trees containing src M, PTX
uv is the transmitter power consumed during

transmission, and is the limit that one does not want to exceed in order to economize battery

power.

The deterministic end-to-end additive type problem (see subsection E.2) can be formulated as

argmin
A u v A

Cuv

s.t.
u v Rsrc m

Duv T m M
(2.50)

where Rsrc m is a path from src to m M in the multicast tree A, and Duv is an additive metric

(like the delay) with QoS requirement T and Cuv is the expected used power.

Although no polynomial algorithm is known for finding Steiner trees but sub-optimal algorithms

exist[138]. In the next subsections I extend the problem to the case of random link descriptors

instead of the deterministic metrics and propose a heuristic method using a HNN.

2.4.1 Bottleneck type requirement

Similarly as in the unicast case (see subsubsection 2.3.1) a lemma can be formulated for the

bottleneck case. In this case the objective is to find an optimal tree Ã from all multicast trees
src M which most likely fulfills the given QoS criterion.

Lemma 4. Assuming independent random bottleneck type link descriptors u v uv, the

optimal multicast tree problem

Ã1 argmax
A src M

max
u v A

u v P (2.4 revisited)

is equivalent of a GSMT problem with metric

Ã1 argmin
A src M u v A

ln uv P (2.51)

Proof. If uv P holds for the maximal uv then it holds for all the values in the tree, which

yields

max
u v A

uv P (2.52a)

u v A
uv P (2.52b)
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u v A
uv P (2.52c)

u v A
ln uv P (2.52d)

where I used the independence property of these random variables.

This results in the following objective function over additive measures:

Ã1 argmin
A src M u v A

ln uv P (2.51 revisited)

which is well suited for the later introduced HNN.

2.4.2 End-to-end additive requirement

In the traditional multicast setting with incomplete information the goal is to search for a tree

with maximal probability on which the delay uv of the longest route is being smaller than T

argmax
A

max
Rsrc m A u v Rsrc m

uv T (2.53)

Where A denotes all the possible routes in the tree. The WSN setting requires us to also minimize

the transmit power Cuv(see (2.47)) used by the network in order to prolong node life span. To

incorporate this additional constraint I define the following optimization problem, where the

constraint expresses the probability that the “worst” route in the chosen tree does not satisfy the

constraint.
Ã2 : argmin

A u v A
Cuv

s.t. max
Rsrc m A u v Rsrc m

uv T
(2.54)

In the optimal Steiner tree there are common links between paths for different multicast nodes,

meaning that the random measures for different paths are statistically dependent, which can be

described by the joint distribution function.

We can use large deviation theory to approximate the previous probability

max
Rsrc m A u v Rsrc m

uv T exp Rsrc m s s T (2.55)

where

Rsrc m s
u v Rsrc m

uv s and (2.56)
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uv s ln exp s uv (2.57)

The optimal s value can be calculated by solving

sopt :
u v Rsrc m

d
ds uv s T (2.58)

where Rsrc m is a given route in the multicast tree from s to m.

We are looking for the tree approximated by Equation (2.55) and our sub-optimal solution will

be the one with the minimal u v ACuv for which

exp Rsrc m s s T (2.59)

Rsrc m s ln s T (2.60)

which translates Equation (2.54) into

Ã2 : argmin
A u v A

Cuv

s.t. Rsrc m s ln s T
(2.61)

which is in the form of the well-known CGSMT [130], for which a DHNN based approximation

is given in subsubsection 2.4.3.

For a given T parameter then better and better trees can be found by decreasing in an iterative

or gradient fashion, which yields Algorithm 3.

Algorithm 3 Find optimal tree for end-to-end requirement

Input: G V E u v F u v x , 1, T 1 src,m
repeat

A find tree with HNN G T
if A is found then

decrease
else

increase
end if

until no significant increase in performance
Output: A is the multicast tree between src and m

Figure 6 illustrates a case of two sets of trees having equal longest path delay properties –

from each set I choose based on the sum of transmit powers –. Assume that it is required that

the probability of the longest route exceeding 6 is to be maximized. At the first step (having 1)

routes in both trees can guarantee a longest delay of 6 with probability 1 thus can be decreased.

In the second step ( 2) still both trees satisfy the condition while in the third step there is only

one tree below delay 6. This way the minimal value of can be determined for which there exists

at least one tree.
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1 2 3 4 5 6 7

1

max
Rsrc m A u v Rsrc m

uv T

T

3

2

1

Figure 6: The probability of longest route exceeding threshold T for two trees � and . The
approximated Chernoff-bound for these probabilities are ♦ and , respectively.

2.4.3 Approximation by HNN

In this part I derive the necessary structure that can enable us to construct a HNN to approximate

the defined problem above. Hopfield Networks in general have successfully been applied to

combinatorial optimizations and solved many practical tasks[158, 44, 105, 75] as also mentioned

in B. So this problem’s solution can be approximated by HNN as well[130, 20, 151], based on the

energy function proposed in [130, 20]. We use DHNN, because it is reported to be computationally

more effective [40, 41, 39]. The energy function is a weighted linear combination of terms which

are describing the objective function to be minimized E1 and the press of the constraint function

subjected by the minimization task Em
5 . The feasibility of the solution is guaranteed by the neuron

update selection rule, which ensures transitions to only valid candidate solutions. The HNN

searches for routes and for a tree solution the union of the chosen routes are used. Thus it is

implicitly assumed that the union of routes, satisfying the constraints is a good Steiner tree. We

have N nodes in the graph G, so possibly N2 edge can exist. Every neuron represents an edge in

the graph [130] and one neuron’s output is noted by Vuv which is defined as

Vuv
1 if the link (u,v) is connected

0 otherwise
(2.62)

Note that I denote with V m
uv those edges that are already chosen for a path from src to m.

Cost and constraint terms The cost value for the edge u v is noted by Cuv. The cost of a

particular edge configuration is denoted by E1 G .

E1 G
N

u 1

N

v 1
u v

CuvVuv

1
m D

V m
uv

(2.63)
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where D denotes set of the multicast node indices we have already chosen a route for. So

m DV m
uv k if we have chosen edge u v for k times in previous routes. Note that because of

V m
uv the cost term is dependent on the edges previously elected in the multicast tree, edge reuse are

preferred. E2 is the term which presses the constraint function to be true. Luv 0 is the delay

value on the link u v .
N

u 1

N

v 1
v u

LuvVuv ln s T (2.64)

We use the same approach as [130] for dealing with inequality constraints, namely introduce

a linear programming type neuron with cost function h z and the corresponding energy term

H z h z dz.

h z
z if z 0

0 otherwise
H z

z2 2 if z 0

0 otherwise
(2.65)

E2 G H
N

u 1

N

v 1
v u

LuvVuv ln s T (2.66)

Neuron selection rule for DHNN We initialize the network, that there is only one edge in

the chosen path: Vuv 1 if u v src m ; 0 otherwise. We update exactly 3 neurons for one

discrete time step as follows:

Selection A (edge splitting): choose an edge which is in the path u v Rsrc m, choose two

edges which are not in the path, but join at a common node and start and terminate at u and v.

u w w v Rsrc m.

Selection B (edge joining): choose two edges which are in the path as u w w v Rsrc m, thus

u v Rsrc m.

Either A or B used, update the three neurons (flip Vuv Vuw Vwv triangle) if the state transition

yields to a better energy state of the network. Use A and B alternatively until no state transition

occurs. This selection rule ensures that if we started from a valid route we end up in a valid route

from src to m.

Note that our graph models a wireless communication network which in theory is fully con-

nected, but a connection may have bad weight characteristics (near infinite energy or near 0

reception probability). So that edge can be chosen, but the cost terms will rule them out.

Cost and constraint terms for DHNN The conventional energy function of the discrete Hop-

field model is

DHNN y ytrWy 2ytrb y 1 1 K (2.67)

So the aim is to transform 1 E1 G 2 E2 G into the previous quadratic form. Where 1 and

2 are the usual weight factor to emphasize one constraint against the other. Note that to avoid

confusion with parameter T -only in this chapter- I denote matrix-vector transposition with Atr.

We transform the neurons output variable to a column vector with elements of 1 1 for the
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DHNN. We have N nodes in the graph (u v 1 N) and V is read out column wise.

v : vk Vuv yk 1 2 (2.68)

y : yk 2vk 1 (2.69)

u
k 1

N
1 v k 1 mod N 1 (2.70)

We introduce the abbreviation u v for the elimination of the terms ”u v” from the summation

by the multiplication with it.

u v : u v
i j

1
if i 1 mod N 1 j 1 N 1

and i j

0 otherwise

u v IN2 N2
u v u v N2 N2

(2.71)

N

u 1

N

v 1
u v

Vuv 11 N
u v v (2.72)

For the term E1 G after the transformation will be

b1†
k

Cuv

1 m DV m
uv

b 1 1
2

u v b1†
(2.73)

W 1 0 (2.74)

Similarly for E2 the calculation can be done. First we read out Luv column-wise using indices

as in (2.70), l : lk Luv.

E2 G
1
2

N

u 1

N

v 1
v u

LuvVuv ln s T

2

1
2

ltr u v v ln s T
2

1
2

vtr u v tr l ltr u v v 2 ln s T ltr u v v ln s T 2

(2.75)

b 2 ln s T ltr u v

4
(2.76)

W 2
u v tr l ltr u v

8
(2.77)
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The energy function of the HNN as in (2.67) is

y 1 2ytrb 1
2 ytrW 2 y 2ytrb 2 (2.78)

where 1 and 2 are the usual weight factor to emphasize one constraint over the other.

THESIS I.3 (multicast routing with incomplete information with HNN). I defined an algorithm

to find a sub-optimal solution to the multicast routing problem with random link descriptors in

Algorithm 3. The procedure transforms the random link descriptors into deterministic ones by

using results from large deviation theory, which I formulated at (2.61). The transformed problem

can be seen as a CGSMT, which is still NP-hard, but I propose a sub-optimal solution by using

HNN, where the corresponding parameters are described at 2.4.3 and summarized in (2.78).

The thesis is restated in a self consistent way in Appendix A at Thesis I.3 (page 86).

2.5 Optimal link scaling as a constrained optimization problem

The link scaling problem, which was defined at 2.2.3 can be treated as a constrained optimization

problem, where the Signaling Bandwidth (SB) (the average code length needed by the link state

advertisement) has to be kept under a specified threshold while at the same time the Link Entropy

(LE) (which describes the uncertainty of the available information about the network) has to be

minimized.

A remark: u v is an information theoretical source, which generates the LSA for link u v .

has its alphabet from the LAS elements (t0 t1 tZ 1) and emits them with probabilities

p̂0 p̂1 p̂Z 1. The source is active ( u v =1) with probability P̂ u v 1 i p̂i, and

inactive with probability 1 P̂ u v 0 . The event that ti ti 1 interval was advertised

for this link (ti u v ti 1), is denoted by u v i. We can define the following conditional

entropy corresponding to an active source:

H u v u v 1
Z 1

i 0
i:p̂i 0

p̂i

P̂
log2

p̂i

P̂
(2.79)

H u v u v 0 0 (2.80)

Then the quantity H u v u v P̂ H u v u v 1 is called the Signaling Entropy (SE).

By the source coding theorem it is bound between

H u v u v SE H u v u v 1 (2.81)

This is the achievable lower bound for the Signaling Bandwidth (SB) and can be approximated by

Huffman coding.

In order to take into account the routing performance resulting from the incomplete link state

information, let us assume that the random link descriptor u v can take its value from a discrete

set: x j j 0 L. Let us denote with p̃i j the normalized probability of u v x j, given that
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we know that u v is in interval ti ti 1 : p̃i j u v x j ti u v ti 1 and a set of

indices for this interval with I i , where j I i if ti x j ti 1. The conditional uncertainty of

the random link descriptor in ti ti 1 can be calculated as:

Hi H u v ti u v ti 1 H u v u v i
j I i

p̃i j log2 p̃i j (2.82)

The total uncertainty on link u v (LE) is defined as:

H u v u v

Z 1

i 0
u v i Hi (2.83)

where u v i ti u v ti 1 . Note that both u v , u v depend on the choice of

the LAS, consequently the LE and SB also depend on it. The task to solve is the following: how

to choose an appropriate LAS that minimizes the LE and keeps the SB under a given threshold.

For the forthcoming discussion -not to overwhelm the reader with another complex notation- I

assume an equidistant LAS with interval size t, but the same argument can be used for any LAS.

2.5.1 Traffic modeling and queuing system

To be able to compute these metrics, I model the incoming traffic on a link as a Markovian

Arrival Process (MAP) process. The MAP process has been successfully applied in network traffic

modeling [120], since it has a rich internal structure and can capture the short term correlation

in the data, which enables the model to behave more realistically (e.g. generate bursty traffic

as well). I choose to model the router and the traffic as a MAP/M/1 queuing system, which is

a special case of a more general Quasi Birth-Death (QBD) queue [123, 122]. Queuing systems

and their stationer behavior are extensively analyzed for many types of queuing systems. (e.g.

M/G/1[154], GI/M/1[122], GI/G/1[43], QBD[122, 124, 123], MAP/PH/1[123], MMPP/M/1[37,

67, 97]). In this section I only introduce the bare minimum from the common notations, definitions

and results for the purpose of understanding the next section. I am applying the results to arrive at

the computability of information theoretic metrics I described previously. The reader is referred

to the articles mentioned before for details about these structures and methods.

The MAP process is a point process governed by an underlying continuous time Markov chain.

This Markov chain has a M states. The process can stay in a state i i or transition to another

state i j i j . If the process stays in a state it happens with an arrival of a packet. If the

process makes a state transition, it can have it in two fundamental ways: with or without an

arrival of a packet. The MAP is described by two matrices MAP D0 D1 . D0 describes the rates

of state transitions without arrivals (type 0 transitions) and D1 describes the rates with arrivals

(type 1 transitions). The underlying Markov chain has the generator D D0 D1. For D to be a

generator, the diagonal elements of D0 are defined as D0ii j i D0i j j D1i j . Consider a

simpler special case for a MAP, the MMPP: for the MMPP D1 is diagonal, meaning that when an

arrival happens the chain does not change state, but on the other hand when the chain changes

state, it won’t be associated with an arrival. For example in case of MMPP(3) the chain has 3

states. Each state is associated with a Poisson arrival process with rate 1 2 3 . If the chain
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is in state i packets arrive with rate i (The inter arrival times are exponentially distributed with

mean 1 i) And the system can transition from i j i j with rates i j described by D0.

D0
1 12 13 12 13

21 2 21 23 23

31 32 3 31 32

D1
1

2

3
(2.84)

A general QBD queue is an FCFS queue, where the underlying operation is governed by yet

another continuous time Markov chain. This Markov chain has a slightly complicated state space,

i 0 1 i n . The state space can be divided to levels, denoted by , which correspond

to the number of elements in the queue, and to phases, denoted by i. At level the process has

n phases. A phase describes an “operation mode” of the chain. In a QBD, transitions are only

allowed to either a neighboring or the same level i 1 k j 1 m j i, which

correspond to a departure of a packet (with or without a phase change), a pure phase change,

or a packet arrival (with or without a phase change) respectively. The infinitesimal generator

matrix (transition rate matrix) of a general QBD queue has a tridiagonal block structure (using the

notation from [123]):

Q

L 0 F 0

B 1 L 1 F 1

B 2 L 2 F 2

. . . . . . . . .

(2.85)

where sub-matrices B encode the backward transitions from level to 1, F encode the

forward transitions from level to 1 and L encode the local transitions within level .

Consider the chosen MAP/M/1 queue, where packets arrive according to MAP D0 D1 , the

service of a packet is according to a Poisson process with rate . The levels of the QBD corre-

sponds to the queue length (number of packets waiting to be served). There are dim D0 1 M

states for the MAP and only 1 state for the Poisson process, so the total number of phases for

the QBD is M 1. The arrival and the service distributions does not depend on queue length, so

the chain behaves the same at every level, except when empty 0 it cannot serve packets:

B B F F 0 and L L 0. For this MAP/M/1 QBD the transition block matrices

are:

• B I, the backward transitions i 1 j are determined purely by the service

demand distribution

• F D1, the forward transitions i 1 j are fully characterized by the MAP arrival

process’ type 1 transitions and

• L D0 I, L 0 D0, the local phase transitions i j i j are determined by

the MAP arrival process’ type 0 transitions.

Note that I is the identity matrix with dimension M M and for Q to be a valid generator, I has

to be deduced from L.

The evolution of a continuous time Markov chain X t with state space S K S , generator

Q are described by the transition probability functions P t eQ t . Note that P t is a matrix
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function. One element i j of P t : Pi j t X t j X 0 i describes the probability that

for a time interval t the chain was in state i at the beginning of the interval, but it is in state j at the

end of the interval. Consequently the ith row describes the evolution of state transition probability

from state i to any other state.

P t

X t 1 X 0 1 X t 2 X 0 1 X t K X 0 1

X t 1 X 0 2 X t 2 X 0 2 X t K X 0 2
...

...
. . .

