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1 Introduction
Medical imaging analysis helps doctors in a wide spectrum starting

from diagnosis formation to monitoring the therapy. It is possible to
discover an abnormal change in a given region, to quantify the possi-
bility of different cancer types in specific tissues. These methods work
correctly thanks to the sophisticated algorithms and the development
of the semiconductor devices and technology makes them realizable in
feasible time. One of the most eye catching example is minimally in-
vasive surgery, where the real trajectory of the interventional device is
compared to the reference on-line.

The mentioned new devices are the many core architectures spreading
and developing in the last few years. The former classical architectures
with one processor core changed and more processor cores are placed on
the same chip. This increase in core count is true for central processing
units (CPU), graphical processing units (GPU), some application specific
integrated circuits (ASIC), and field programmable gate arrays (FPGA)
as well.

Each of these devices have several fundamental properties of the fol-
lowing like huge arithmetic performance, huge bandwidth, low power
dissipation, or small chip area. However, to be able to benefit from these
advantages, new algorithms, and new optimization methods shall be con-
sidered for the set of tasks to be solved. These tasks may include com-
pletely new ones or older ones considered unfeasible. In my dissertation
I present two tasks and their solutions mapped on given many core de-
vices.

The first task is the rendering of digitally reconstructed radiographs
(DRR) that is a key step to several image guided therapy (IGT) appli-
cations. I am focusing on the alignment of 3D CT images taken before
the intervention and 2D images taken during an intervention. This align-
ment procedure is called 2D to 3D registration [1]. DRRs are synthetic
X-ray images. A value of a pixel of a DRR is the line integral of the CT
scan along a ray emanating from a virtual source to the location of the
very pixel. As it is known from the literature, the DRR rendering is the
most time consuming task during registration [1, 2, 3] so it is essential
the minimize the rendering time of DRRs.

The second task is to achieve as much speed-up as possible on level
set (LS) based methods since they have vast applications from com-
putational geometry through crystal growth modeling to computer vi-
sion [4, 5, 6]. The method entails that one evolves a curve, surface, mani-
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fold, or image with a partial differential equation (PDE) and obtains the
result at a point in the evolution. There is a subset of problems where
only the steady state of the LS evolution is of practical interest like seg-
mentation, (shape) modeling and detection. The LS method of Shi [7]
gives a way to solve these tasks quickly. I have worked on determining
the number of iterations and map the method of Shi on CNN-UM and
GPU.

2 Materials and methods
DRR rendering is realized in CUDA C of Nvidia. I examined several

optimization rules and parameters to be able to fit the task on a given
hardware. I have made experiments on GPUs based on different architec-
ture generations (8800 GT, 280 GTX, Tesla C2050, 570 GTX, 580 GTX).
Furthermore, two different compiler and driver combinations have been
used (3.2 compiler + 260.16.21 driver, and 5.5 compiler + 331.67 driver).
Two different datasets have been utilized. The first is a CT scan made
from a radiological torso phantom (Radiology Support Devices, Newport
Beach, CA, model RS-330) with resolution 512 × 512 × 72, the other is
a scan taken from a pig head with resolution 512 × 512 × 825 from an
annotated database [8]. The phantom imitates the attenuation of human
tissue like lungs, bone, arteries, etc. In the X-ray spectrum I have made
measurements on complete DRRs and randomly sampled ones as well.
The parameters of the rendering have been set to values that are relevant
in the case of minimally invasive surgeries (region of interest, ROI and
sampling rate).

During my work connected to LS methods I was required to under-
stand the hyperbolic conservation laws as well as the concept of vis-
cosity solutions from the field of partial differential equations (PDE).
The viscosity solution is defined as the solution of the following PDE
G(u)ux + ut = εuxx, subject to ε tends to 0. The theory of LS meth-
ods and the underlying equations are essential to understand for specific
tasks like segmentation and curve motion. Additionally I required the
basic notions of discrete topology and convex sets to be able to con-
struct the proofs of my theorems. Execution time measurements were
done on Eye-RIS v1.3 vision system (VS) and on Nvidia 780 GTX GPU.
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3 New scientific results

Thesis 1. I formed a rule-set (1)-(4) allowing the rendering of DRRs to
be performed efficiently on Nvidia GPUs. This step is responsible for the
slowness of 2D to 3D registration. I applied the rule-set on the calculation
of randomly directed line integrals for DRR rendering and systematically
searched the block size parameter in the theoretically possible range. Ac-
cording to my findings the value of block size for efficient rendering is in
the range of 8-16 threads in a block unlike the theoretical suggestions. So
the 2D to 3D registration can be performed in real time for surgical need
depending on the application in 0.5-10 frames per second. I showed that
DRR rendering can be performed in 0.2-2.2 ms in the case of a region of
interest (ROI) containing fully a lumbar vertebra (16×9 cm2, 400×225
resolution).

1. Slow ‘if else’ branches shall be replaced with ternary expressions
if possible that are compiled to selection ‘parallel thread execution’
(PTX) instructions that are faster than any kind of branching PTX
instructions.

