
Implementation of Medical

Imaging Algorithms on

Kiloprocessor Architectures
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Pázmány Péter Catholic University

Scientific Advisor:

György Cserey Ph.D.

Consulent:

Tamás Roska DSc.

A thesis submitted for the degree of

Ph.D.

Budapest, 2014

DOI:10.15774/PPKE.ITK.2014.005

mailto:tornai.gabor@itk.ppke.hu
http://www.itk.ppke.hu
http://www.ppke.hu


i

DOI:10.15774/PPKE.ITK.2014.005



I would like to dedicate this thesis to my loving wife, my children

and parents ...

Love never fails. But where there are prophecies, they will cease;

where there are tongues, they will be stilled; where there is

knowledge, it will pass away. For we know in part and we prophesy

in part, but when completeness comes, what is in part disappears.

When I was a child, I talked like a child, I thought like a child, I

reasoned like a child. When I became a man, I put the ways of

childhood behind me. For now we see only a reflection as in a

mirror; then we shall see face to face. Now I know in part; then I

shall know fully, even as I am fully known. 1 Cor 13,8-12
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Abstract

This dissertation presents two specific fields of medical imaging: (i)

fast digitally reconstructed radiograph (DRR) generation on Graph-

ical Processing Units (GPUs) allowing two dimensional to three di-

mensional (2D to 3D) registration to be performed in real-time and

(ii) several sides of the level-set (LS) based methods: theoretical as-

pects such as initial condition dependence and practical aspects like

mapping these algorithms on many core systems.

The generation of DRRs is the most time consuming step in intensity

based 2D x-ray to 3D (computed tomography (CT) or 3D rotational

x-ray) medical image registration, which has application in several

image guided interventions. This work presents optimized DRR ren-

dering on graphical processor units (GPUs) with optimization rules

and compares performance achievable on several commercially avail-

able devices. The presented results outperform other results from the

literature. This shows that automatic 2D to 3D registration, which

typically requires a couple of hundred DRR renderings to converge,

can be performed on-line, with the speed of 0.5-10 frames per sec-

ond (fps). Accordingly, a whole new field of applications is opened

for image guided interventions, where the registration is continuously

performed to match the real-time x-ray.

I investigated the effect of adding more small curves to the initial

condition which determines the required number of iterations of an

LS evolution. As a result, I discovered two new theorems and devel-

oped a proof on the worst case of the required number of iterations.

Furthermore, I found that these kinds of initial conditions fit well

to many-core architectures. I have shown this with two case stud-

ies, which are presented on different platforms. One runs on a GPU
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and the other is executed on a Cellular Nonlinear Network-Universal

Machine (CNN-UM). Additionally, segmentation examples verify the

applicability of the proposed method.
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Chapter 1

Introduction

Medical imaging analysis helps doctors in a wide spectrum starting from diagnosis

formation to therapy monitoring. It is possible to discover an abnormal change

in a given region, to quantify the possibility of different cancer types in specific

tissues. These methods work correctly and precisely thanks to the sophisticated

algorithms and the development of the semiconductor devices and technology

making them realizable in feasible time. In this way, a lot of healthcare procedures

and protocols become fast and reliable, for example, minimally invasive operations

are available thanks to the advanced imaging systems and analysis.

The mentioned new devices are the many-core architectures spreading and

developing in the last few years. The reason of this technology trend is the scal-

ing down of the technological feature size. The former classical architecture with

one processor core and increasing clock frequency was blocked by the dissipative

power wall and the wiring delay since the secondary parasitic effects can not be

neglected any more. The solution to this problem was a slight decrease in the

clock frequency and the placement of more processor cores on the same chip.

These cores are organized according to a given topology. This is true for central

processing units (CPU), graphical processing units (GPU), some application spe-

cific integrated circuits (ASIC), and field programmable gate arrays (FPGA) as

well.

As an example, one can think of the SUN SPARC [1] and the IBM POWER [2]

for CPUs with several cores, Fermi and Kepler architecture of Nvidia and AMD

Southern Islands for GPUs. The Q-Eye focal plane processor and the Xenon

1

DOI:10.15774/PPKE.ITK.2014.005



architecture are good examples for ASICs. All previous examples are homogen

architectures. However, there are examples for inhomogen ones as well. Xillinx

and Altera FPGAs have naturally a throng of programmable logic but incorpo-

rate other elements like digital signal processor (DSP) slices, classical CPU cores

(POWER, ARM), etc. Both Intel and AMD manufactures such chips that have a

full functional GPU next to the processor cores with a commonly managed cache.