...
X t 1 X 0 K X t 2 X 0 K X t K X 0 K

(2.86)

The Kolmogorov forward equations, which describe the time dynamics of the probability transi-

tions take the form:

P t P t Q P 0 I (2.87)

where P t is the time derivative of each transition probability function. One could fully char-

acterize the chain if these set of differential equations are solved. For example the necessary

probabilities for the information theoretic metrics could be computed as:

p̂i queue len. is in interval i at time t0 t queue len. was out of interval i at t0 (2.88)

m I i k I i

X t0 t k X t0 m X t0 m (2.89)

p̃i j queue len. is j in interval i at time t0 queue len. is in that interval (2.90)

X t0 j

k I i X t0 k
j I i (2.91)

The dynamical behavior of a chain is usually split into two parts: the transient part and the steady

state part. The steady state (long run average) behavior of a chain is characterized by the stationer

distribution (row vector). Throughout this discussion we assume that this distribution exists, as

it does in most practical applications. The stationer distribution satisfies the following conditions:

P t t 0 (2.92)

0 Q (2.93)

i
i 1 (2.94)

where (2.93) are called the global balance equations. Equation (2.92) describes that if the queue

is in steady state, the transition probabilities do not evolve further. This means that over a long

period of time we find the chain in state i with probability i. Also it can be shown that the

limiting probabilities converge to for every row of P t :

lim
t

P t ...
(2.95)

which means on the other hand (by the definition of P t ), that from any state i (ith row) the chain
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transitions (on the long run) to state j with probability j. If we know the steady state distribution

of chain X t , and assume that the chain converges fast to this distribution, we can compute the

following probabilities:

p̂i
m Ii k Ii

X t0 t k X t0 m X t0 m

p̂i
m Ii k Ii

k m (2.96)

where the first term became k because of (2.95) and the second term became m because of

(2.92).

p̃i j
X t0 j

k I i X t0 k
j I i

j

k I i k
j I i (2.97)

Since the MAP/M/1 queue is a QBD process which is governed by an underlying continuous time

Markov chain, if we can compute its stationer distribution, we can derive the required probabilities

to compute the both the Signaling Entropy and the Link Entropy metrics. The stationer distribution

of a QBD can be computed effectively using the matrix analytic methods described in [122, 124,

123, 135, 9, 141]. A Matlab implementation of these algorithms (and much more) can be found in

the Q-MAM, SMCSolver, MAMSolver packages [133, 134, 13, 149, 148, 110, 137, 74, 46, 47,

95].

The Signaling Entropy and the Link Entropy can be written as follows:

H u v D0 D1 t u v t (2.98)

H u v D0 D1 u v D0 D1 t (2.99)

where parameters 0 1 L 1 , and D0 D1 belong to the MAP/M/1 queue describing

the traffic on link u v . Now optimal link scaling can be posed as a constrained optimization

problem:

min
t

H u v D0 D1 u v D0 D1 t

s.t.H u v D0 D1 t u v t
(2.100)

Based on this calculation a simple search can yield (under checking the constraint in each step)

the optimal solution which maximizes the routing performance under the constraint of keeping

the signaling bandwidth below a threshold.

THESIS I.4 (optimizing link scaling using MAP/M/1). In (2.100), I formulated a constrained

optimization problem which connects the information about the random link descriptors (Link

Entropy) and the appropriate bandwidth of the signaling process to support that information
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(Signaling Entropy) at a certain probability. I proposed a computable solution to this problem

by modeling the dynamics of the link descriptors as MAP/M/1 described in (2.98) and (2.99),

Consequently the information theoretical quantities can be obtained analytically and the optimal

solution can be found.

The thesis is restated in a self consistent way in Appendix A at Thesis I.4 (page 86).

2.6 Simulations and numerical results

The simulation results are presented and ranked for the performance of the previously defined

algorithms. The effect of “signaling entropy” on “link entropy” is studied based on real life traffic.

2.6.1 Routing in unicast case

In this section the performances of the newly developed QoS routing algorithms and link

optimization methods are analyzed by extensive simulations. In order to compare the algorithms I

introduce a performance measure for comparing two paths Ra and Re both starting from node src

and ending at node dst. This is defined as the ratio of the probability of the path Re (found by the

exhaustive search) and the probability of the path Ra (found by a given algorithm) fulfilling the

end-to-end QoS criterion, given as follows:

Ra T :
u v Re

u v T
u v Ra

u v T (2.101)

Given that Re is the best route in the sense that it fulfills any T QoS criterion with the largest

probability, Ra T 0, and it measures the “performance drop” in probability for given T QoS

value. An example is given at Figure 7, where on the left side the three curves correspond to three

different paths: Ra1 Ra2 Re respectively. On the right side the two bell shaped curves correspond

to Ra1 T and Ra2 T . The normalized area under these curves are defined as:

0 200 400
0

0.5

1

0 100 200 300 400 500
0

0.2

0.4

0.6

Figure 7: An example for
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Ra

Tmax

0

Ra T dT

Tmax

0 u v Re

u v T dT

(2.102)

where Tmax is the investigated maximum value for T . corresponds to the performance drop

of a path compared to the best path. It is easy to see that the “worst path” R0 which can fulfill

any T Tmax only with 0 probability corresponds to the value R0 1 and the best path

Re corresponds to Re 0. The closer this function approximates the value 0, the better the

performance of the corresponding route is. If we investigate these metrics on an ensemble of

measurements we can characterize the average performance of the proposed routing algorithms.

Figure 8 depicts the test network, which was used to simulate the performance of the different

routing algorithms. The network model is based on the European part of the GEANT[48] network

topology. The aggregator switches in Russia were removed to lower the edge and node counts,

so the exhaustive search could be executed in a feasible time. This particular topology has

46 nodes and 136 edges. I have generated the delay on each link based on its own Poisson

Figure 8: GEANT network topology used to evaluate the proposed algorithms. On the left side
the Mercator projection on the right side a flattened representation of the topology can be seen.

distribution. I chose each link’s parameter randomly from the range 0 to 230 uniformly.

Each link had a LAS with 10 divisions according the the “Gaussian approximation” algorithm:

LAS 0 5 16 32 53 79 110 146 187 233 284 . Figure 9 depicts an example delay distribution

ensemble.

The performance of four algorithms will be shown and compared to the performance of the

exhaustive search: “OSPF”,”Gaussian approximation”,”exhaustive-s”,”recursive-s” The “OSPF”

is a simple shortest path algorithm having a metric as the advertised LAS entry. The “Gaussian

approximation” had its metric according to Theorem 1, the “exhaustive-s” is based on Algorithm 1

and “recursive-s” is based on Algorithm 2.
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Figure 9: Example delay distributions on each link

I have chosen Island “1ISL” for the src node and Romania “37RO” for the dst node, as this

pair offers a wide variety of routes in between them. All the routes from src to dst can be labeled

with an index (1 to 4937) in an increasing order according to Ra . This labeling can be seen

in Figure 10 Using the fixed and known link descriptor distribution (Figure 9) I sampled the
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ith  path

0

0.2

0.4
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1
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Figure 10: Path index vs its performance , Tmax=3000. The left figure depicts all the paths, while
the figure on the right zooms in to the first 20 best path.

network. When the OSPF algorithm found the best route (path #1) so did all other algorithms. For

this particular link distribution ensemble the relative frequency for the OSPF not choosing path

#1 was P 0 4148, so almost half of the time there were better performing paths. To quantify

the improvement of the introduced algorithms I chose 10000 sample points when the OSPF

algorithm did not choose path #1. The frequency of the routes chosen by the algorithms are

depicted in Figure 11. From this figure and from the previous statement it can be seen that all

introduced algorithms perform better than the OSPF. The exhaustive-s algorithm performs the

best as it has access to the most precise information about the network, although it has the highest

computational complexity. The Gaussian and the recursive-s algorithm performs nearly identically

and both have similar computational complexity. This gives the upper hand to the recursive-s

algorithm, because the Gaussian algorithm has a rather strict constraint on the chosen LAS shape

while the recursive-s can be utilized for any type of LAS.
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Figure 11: Path choice frequency out of 104 samples when the OSPF did not choose path #1

In order to obtain more general numerical results, the algorithms were run not only on one

graph with particular link states, but on a set of graphs denoted by . Each graph had 10 nodes

having cardinalities at least 3, and the random graph generator made sure that all nodes has

belonged to the same component. Let us denote all possible routes (from all possible src to all

possible dst, src dst) in a graph G with G . I characterize the "ensemble" performance by

metrics G and e, given as follows:

G :
1
G R G

R e :
1

G
G (2.103)

The distribution of the number of paths from all src to all dst in can be seen on Figure 12. From
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Figure 12: The distribution of the number of different paths between all src to all dst for the
random graph ensemble

this figure it can be seen that there were almost always multiple choices for the algorithms to

choose a path from. For this ensemble the distribution of G is depicted in Figure 13 and the total

ensemble performance metric e is in Figure 14. From these figures it can be seen that on average

all novel algorithms outperform the OSPF. The recursive-s and the Gaussian algorithms perform

nearly identically. Both have similar computational complexity, but the Gaussian algorithm is

limited by the strict rule for the choice of the LAS, while the recursive-s is not. The exhaustive-s

algorithm performs the best, although it has the highest computational complexity and requires

the link descriptor to be to be modeled precisely.
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Figure 13: The distributions of the ensemble performance metric G over all graphs G in the
random graph ensemble for all for all introduced algorithms.
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Figure 14: The total ensemble performance metric e for all introduced algorithms.

Based on the simulation results the developed algorithms can be ranked with respect to their

performances as follows: 1: “Recursive-s Algorithm”, 2: “Exhaustive-s Algorithm”, 3:“Gaussian

approximation”, 4:“OSPF”. For practical applications either the “Recursive-s” (low computational

complexity) or the “Exhaustive-s” algorithm (good performance, higher computational complexity,

need for good link descriptor model) is is recommended.
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2.6.2 Multicast routing with incomplete information

The Ã1 and the Ã2 objective functions (defined in (2.4) (2.5)) were evaluated by exhaustive

search and the HNN based algorithm on a graph with the following parameters: The size of

the network N 8, the Rayleigh channel parameters were chosen to typical or better indoor

environment: 3 g 1 10 s2 1. The positions of the nodes were randomly generated

according to i.i.d. uniform distributions in the unit square. The group of the multicast nodes

consisted 3 randomly chosen nodes.

I have performed the exhaustive search by enumerating all the possible trees and evaluating

the objective functions on the trees. I have compared the results of the HNN algorithm to the

exhaustive solution. For the Ã2 objective function I have evaluated the performance given by the

Chernoff bound and also the corresponding theoretical probability by performing convolutions on

the known distributions.

0 5 10 15 20 25 30
0

0.5

1

HNN
Exhaustive

Figure 15: A typical evaluation of the Ã1 objective function.

It can be seen in Figure 15 that the HNN algorithm can find almost always the optimal solution

for the Ã1 objective function of the bottleneck problem: Pr Ã1 P : max u v A u v P .

This figure is typical in the sense that throughout the simulation runs I have seen the

same behavior. For the Ã2 objective function the figures show the probabilities of meet-

ing the delay constraint and the energy consumption for the tree of choice: Pr Ã2 T :

maxRsrc m A u v Rsrc m uv T u v ACuv In Figure 16a a case can be seen at T 4

that the HNN finds a solution that satisfies the delay constraint with a higher probability in the

expense of larger transmit power. For larger values the solution given by the HNN is the same as

the optimal solution given by the exhaustive search. In Figure 16b for small T values it can happen

that individual link measures approximated by the Chernoff bound could not give a positive

probability of meeting the delay constraint, hence the HNN could not supply a valid tree. However

solutions exist in that region which is not found due to the un-sharpness of the Chernoff bound.
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(a) Near optimal solution for Ã2 obj. func.
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(b) A typical evaluation of the Ã2 obj. func.

Figure 16: Performance of the multicast tree finder algorithm in case of additive measures

2.6.3 Link scaling

I have based my traffic models on the publicly available DISCO data-set from the Measurement-

lab data-set [115]. Specifically I choose the switch connected to the “mlab1.dub01.measurement-

lab.org” server. Since June 2016, M-Lab has collected high resolution switch telemetry

for each M-Lab server and site uplink.[114] I have used the “switch.octets.local.rx” and

“switch.unicast.local.rx” metrics from the data-set, which correspond to the “Bytes received

by the machine switch port” and “Unicast packets received by the machine switch port” to gather

the necessary statistics for the traffic models. The data-set contains these metrics with sampling

time of 10s. Real traffic has self similarity in several levels, one of them is a daily self-similarity.

I assumed that within an hour interval the traffic somewhat stays the same (relative to the daily

regular fluctuations). Based on this I have chosen two time periods over which I have aggregated

the necessary statistics to derive the traffic models.

• An average traffic load: from 14:00-15:00 each day in 2018. May. 1. to Jun. 30.

Traffic situation 1 has a mean packet rate of 6066 341pps, std:6865 61pps,

max:75944 03pps and mean speed 62Mbps, std:78 28Mbps, max:883 66Mbps.

• A more intensive traffic load: from 18:30-19:30 each day in 2018. Sep. 1. to Nov 30.

Traffic situation 2 has a mean packet rate of 13613 81pps, std:12278 3pps,

38

DOI:10.15774/PPKE.ITK.2019.006



May 04 May 05 May 06 May 07 May 08 May 09
time

0

50

100

150

200

[M
bp

s]

traffic speed on local rx port (moving average over 30min)
14:00-15:00
18:30-19:30
average traffic speed

Figure 17: Example of the daily self similarity pattern in the real switch telemetry data from
mlab1.dub01.measurement-lab.org. Moving averaged data was plotted from 2018. May 4-9.

max:137180 7pps and mean speed 143 5Mbps, std:141 5Mbps, max:1605 45Mbps.

For the traffic models I derived from the data I assumed that the inter-arrival times in a 10s slot

follows an exponential distribution with rate corresponding to the metric in that 10s slot. Based

on the gathered packet count statistics from metric “switch.unicast.local.rx” I derived the average

packet rates (packet/second) for each 10s slot. From this I derived the corresponding average

inter arrival times. This was fed into an event generator which generated events according to the

specified average inter arrival times. This sequence of events were fed into the MAP estimator of

the kpc-toolbox by [46, 47, 95]. I have used 16 state MAP-s in both cases to model the sequence of

events. From the identified models I also generated sequences of events, which then were mapped

back to the average packet rate metric for comparison. The statistics of the real world traffic and

the identified traffic models for both scenarios are depicted in Figure 18 and Figure 20 with the

average packet sizes in Figure 19 and Figure 21 respectively. Please note that since the traffic

statistics were quite similar to the “exponential” distributions, the figures have logarithmic X axes

and the histogram bins were generated logarithmically to emphasize the mean characteristics.

From these figures it can be seen that the identified models are detailed enough to reproduce the

statistics of the real life data.

Since there is no information available on the used switches, I assumed that the local rx link

was an 10GBASE-X connection, since the data-set contains data points with speeds greater

than 1Gbps. From the modeling point of view this means that the traffic is bottlenecked by the

connected router’s packet processing performance. It can be seen from Figure 19 and Figure 21

that the majority of the traffic flows through the router with packet sizes close to the MTU, when

computing the average packet processing speed of the router I assumed that the average packet

was 1450 bytes long. I also assumed that the router’s average packet processing data rate is 1Gbps

for the sake of presenting the numerical results, but it could have been adjusted as desired.

Having the MAP models of the incoming traffic and the average packet serving rates of the

router all parameters (D0 D1 ) are available for the MAP/M/1 model to be analyzed according

to subsection 2.5. Based on these values modeled system 1 had load 0 0703 and modeled

system 2 had load 0 1579 The required metrics were calculated using the toolboxes Q-MAM,

SMCSolver, MAMSolver [133, 134, 13, 149, 148, 110, 137, 74, 46, 47, 95].
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Figure 18: Packet rate and speed statistics aggregated over the time interval 14:00-15:00 each day
in 2018. May. 1. to Jun. 30 and generated from the corresponding model
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Figure 19: Packet length distribution aggregated over the time interval 14:00-15:00 each day in
2018. May. 1. to Jun. 30

For computing the information theoretic metrics, two types of link schemes were used: an

equidistant type and an exponential type.

LASequidistant : ti ceil i t i 0
L
t

(2.104)

LASexponential : ti
0 i 0

round exp i t i 1 logL
t

t log2 (2.105)

On Figure 22 and Figure 23 one can see the SE (2.98) and the LE (2.99) plotted against the

link scaling. Here the link scaling means the number of divisions over the link descriptor.

In both cases can be seen that the exponential grid for this type of traffic is a better choice, since

when achieving a similar LE values (red curve and purple curve Y values) the corresponding SE is

lower for the exponential grid (green curve vs blue curve Y value). Also it can be seen that a higher

load on the system causes the number of packets to be served to fluctuate more, which results
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Figure 20: Packet rate and speed statistics aggregated over the time interval 18:30-19:30 each day
in 2018. Sep. 1. to Nov 30 and generated from the corresponding model
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Figure 21: Packet length distribution aggregated over the time interval 18:30-19:30 each day in
2018. Sep. 1. to Nov 30
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Figure 22: Information theoretic metrics for traffic situation 1

41

DOI:10.15774/PPKE.ITK.2019.006



10 0 10 1 10 2 10 3 10 4

Number of emittable symbols |LAS|

2

4

6

en
tro

pi
es SE equidistant LAS

LE equidistant LAS

10 15 20 25 30
Number of emittable symbols |LAS|

1

2

3

en
tro

pi
es

SE exponential LAS
LE exponential LAS

X 31.5961
Y 2.6813

X 31.5961
Y 1.7829

X 43.6126
Y 1.7838

X 43.6126
Y 3.6281

Figure 23: Information theoretic metrics for traffic situation 2

in an elevated number of advertisements which in turn shows up in an increased SE. One can

see that increased link scaling(less division) indeed will raise the number of misidentified paths

selected by the routing algorithm (due to the less complete link state information) and at the same

time will reduce the signaling bandwidth necessary for link state advertisement. Based on these

figures engineering design can be employed by setting the threshold on the signaling bandwidth

and then reading out the obtained performance. As a result, one can analyze the trade-off between

routing performance and signaling bandwidth.

2.7 Conclusion

In this section new algorithms were proposed to carry out unicast QoS routing with incomplete

information. The proposed algorithms are capable of carrying out routing in polynomial time.