2. Data that is read locally and in an uncoalesced way shall be placed
in texture memory provided it is not written.

3. Avoid division if possible and use the less precise, faster type
(div.approx, dif.full instead of div.rnd).

4. If the denominator is used multiple times calculate inverse value
and multiply with it.

I presented measurements on randomly sampled DRRs executed on
GPU first [9]. The effectiveness of the first and second optimization rules
are presented in Table 1. The cumulative effect of the third and the fourth
rules as a function of the block size is presented in Figure 1.

The missing branching optimization resulted in a 6 − 11% perfor-
mance decrease, 8% in average on Tesla C2050 GPU while 6 − 13%
decrease on 570 GTX GPU, if the optimized version is considered 100%.
The linear memory caused a 1.75-2.4 times slowdown consequently on
both GPUs.

The optimal block size in the case of the optimized kernel is always
in the range of 8-16 threads in a thread block. This property was tested
in a former version of compiler and driver as well as on four different top
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Table 1: The effect of the lack the of first two optimization rules on the
execution time. The lack of branch optimization caused 6-13% slowdown
while the use of linear memory caused 2 times slowdown in average.
Execution times are measured in µs.

Tesla c2050 570 GTX
number of threads topt tbranch tlinear topt tbranch tlinear

1024 234 258 553 181 206 408
1536 319 339 639 263 295 462
2048 466 502 1094 358 403 656
3072 648 689 1275 572 617 1101
4096 969 1082 1935 693 742 1310
full DRR 2666 2763 5278 2259 2375 5221

(a) 1536 threads (b) 20480 threads

Figure 1: The cumulative effect of third and fourth rules on the execution
time as a function of block size.
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GPUs (8800 GT, 280 GTX, Tesla C2050, 580 GTX). The characteristics
of the optimized kernel were similar in this software environment too.

Publications connected to this thesis group: [I]. The thesis claim is
specified and paraphrased in details in the second chapter of my disser-
tation.

Thesis group 2. I present bounds on the required number of iterations
of the LS method of Shi [7] and this bound depends only on the initial
condition. I propose an initial condition family that decreases the bound
in a flexible and effective way. Additionally, evolutions started from this
initial condition family require drastically reduced time to converge.

Thesis 2.1 I discovered two new theorems, one for a general case and
another for a convex case to determine the worst case required number
of iterations of the Shi LS method to converge to the solution. These
bounds depend only on the initial condition. I developed proofs for both
cases and supported the bounds with experiments. The results are utilized
in thesis claim 2.2.

Let us consider a subset of Zn, say D. A point x ∈ D is character-
ized by its coordinates (x = (x1, ..xk)). A path p between x and y is a
sequence of points xl(l = 0, 1, ..., L) ∈ D subject to xl ∈ N(xl+1) and
x = x0 and y = xL. A set of points A forms a connected region if and
only if there exists a path p between every x,y ∈ A subject to ∀xl ∈ p
is an element of A. A minimum path pmin is the shortest path meaning
there are no shorter p′ paths between x and y. Minimum path is usually
not unique and can depend on the chosen discrete neighborhood. The
diameter B of a connected region is the longest minimum path having
at least its endpoints within the connected region. A connected region
is considered as convex if all minimal paths are minimum paths at the
same time.

Theorem 1 (general bound). Let the true object region be denoted by Ω∗
and let it be composed of P connected regions Ω∗p (where p = 1...P ). Simi-
larly the true background region be denoted by Γ∗ and let it be composed of
q connected regions Γ∗q (where q = 1...Q). Assume that F > 0 in Ω∗ and
F < 0 in Γ∗. At initialization, C is chosen such that Ω = ∪iΩi, Γ = ∪jΓj

and Ω∗p ∩ Ω 6= ∅, ∀p = 1...P and (D \ Ω) ∩ Γ∗q 6= ∅, ∀q = 1...Q. Then,
the Shi LSM converges to Ω∗ in Nit ≤ max(maxi(|Ωi|),maxj(|Γj |)) it-
erations, where |.| denotes the number of elements in the region.

Theorem 2 (convex bound). Let the true object region Ω∗ be composed
of P connected regions Ω∗p (where p = 1...P ) and the true background
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(a) concave object (b) convex object

Figure 2: Two extremities of the object types. If the initial condition
section only one pixel from (a) the labyrinth, the requiring number of
iterations is equal to the number of pixels within the labyrinth minus
one. In the case of (b) the circle, the required number of iterations are
not more than the diameter of the circle in pixels.

region Γ∗ be composed of q connected regions Γ∗q (where q = 1...Q). As-
sume that F > 0 in Ω∗ and F < 0 in Γ∗. At initialization, C is cho-
sen such that Ω = ∪iΩi, Γ = ∪jΓj and Ω∗p ∩ Ω 6= ∅, ∀p = 1...P and
(D \ Ω) ∩ Γ∗q 6= ∅, ∀q = 1...Q. If either Ω∗ or Γ∗ is convex than the Shi
LSM converges to Ω∗ in Nit ≤ max(maxi(BΩi

),maxj(BΓj
)) iterations,

where B denotes the diameter of the given region.