Each of these devices have several great properties of the following like huge

performance, bandwidth, low power dissipation, or small chip area. However to

be able to benefit from these advantages, new algorithms, and new optimization

methods shall be considered for the set of tasks to be solved. These tasks may in-

clude completely new ones or older ones considered unfeasible. In my dissertation

I present two tasks and their solutions mapped on given many-core devices.

The first task is the rendering of digitally reconstructed radiographs (DRR)

that is a key step to several image guided therapy (IGT) applications. I am

focusing on the alignment of 3D images taken before the intervention and 2D

images taken during an intervention. This alignment procedure called is 2D to

3D registration.

The second task is to achieve as much speedup as possible on a level set (LS)

method. The LS methods in general have vast applications from computational

geometry through crystal growth modeling to segmentation. I have chosen a

method ideal for fast (medical image) segmentation among others.

During my graduate work firstly I wanted to find a solution to be able to realize

2D to 3D registration in real-time in interventional context. The motivation came

from the problem assignment of GE Healthcare. It was known both from the

literature and from various measurements on CPU that the DRR generation is

the most time consuming step. More than the 95% of the execution time is spent

with this task if it is done on the CPU. There is the question how can the DRR

generation be faster with orders of magnitude without quality degradation.

DRRs are simulated X-ray images since, the attenuation of a virtual X-ray

beam is calculated by an algorithm by projecting 3D computed tomography (CT)

images or 3D reconstructed rotational X-ray images. In particular, DRRs are used

in patient position monitoring during radiotherapy or image guided surgery for

automatic 2D to 3D image alignment [3, 4, 5], that is called 2D to 3D registration,

2
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(a) reality (b) virtual

Figure 1.1: 2D to 3D registration. (a) The intervention is monitored from several
directions for example with a frontal view (anterior-posterior, AP) and a side
view (lateral, LAT). These 2D projection images are aligned with a preoperative
CT scan from the same region: (b) the proper pose of the CT is searched until it
matches with the pose of the patient’s actual one.

and overlay illustrated in Figure 1.1. In my thesis I considered the fast calcu-

lation of the DRR rendering that is usually the most time-consuming step and

performance bottleneck in these applications. I present a solution to accelerate

the 2D to 3D registration performance by properly mapping, implementing and

optimizing the DRR execution on state of the art GPUs. So, during an inter-

vention the 2D to 3D registration can be done in real-time. This makes possible

for example the on-line tracking and data fusion of interventional devices in the

pre-operative CT volume, or the precise dose delivery in an oncological radiation

therapy application.

The use of LS based curve evolution has become an interesting research topic

due to its versatility and accuracy. These flows are widely used in various fields

like computational geometry, fluid mechanics, image processing, computer vision,

and materials science [6, 7, 8]. In general, the method entails that one evolves a

curve, surface, manifold, or image with a partial differential equation (PDE) and

obtains the result at a point in the evolution (see Figure 1.2). The solution can be

a steady state, (locally) stable or transient. There is a subset of problems where

only the steady state of the LS evolution is of practical interest like segmentation,

3
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(a) change of the curve (b) level set function (c) driven by a force field

Figure 1.2: Illustration of LS based methods. (a) Given a curve whose shape is
driven by forces acting on its perimeter. (b) Various considerations (automatic
handling of topological changes, numerical stability, etc.) suggest to embed the
curve in a higher dimensional function as its LS. (c) From now on, the evolution of
the higher dimensional function is considered and the desired curve is represented
implicitly as the zero LS of this function.

(shape) modeling and detection. Only this subset is considered in this work.

In addition, I do not form, design any operator or driving force/speed-field for

driving the evolution dynamics of the LSs.

The initial direction in this field was the mapping and analysis of the previ-

ously described subset of LS to many-core architectures. The experience gathered

during the experiments made me recognize and propose answers to the following

questions. Is there a family of initial conditions that was not considered on con-

ventional CPUs since it was not logical? What kind of initial condition can be

mapped optimally to many-core architectures? Is there a worst case bound on

the required number of iterations of a given LS evolving method?

The structure of this dissertation is as follows. Chapter 2 presents the work on

fast DRR rendering on GPU for 2D to 3D registration. Furthermore, a specific

aspect of optimization rules and block size dependence of GPUs are revealed.