Based on the theoretical and numerical analysis the best method is the General Normal algorithm,

however, methods based on the Chernoff inequality also provide good performance. For multicast

scenarios even for networks sizes as small as 20 nodes exhaustive search is unfeasible so heuristics

are needed to approximate a good solution. I have shown that a HNN based heuristics with a

properly chosen additive measures can yield to a good solution for this traditionally NP complex

problem. Because of the conservativeness of the Chernoff approximation, the delay bound is

always met in the expense of consuming more transmit power. Because of the large free parameter

set and the contradictory constraints for constructing the energy function the HNN may not be

the best method for solving this quadratic optimization problem. Other heuristics like applying

SDR could be considered to be an alternative. Furthermore, in order to optimize link scaling

information, theoretical measures were introduced which can maximize routing performance

under the constraint of keeping signaling information bellow a threshold. In this way, optimal

bandwidth utilization can be achieved in packet switched networks. As the simulation results have

indicated the choice of link advertisement interval ( t) has a great impact on QoS.
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3 Thesis group II - a heuristic solver based on hypergraphs for
UBQP and its applicability in ICT

This chapter is organized around the combinatorial approach and tractability of several ICT

problems, since they can be formulated as an Unconstrained Binary Quadratic Programming

(UBQP). These applications include load balancing, a wide class of scheduling problems, MUD,

VLSI design, Steiner tree problems...etc. A survey of these applications can be found in [92].

In cloud computing environments and in IoT the efficient scheduling [109, 166] and distribution

of tasks plays a central role in performance and scalability. Several approaches exist [139, 165,

147] - usually metaheuristics - to address these problems but at their core almost each of them

contains a method for approximating a solution of a constrained optimization problem. This core

step can be usually formulated as a UBQP, therefore the proposed algorithms can be utilized on it.

Recent surveys on scheduling in IaaS cloud computing environments and load balancing can be

found in [139, 165, 147]

Furthermore, other problems under linear constraints can also be transformed into UBQP as

demonstrated in [91, 11, 118, 163, 27, 108]. Unfortunately, UBQP has proved to be NP-hard [45],

but in some special cases it can be solved in polynomial time [11, 127, 128, 7]. In general though,

there is still a great need for developing fast methods which can reach near-optimal solutions

when the size of the problem goes beyond a given limit. Thus the aim of this chapter is to present

some novel approaches to UBQP which are based on recursive dimension reduction (or addition)

techniques. Although the more complex applications are more relevant, the proposed algorithms

and their performance will be presented in detail on simpler applications for traceability:

• large scale problems listed in ORLIB.

• simple scheduling;

• Multiuser Detection;

Based on the performance analysis the new algorithms prove to be superior to the known heuristics

regarding both the quality of the achieved solution and the convergence time. The correspond-

ing publication of the author is titled “Novel algorithms for quadratic programming by using

hypergraph representations” [160].

This chapter is organized as:

• in subsection 3.1, the related work is summarized;

• in subsection 3.2, the formal model is outlined;

• in subsection 3.3, the new algorithms are detailed;

• in subsection 3.4, the new methods are tested on large scale problems selected from ORLIB;

• in subsection 3.5, the application to scheduling is elaborated followed by some numerical

results;

• in subsection 3.6, the application to MUD is detailed followed by a performance analysis;

• finally, in subsection 3.7, some conclusions are drawn.
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3.1 Related work

UBQP has been treated by many researchers in the past decades. There are exact methods

developed for solving it, but beyond a given size the complexities of these methods tend to

become prohibitive because Garey and Johnson ( 1979) proved that UBQP in general is an NP

hard problem [45]. Therefore, there are well-known heuristics which are applied to large scale

problems. These heuristics usually apply different strategies [54] or combine several methods,

such as LS [117, 15], TS [126, 91, 11, 53], SDR [129], SA [11], GA, EA [106], MA [118] HNN

[151, 163].

First we give a brief historical overview of the methods applied to UBQP. Hopfield et al. (1985)

applied the Hopfield network on the TSP problem to obtain a sub-optimal solution. At that time

the term UBQP was not coined. Barahona et al. (1986) proved that some special classes of UBQP

can be solved in polynomial time [7]. Boros et al. (1989) introduced the DDT exact method to

solve UBQP which transformed UBQP into a polynomial PBF. The DDT based solution still

enjoys a great deal of popularity [61]. Poljak et al. (1995) proposed relaxation techniques by

using SDR, linearization in order to limit the problem complexity [129] and they present the

applicability on QAP, graph partitioning problems and to the max-clique problem. Helmbert et al.

(1998) used SDR in combination with CP and analyzed BB algorithms on 100 400 magnitude

problems [68]. Glover et al (1998) developed methods to use the TS with adaptive memories

and applied to problems of magnitude 100 500 [53]. Beasley et al. (1998) investigated TS

and SA [11] applied to problems in ORLIB. This was the fist study to incorporate a public and

comparable test set to the UBQP problem. Smith et al. (1998) used neural network solutions (e.g.

HNN and SONN) for solving CSP which was modeled as a UBQP [150]. Simth et al. (1999)

gave a survey on the application of neural networks on COP including UBQP [151]. Merz et

al. (1999) investigated GA with hybrid LS and applied onto problems of magnitude 200 2500

[116]. Lodi et al. (1999) used EA heuristics [106] for problems up to 500 variable and compared

them to algorithms like TS and BB. Glover et al. (2002) used a “one pass” heuristics based on

the DDT algorithm on problems up to 9000 variables [54]. Merz et al. (2002) used greedy 1-opt

and k-opt LS heuristics on problems of 10 2500 magnitude [117]. Kochenberger et al. (2004)

introduced a number of transforms of COP to a unified UBQP and he tested TS and SS algorithms

on problems like K-coloring and Max Sat [91]. Merz et al. (2004) use MA which is a hybrid

algorithm combining EA and LS. This algorithm was tested up to 2500 variables [118]. Xia et al.

(2005) use DHNN on the problem of operating a crossbar switch in an efficient way on problem

sizes of 20 2000 which is a practical application of the UBQP formulation [164]. Azim et

al. (2006) apply HNN to QAP and GPP problems [5]. Palubeckis et al. (2006) investigates the

usage of ITS heuristics up to 7000 variables [126] Alain et al. (2007) shows relaxation techniques

for MIQP solvers and apply it to UBQP for different density problems of 50 200 magnitude

[12]. Luo et al. (2010) published a summary paper for solving QP by using randomized SDR

[108], while Wang et al.(2010) improves the solution by using HNN and EDA [163]. Chicano and

Alba (2011) investigated the difficulty of a UBQP with an elementary landscape decomposition

technique [21]. But the methods proposed in these papers still did not strike a good compromise

between complexity and the quality of achieved solutions in large scale problems.
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3.2 UBQP formulation

In this section we introduce the mathematical framework of the problem together with a

graph based representation of the problem. Furthermore we summarize the key steps of some

well-known algorithms from the graph based perspective.

The UBQP is a quadratic COP where each component of vector y can have two distinct values,

which are taken to be -1 and +1 in the forthcoming analysis.

y W b : yT Wy 2yT b (3.1a)

y 1 N b N W N N (3.1b)

yopt min
y 1 N

y W b (3.1c)

The following assumptions can be used without the loss of generality. For further explanation

see C.4

• An objective function which has a non-zero linear term can be transformed to a purely

quadratic objective function ("homogenization") by adding an extra dimension and a

constraint. [68, 8, 28]

• Matrix W is assumed to be symmetric. For non-symmetric matrices the following trans-

formation can be performed which changes neither the value nor the place of the global

minimum. Ŵ 1
2 W WT [12]

• The diagonal elements of W are assumed to be 0, because in the case of yi 0 1 the

values of the diagonal merges into the linear term Wiiy2
i Wiiyi. While in the case of

yi 1 they can be left out, because Wiiy2
i Wii 1 and their sum merges into the

constant term of the quadratic function.

3.2.1 Successive reduction methods for solving the UBQP

In order to develop iterative methods, we introduce a hypergraph representation of the problem

and treat this material in the following order:

• First we consider the ordinary graph representation of the original problem and we put the

operations of the traditional solvers into this context.

• Then we introduce a possible reduction of the original problem to smaller dimension

sub-problems and give appropriate conditions for this reduction.

• The successive reductions are represented by a hypergraph and the problem solution is

perceived as a path on this hypergraph.

Graph representation of the UBQP The state space of the N dimension UBQP problem can

be represented by a weighted graph, where the vertices of the graph correspond to the state

vector y, the weights of the vertices are the values of the objective function y W b , while

the edges between the vertices are defined by a given neighborhood function. A commonly used

neighborhood function defines an edge between two vertices if the corresponding two state vectors
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differ only in one component.

G V E Q :

V y y 1 N

E u v u v V Neigh u v TRUE

Q q q y W b y V

(3.2)

For example, Figure 24 shows the state space of a N 4 dimension UBQP represented as a

weighted directed graph. The vertices are denoted by numbers 0 24 1 representing the decimal

values of the binary state vectors. An edge is drawn here if the Hamming distance between two

vertices is 1. The weights (the value of the objective function) of the vertices are noted by their

left-right position, and their values can be found at the bottom in the boxes such that the larger

valued vertices are at the left side, the smaller valued vertices are at the right side of the figure. All

edges are directed towards a lower objective function value. In this figure we represent a vertex at

a local minimum with little house shape, at a local maximum with an upside-down house shape

and the transient states with circles. We highlighted with red all the vertices and edges from where

the global minimum can be reached according to the given neighborhood function.

q y W b :

y

1_to_dec y

-1
-1
-1
-1

+1
+1
+1
+1

-1
-1
+1
-1

+1
-1
-1
-1
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-1
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-1
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Figure 24: Search space of a 4 dimensional UBQP - vertices of a 4 dimensional hypercube

On this graph representation we can describe the key steps of well-known heuristic algorithms.

Typically these are search and recombination type algorithms. For example the various forms of

LS algorithms select a starting vertex in the graph and using a certain strategy - like a greedy one -

search for a next vertex. They repeatedly apply this until a stopping criterion (expressed by quality
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or time) is not met. These heuristics are often get stuck in a vertex representing a local minimum.

To avoid this, various strategy are applied. For example the SA can be interpreted as a LS, where

one can escape from a local minimum by adding a noise term to the evaluation function of the

greedy state transition validation. This is supposed to compensate the greediness. Recombination

techniques like the GA or the MA exploit jumps in this graph. TS like heuristics try to avoid local

minima by the combination of restarting from various states and remembering the visited vertices

and edges leading to local minima during evaluation.

3.2.2 Breaking down UBQP into smaller dimensional sub problems

In this section I show that the the original N dimension problem can be separated into an

N 1 dimension problem and an additive term. The additive term represents the dimension to

be omitted. This can be useful because if the solution of the N 1 dimension sub problem does

not depend on the omitted dimension, then this reduces the size of the state space by half. If this

property holds for a sequence of dimensions, then we can apply the partitioning recursively and

this way decrease the run time exponentially. Note that we refer to sub matrices and sub vectors

by using a given subset of indexes.

Using the following subset of indexes: P 1 N 1 , we split up the original objective

function into an N 1 dimension problem and an additive term by using the notation: R WP P,

s bP, tT WN P, z yP. Note that this can be done because Wi i 0

W
R t
tT 0

b
s

bN

yT Wy 2yT b zT Rz 2zT s 2yN tT z bN

y W b z R s g y t bN

(3.3)

If the first term can be optimized independent of yN then the second term needs just checking two

possibilities i.e. yN 1 1 . In this way the main challenge of minimization is going to be

minimizing the first term in a reduced dimension space. Now we develop a procedure to check

the condition of this partitioning.

1. We assume that the global optimum is y . For this it is true that,

y W b y† W b y† y (3.4)

2. We split up the objective functions to two components according to (3.3) and by rearranging,

we get:

z R s g y t bN z† R s g y† t bN (3.5)

g y t bN g y† t bN z† R s z R s (3.6)
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3. It is also true that g y t bN is always negative, thus yN can be computed as

yN sgn tT z bN (3.7)

since u sgn u u, and

g y t bN 2yN tT z bN 2sgn tT z bN tT z bN 2 tT z bN 0

(3.8)

Note that this indeed connects the separated dimension with the other part, because in (3.7),

y z yN
T . Because of this we can get the optimal value for the separated dimension

based on the optimum on the other part.

4. This can be used more generally to connect any point in the N 1 D space with a point in

the ND space along one coordinate of y. If you take an arbitrary y, its “pair” q and the “Nth

dimension reduced” version p will be:

y y1 y2 yN
T p y1 y2 0 T q y1 y2 yN

T (3.9)

Assuming that y W b q W b then

y W b p W b q W b (3.10)

This is true since W has 0 diagonal elements, consequently x W b x N is a linear

function respect to only one xN variable. Also note that, since p W b z R s , it

is generally true that

g y t bN 0 (3.11)

To exploit this we should have the knowledge of the optimal z and we should have the comparison

(3.6) 2N 1 times which is computationally impractical.

We can develop an upper bound on the left side and a lower bound on the right side for (3.6),

to use it in a search step. For example if we also assume that beside y in the N dimension, z is

also optimal in the N 1 dimension space, the RHS of (3.6) is also non negative z† z .

One can develop another method of dimension reduction introducing a very crude bound and

consequently stringent constraint, if

yN sgn tT z bN

max
z 1 N 1

2 tT z bN 2 tT z bN 0
(3.12)

then (3.6) holds y† y and we can discard dimension N. Unfortunately this bound is too

strict and in many cases dimensions are not reduced even if they could be. Analyzing numerous

examples we often find that there are several dimensions that can be reduced. This leads us to

introduce appropriate heuristics to perform the partitioning without the tiresome evaluation of the

conditions.
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Hypergraph based representation To give a suitable framework for the dimension reduction

we introduce the hypergraph based representation of the problem. In this the search space is

extended by including all possible points from the subspaces. The extension of the search space

on one hand is motivated with the reduced run time, i.e. searching for a candidate solution is

performed in a smaller space, and on the other hand since we reduced the dimension we can get

out from certain local minima. The new sub space points will be the intersections of the cutting

plane with the edges of the hypercube.

Figure 25: Discarding the 2nd dimensional from the 3 dimensional hypercube

If we do this in all possible combination we get 2N sub spaces for search. One can connect

these sub spaces with a hypergraph, where the vertices of this hypergraph are the graphs defined

over the sub spaces of the original problem. In the following picture a hypergraph corresponding

to the previous example is shown.

Figure 26: A hypergraph of a 4 dimensional UBQP
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We denote the hypergraph formally:

G VH EH

VH u u G V E Q WX bX X

: 2 1 N

EH u v u v VH s.t. u and v differs in 1 dimension

(3.13)

3.3 Novel approaches to UBQP based on dimension reduction

In this section we present some novel hypergraph based algorithms, which will be compared

to other well-known UBQP solvers. The key components of the algorithms will be shown in

a flow diagram (Figure 27) and the major steps will be presented through a simple and easy-

to-understand example. Furthermore a common rule set and a pseudo code will be presented

which integrates all of our proposed algorithms. We introduce four algorithms with defining four

variants of the rule sets. These algorithms will be used for further numerical tests. We name them

“L01”,”D01”,”DA01”,”DA02”, respectively.

First I present the flow graph representation of the algorithms:

initialize model:
yopt /0, u init G V E Q W b ,
n N y 1 n

initialize search
space: W W,
b b, y y

u
G V E Q W b

find candidate
solution y in

G V E Q W b
with “inner solver”

Map y to y†

and evaluate
performance

of comparable
candidate

solution y†

is candidate
y† better
than best

yopt?

: try to find
new search space

by reducing
dimensions of

W, b,y to k n 1

update: yopt y†

could create
new search

space
parameters

stop

yes

no

yes

no

y 1 k, W, b

Figure 27: Flow graph representation of the algorithms

The hypergraph based algorithms operate with the following key concepts at two levels.

1. At hypergraph level: the algorithm selects an appropriate search space for the “inner solver”

and traces the transition between them.

2. Within the hypergraph nodes: these hypernodes are interpreted as a corresponding UBQP.

So the “inner solver" (indicated in the pseudo code later at Algorithm 4 line 17) can be any

known general UBQP solver.

The algorithm must have at least one global storage memory where it stores the best candidate

solution. This is used for comparing the iterative solutions and possibly to fine tune the strategy

which selects the new hypernode. Indicated by Figure 27 we define a simple algorithm and

describe each step on a 3 dimension example in order to fully understand the description of the
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four algorithms. In this example we take the following parameters:

Wo
-1.0 -5.5 -2.5

-5.5 -2.0 -0.5

-2.5 -0.5 -4.0

bo
-5

3

1

These parameters generate the hypergraph below, indicated by Figure 28a. (Note the energy

values are in the boxes on the left sides). One may notice that all the lower dimension vertices in

(a) Hypergraph representation (b) Hypercube representation

(c) Sample isosurfaces of the quadratic function if
W has 0 diagonal elements

(d) Sample isosurfaces of the quadratic function

Figure 28: Representations of a 3 dimensional problem

the hypergraph correspond to a point in the surface of the N 3 dimension hypercube. Thus the

hypergraph representation (indicated by Figure 28a) corresponds to the hypercube representation

(indicated by Figure 28b).

Before fully describing the algorithm the main steps are given as follows. This algorithm will

start from the original N 3 dimension hypernode and perform a dimension reduction (move in

the hypergraph from left to right) trying to improve its candidate solution in each step. We denote
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the dimension of the hypernode where the algorithm actually searches in an iteration with n . The

“inner solver” can be any traditional UBQP solver. In this example we do not specify this, but we

assume that this solver gives a candidate solution somehow. The full description of the algorithm

is given by the following steps:

First we set the initial values of the algorithm: yopt /0, W Wo, b bo, u init “left

most graph in Figure 28a”, n N 3. and we are going to store the optimal solution

obtained recursively in yopt .

1: In the first round the algorithm operates on the n N 3 dimension space.

• Let us assume it starts from y 1 1 1 T . Then the “inner solver” searches for

a candidate solution and assume it finds y 1 1 1 T .

• We copy y into y†, the 1st solution is yopt y†.