Figure 2 shows two sample objects. While Figure 2(a) shows a concave
object requiring a number of iterations as its number of pixels in the
worst case, Figure 2(b) shows a convex object requiring a number of
iterations upper bounded by its diameter in the worst case.

Table 2 explains through an example the effect of initial condition
on the bounds. The resolution of the image is 128 × 128 pixels, the
initial condition configuration is a chessboard like pattern. The number
of squares was placed in n rows and n columns according to the values of
the first row of the Table. Second and third rows show the general and
convex bounds corresponding to initial condition configuration. The last
two rows contain the number of iterations required to converge to the
objects shown in Figure 2.

Thesis 2.2 I proved that the evolution of the Shi method can be mapped
efficiently to many core architectures provided it is started from an initial
condition that minimizes the bounds stated in thesis claim 2.1. I imple-
mented it on two architectures: on CNN-UM and on GPU. The results
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Table 2: Illustrating theorems on two test images with resolution 128×
128 (2(a)-(b)).
configuration (n× n) 1 22 42 82 162 242 322 642

general bound 642 322 256 64 16 9 4 1
convex bound 127 63 31 15 7 5 3 1
Nit for Fig. 2(a) 145 68 18 7 6 3 3 1
Nit for Fig. 2(b) 26 16 9 6 4 3 3 1

supported the claims.
The smaller the connected regions in the initial condition, the lesser

the required number of iterations to be able to converge. This kind of
initial condition is used seldom because the number of processed pixels
is O(N × M) in one iteration in the case of an N × M image since
the small curves fill the whole image. In the case of an evolution starting
from an initial condition containing a single curve one iteration processes
O(N+M) pixels. It shall be noted is an initial condition is “far” from the
true object region then the number of pixels to be processed increases to
O(k(N +M)) where k ∼ max(N,M) leading to complexity O(N ×M).
Since the initial conditions are “far” from the real object in most cases
the complexity of the two different evolution is asymptotically the same.

It follows from thesis claim 2.1 that densely placed curves with small
diameters keep the worst case bound on the number of iterations accord-
ing to the theorems low. On the Eye-RIS VS the execution time of one
iteration is independent from the type of initial condition while in the
case of GPU a mild deviation is experienced together with the drastic
decrease of the number of iterations.

The algorithm mapped to CNN-UM is implemented on the Eye-RIS
1.3 VS. The realization uses only simple templates, one step of the algo-
rithm is performed in 400 − 440µs on a QCIF image. It must be noted
that the actual computing is finished within 60− 70µs and the remain-
ing time (340− 370µs) is required for the data movement from the main
memory of the Eye-RIS (on the Altea NIOS-II microprocessor) to the
Q-Eye chip memory.

The execution times of the algorithm mapped to GPU are summa-
rized in Table 3. It is clear that evolutions started from the proposed
initial condition family perform much better in all cases than the ones
started from conventional initial conditions. In an extreme case it caused
24 times speedup (2, 048× 2, 048 image resolution, 210 · 560 vs. 7 · 684).
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Table 3: Time measurements on NVIDIA GTX 780 GPU compared to
Intel core i7 CPU, tGP U and tCP U shows mean of one iteration in µs.

Data size Initial condition t̄GPU t̄CPU Nit Speedup
256 × 256 1 × 1 129 1,610 32 12.5
256 × 256 2 × 2 126 2,242 59 17
256 × 256 8 × 8 140 3,164 20 22
256 × 256 32 × 32 143 8,874 8 62
512 × 512 1 × 1 317 3,190 64 10
512 × 512 4 × 4 167 8,724 40 52
512 × 512 16 × 16 157 12,897 25 82
512 × 512 64 × 64 123 16,246 18 132

1, 024 × 1, 024 1 × 1 534 6,431 129 12
1, 024 × 1, 024 8 × 8 548 27,461 55 50
1, 024 × 1, 024 32 × 32 590 43,739 32 74
1, 024 × 1, 024 128 × 128 490 84,078 12 171
2, 048 × 2, 048 1 × 1 560 14,972 210 26
2, 048 × 2, 048 16 × 16 703 79,920 79 113
2, 048 × 2, 048 64 × 64 830 198,980 28 239
2, 048 × 2, 048 256 × 256 684 327,541 7 478
Presented results are the mean value of 100 runs.

It can be seen that both on CNN-UM and GPU a significant speedup
can be achieved in the case of the LS evolution of Shi if the proposed
initial condition family is used.

Publications connected to this thesis group: [II, III, IV]. The thesis
claim is specified and paraphrased in details in the third chapter of my
dissertation.

4 Application fields
I demonstrated that it is possible to perform 2D to 3D registration

during image guided therapy applications at the speed of (0.5-10 fps).
This is essential and has great impact on the following applications.
Furthermore, the problem was solved with the constant consulting with
field experts from GE Healthcare and the technical knowledge and code-
base were forwarded to the French research and development team.

The claims of the second thesis group can be utilized for faster seg-
mentation or detection. The application fields of these methods are
known. Naturally I emphasize the analysis of medical images. It is
straightforward that I managed to utilize an initial condition that was
considered unfeasible until now. Additionally the results from thesis
claim 2.1 give guarantee which is essential in time critical applications.
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