In Chapter 3 the initial condition family for efficient mapping of LS evolution

to many-core architectures is proposed giving both the theoretical and the prac-

tical side of the material. Chapter 4 gives the conclusions of the dissertation

and summarizes the main results. Appendix A describes GPU architecture and

GPU computing. Appendix B gives an introduction to CNN computing together

with some template definitions. Appendix C shows further measurement data

connected to the DRR generation on GPUs that was left out from the main text.

4
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Chapter 2

Fast DRR generation for 2D to

3D registration on GPU

In this Chapter I present my work related to 2D to 3D registration and fast DRR

rendering. Firstly, the background and the context of my work is described in

Section 2.1. The review of the related work is presented in Section 2.2. Then the

hardwares, the algorithm, the datasets and measurement setup are described in

Section 2.3. It is followed by the results in Section 2.4. Section 2.5 discusses my

results and Section 2.6 gives the conclusions.

2.1 Background

Motion and exact position in general is a major source of uncertainty during

several kinds of intervention like radiotherapy, radiosurgery, endoscopy, interven-

tional radiology, and image guided minimally invasive surgery. Patient position

and motion monitoring plays an essential role in this scenario if it meets the

(critical) time requirements of the given application. However, to solve this task,

registration has to be applied and if the most recent results are not counted

it is performed usually in 20-1000 seconds depending on the size of the data,

the exact algorithm and the hardware. This procedure can estimate the six

degrees of freedom rigid transformation connecting the 3D (pre-interventional)

data to the (intra-interventional) monitoring data. Registration brings the pre-

5
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operative data and interventional data together in the same co-ordinate frame.

Pre-interventional data are 3D computed tomography (CT), and magnetic reso-

nance (MR) images while intra-interventional data are 2D ultrasound (US), X-ray

fluoroscopy, and optical images, or 3D images like cone beam CT (CBCT), US,

or 3D digitized points or parametrized surfaces.

In minimally invasive surgery, registration offers the surgeon accurate position

of the instruments relative to the planned trajectory, the vulnerable regions and

the target volume. In radiation therapy and radiosurgery, it adjusts the radiation

precisely to the actual position of the target volume compensating both inter-

and intrafractional motion that is of great importance for exact dose delivery.

In endoscopy, it provides augmented reality by rendering virtual images of the

anatomy and pathology and uncovering structures that are hidden from the actual

view.

Registration can be 2D to 3D or 3D to 3D. In the former case pre-interventional

CT or MR is registered to intra interventional 2D X-ray projection images. In

the latter case the intra interventional image is a CBCT, CT, MR, or US im-

age. There are methods like 2D to 3D slice to volume and video to volume

well [9, 10, 11].

The different datasets are represented in different coordinate systems. The

pre-interventional data, the intra-interventional data, and the treatment (inter-

vention room, patient) itself define their own coordinate system. So depending

on the type one can differentiate between 3D to 3D, image to patient; 3D to

3D, image to image; and 2D to 3D, image to image registration. Registration

finds the transformation T that links the different coordinate systems. In the

first case no intra-interventional image is taken but some points or landmarks are

determined and aligned on the patient and the image. So there is no direct cor-

respondence with all points of the pre-interventional data. In the second case T

maps all points that appear on both images. This case incorporates image resam-

pling and interpolation. The third case is 2D to 3D image to image registration

that may refer to volume to slice or volume to projected image registration. This

dissertation is connected to the latter one.

2D projected image to 3D image registration can be semi-intramodal [3, 4,

12, 13, 14, 15, 16, 17] where the 2D image is some kind of X-ray (fluoroscopy,

6
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subtraction angiography) and the 3D image is a CT, or multi-modal [18, 19, 20,

21, 22, 23, 24] where the 3D image is usually an MR image. Semi-intramodal

means the intensity of both images describes similar characteristic namely, the

attenuation of the X-ray beam however, the beam used for the CT has different

frequency characteristics than those used for 2D X-ray image. Multi-modal means

the quality of the tissue measured in the case of MR is independent from the X-

ray beam attenuation of the same tissue. The registration algorithms have very

similar basic steps. The first step is the initialization of the transformation T

and preprocessing of each data if needed. The second step is to make the 2D

and the 3D image comparable. This can be intensity based, gradient based, and

geometry based.