• Then strategy will identify a new, lower dimension search space. For example, it

discards one of the dimensions randomly. In this example let this discarded dimension

be the 2nd one.

2: In the second round the search is conducted in a 2 dimensional space where new parameters

are W Wo
1 3 1 3 b bo

1 3 u “top most graph in the center column in Figure 28a”,

n 2:

• Here we form a new initial state from yopt by discarding the second component:

y yopt
1 3 1 1 T . This corresponds to the vertex labeled by ”1 0 1” in the

figures.

• Now the “inner solver” searches for a new optimum and let us assume it reaches

y 1 1 T .

• Now we copy y to y† by taking the 1st and 2nd components of y and placing them

into the 1st and 3rd components of y†. The value of the second component will be

computed based on the values of the corresponding energy function, in this case:

y† y1 sgn Wo
2 1 3 y bo

2 y2
T 1 1 1 T , because this will result in

a lower energy.

• By comparing the energy function of the new and the previous solution we update yopt

accordingly: if yopt Wo bo y† Wo bo , then yopt y†; otherwise there is

no change. In this example we update yopt .

• Now strategy will discard another dimension which we assume is the 3rd one.

3: In the third round the search is conducted in a 1 dimension space with parameters: W
Wo

1 1, b bo
1, u “graph at the bottom in the right column in Figure 28a”, n 1.

• The initial point of the inner solver is again a truncated version of yopt which is

y yopt
1 1 which corresponds to the vertex labeled by ” 1 0 0” in the figures.

• Now let us assume that the “inner solver” gives the following solution: y 1

• We obtain y† as follows: by taking the only component from y and placing it into

the 1st component of y†; the last discarded component will be computed based on the

corresponding energy function; the rest of the discarded components (which were

discarded in the previous stages of algorithm) will be copied from yopt , resulting in

y† y1 yopt
2 sgn Wo

3 1 y bo
1

T 1 1 1 T

• By comparing the energy function of the new and the previous solution we update
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yopt accordingly. In this example yopt Wo bo y† Wo bo so there is no

update.

4-: Similarly exploring the other two 1 dimension space (the top most and the middle graph in

the right column in Figure 28a) we find no better solution than the current yopt

end: Since we ran out of any further components to discard the algorithm stops and the result is

yopt

It is noteworthy that if the algorithm cannot find a better solution in a lower dimension space

chosen by strategy , then the algorithm returns to the end of the previous round and applies

again to continue the search in a different lower dimension space.

Algorithm 4 Pseudo code of the general UBQP solver algorithm

1: function INNER_SOLVER(W k k b k y init 1 k)
2: an arbitrary UBQP minimizer
3: return y 1 k

4: end function
5: function (u VH y uV )
6: choose u VH choose the next hypernode and
7: choose y uV choose a state in that hypernode
8: return u y
9: end function

Input: W b and u init the problem and the starting hypernode
10: u u init VH start hypernode of the alg
11: choose y u init V init state in the hypernode
12: repeat
13: define L W b y objective function
14: u u and y y
15: W b parameters from u G V E Q W b
16: if SHOULD_EMPLOY_INNER_SOLVER( )then
17: y INNER_SOLVER(W b y)
18: else
19: y y
20: end if
21: u y (u y )
22: until STOP_CRIT( )
Output: y the best solution found by the alg.

Based on this intuitive example, one may specify the rules of the general algorithm as follows:

1. Specify the starting hyper node of the algorithm. u init ? u init VH

2. Choose an “inner solver” (Algorithm 4 line 1) that we apply in a hypernode to obtain the

solution of the corresponding UBQP defined over this hypernode.

3. The performance of an n dimension candidate solution is defined by the corresponding

value of the energy function over this candidate solution.

4. Specify a strategy which selects the next hypernode (Algorithm 4 line 21).

5. Select an initial state for the “inner solver” in the chosen hypernode.

6. Give the overall stopping criterion of the algorithm. (Algorithm 4 line 22)
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Although the general algorithm enables us to define its several variants we present only four,

named as: “L01”,”D01”,”DA01”,”DA02”, respectively. These four algorithms are characterized

by two major properties: (i) selecting a better solution by checking all possibilities; or selecting

the first better solution with respect to the search criterion. One may also differentiate among

the algorithms based on (ii) reducing or extending the dimensions. Table 3 demonstrates the

possibilities.

Table 3 Categorization of the algorithms
greedy opportunistic

dim. reducer L01 D01
dim. adder DA02 DA01

Here we shortly describe the major properties of the four algorithms. (The precise description

of the algorithms can be found in Appendix F.)

L01 starts from the original N dimension space, and iteratively reduces the dimension in a greedy

fashion. It searches all reachable n 1 dimension hypernode from a given n dimension

hypernode, and selects the best one.

D01 also iteratively reduces a dimension, but does not search all reachable n 1 dimension

hypernodes, but if it finds a promising one, then it chooses that hypernode.

DA01 builds up the solution by increasing the dimension instead of reducing it. It starts from a 1

dimension hypernode and iteratively increases the dimension one-by-one on its candidate

solution. This algorithm chooses the next hypernode by an opportunistic manner: if the

chosen hypernode looks promising from the point of energy, it selects that.

DA02 is also an algorithm which increases the dimensions. It differs from “DA01” only in the

choice of the next hypernodes. The algorithm examines all reachable n 1 dimension

hypernodes from an n dimension one and selects the best among them according to energy.

THESIS II.1 (A heuristic solver family based on hypergraphs for UBQP). In Algorithm 4, I have

given a hypergraph based, easily parallelizable algorithm family to sub-optimally solve the UBQP

problem. The algorithms project the original search space into a hypergraph representation and

use a HNN based internal solver to find a solution. I have given four instances of which two

employs dimension reduction and two dimension addition. Table 3 summarizes the operation

modes of the instances. (The precise description of the algorithms can be found in Appendix F)

I have tested the performance on three different problem sets: on the standard ORLIB UBQP

benchmark set (subsection 3.4), on a scheduling problem (subsection 3.5), and on a simulated

MUD problem (subsection 3.6). I have shown that the proposed methods perform near optimal on

the investigated ICT problems.

The thesis is restated in a self consistent way in Appendix A at Thesis II.1 (page 87).

3.4 Performance analysis of the novel algorithms

In this section we present a numerical performance analysis of our proposed algorithms and

compare them with some well-known UBQP solvers. We took the problems from the ORLIB

[10] test set. We have implemented all the algorithms in the same programming environment
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and performed the tests within the same computational environment as well. First we present the

numerical performance on a few specific test problems. Then we give the overview of the results

for all the defined test problems in a table. Besides the algorithms presented in subsection 3.3 we

also use the following traditional algorithms for the sake of comparison:

• “HNN” - a discrete time and discrete valued Hopfield type recurrent network.

• “1-opt LS” - a 1-opt local search type algorithm.

• “BLS” an algorithm presented by Beasley [11] based on a 1-opt local search method.

• “BTS” a taboo search algorithm also presented by Beasley [11].

• “DDT” the well-known DDT algorithm by Boros, Hammer, and Sun [14]

• “SDR” an SDR type algorithm without randomization presented by Luo et al. [108].

• “SDR with randomization” is the same algorithm but with randomization [108].

All algorithms were reimplemented in Matlab by the author reusing pre-existing Mathworks

provided libraries to get comparable execution times. For the comparison of the execution times,

the author assumed that the used libraries are fair and scale linearly. They are fair in the sense

that by using two different components with similar computational complexity they are executed

approximately in the same time. It also worth noting that all simulations were performed on a

sequential architecture without any parallelization.

The algorithms can be divided into two major groups:

• the deterministic algorithms, such as DA02, SDR, BTS, DDT

• stochastic algorithms, such as HNN, D01, L01, DA01, BLS.

The performance measure is a histogram taken over the solutions computed by re-running the

different algorithms 1000 times. In the figures the markers represent the top of the corresponding

histogram bins. In the ORLIB the variable y of the UBQP problems have y 0 1 N valued

components, and the objective function is a maximization problem, although an equivalent

minimization problem with y 1 N can be obtained, we choose to present the numerical

values like the ORLIB defines it for the sake of further comparability by other authors. The figure

belowFigure 29 shows the performance of the algorithms on the 5th problem (selected from the

set of problems with 50 dimension). From this figure it can be seen that all the BTS, DA02,

DA01, L01, D01, BLS, HNN, 1opt LS algorithms find the global maximum. The DDT and both

variations of the SDR perform poorly on this problem. The ordering of the probabilistic algorithms

based on the relative frequency of finding the global maximum is the following: DA01, L01, D01,

BLS, HNN, 1opt LS. The BLS and the simple HNN performs almost identically. Figure 29b

presents the relative run times of the algorithms. The unit time was chosen to be the run time of

the fastest algorithm (HNN).

Figure 30a depicts the performance of the algorithms on the 7th problem (selected from the set

of problems with 100 dimension). In this case the histogram is obtained based on 100 independent

runs.

It can be seen that L01, DA01, BLS and D01 algorithms are capable of finding the best solution.

The BTS every time found the same and fairly good solution due to its deterministic nature. From

the histogram it can be seen that algorithms D01, L01 and DA01 perform as good as the BTS in
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(a) Relative frequencies of the reached solutions (b) Relative run times of the algorithms

Figure 29: Performance on the 5th problem from the ORLIB 50 dimensional problems.

(a) Relative frequencies of the reached solutions (b) Relative run times of the algorithms

Figure 30: Performance on the 7th problem from the ORLIB 100 dimensional problems.

average, however sometimes they yield a better solution. The SDR solvers perform poorly on this

problem. Comparing the relative run times on this problem, it can be seen that the BTS proves to

be the slowest one.

The next figures show the performance on the 2nd problem from the 500 dimension problem

set. In this case we only present the histogram based on 50 independent runs. In this case the best

solution was given by the BTS, L01 and D01 algorithms. From the run time analysis it can be

seen that on this problem the BTS only runs 2 times slower than the D01 algorithm, but the BTS

always finds a good quality solution as opposed to the D01. Based on the ranking obtained by

the run-time analysis, it can be concluded that most of the time our proposed algorithms perform

better or identical compared to algorithms of similar complexity.
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Figure 31: Performance on the 2nd problem from the ORLIB 500 dimensional problems.

Figure 32: Relative run times on the 2nd problem from the ORLIB 500 dimensional problems.

We must note that in the worst case HNN uses the same amount of time as the greedy local

search. This happens rarely but their performances are almost identical. Regarding speed, HNN

can be matched with the DA01 algorithm, which builds up a solution in a bottom-up manner, in

one pass. On the other hand, DA01 always perform better than HNN. We must also note that the

proposed algorithms can be easily parallelized: The strategy defines a tree and evaluating the

performances of the branches of the tree are independent processes, therefore they can be done in

a parallel manner. This can reduce the run time or may boost the performance of the solution if an

appropriate architecture is chosen. The tables in the Appendix F.5 present the performance and

the run time analysis for all the problems.

Comparison of 3 algorithms

To make a more profound comparison, we present figures depicting only the performance of the

HNN, the DA01 and the BTS algorithms on a larger run set. In the following figure a histogram

of the performance can be seen based on 10,000 runs on a 50 and a 100 dimension problem,

respectively. Furthermore, the performance on a 500 dimension problem were tested by 1000

runs. Table 4 summarizes the performance and run time values for the selected algorithms.

57

DOI:10.15774/PPKE.ITK.2019.006



It can be seen that the proposed DA01 algorithm performs better for the lower dimension

problems than BTS if the run time is the same. On the other hand the DA01 reaches the best

solution in a shorter time for lower dimension problems.

We must note that in this comparison we run the DA01 algorithm in each iteration independently

and the best result has been selected as the final result. This is a very naive approach, but this

lends itself to easy parallel implementation.

Figure 33: Performance on the 5th of the 50 dimensional problems.

Figure 34: Performance on the 7th of the 100 dimensional problems.
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Figure 35: Performance on the 2nd of the 500 dimensional problems.

Table 4 Performance comparison of BTS vs DA01
solution best solution relative freq of best solution mean run time mean run time until best solution found

prob alg BTS DA01 BTS DA01 BTS DA01 BTS DA01 BTS DA01

di
m

=5
0

K
=1

00
00

1 2160 2055,4 2160 2160 1 0,1052 232,23 1 232,2286 9,5057
2 3658 3588,6 3658 3658 1 0,1316 251,05 1 251,0545 7,59878
3 4650 4680,4 4650 4778 1 0,4924 240,36 1 240,3645 2,03087
4 3472 3400,7 3472 3472 1 0,1275 234,53 1 234,5311 7,84314
5 4152 4098,5 4152 4152 1 0,7053 234,99 1 234,9933 1,41784
6 3842 3823,6 3842 3842 1 0,5405 239,71 1 239,7059 1,85014
7 4588 4535,1 4588 4588 1 0,2746 241,11 1 241,107 3,64166
8 4222 4195,2 4222 4222 1 0,8435 233,71 1 233,7129 1,18554
9 3862 3829,9 3862 3862 1 0,6273 228,99 1 228,9912 1,59413
10 3496 3450,8 3496 3496 1 0,2163 236,26 1 236,264 4,62321

prob alg BTS DA01 BTS DA01 BTS DA01 BTS DA01 BTS DA01

di
m

=1
00

K
=1

00
00

1 7910 7631 7910 7910 1 0,0039 65,814 1 65,8142 256,41
2 11178 11030 11178 11178 1 0,0192 75,619 1 75,61899 52,0833
3 12956 12875 12956 12956 1 0,1854 73,601 1 73,60066 5,39374
4 10606 10493 10606 10606 1 0,0722 70,157 1 70,15745 13,8504
5 8994 8777,2 8994 8996 1 0,0173 70,659 1 70,6588 57,8035
6 10470 10362 10470 10486 1 0,011 71,521 1 71,5213 90,9091
7 9980 9877,6 9980 10030 1 0,0182 72,419 1 72,41868 54,9451
8 11380 11240 11380 11380 1 0,1357 71,742 1 71,74218 7,3692
9 11340 11246 11340 11340 1 0,269 79,918 1 79,91803 3,71747
10 12438 12348 12438 12438 1 0,032 79,959 1 79,95852 31,25

prob alg BTS DA01 BTS DA01 BTS DA01 BTS DA01 BTS DA01

di
m

=5
00

K
=1

00
0

1 116526 114780 116526 116532 1 0,001 13,642 1 13,6418 1000
2 128678 127801 128678 128678 1 0,002 14,043 1 14,0425 500
3 131084 130013 131084 131084 1 0,006 13,294 1 13,2944 166,667
4 129794 128646 129794 129784 1 0,001 13,209 1 13,2092 1000
5 125008 123859 125008 125062 1 0,001 11,694 1 11,6937 1000
6 121868 120189 121868 121868 1 0,001 13,336 1 13,3355 1000
7 122730 121163 122730 122756 1 0,001 13,989 1 13,989 1000
8 123454 121958 123454 123428 1 0,001 13,811 1 13,8106 1000
9 121622 120026 121622 121668 1 0,001 13,889 1 13,8885 1000
10 130900 130219 130900 131374 1 0,01 13,865 1 13,8647 100

Parallelization possibilities

The following section demonstrates on a simple numerical example, that the introduced algo-

rithms lend themselves to parallelization. I took the “L01” greedy (and slowest) algorithm and

instead of executing the “inner solver” part in a sequential manner (by a simple “for loop” over all

possible sub-hypernodes), I used the Matlab provided parallel-for “parfor” type of iteration, thus

the parallelized version differs from the original by only one line. The solvers were compiled by
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the Matlab coder into a mex binary form, thus using the OpenMP application interface to generate

multicore code when the “parfor” was used. The following figure depicts the “L01” algorithm for

5 variants: L01,L01_p1,L01_p2,L01_p3,L01_p4. L01 is the original unmodified solver, L01_p1 if

the parfor enabled algorithm but the number of execution threads were limited to 1. L01_p2 uses

2, L01_p3 uses 3 and L01_p4 uses 4 threads. At the time of writing I only had access to a machine

which had 4 physical cores, so I did not scale the algorithm further. The test were executed on an

Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz based machine. Since the algorithms are identical,

the found solutions are identical as well, thus those results are not depicted for the sake of brevity.

The following figure depicts the mean runtimes and the standard deviations of the corresponding

algorithm variants. As expected it can be seen that L01_p4 executes the fastest, although the
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Figure 36: Execution time comparison of the L01 algorithm with parallelization.

speedup does not scale by the number of threads used. L01_p1 is 1.9 times slower than L01_p4,

but the overall speedup scales linearly in this domain. This naiive implementation is just a simple

demonstration that the algorithms are easily parallelizable and does not show the full gain to be

earned by parallelization therefore are treated as a lower bound on the possible speedup gain. It is

worth to mention that even using a parfor loop with one execution thread performs better than the

simple sequential one, which is presumably because of the efficiency of the OpenMP inteface

and the underlying code generation mechanism. It is also worth mentioning that the proposed

algorithms have multiple independently executable algorithmic parts, therefore lend themselves

to massively parallel implementations, e.g on GPU or on FPGA.

3.5 Application of UBQP to Scheduling

As was mentioned in section 1, scheduling plays a central role in communication technologies

nowadays. It is widely applied in IoT, cloud computing for load balancing and task distribution,

in buffered packet switching systems for call admission control [4] or in various problems in

the field of WSN such as the scheduling of TDMA communication in clustered WSN protocols.

The efficient collection of data from multiple parties [104, 23, 101] can be also regarded as a

scheduling problem [38]:
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In our model there are J jobs to be allocated to a capacity constrained resource. The amounts

of jobs are expressed in X j j 1 J units. We assume that the jobs can be divided into discrete

time slots, and in these time slots the jobs are considered to be preemptive. The resource capacity

is limited denoted by C, meaning that the resource can consume C units of job in a time instant.

Each job X j j 1 J has a deadline K j j 1 J and within this time the job is supposed to be

completed. The jobs are also given priorities expressed by weight vector w w1 w2 wJ w j

, the larger the weight the more important the job is. The schedule of job j can be represented

as a binary vector s j 0 1 K j , if st j 1 then a unit of X j is scheduled to be served by the

resource at time instant t. A schedule of the individual jobs j 1 J build up a scheduling

matrix S where S j i
si j i K j

0 i K j

, L max j K j, i 1 L. The following conditions will

guarantee a valid scheduling matrix: Summing the scheduling matrix row wise L
t 1 S j t X j j,

one can check the amount of time slots scheduled for a job, and summing the matrix column wise
J
j 1 S j t C t, one can see how many job units are scheduled at a given time instant.

For example if C 2, J 4, X1 5, X2 4, X3 3, X4 7 K1 10, K2 8 K3 4 and

K4 9, a valid scheduling matrix could be:

S 0 1 J L S

0 0 1 0 1 0 0 1 1 1

0 0 0 1 0 1 1 1 0 0

1 1 0 1 0 0 0 0 0 0

1 1 1 0 1 1 1 0 1 0

The scheduling matrix can be invalid for two reasons:

• more or less time slots are assigned to a job: j s.t. L
t 1 S j t X j

• the resource is overflowed: t s.t. J
j 1 S j t C

As a result, we perceive the scheduling problem as a constrained optimization, where we want

to minimize the weighted tardiness which is defined below, given that the capacity constraint is

not violated at any time instant. The tardiness of job j is defined as the remaining uncompleted

job after completing the schedule, which can be formalized as follows:

The ending of job j in a particular scheduling S is denoted by Fj argmaxt 1 L S j t 1, the last

1 in each row of S. Then the corresponding tardiness is defined as: Tj max 0 Fj K j (the

number of unfinished units of X j after the completion of the schedule). This gives rise to the

formal definition of the constrained optimization problem

S opt : argmin
S 0 1 J L

J

j 1
w jTj

s.t.
L

t 1
S j t X j j

J

j 1
S j t C t

(3.14)

In order to map the constrained optimization problem into an unconstrained one, we use the
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method of Kochenberger [91] to incorporate the constraints into a quadratic form by adding them

to the objective function as linear terms.

S opt : argmin
S 0 1 J L

J

j 1
w jTj

J

j 1

L

t 1
S j t X j

2 L

t 1

J

j 1
S j t C

2 (3.15)

In this way, the scheduling problem can represented by a UBQP problem.

scheduler

pu 1

pu 2

user 1time to
complition

10
12345678910

user 2time to
complition

8

user 3time to
complition

4

123456
user 4time to

complition

9

server

7

1234567

1234567

1234567

S

0 0 1 0 1 0 0 1 1 1
0 0 0 1 0 1 1 1 0 0
1 1 0 1 0 0 0 0 0 0
1 1 1 0 1 1 1 0 1 0yopt : min

y 1
yT Wy 2yT b

Figure 37: Visualization of the scheduling problem

J

j 1
w jTj yT W A y 2b A T y (3.16)

J

j 1

L

t 1
S j t X j

2

yT W B y 2b B T y (3.17)

L

t 1

J

j 1
S j t C

2

yT W C y 2b C T y (3.18)

The strategy for setting the heuristic parameters and the details of the transformation to

the quadratic form can be found in [38].

Performance analysis for scheduling

Here we present some numerical results for solving the scheduling problem by the proposed

methods developed for UBQP. The simulation has been carried out in a similar way as presented
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in [38]. Namely, the jobs Xi i 1 J have been generated between 1 and 10 subject to discrete

uniform distribution, similarly Ki i 1 J have been generated between Xi and Xi 5, and the

value of wi i 1 J have been taken from the range 1 10 . The capacity of the server was set

as C J 4.

First we show the value of TWT with respect to the different choice of parameter . Because

we use the same method as in [38], we run an exhaustive search for different values of parameter

and select the best solution. For each different choice of , every algorithm started from a a

randomly chosen initial state and was run several times. Their best performance is shown on the

next figures with solid lines. Referring to the performance analysis Figure 33 in subsection 3.4

dedicated to ORLIB, these curves correspond to the right edges of the histograms. The flatness of

the curves indicate how resilient an algorithm is to the choice of parameter . We have selected

the best solution from these values.

The next figure depicts the results of the simulation runs obtained with the following pa-

rameters: J 10 and X 9 10 2 10 7 1 3 6 10 10 , K 10 15 7 12 11 2 5 11 14 15 ,

w 7 1 9 10 7 8 8 4 7 2 , C 3

Figure 38: TWT performance of algorithms versus heuristic parameter for a specific case J 10

In this case the best TWT values achieved by the different algorithms are: HNN:84, DA01:81,

D01:84, L01:79, TS:79, EDD:130, WSPT:131 WSPTR:97, WSPTS:95, respectively. For this

specific case, L01 and Taboo Search perform the best, but their performances are nearly identical

with the others. The best TWT values can be found when is in the range of 1 2 3 . The

next figure (Figure 39) shows the difference between the values of the objective function of the

UBQP and the values achieved by the DHNN solver. The curve depicting the difference of the

best found solutions are indicated with a solid line. If the curve is above 0 then the corresponding

63

DOI:10.15774/PPKE.ITK.2019.006



algorithm yields a better solution than the DHNN with respect to the quadratic function value.

Figure 39: Quadratic value performance of algorithms respect to the performance of HNN versus
heuristic parameter for a specific case J 10

It can be seen by comparing Figure 39 and Figure 38 that parameter exceeding the value

2 3, all the quadratic solvers (except for TS) find a solution which are of roughly the same

value, but they sometimes yield different TWTs. This is due to the reparation effect, because if

we find a solution which is not a valid scheduling matrix, we use the reparation method used

in [38]. After parameter exceeding the value 2 3 the likelihood of finding a solution which

does not satisfy the two required constraints is growing steadily. In the region of 0 5 2 3

the proposed algorithms outperform the basic HNN as well as TS methods. It can be shown that

the new methods usually find better solutions than the plain DHNN solver, and also have flatter

TWT curves. This implies that in these cases the term corresponding to the quality of solution can

dominate the terms corresponding to the constraints in the objective function (3.15). As a result

these methods may yield better solutions.

To summarize the average performance of the algorithms the next figure indicates the average

TWT with respect to the number of users (The average TWT value was calculated over 100

sample set)

Note that for J 15 the TS and L01 algorithm would require unreasonably high run times so

they were not analyzed here. From this figure it can be seen that the DA01 algorithm is the clear

winner, although the other proposed algorithms also perform well as opposed to the traditional

scheduling algorithms.
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Figure 40: Relative average TWT from best solution in each iteration

3.6 Application of UBQP to MUD in an environment with fading

Binary pattern recognition plays a central role in modern digital communication systems.

This task is especially important in wireless communication technologies when binary messages

corrupted by fading and noise are to be restored. The PHY using radio as a media has to account

for phenomena like scattering, multi path propagation and simultaneous presence of multiple radio

waves. For efficient use of radio spectrum and transmission energy, one of the most frequently

used access mode in modern wireless communication technologies is CDMA. In case of CDMA

the received sequence is subject to MUI combined with time delays and ISI resulting from “non

orthogonal code words” and from the channel distortion, respectively.

A multi user CDMA system of M 1 scenario (for example in the uplink direction) can

be represented [33, 34] by the following block diagram in Figure 41. Here y 1 L is the

transmitted binary sequence and there are M users to communicate simultaneously in K length

blocks (L K M). H is a matrix of L L which represents the channel distortion resulted by the

properties of the radio propagation. The specific element of H can be computed if the impulse

responses of the channel and the spread codes are known [33, 34, 162]. The additional noise

subject to multi dimensional normal distribution comes from the interference between the codes

used by the system and by the interference of other radio communication that does not belong to

this system:

0 N0C CT (3.19)

where N0 is the ambient noise power and C contains the spread codes of the users row wise and x
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Figure 41: Transceiver system using spread codes for multiple access

denotes the received sequence:

x = H ·y+ν (3.20)

There are parametric and non parametric approaches to this problem. The parametric ap-

proach is based on the knowledge or approximation of the system parameters. If the channel

parameters are known, the detection of digital messages in a CDMA system leads to a quadratic

optimization [162, 65, 132]. Thus the optimal detection rule can be given as

yopt = argmin
y∈{±1}L

yT Wy−2yT b (3.21a)

W = HT ΣΣΣ−1H (3.21b)

b = HT ΣΣΣ−1x (3.21c)

Knowing the codes assigned to the different users of the system and the impulse response of the

channel, the detection is clearly a UBQP problem. Thus the optimal detection at the output of

such systems is proved to be an NP hard problem [162, 65, 132, 108, 7, 79]. In this case, MLD

proves to be of exponential complexity as a function of the number of users and the length of the

transmitted sequence [162].

Among the parametric detectors, in order to reduce the detection complexity, SD [96], DF

[96], convolutional coding [22], FH type methods [16] and HNN based detectors [79, 80] have

been developed, because they can yield a reasonably high performance with limited complex-

ity. For MIMO systems Özdemir and Gürbüz provided a detailed analysis on employing THP

MIMO scheme [125]. However, in order to apply these methods one needs the exact channel

characteristics. In the lack of this data, one to estimate the unknown channel characteristics

based on a training sequence. For indoor environments Kahveci proposed a Max-Log-MAP based

technique for channel estimation [88]. For UWB systems Islam, Ameen, and Kwak proposed a

Quasi-Newton based iterative algorithm for estimating the channel characteristics [83]. Using
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MIMO techniques, classically with SS-MC-MA, each user spreads its data symbols on a specific

subset of adjacent or multiplexed subcarriers, to facilitate the channel estimation [16]. However,

these methods prove to be rather tedious. That is the reason suggesting user grouping to decrease

the computation burden of the ML-MUD for OFDMA-CDMA systems as put forward by Sacchi

and Panizza [142]. As a result, in order to implement efficient communication in CDMA, one

needs a fast and near-optimal solver of UBQP.

In the following section we analyze the performance of our proposed new algorithms when

they are deployed to solve the MUD problem.

Performance analysis for MUD

In this subsection we present the numerical performance of traditional detectors and compare

them with the performance of the new algorithms on MUD. In the simulations we used 31 length

Gold sequences [56] as spread codes. The channel model for each user was computed based

on the COST 207 [35] Typical Urban model with 12 taps. The main parameters for the channel

settings were the following:

• the speed of the mobile stations were taken as v 0 01m/s to ensure quasi static channel

throughout the simulation;

• the carrier center frequency was set to fc 900MHz;

• and the bitrate for each user was taken as R 1Mbit/s.

These parameters were chosen to generate a channel with strong frequency selectivity and ISI

phenomenon.

The following figure indicates a typical user channel response:

Figure 42: A typical channel response measured for chip time unit

In the simulation we sent information blocks containing 6 symbols for each user, followed by a

guard time period [162]. The performance has been analyzed by using the bit error rate on the

one hand, and the achieved BQP objective function value, on the other.
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In order to avoid large values getting out of the range of visualization, in Figure 44 for each

SNR, we give subtracted values (i.e. the value of the objective function achieved by a given

method minus the smallest value among the outputs of the different algorithms at the same SNR).

In the simulations, the following detectors were used [96]: “threshold” is the plain sign

decision rule following the matched filter which filters the symbols with the appropriate code. The

“invFilter” is the generalized Zero-Forcing detector trying to equalize the channel and cancel the

multi user interference. The “QR” and the “DF” variant of this algorithm uses the QR factorization

and reformulation of the problem, and a decision feedback respectively. The “MMSE” is the

minimum mean square detector and the sphere detector is denoted with the abbreviation “SD”.

In the following figures the performance measures are shown for an unsaturated multi user

configuration. We used M 7 users to communicate simultaneously. It can be seen that two of

Figure 43: BER performance of the algorithms for 7 users

our solvers perform as well as the Sphere Detector and the other traditional methods perform

very poorly under this condition. From the other figure it can be seen that in terms of objective

function value for almost all SNR values the “D01” algorithm and the “SD" performs best, but the

“DA01” algorithm performs almost identically to them. Referring back to the previous chapter we

recall that “DA01" needs much smaller time to reach its candidate solution than the “D01”.

The sphere detector gives a very good quality solution, however it converges much more

slowly than the DA01. Furthermore, our proposed algorithms lend themselves to easy parallel

implementation.
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Figure 44: Objective function performance of the algorithms for 7 users

3.7 Conclusion

In this section I have introduced some novel hypergraph based algorithms for solving the UBQP

problem which lend themselves to easy parallelism. The basic idea behind the new methods is the

partition of the UBQP which results in an aggressive dimension reduction. In this new framework

the traditional solvers can reach improved solutions because they work in smaller dimension

spaces, furthermore the new approach can give rise to more efficient parallel implementations.

The proposed algorithms operate on two levels:

• Each vertex of the hypergraph represents a fully defined UBQP which can be solved by any

traditional UBQP solver.

• Moving from one vertex to another vertex the new method reduce the dimension, as a result

the solver can achieve fast solution in a lower dimension search space.

The algorithms have been tested on benchmark problems taken from the ORLIB library and they

achieved better performance than traditional solvers of similar complexity. The new methods have

also been applied to special current problems of communication such as MUD and scheduling.

In the case of MUD, they achieve similar BER as the traditional methods but the run times

needed for the similar quality solutions are shorter.

In the case of scheduling, better TWT can be obtained by the proposed new algorithms.

Furthermore the suggested algorithms are more robust regarding the choice of the parameters of

the BQP under linear constraints. Due to this robustness we do not have to search for the optimal

parameter set because the choice of the parameters will not have a great impact on the solution.

Thus solutions can be obtained faster.

Further improvements on the algorithms can be achieved by fine tuning the selection criterion

of the vertices. The speed and accuracy can also be improved by using faster solvers. Finally as

demonstrated the parallel implementations can have a great impact on the speed proportional to

the number of workers used.
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4 Thesis group III - near Bayesian performance non-parametric de-
tection with Feed Forward Neural Networks

This thesis group elaborates on developing novel encoding techniques for implementing

non-parametric, neural network based detectors for pattern recognition on noisy input. This

fundamental problem appears in many real world applications like in information extraction in

big data context, automated surveillance, speech recognition, content based search or in legacy

systems using CDMA to name a few.

I propose an FFNN based algorithm which I present on the MUD problem, but due to the

nature of the method it can be easily generalized. In the MUD scenario it is capable of achieving

near optimal performance with relatively limited complexity. These new encoding methods on

the one hand can increase the processing speed and reduce the complexity of the FFNN based

detector, on the other. Furthermore, we demonstrate that an asymptotically optimal detection

performance can be achieved by the proposed algorithms. Due to the increased processing rate,

the new scheme may further improve SE. Extensive simulations and the corresponding numerical

analysis demonstrate that the proposed algorithms yield near optimal performance on real channel

models (COST-207). The corresponding publication of the author is titled “Multi-user detection

using non-parametric Bayesian estimation by feed forward neural networks” [159].

For the non parametric approach to the MUD problem, a FFNN structure can be a good choice

because of its general nonlinear approximation capabilities [25, 42, 76, 119, 121, 155] and their

inherent parallel architecture. Previous works employing FFNN, used Lagrange optimization

procedure to solve MUD [167, 36, 66, 6] using an FFNN either as a full non-parametric detector or

in some sub-part of the detection procedure in MIMO or CDMA systems. Also, various structures

of NNs, like FFNN, RBFN, RNN were employed as blind detectors for SDMA-OFDM systems

and were compared to GA assisted MBER and MMSE detectors [6].

As FFNNs exhibit the property of being universal approximators in p [63], the optimal MAP

decision function can be arbitrarily closely approximated. Furthermore, in this case there is no

need for explicit channel knowledge or channel characteristic estimation but the optimal decision

function can be learned based on a training sequence. The central issue of deploying FFNN as

an optimal MAP detector in modern communication technologies is that the complexity of the

network can grow exponentially with respect to the number of different sequences to be detected.

As a result, the paper proposes specific encoding techniques in order to minimize the complexity

with respect to the neurons at the output layer, thus the processing rate is maximized. This is

imperative for improving the SE which is one of the fundamental measures of current wireless

technologies.

The results of this section are treated in the following structure:

• In subsection 4.1 we introduce the problem and describe the corresponding model.

• In subsection 4.2 we introduce an FFNN as a non-parametric MAP detector.

• In subsection 4.3 we propose the encoding mechanism which will minimize the FFNN

complexity and, on the other hand, maximizes processing rate at the receiver.

• In subsection 4.4 we give a performance analysis based on extensive simulations.
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• Finally in subsection 4.5 we draw some conclusions.

4.1 Non parametric approach to Multiuser Detection - Optimal decision as a max-
imum search problem

As it was stated in subsection 3.6 the MUD problem the received signal can be formulated as

x H y (3.20 revisited)

In the most general case the optimal decision after receiving a sequence x is symbol ŷ which is

the most probable that had been sent through the channel, as it will minimize the BER [162, 27].

This is also called the Bayesian or MAP decision, which is given as follows:

ŷopt fopt x argmax
y 1 L

Y y X x (4.1)

Note that it can be assumed that every message sequence y occurs with the same probability. This

is reasonable if the system uses a reasonably good source coding mechanism. If a uniform source

distribution is assumed, then the MAP decision (4.1) is equivalent to (4.3), the ML decision [27].

assuming Y y 1 2L (4.2a)

ŷopt fopt x argmax
y 1 L

X x Y y Y y (4.2b)

ŷopt fopt x argmax
y 1 L

X x Y y (4.3)

Since the conditional probability is a binary quadratic expression given as (4.4) (for further details

see [108, 162, 65, 132])

X x Y y 2
L
2

1
2 exp

1
2

x Hy T 1 x Hy (4.4)

the optimal decision reduces to an UBQP task given as follows (see also (3.21)):

ŷopt fopt x argmin
y 1 L

x Hy T 1 x Hy (4.5)

Please note that even if all the parameters of the system are known this decision rule is of

exponential complexity with respect to the length of the transmitted sequences, 2L [7, 96].

Furthermore there are also scenarios where one cannot employ the techniques that approximate

the channel parameters, however a non-parametric (blind) detector approach can still be used.

As a result, instead of first identifying the unknown system parameters and then introducing an

exponential complexity search algorithm or some sub-optimal methods of polynomial complex-

ity [86, 96] I rather estimate the original conditional probabilities in (4.1) by an FFNN in order to

implement the MAP decision.
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The vector of conditionals at (4.1) is denoted with

p(y|x) = P(Y = y|X = x) =
[

p(y(1)|x), p(y(2)|x), . . . , p(y(N)|x)
]T

, (4.6)

where y(i) ∈ {±1}L, i= 1, . . . ,2L denotes the ith binary sequence. As a result, the MAP decision

can be carried out by searching for the maximum among the components of this vector p(y|x).
Please also note that computing this probability vector directly is also of exponential complexity,

since N = 2L.

ŷopt = y(i) : i= argmax
n∈1...N

p(y(n)|x) (4.7)

The block diagram of this exponential complexity optimal detector can be seen in Figure 45

•

( | )

Figure 45: Flow graph representation of the optimal detector

4.2 Application of the FFNN as an optimal detector

In this part I am going to demonstrate that an FFNN can perform optimal non-parametric MAP

decision by using a specially encoded training sequence s(k) [100] and also going to introduce the

general concept of encoding via the training set.

The use of FFNN is justified by the fact that it is a universal approximator and thus can represent

the conditioned expected value function [25, 76]. Furthermore, since the weights are optimized

by learning, FFNN can present an optimal non-parametric estimation which is mandatory in

communication technologies where the channel characteristics are unknown [65, 62].

Note that the error function of such network can be described as:

w(l)opt : min
w

l

∑
k=1

∥∥∥Net
(

x(k),w
)
− s(k)

∥∥∥2

. (4.8)

and the network asymptotically approximates the conditional expected value:

lim
l→∞

E

∥∥∥Net
(

x,w(l)opt

)
−E(s|x)

∥∥∥2

= 0 (4.9)

which is

Net (x,wopt) = E(s|x) =
N

∑
i=1

s(i)p(y(i)|x) = S ·p(y|x) (4.10)

Let us assume that we assign a specific binary sequence s(i) ∈ {0,1}N×1 to every transmitted

message y(i) ∈ {±1}L×1, i= 1 . . .N. Please note that the dimension of such vectors are N = 2L.
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This mapping y i s i now is defined as follows:

s i
j

1 if i j

0 if i j
(4.11)

Since (4.11) describes a code matrix which is in the present case the identity matrix, the expecta-

tion becomes

s x I p y x p y x (4.12)

Since the FFNN approximates the conditional expected function s x S p y x I p y x ,

the output is p y x . As a result, our task is just to search for the maximum among these probabil-

ities.

ŷopt : argmax
i 1 N

pi y x argmax
i 1 N

p y i x (4.13)

The block diagram of the optimal FFNN detector is depicted by Figure 46. Please, note that the

H
y

ν

x ŷp(y|x)

optimal FFNN detector

decision:
search for max

component
Net (x,w)

T (l) =

{(
x(k),s(k)

)
,k = 1, . . . , l

}s(i) = Coding
(
y(i)

)
l → ∞

E(s|x) =

S= [s(1),s(2), . . . ,s(N) ] = I

Figure 46: Flow graph representation of the optimal detector

scheme described above is truly non-parametric, i.e. only a training sequence is needed and the

optimal decision can be carried out without any a-priori knowledge about system parameters (e.g.

channel characteristics etc.). However, this scheme requires a very large FFNN as the vectors

s, which are the output vectors of the FFNN, are of dimension 2L.

Therefore, we must modify the encoding mechanism (the mapping of the transmitted binary

sequences y-s into shorter code vectors s-s) to obtain smaller size of neural network which in

turn will also increase the processing rate. Therefore, the challenge is to find the optimal code

set S which will keep complexity under a reasonable bound. One must note, though, that in

general coding scheme the maximum conditional probability may not be directly read out from

the outputs. Thus, we set on developing such coding set which will still enable the use of MAP

(i.e. the maximum probability can be uniquely identified) but the complexity gets much lower

than the one using code words of length 2L.

4.3 New coding techniques for minimum complexity FFNN

Let us choose an arbitrary bijective mapping y i s i which maps the sent symbols into the

training set targets, called code words and let us arrange the code words into a matrix as follows:

S s 1 s 2 s N C N (4.14)
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where the code words are interpreted as column vectors. Similarly to (4.6), let us denote the

conditional probability vector of the code words as:

p s x p s 1 x p s 2 x p s N x
T

0 1 N 1 (4.15)

Due to the bijective nature of the mapping, the following is true: y i x s i x . Thus, the

expectation of (4.9) can be rewritten as

s x
N

i 1
s i p s i x

N

i 1
s i p y i x S p y x (4.16)

After training s x will appear at the output of FFNN. This general coding capability of the

FFNN via the training set is depicted in Figure 47. The block diagram of the detector using

Net x w
s xx

x s x

S p y x

conditional
probability for
all possible y

S
p y x

Figure 47: Equivalence of the FFNN with an encoding

an arbitrary code matrix S is depicted in Figure 48. Our objective is to develop such codes

H
y

ν

x ŷE(s|x)
Net (x,w)

decision

detector utilizing arbitrary coding

g( )

s(i) = Coding
(
y(i)

)

S= [s(1),s(2), . . . ,s(N) ]
T (l) =

{(
x(k),s(k)

)
,k = 1, . . . , l

}

Figure 48: Flow graph representation of the detector using an arbitrary encoding

s i i 1 N which under some conditions will reproduce the MAP decision. This objective

must be achieved effectively under the following constraints:

• The length of the code words are small L C N, because then the number of output

neurons are small.

• The decision procedure ŷ g s x is of small complexity and can be easily parallelized.

If we reduce the dimension too aggressively, then we cannot reproduce the MAP decision.

Coding by interval splitting with parameter 2

With this coding the number of outputs in the FFNN can be reduced to L instead of N 2L,

furthermore, the processing rate is increased accordingly. The objective of the method is to

develop a code s i i 1 N, which yields a conditioned expected value vector s x in such
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a way that the maximum conditioned probability can be obtained by logarithmic search. In order

to obtain the unique MAP decision we have to assume the following properties of the conditional

probabilities. Let us define a set of indices E 1 N E N 2 which splits all the indices

into to disjoint halves. We assume that for our chosen index set E the following holds:

j max
i 1 N

p s i x

if j E

k E
p s k x

i 1 N E
p s i x

(4.17)

This means that the maximum can be sought by logarithmic search if we investigate L possible

disjoint half index set pairings by summing them up and comparing them against each other

pair wise. For example this interval halving can be obtained by first summing the first half of

p y x with 1 and the other half with 1 weights. Then we split the previously obtained halves

and sum the first and second half with 1 and 1 weights, respectively. Furthermore, we repeat

this interval halving mechanism until the splitting zooms down to an individual component, thus

locating the index of the symbol with maximum probability.

The code matrix can be expressed in a closed form as follows:

Si j s j
i sgn sin 2 2 i 1 j

N 1
i 1 L j 1 N (4.18)

Based on this coding scheme the decision function reduces to the traditional sgn function, since

for each stage we only need to decide if the sum of the components encoded with 1 or the sum

of the components encoded with 1 is bigger in absolute value. Thus the sign of that particular

stage will indicate in which half is the component having the maximum probability. In this way

L C log2 N N as a result, this coding reduces the number of the output of the FFNN to L

and also increases the processing rate. So instead of a linear search the decision algorithm is

ŷ sgn s x (4.19)

The only condition that must be fulfilled in order for this encoding scheme to perform as well

as the optimal MAP decision is (4.17) and the numerical simulation will demonstrate that this

condition is satisfied with a relatively high probability.

Examples for coding by interval splitting with parameter 2 To give an example we present

this encoding with parameters L C 3, N 23 8:

S s 1 s 2 s N
-1 -1 -1 -1 +1 +1 +1 +1

-1 -1 +1 +1 -1 -1 +1 +1

-1 +1 -1 +1 -1 +1 -1 +1

(4.20)

The first row represents the step where we sum up the two halves with 1 weights, the second

row represents the step when we sum up interval fourths with appropriate weights and the last
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row represents the last step in this example where we sum up individual interval eights with the

appropriate 1 weights. For example in (4.21) the case is detailed if we assume that p y 4 x
is the component with the maximum probability. In this case the first row lets us know that

the maximum component has an index from 1 2 3 4 , the second row tells that the maximum

component has an index from 3 4 7 8 , the third row tells that it has an index from 2 4 6 8 .

Combining these yields to index 4.

ŷ sgn s x
-1

+1

+1

(4.21a)

S p y x
-1 -1 -1 -1 +1 +1 +1 +1

-1 -1 +1 +1 -1 -1 +1 +1

-1 +1 -1 +1 -1 +1 -1 +1

p y 1 x

p y 4 x

p y 8 x

(4.21b)

Handling the error if the assumption does not hold. However there are received x points

for which assumption (4.17) does not hold. In this case our detection mechanism yields to an

erroneous symbol (in a sense that it is not the most likely). To show this phenomenon here is

an example where L 2. In Figure 49 one can see the four received symbols if no noise is

present: Hy i i 1 4. These are marked with small squares. Around them contour curves of

the additive noise are depicted. There are four distinct areas where assumption (4.17) does not

hold. These are marked with shaded areas colored to blueish red, blueish black, greenish red and

greenish black. All areas are colored to the main color for which the decision is made and to the

secondary color for which the decision should have been made. E.g. a received symbol in the

blueish red area will be decoded as a “blue" sent symbol instead of a “red". For the sake of the

example I have chosen a received symbol x 0 435 0 685 T in the blueish red area. In the box

at the right side of the symbol we denoted the corresponding conditional probabilities:

p y x p y 1 x p y 2 x p y 3 x p y 4 x
T

0 4406 0 0002 0 3364 0 2229 T

One can see that (4.17) does not hold, since p y 1 x p y 2 x p y 3 x p y 4 x , but

y 1 has the maximum probability. In this case

s x S p y x

-1 -1 +1 +1

-1 +1 -1 +1
p y x

0.1185

-0.5539

Thus our detection algorithm, sgn s x will choose ŷ 1 1 T instead of ŷopt y 1

1 1 T . Note that by introducing assumption (4.17), we also introduce an inherent error

compared to the theoretical optimum even if our network perfectly learns the expectation.
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Figure 49: Coding error of the interval halving method

Similarly, to the previous transformation it is possible to generalize the proposed coding

mechanism by using higher order logarithmic search. This can be obtained by splitting the index

set into smaller partitions (e.g. thirds, fourths, etc.). The objective of this generalized method is to

give a scalable balance between the computational complexity and the achievable theoretical

performance. This generalized version of the coding, enabling logarithmic search, strikes a good

compromise between dim s and performance. On the one hand if we utilize a higher order

logarithmic search then constraint (4.17) can be weakened, thus the performance will fall closer

to the MAP decision, but at the same time it increases the complexity of the FFNN.

THESIS III.1 (blind detection by interval halving and FFNN). I have defined an FFNN based

blind detector for the MUD problem, which lends itself to easy parallelization and can perform

optimally under the constraint defined in (4.17). In (4.18), I give the linear encoding based

on interval halving which is used to generate a training set for an FFNN and in (4.19) I give

the low complexity decision function which is to be employed on the output of the net. I have

shown that the detector performs near optimally on the investigated MUD scenarios described in

subsection 4.4.

The thesis is restated in a self consistent way in Appendix A at Thesis III.1 (page 88).

4.4 Numerical performance analysis

In this chapter we investigate the performance of the proposed methods compared to other

well known detectors. We also present the network architecture and training parameters that

were used for the simulation. Our detailed performance analysis is based on plotting the BER
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versus the SNR. This is the fundamental measure which captures the quality of service in wireless

communication systems. Furthermore, to compare our methods with some traditional detection

techniques we also plotted the BER versus SNR curves for the following three basic linear algebra

based detection algorithms [96], for a SD and for an UBQP based heuristic.

• Threshold detector: sgn x sgn Hy
• ZF detector: sgn H 1 x
• MMSE detector: sgn H N0I 1 x
• SD: A common version of the algorithm was implemented which is a well-known ML type

detector [86, 96, 27].

• “DA01”: is an UBQP based heuristic which builds up a solution adding a dimension

iteratively. [160]

The parameters of the communication system under investigation are given as follows:

• We used 31 length Gold sequences [56] as spread codes.

• The channel model for each user was computed based on the COST 207 models [35]. Four

models were used, namely “COST207 Hilly Terrain 6 tap alternative”, “COST207 Rural

Area 6 tap”, “COST207 Typical Urban 12 tap” and “COST207 Bad Urban 12 tap” models.

• The main parameters for the channel settings are as follows: (i) the speed of the mobile

stations were taken as v 0 01m/s to ensure quasi static channel throughout the simulation;

(ii) the carrier center frequency was set to fc 900MHz, because these models were

calibrated to use that band; (iii) and the bitrate for each user was taken as R 1Mbit/s.

We chose these specific reference channel models with these parameters, because they cover

the range from a mildly distorted to a channel which has very strong frequency selective fading,

which yields to strong ISI.

4.4.1 Network architecture and training parameters

Our network architecture is a 3 hidden layer structure depicted by Figure 50, because these

networks with sufficiently large number of neurons in their hidden layers can approximate any

continuous function [25, 42, 119], such us our target function s x . We choose the size of the

x

size L
W

b

L
bc s

size C
bc

W

b

3/2 L

bc
bc

W

b

2 L
bc

bc
W

b

C
bc

bc

Figure 50: The architecture of the FFNN used in simulations

hidden layers proportional to the dimension of the problem. In the first layer we used L neurons,

in the second layer 3 2 L and in the third hidden layer 2 L neurons. At the output layer there are

C neurons which equals to the size of the target codewords.

In all layers we used hyperbolic tangent sigmoid transfer functions. For training method we

have adopted a scaled conjugate gradient backpropagation type algorithm with scaled inputs
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and outputs. The performance function of the backpropagation algorithm was the mean square

error between the outputs of the network and the target values over the elements of the training

set. There were no validation set used, since the goal of the training is not to fully reproduce

the targets, but to approximate the conditional s x . We ran the training algorithm until the

performance gradient was relatively small. We defined our training set to contain W times each

transmittable symbol to cover the whole space, where W was typically 50. This number was

chosen empirically because this stroke a fair balance between the performance and the training

time of the network. We sent these symbols (y) through the channel and stored the received signal

(x) as inputs and also mapped the sent symbols into codewords (s) and stored them as the targets

as follows:
W N x s x H y s Coding y

4.4.2 Performance of the new detector

On the one hand in the simulations we computed the exact MAP decision. On the other we

calculated the achievable BER by employing the newly developed coding scheme. These are

labeled by MAP and “theo coded”. Our new detection algorithm was labeled as “ffnn I2”. The

same model was applied as in Figure 41, a CDMA system with M users transmitting K length

blocks at once (L K M).

In Figure 51a - Figure 51d the performances are depicted when M 5, K 2 L 10 for

different channels. One can see, when the channel changes from the one measured on hilly terrain

(a) BER using channel COST 207 Hilly Terrain 6
tap alternative

(b) BER using channel COST 207 Rural Area 6 tap

(c) BER using channel COST 207 Typical Urban
12 tap

(d) BER using channel COST 207 Bad Urban 12
tap

Figure 51: Performance curves with parameter L 10 for four typical channels
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to another one measured in urban area, practically can achieve the optimal performance. The

difference between the theoretical performance and the actual one is due to the asymptotic nature

of learning. Namely the FFNN failed to capture the conditional expected value perfectly. However,

it achieves similar BER than the best performing SD. Note that the SD is a parametric detection

which needs the channel characteristics as opposed to our proposed method which does not.

Similarly Figure 52b - Figure 52d show the performance of the same methods for M 7,K 2

and L 14. One can see that “FFNN I2” again produces only slightly worse performance than

(a) BER using channel COST 207 Hilly Terrain 6
tap alternative

(b) BER using channel COST 207 Rural Area 6 tap

(c) BER using channel COST 207 Typical Urban
12 tap

(d) BER using channel COST 207 Bad Urban 12
tap

Figure 52: Performance curves with parameter L 14 for the four channel models

the MAP decision. Again the performance degradation is due to the approximative nature of

FFNN and also due to the violation of assumption (4.17). But even in this case the novel method

provides low BER with respect to SNR.

We introduce the measure “SNR loss” indicating how much more signal energy is needed by a

given method to the same BER as achieved by the MAP. This measure is depicted by Figure 53a

and Figure 53b respectively. On average our proposed method performs as well as the MAP

decision at a 0.5-1.5 dB lower SNR level. Furthermore, one can see that our new method has a

nearly constant dB loss curve in contrast to the ZF and MMSE equalizers. The following Table 5

and Table 6 summarize the performance of the proposed algorithm. In the tables the minimum

and maximum SNR loss are indicated compared to the MAP decision for the four channel models.

The small negative values in the table appear due to numerical imprecision of the simulation at

high SNR levels.
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(a) SNR loss curves with parameter L 10 for chan-
nel COST 207 Bad Urban 12 tap channel

(b) SNR loss curves with parameter L 14 for
channel COST 207 Bad Urban 12 tap channel

Figure 53: SNR loss curves for the Bad Urban channel model

Table 5 SNR loss for “Hilly Terrain” and “Rural Area” channels
“Hilly Terrain” “Rural Area”

L=10 L=14 L=10 L=14
min max min max min max min max

ZF 0 2916 0 9124 1 3035 3 5167 0 0 0 6658 0 4905 1 8582
MMSE 0 0270 0 9675 0 0034 3 5689 0 0268 0 7772 0 0052 0 9608
DA01 0 1445 0 0381 0 1226 0 0581 0 5995 0 0301 0 1501 0 0851
SD 0 0767 0 0615 0 0475 0 0955 0 6 0 2064 0 1072 0 4281
FFNN I2 0 0838 0 6020 0 2552 1 6643 0 0 0 4896 0 0860 0 2695

Table 6 SNR loss for “Typical Urban” and “Bad Urban” channels
“Typical Urban” “Bad Urban”

L=10 L=14 L=10 L=14
min max min max min max min max

ZF 1 4406 4 9257 3 9235 7 4737 2 9822 7 7086 4 2888 8 7401
MMSE 0 1024 4 9496 0 1010 7 4360 0 3506 7 6913 0 4142 8 6666

DA01 0 0348 0 2744 0 0776 0 1813 0 4131 0 1468 0 0100 3 1431
SD 0 0172 0 2360 0 0776 0 1388 0 5551 0 1468 0 4276 0 2429

FFNN I2 0 4713 0 7130 0 3906 1 5429 0 4449 1 0 0 7063 1 7197
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4.5 Conclusions

In this section I have proposed a novel encoding scheme for FFNN based detectors in multi-user

communication systems. FFNNs were used in order to estimate the conditioned expected value in

a non-parametric manner. This approach is justified by the fact that it does not require any a-priory

knowledge about the channel characteristics. Furthermore due to the wide scale representation

capabilities of FFNNs they can capture the non-linear characteristics of the conditional expected

value. The specific coding scheme helps us to identify the maximum conditioned probability

(MAP decision) from the estimated conditional expected value. In this case we obtain a generic

non-parametric MAP decision which only uses a training set. The estimation of the conditional

expected value is obtained via learning.

The advantage of the proposed method is that it can achieve optimum detection performance by

carrying out the MAP decision (see Figures 51 - 53) even in the lack of channel parameters. The

disadvantage lies with the relatively slow training process, which may slow down the convergence

to MAP. Furthermore this may not enable the application of the method to channels exhibiting

fast time varying characteristics as the convergence of learning may take longer time than keeping

track of the time varying channel. However in the case of stationary characteristics the method

yields a very good performance and as a result the system will suffer from only a marginal

“SNR loss”. Another disadvantage is that without any assumption on the conditional probabilities

the method needs exponential complexity. Nevertheless if the conditional probabilities fulfill

some mild conditions and with an appropriately chosen coding scheme, this complexity can be

significantly reduced as well as the processing rate can be increased.

In this case the proposed detector scheme is of a small complexity architecture which can

be easily parallelized and uses a very simple decision function. Furthermore we have also

demonstrated that with the new coding schemes almost optimal performance can be achieved

with regard to BER vs the SNR.
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5 Summary of the dissertation and closing remarks

In this dissertation I have given the following answers to the posed questions:

One can efficiently find an appropriate path or tree in a packet switched network which provides

a QoS (either bottleneck or additive type). This can be achieved by exploiting the statistical

properties of the traffic and transforming the models in such a way, that they become a natural fit

for the traditional route finding algorithms or neural networks. Furthermore the precision with

which the QoS is met can be scaled at the expense of some bandwidth by applying information

theoretic measures.

One can solve efficiently and near optimally the UBQP problem which is present in relevant

ICT applications: the scheduling tasks in communication networks (IoT or cloud computing

environments), load balancing and MUD for wireless technologies. This problem can be treated

in a parallel fashion with the aid of both Feed Forward and Recurrent type neural networks. To

achieve this I have demonstrated how to reformulate the problems to fit these algorithms. For the

Recurrent type neural network I posed these problems as an “energy based” optimization problem.

For the Feed Forward neural networks, I exploited their general approximation capabilities.

One can solve efficiently and near optimally a general pattern recognition problem with the

aid of Feed Forward neural networks and a linear encoding technique. I have demonstrated the

efficiency of the algorithm on the MUD problem, but it is applicable on a wide range of problems

including automated surveillance applications, content based search, speech recognition.

The numerical examples presented, back up my conjecture that these algorithms are in deed

applicable and perform efficiently.

Although a lot of aspects were not addressed, this work gives sufficient details, such that it can

be used as a basis for further investigation. For example how a physical implementation of such

neural networks could speed up finding sub-optimal solutions for these problems. Furthermore

it gives a common numerical reference for comparison to other types of algorithms. A possible

natural extension of the proposed methods would be to change the currently used neural networks

with “deep-learning” based variants, compare the performance and investigate the gains and

losses. Certainly if a particular application is to be considered, these algorithms need tailoring.

Also note that the appropriate physical architecture may not exist at the time of writing but this

work might point to such possible directions.
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Appendices

A New scientific results and theses of the dissertation

This chapter summarizes - without any proofs - the new scientific results and theses of the

dissertation in a self consistent way.

Thesis group I - routing with incomplete information in unicast and multicast sce-
narios

THESIS I.1 (unicast routing with incomplete information by Gaussian approximation). I gave

a mapping for the link descriptors under the condition that the link descriptors have normal

distributions with parameters m and ˜ u v m u v and also the LAS follows m ti 1 ti
2 in

Theorem 1 (restating):

Theorem 1. If u v is a subject to a normal distribution with parameters ˜ u v m u v , then

the solution of ARII

R̃ argmax
R s d u v R

u v T (2.3 revisited)

is equivalent to minimizing the objective function

R̃ argmin
R u v R

m u v (2.13)

by using the Bellman-Ford algorithm in polynomial time.

Using these assumptions the ARII problem can be reduced to a deterministic traditional SPR.

THESIS I.2 (unicast routing with incomplete information by recursive path finder algorithm). I

gave procedures that can find routes in a packet switched network which satisfy the required QoS

parameter with a given probability in Algorithm 1 and Algorithm 2 (restating below).

The algorithms are based on a transformation of the random link descriptors using the large

deviation theory which is described in Theorem 2 (restating):

Theorem 2. Using the logarithm of the moment generating function (log-moment generating

function)

u v s ln exp s u v ln exp sx dF u v x (2.20)

or in case of a discrete random variable

u v s ln exp s u v ln
i 1

exp sxi pi (2.21)

the solution of the ARII is equivalent with minimizing the objective function

R̃ argmin
R u v R

u v ŝ (2.22)
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where the optimal ŝ parameter is

ŝ inf
s

u v R̃
u v s sT (2.23)

Algorithm 1 Exhaustive-s algorithm

Input: G V E u v F u v x src dst
Define a grid on the set of possible values of s denoted by si si 0 i 1 M .
for all i 1 M do

Pick si .
Perform path selection Ri by an SPR algorithm with link measures

u v si : ln exp si u v .
Based on the selected path Ri determine

ŝi Solve
u v R̃i

d u v s
ds

T s (2.28)

and calculate the bound

Bi : exp
u v Ri

u v ŝi ŝiT (2.29)

end for
Find the path which belongs to minimal bound

R̃ j : j argmin
i

Bi (2.30)

Output: R̃ j chosen path between src and dst

Algorithm 2 The Recursive Path Finder - s Finder Algorithm

Input: G V E u v F u v x src dst
Pick s a positive starting value
compute the path independent s
repeat

Associate measure u v s to each link u v E.
Perform the SPR algorithm to find the optimal path R̃ s for parameter s.
For the obtained R̃ determine s̃ by expression

s̃

1 T
u v R

a u v

R
(2.40 revisited)

s s̃.
until R̃ s̃ R̃ s

Output: R̃ s chosen path between src and dst
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THESIS I.3 (multicast routing with incomplete information with HNN). I defined algorithm

to find a sub-optimal solution to the multicast routing problem with random link descriptors in

Algorithm 3 (restating):

Algorithm 3 Find optimal tree for end-to-end requirement

Input: G V E u v F u v x , 1, T 1 src,m
repeat

A find tree with HNN G T
if A is found then

decrease
else

increase
end if

until no significant increase in performance
Output: A is the multicast tree between src and m

The procedure transforms the random link descriptors into deterministic ones by using results

from large deviation theory, which I formulated at (2.61).

Ã2 : argmin
A u v A

Cuv

s.t. Rsrc m s ln s T
(2.61 revisited)

The transformed problem can be seen as a CGSMT, which is still NP-hard, but I propose a

sub-optimal solution by using HNN, where the corresponding parameters are described at

subsubsection 2.4.3 and summarized in (2.78).

y 1 2ytrb 1
2 ytrW 2 y 2ytrb 2 (2.78 revisited)

THESIS I.4 (optimizing link scaling using MAP/M/1). In (2.100), I formulated a constrained

optimization problem which connects the information about the random link descriptors (Link

Entropy) and the appropriate bandwidth of the signaling process to support that information

(Signaling Entropy) at a certain probability.

min
t

H u v D0 D1 u v D0 D1 t

s.t.H u v D0 D1 t u v t
(2.100 revisited)

I proposed a computable solution to this problem by modeling the dynamics of the link descrip-

tors as MAP/M/1 described in (2.98) and (2.99),

H u v D0 D1 t u v t (2.98 revisited)

H u v D0 D1 u v D0 D1 t (2.99 revisited)

Consequently the information theoretical quantities can be obtained analytically and the optimal

solution can be found.
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Thesis group II - a heuristic solver based on hypergraphs for UBQP and its appli-
cability in ICT

THESIS II.1 (A heuristic solver family based on hypergraphs for UBQP). In Algorithm 4

(restating), I have given a hypergraph based, easily parallelizable algorithm family to sub-

optimally solve the UBQP problem.

Algorithm 4 Pseudo code of the general UBQP solver algorithm

1: function INNER_SOLVER(W k k b k y init 1 k)
2: an arbitrary UBQP minimizer
3: return y 1 k

4: end function
5: function (u VH y uV )
6: choose u VH choose the next hypernode and
7: choose y uV choose a state in that hypernode
8: return u y
9: end function

Input: W b and u init the problem and the starting hypernode
10: u u init VH start hypernode of the alg
11: choose y u init V init state in the hypernode
12: repeat
13: define L W b y objective function
14: u u and y y
15: W b parameters from u G V E Q W b
16: if SHOULD_EMPLOY_INNER_SOLVER( )then
17: y INNER_SOLVER(W b y)
18: else
19: y y
20: end if
21: u y (u y )
22: until STOP_CRIT( )
Output: y the best solution found by the alg.

The algorithms project the original search space into a hypergraph representation and use a

HNN based internal solver to find a solution. I have given four instances of which two employs

dimension reduction and two dimension addition. Table 3 (restating) summarizes the operation

modes of the instances. (The precise description of the algorithms can be found in Appendix F)

Table 3 Categorization of the algorithms
greedy opportunistic

dim. reducer L01 D01
dim. adder DA02 DA01

I have tested the performance on three different problem sets: on the standard ORLIB UBQP

benchmark set (subsection 3.4), on a scheduling problem (subsection 3.5), and on a simulated

MUD problem (subsection 3.6). I have shown that the proposed methods perform near optimal on

the investigated ICT problems.

87

DOI:10.15774/PPKE.ITK.2019.006



Thesis group III - near Bayesian performance non-parametric detection with Feed
Forward Neural Networks

THESIS III.1 (blind detection by interval halving and FFNN). I have defined an FFNN based

blind detector for the MUD problem, which lends itself to easy parallelization and can perform

Net x w
s xx

x s x

S p y x

conditional
probability for
all possible y

S
p y x

Figure 54: Equivalence of the FFNN with an encoding

H
y

ν

x ŷE(s|x)
Net (x,w)

decision

detector utilizing arbitrary coding

g( )

s(i) = Coding
(
y(i)

)

S= [s(1),s(2), . . . ,s(N) ]
T (l) =

{(
x(k),s(k)

)
,k = 1, . . . , l

}

Figure 55: Flow graph representation of the detector using an arbitrary encoding

optimally under the constraint defined in (4.17).

j max
i 1 N

p s i x

if j E

k E
p s k x

i 1 N E
p s i x

(4.17 revisited)

In (4.18), I give the linear encoding based on interval halving which is used to generate a

training set for an FFNN

Si j s j
i sgn sin 2 2 i 1 j

N 1
i 1 L j 1 N (4.18 revisited)

and in (4.19) I give the low complexity decision function which is to be employed on the output of

the net.

ŷ sgn s x (4.19 revisited)

I have shown that the detector performs near optimally on the investigated MUD scenarios

described in subsection 4.4.
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B Artificial Neural Networks outline

Ever since it was realized that our nervous system use neurons for computation there has been

an interest to mimic that process and leverage the immerse efficiency. The first big milestone in

this journey was laid down by Warren McCulloch and Walter Pitts in 1943 by the introduction

of the first “artificial neuron” the TLU[113]. This model tries to mimic real life neurons with

the crude simplification that they gather stimuli on their dendrites and if a threshold is exceeded

an action potential is being fired on its axon. Most type of artificial neural networks use this or

some variant of this simple processing unit. Although the literature extensively use the phrase

“neural network” and “artificial neurons”, we know that these models are crude oversimplifications

of the real biological units. My personal perspective which is based on the rapidly developing

understanding of these biological systems[50, 153] is that the term “neural" should not be used on

these units, but due to historical reasons I will refer to them as such. Nevertheless even these simple

processing units can carry out vastly complex tasks if connected in a network. They are highly

versatile, therefore are used in various engineering problems such as speech or pattern recognition,

classification or data mining. Recent advances in “deep learning”[52, 73, 72] furthermore raised

the interest of the field.

In this dissertation I employ two types of neural networks, namely Hopfield Neural Network

(HNN) and Feed Forward Neural Network (FFNN). These networks are well understood and

it is assumed that the reader has some basic knowledge[63, 64] in this field. Therefore I am

summarizing only the relevant theorems and facts which are used to draw the conclusions of this

dissertation.

B.1 Hopfield Neural Network (HNN)

Throughout the dissertation the Hopfield Neural Network is used as one main type of RNN.

These networks are useful because of their inherent dynamics, massive parallelization capability

and ease of representation. The dynamics by which the simplest type of HNNs operate can be

summarized as follows: the network eventually arrives at one of its fix points which are determined

by the local extrema of its energy function. This energy function is a quadratic function of the

network’s state variables y and parametrized by W b. In case of a Discrete Hopfield Neural

Network the energy function can be described by the following set of equations:

y W b : yT Wy 2yT b (B.1a)

y 1 N b N W N N (B.1b)

The dynamics of the network can be exploited if one can reformulate a task as an optimization

problem where the solution lies at the extremum of such function. For example in the general

binary case this problem is called the UBQP and it is proved to be NP-hard[45]:

yopt min
y 1 N

y W b (B.2)
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Figure 56: Block diagram of a DHNN

This simple type of network can also be thought as a 1-opt type local search algorithm. The

fixed point in which the network settles will be largely determined by the initial state of the

network, consequently greatly effecting the quality of the proposed solution. Several techniques

were introduced (like randomization, applying hysteresis, etc) to overcome this phenomenon and

can be applied to different tasks with various success rates.

Nevertheless there is an additional trait that can be exploited when using these networks, namely

that the functional units are independent of each other and can operate in a parallel fashion. This

makes it an ideal candidate for architectures that are based on computationally light but massively

parallel execution.

B.2 Feed Forward Neural Network (FFNN)

FFNNs on the other hand have their general nonlinear approximation capabilities [25, 42, 76,

119, 121, 155] and also their inherent parallel architecture and trainability as traits.

x
W(1)

b(1)

ϕ1(.)

1st layer

W(2)

b(2)

ϕ2(.)

2nd layer

W(L)

b(L)

ϕL(.)

Lth layer

y
· · ·

x(1) x(2) x(L)x(3) x(L+1)

Figure 57: The general architecture of an FFNN

On Figure 57 one can see the general architecture of an FFNN. Note that dim W i depends on

the input and output size of the ith layer. Also in general the i nonlinear functions can differ

on any layer. The output of layer i can be described as:

x i 1
i W i x i b i (B.3)

Also note that the “bias vector” is subtracted, but on the figure it is denoted with an addition for
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convenience and conformance to literature.

FFNNs are exceptionally useful for detecting structures in raw data. This property comes from

the fact that they can be “trained” to mimic a set of input-output pairs. When training an FFNN

on a training set with l elements l x k s k k 1 l then the optimal weight vector

is obtained by minimizing the following error function:

w l
opt : min

w

l

k 1
Net x k w s k

2
(4.8 revisited)

If the sample size tends to infinity, the FFNN asymptotically approximates the conditional

expected value [63, 100]:

lim
l

Net x w l
opt s x

2
0 (4.9 revisited)

Note that s in the training set can be arbitrarily chosen. Although many training algorithms exist,

much of them can be categorized as a gradient-based learning methods. The most widely used

base algorithm is the infamous backpropagation algorithm. A good overview on it and practical

advises can be found in [98].

B.3 An outline of deep learning - perspective for neural networks

Around 2006 a new type of fast machine learning algorithm[72] started to gain focus, called

“deep learning”. This new type of algorithm and the corresponding neural network got the attention

of the research community, because it was applied successfully in several practical and interesting

cases[26, 73, 143, 51, 32], most notably in visual and speech recognition (like Microsoft Cortana,

Xbox, Skype Translator, Amazon Alexa, Google Now, Apple Siri, etc ), pattern generation (e.g.

Google’s deep dream[156, 30, 29] or the “artistic style transfer for videos”[140, 77]) and data

classification problems. Ever since “deep learning” has been characterized as a buzzword, or

a rebranding of neural networks[57]. Most of the recent advances are due to results from Prof.

Geoffrey E. Hinton who is the author and co-author of several foundational publications[49]. In

fact the terms “Contrastive learning", “deep belief networks" and “deep learning” were coined by

him. Some of the important papers, video lectures and a good tutorial can be found at [52, 73, 72,

17, 71, 70, 31].

A Deep Belief Network (DBN) can be viewed as a specialized combined form of both RNNs and

FFNNs. In fact they are stacked RBMs and can be trained in a greedy manner. As a result they learn

to extract a hierarchical representation of the training data. After the initial unsupervised learning

they can be easily fine tuned with gradient descent or backpropagation type algorithms. RBMs

are restricted versions of the general BMs, and as such are stochastic, generative counterparts of

HNNs. By stacking RBMs they form a special type of stochastic FFNN which can be run in both

directions, both to analyze or to generate data. More information on RBMs can be found in[152,

73, 69].
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C Notation and general assumptions

Throughout the dissertation the following mathematical notations and assumptions are used,

which mostly align with the conventional mathematical notations, but at some points introduce

extensions with the intention to abbreviate and improve the ease of reading.

C.1 Notation of graphs

• a node weighted graph is denoted by g G V E Q W b , where V denotes the set of

nodes, and E denotes the set of edges and Q W b is a function with two parameters

describing the weights of the nodes.

• gV denotes the node set V of graph g.

• gE denotes the edge set E of graph g.

• gW denotes the parameter W of the weight function in graph g. Similarly gb denotes

parameter b.

C.2 Notation of sets, ordered sets (series), matrices, and vectors

• A set of size K is denoted by A a1 a2 aK where ordering is not defined.

• An ordered set (series) of size K is denoted by A a 1 a 2 a K , where the ordering

is defined by the indexing.

• W denotes a matrix of, W N N

• W i denotes the ith element in an ordered set of matrices. E.g. W 4

• Ws denotes a specific element in a set of matrices of which the index is unknown or

irrelevant, where s is a symbol. E.g. W†.

• b denotes a vector of b N

• elements of the ordered and unordered vector sets are denoted similarly as the matrices.

C.3 Notation of subsets and elements of matrices and vectors

Throughout the dissertation the following notation is used to describe individual components

and sub-parts of the matrices and vectors, where the sub-parts could be the reordered versions of

the original row or column wise.

A n n S 1 n S 2S

if R C S I 1 n R J 1 n C (C.1a)

then ARC
n R n C (C.1b)

s.t. ARC i j A k l k Ri i I l C j j J

if R C then ARC : AR (C.1c)

Describes sub-matrix of a matrix of which original indices are 1 n. We apply the index series R

and C to the rows and columns respectively. ARC A then contains all row and columns in the order

that are marked by the index series. For example if n 4 A 4 4, R 2 4 and C 2 3 4

then ARC
2 3 and it contains the corresponding elements from rows 2 4 and columns 2 3 4

92

DOI:10.15774/PPKE.ITK.2019.006



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

A n n

a22 a23 a24

a42 a43 a44

ARC
n R n C

of the original matrix A. (C.1)

C.4 General assumptions on UBQP problems

These assumptions can be used without losing the generality of the UBQP, but nevertheless

applied to make a common platform to evaluate and compare the results with the different

formulations in different works.

• In the literature values of the variables in the UBQP are defined as 0 1 or 1 , but they

can be generalized to any two distinct numbers by the following transformation[68]:

0 1 � F T : (C.2a)

T 01_2_FT y 0 1 F T : T F y F (C.2b)

T FT _2_01 y F T F T : y F T F (C.2c)

• It is also known that a problem of dimension N containing a linear term can be trans-

formed into a problem of dimension N 1 without the linear term by adding an additional

constraint[68, 8, 28]. This process is called homogenization in the literature.

• Also for every UBQP we can say that W WT aka symmetric. If we start from a problem

formed with an asymmetric W there exist a simple transform which results in a symmetric

parameter, but does not change neither the value nor the place of the extrema[12]: Ŵ
1
2 W WT

• The diagonal terms in W can be 0-ed out. If we have the variables yi 0 1 then the

diagonal terms can be rewritten as linear terms, because: Wiiy2
i Wiiyi.

In case of yi 1 the diagonal terms can be left out since they become independent of

the variables: Wiiy2
i Wii 1.
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D A word on the log-moment generating function

The logarithm of the moment generating function (log-moment generating function) X s

ln MX s ln exp sX is an elementary tool when applying the large deviation theory and

in particular the Chernoff bound. In this appendix I will show some used properties of it.

• X 0 0

• MX s is a logarithmically convex function or “superconvex” for any X random variable,

thus X s is also convex.

• X s is a strictly monotone increasing function for any X random variable, if X 0

• d
ds X s exists and also strictly increasing for X 0.

• Because of the previous property d
ds X s

1
also exist and it is also strictly monotone

increasing, if X 0.

• i Xi s has the same properties, since we are summing strictly monotone increasing

functions.

Remark 4. Note that in my discussion I only model properties (with random variables) which

can take up positive values (like delay or energy consumption), so in these cases X 0 always

satisfied.

I will demonstrate the strictly increasing property for a finite support discrete case, but a similar

argument can be constructed for all other nondegenerate cases. The log-moment generating

function for a discrete random variable is defined as:

X s ln
i 1

exp sxi pi (D.1)

Suppose that the support of this random variable is finite (pi 0 i K) and the values are ordered

from smallest to largest (xi xi 1 i 1 K).

The following expression which is used to find the optimal ŝ parameter has a minimum and it

can be found via a derivative.

ŝ inf
s j

X j s sT (D.2)

d j X j s sT
ds

0 (D.3)

Proof. One can investigate the asymptotic behavior of X s at s and s , by factoring

out the largest term xK and similarly the smallest x1 since they will be the dominant ones:

d X s
ds

d ln K
i 1 exp sxi pi

ds

K
i 1 xi exp sxi pi

K
i 1 exp sxi pi

K

i 1

xi exp sxi pi
K
k 1 exp sxk pk

(D.4)

x1

1 K
k 2 exp s xk x1 pk p1

K

i 2

xi exp s xi x1 pi p1

1 K
k 2 exp s xk x1 pk p1

(D.5)

K 1

i 1

xi exp s xi xK pi pK
K 1
k 1 exp s xk xK pk pK 1

xK
K 1
k 1 exp s xk xK pk pK 1

(D.6)
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One can easily see that

lim
s

d X s
ds

lim
s

x1

1 K
k 2 exp s xk x1

pk
p1

K

i 2

xi exp s xi x1
pi
p1

1 K
k 2 exp s xk x1

pk
p1

x1

(D.7)

lim
s

d X s
ds

lim
s

K 1

i 1

xi exp s xi xK
pi
pK

K 1
k 1 exp s xk xK

pk
pK

1
xK

K 1
k 1 exp s xk xK

pk
pK

1
xK

(D.8)

since all exponential terms converge to 0 as s for (D.7) and when s for (D.8),

because xi x1 0 i 1 and xi xK 0 i K. Consequently

lim
s

X s sx1 c1 (D.9)

lim
s

X s sxK cK (D.10)

This means that asymptoticaly X s sT when s is approaching from acts as a linear function

with slope x1 T and when s is approaching it acts like a linear function with slope xK T .

If T xK the derivative is negative for every s, which means that the QoS parameter cannot be

not satisfied, so an arbitrary s can be chosen. Likewise if T x1 the derivative is positive for

every s, which means that the QoS parameter is impossible to satisfy, thus any s is an equally bad

choice. If the QoS parameter x1 T xK the slope of the derivative is x1 T 0 for small s

and xK T 0 for large s. Consequently since the slope starts negative and becomes positive,

somewhere inbetween has to be a minimum point. An example can be seen in Figure 58 where

the support of X is xi 1 10 and the probabilities pi were randomly generated.

Figure 58: Limits for the log-moment generating function and existence of optimal s parameter
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Further investigating the limit (D.4) at s 0 we get:

lim
s 0

K
i 1 xi exp sxi pi

K
i 1 exp sxi pi

K

i 1
xi pi X (D.11)

Based on this one can also state that the minimum point will be located at some s 0 if T X

and located at s 0 if T X .

The same argument can be derived for a sum of multiple log-moment generating functions,

since the differentiation is a linear operator. The asymptotic behavior of the composite function

for large s will be a linear function with slope x1 K x2 K xN K T and the fractional

term becomes the sum of the individual fractional terms, which also vanishes. For negative s

the asymptotic behavior is the same, with slope x1 1 x2 1 xN 1 T . Also note that every

X s for any X is a strictly monotone increasing function, so their sum is also strictly monotone

increasing. This means that X R X s sT can have at most one inflexion point. If it has, it is

a minimum. An important remark is that using the Chernoff bound, parameter s can take only

positive values.

Also the Chernoff bound essentially cannot give anything “meaningful” left to the original

random variable’s mean value, because lims 0 d X s ds X and exp X 0 1. It is well

known that the Chernoff bound is sharper for random variables with “heavy heads” meaning that

the mean is located “more to the left”. The following figures depict the sharpest possible Chernoff

bounds for a Geometric distribution and a Poisson distribution. Note that left to the mean values

the Chernoff bound gives probability 1.
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Figure 59: Sharpest Chernoff bounds for a Geometric distribution
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Figure 60: Sharpest Chernoff bounds for a Poisson distribution
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E Short description of the GSMT and CGSMT problem

The general SMT problem can be viewed as a generalization of the infamous Fermat prob-

lem[24]. A survey written in 1992 regarding Steiner trees can be found at [81]. Another sur-

vey[138] from 2009, which summarizes the used heuristics and methods for finding an SMT. The

general SMT problem can be defined as follows: We have a set M containing the target points.

One has to find a set S containing the Steiner points, such that the spanning tree on M M should

be of minimal weight (total length of edges). This tree is called the SMT or in short Steiner tree

Figure 61: A Steiner tree of 4 points

E.1 The GSMT problem

The GSMT problem differs from the SMT such that the problem is defined on a graph G, and

the points of S cannot be chosen arbitrarily but from the existing vertices of G. On this edge

weighted graph G V E , we have a set M V which must be contained in the final tree. We

search for a set S V for which the tree T S M ET has minimal weight. Note that T need

not be a MST, thus any potential graph point can be a Steiner point and any other can be left out

from the tree. Let us denote the set of all trees on G V E W by , where W denotes the

weights of the edges. T denotes a tree of T VT ET WT , then the GSMT problem can be

formulated as

Topt argmin
T u v ET

W u v

s.t. M VT

(E.1)

where is a general objective function which we want to minimize. Usually the objective function

is just the sum of the edge weights. Figure 62 depicts two examples for possible trees in the graph.

Figure 62a was built by taking the union of all shortest paths from s to all m M. This naiive

construction does not results in a GSMT.

E.2 The CGSMT problem

The CGSMT is the extension of the GSMT problem, where an additional constraint is posed

which the tree must satisfy.

Topt argmin
T u v ET

W u v

s.t. M VT and
u v ET

u v is TRUE
(E.2)
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the shortest paths

(a) A tree built from the union of shortest paths from
s to all m. Note that this is not a GSMT
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s: source node

m: tree node

v S: steiner node

cost of the GSMT tree: 16

(b) A GSMT on the same graph

Figure 62: Example of two trees on the graph.

A typical objective function is where we want to minimize the weight of the tree which builds

up from summing the weight of the tree edges. But at the same time a constraint is posed that any

route in the tree from s to any m must not exceed a quality parameter along the route.

Topt argmin
T u v ET

W u v

s.t. N VT and
u v R s m

D u v m M
(E.3)

In the following easy example the weights of the edges are summed up that we want to minimize

the total weight of the tree, but at the same time the constraint which the tree must satisfy is such

that along every route the hop count must be less than 3. Figure 63 shows two sub-figures. The

first depicts the unconstrained GSMT but at the same time it is an invalid CGSMT, because it

does not satisfy the posed constraint. The second depicts the correct CGSMT.
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s: source node
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cost of the tree: 16

constraint: hop count of any path R s m 3

(a) Incorrect CGSMT, where the constraint is not
met
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constraint: hop count of any path R s m 3

(b) Correct CGSMT

Figure 63: An example for an incorrect and a correct CGSMT
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F Description and performance characterization of the new UBQP
related algorithms

In this appendix we give the precise definition of the algorithms used in this article. We define

the rules presented in subsection 3.3.

F.1 Dimension reduction of the greedy algorithm - L01

This algorithm uses a greedy strategy at the hypergraph level to determine in which direction

the next hypernode falls. The algorithm stores the best N dimensional candidate solution in yopt.

1. The algorithm starts at the original N dimensional hypernode.

2. The inner solver is chosen to be a DHNN structure.

3. The performance of a “candidate solution” is defined by the value of the N dimensional

quadratic function on this solution.

4. We use the “inner solver” in every hypernode.

5. The next n 1 dimensional hypernode is chosen from an n N dimensional hypernode as

follows ( ): We search all the possible n 1 dimensional hypernodes accessible from the

current hypernode, and pick the best among them, which is performed by the following

steps:

• We assume that if we are in an arbitrary n N dimensional hypernode the best N

dimensional candidate solutions is accessible in yopt .

• We select a starting point in an n 1 dimensional hypernode for the “inner solver”

from the actual yopt by discarding the appropriate dimensions.

• In each n 1 dimensional hypernode the “inner solver” generates a n 1 dimensional

candidate solution, we denote it with y i next .

• We map every y i next back to the original N dimensional space by filling the

missing coordinates of y† i next with the coordinates of yopt .

• According to the N dimensional quadratic function we pick the best y† i next and

compare with the value of the quadratic function taken over yopt .

• If the performance is improved we choose that hypernode.

6. If not, the algorithm stops.

F.2 Dimension reduction of the first chance algorithm - D01

This algorithm is different from the one described above in one rule. We do not evaluate all

possible lower dimensional hypernodes, but if we find one which gives a better candidate solution

then we choose that hypernode. So instead of a full evaluation we introduce a “first-improve”

strategy.

1. The algorithm starts at the original N dimensional hypernode.

2. The inner solver is chosen to be a DHNN structure.

3. The performance of a “candidate solution” is defined by the value of the N dimensional

quadratic function on this solution.

4. We use the “inner solver” in every hypernode.
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5. The next hypernode from an n N dimensional hypernode is chosen as follows ( ). We

pick one by one a possible n 1 dimensional hypernode from the current node and if it

improves our current candidate solution, we choose that hypernode, which is performed by

the following steps:

• We assume that if we are in an arbitrary n N dimensional hypernode the best N

dimensional candidate solutions is accessible in yopt .

• We select a starting point in an n 1 dimensional hypernode for the “inner solver”

from the actual yopt by discarding the appropriate dimensions.

• In that n 1 dimensional hypernode the “inner solver” generates one specific n 1

dimensional candidate solution, we denote it by y i next .

• We map y i next back to the original N dimensional space by filling the missing

coordinates of y† i next with the coordinates of yopt .

• According to the N dimensional quadratic function we compare them with each other.

• If the performance is improved we choose that hypernode.

• If not, we try another not yet inspected hypernode in the n 1 dimensional regime.

6. If we inspected every possible n 1 dimensional hypernode and did not find a better

candidate solution, the algorithm stops.

F.3 The description of dimension adder DA01 algorithm

This algorithm constructs a candidate solution gradually by adding dimensions starting from a

low dimensional hypernode until it reaches the highest dimensional hypernode.

1. The algorithm starts from the 0 dimensional hypernode.

2. The inner solver is chosen to be a DHNN structure.

3. The performance of a candidate solution depends on the dimension as we leave out the

corresponding parts of the matrix and vector of the original N dimensional quadratic

function

4. We use the “inner solver” in every hypernode.

5. The next hypernode from an n N dimensional hypernode is chosen as follows ( ): We

pick one by one a possible n 1 dimensional hypernode from the current node and if it

improves our current candidate solution, we choose that hypernode, which is performed by

the following steps:

• We denote the set containing the indices of the coordinates of the current n dimensional

hypernode with C. We denote the proposed candidate solution in this hypernode with

y .

• We choose randomly a dimension which has not yet been picked, denoted by: B

i i C.

• We inspect the n 1 dimensional hypernode with dimension indices A C B with

the “inner solver”.

• At the inspected n 1 dimensional hypernode the starting point of the “inner solver”

(denoted by y) is generated via copying the appropriate coordinates from the best

found candidate solution and computing the missing coordinate via the gradient.

yC y and yB sgn Worig
B C y borig

B
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• We use the “inner solver” to get y next from y.

6. If the Nth dimension was also added to the problem we stop and put yopt y next .

F.4 The description of the dimension adder DA02 algorithm

This algorithm is similar DA01 algorithm. It also constructs a candidate solution from a lower

dimensional one, but instead of a first-improve hypernode choice strategy this inspects all the

possible one distance higher dimensional hypernodes and chooses the best one.

1. The algorithm starts from the 0 dimensional hypernode.

2. The “inner solver” is a DHNN structure.

3. The performance of a candidate solution here is dynamic. It is determined by the current

n 1 N dimensional quadratic function.

4. We use the “inner solver” in every hypernode.

5. The strategy by which we choose the next hypernode ( ) is the following:

• We assume that if we are in an n dimensional hypernode, we also know the indices of

the coordinates of the said hypernode. We denote this set with C, and the proposed

candidate solution in this hypernode with y .

• We iterate through every dimension index which we did not inspect so far: i : B

i i C. We inspect all the possible n 1 dimensional hypernode with dimension

indices A C B with the “inner solver”.

• At each inspected n 1 dimensional hypernode the starting point of the “inner solver”

(denoted by y i ) is generated via copying the appropriate coordinates from the best

found candidate solution and computing the missing coordinate via the gradient.

y i
C y and y i

B sgn Worig
B C y borig

B

• We use the “inner solver” to get y i next from y i .

• We choose the best performing y i next and the corresponding hypernode for the

next iteration.

6. If the Nth dimension was inspected as well the algorithm stops, and we put yopt y next .

F.5 Run-time and performance analysis tables of the UBQP solvers
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