Intensity based methods are the most intuitive and among the most successful

ones. In this case, the 3D volume is projected with a given camera geometry (see

Figure 2.1). The projection can be ray-cast type (DRR image), or maximum

intensity projection type (MIP image). And this image (DRR, MIP image) is

compared to the interventional image. Geometry based methods create corre-

spondence between points, surfaces, or landmarks from the images and use only

these features to optimize T. Obviously, these processes require less data. The

gradient based method lies somewhere in the middle [25]. It creates the gradient

map first from the 3D image and projects only this map. The next step is the

calculation of the similarity measure like information theoretic type (mutual in-

formation, Kullback-Lieber divergence), norm type (‖.‖p, p = 1, 2), or correlation

type metrics to be optimized. Then an optimizer (Powell’s method, Downhill

simplex, Levenberg-Marquardt, sequential Monte Carlo, gradient descent, sim-

ulated annealing) modifies T and it starts again from creating the comparable

images. There was an evaluation of several different optimizers in radiother-

apy [26] and were found to have equal performance. The workflow of intensity

based 2D projected image to 3D image registration can be seen in Figure 2.2.

DRRs are simulated X-ray images generated by projecting 3D computed to-

mography (CT) images or 3D reconstructed rotational X-ray images. The DRR

rendering is usually the most time-consuming step and performance bottleneck

in these applications. In this Chapter, I present a solution to accelerate the 2D

to 3D registration performance by implementing and optimizing the DRR execu-

7
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Figure 2.1: DRR rendering geometry. Rays are determined by virtual X-ray
source and pixel locations on the virtual image plane, inside the ROI.

Figure 2.2: 2D projected image to 3D image registration. 2D to 3D intensity
based image registration is an iterative process. From the 3D image (sampled)
DRRs are rendered according to the camera geometry of the 2D projected image
and the actual state of the transformation. This sampled DRR is compared to the
original projective X-ray with a similarity measure (mutual information, L1, L2

norms, correlation type ones, etc.), and this evaluation is fed to the optimizer
which makes a better approximation of the rigid transformation connecting the
two datasets. This procedure is iterated until a desired confidence is reached.
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tion on state of the art Graphical Processing Units (GPUs). GPUs have become

efficient accelerators of several computing tasks. They are kilo-core devices with

high computing capacity and bandwidth.

2.2 Related Work

Although DRR rendering based registration is far the most reported method, it

has some drawbacks. First of all, DRR rendering requires high computational

complexity. Additionally, its application together with 3D MR images is limited

since there is no physical correspondence between MR and X-ray attenuation of

any matter except if special contrast agents are present. Another problem is that

by the projection of the 3D image, valuable spatial information is lost. There was

a study where a probabilistic extension was introduced to the computation of the

DRRs that preserves the spatial information (separability of tissues along the

rays) and the resulting non scalar data is handled via an entropy based similarity

measure [27]. Unfortunately, the computational burden is even higher in this

case.

There are numerous papers [3] presenting a wide spectrum of results con-

nected to the acceleration of DRR generation or reducing the required number of

renderings [33, 13, 34, 32]. These results can be divided into three classes: results

relying only on algorithmic improvements implemented on CPU, others based

on GPU computing that includes algorithmic innovations as well, and methods

reducing DRR generation to a subspace that can be a segmented volume, back-

projected ROI, or a statistical model. The third class (reduction to a subspace) is

a hybrid method since it incorporates some features of the geometric and gradient

based methods as well. Table 2.1 presents a condensed summary of the reported

results in acceleration of DRR rendering without degrading the volume into a

subspace. In addition, it presents specific results in 2D to 3D registration that

are straightforward in the way of DRR rendering, as well.

The algorithmic approaches include shear warp factorization [35], transgraph

[34], attenuation fields [16], progressive attenuation fields [14] and wobbled splat-

ting [12]. The first three approaches require considerable pre-computation (up

to 6 hours) the last two do not. The hardware based improvements use mainly

9
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GPUs [29, 15, 36, 17, 37, 38, 30, 32, 31] but not exclusively [28]. The accurate

ROI selection based on a planned target volume together with the DRR rendering

performed on the GPU in a recent work [30] indicates the viability of quasi real

time operability. Additionally, stochastic techniques are also applied by generat-

ing randomly sampled DRRs, or sampling the rendered full DRRs [13, 18, 12, 32].

There are two advantages generating and using randomly sampled DRRs. The

first reason is the DRR generating time, it is nearly always smaller compared to

the full DRR. The second reason is the drop in the metric calculation time. It

must be emphasized that the precision of the registration does not degrade pro-

vided the sampling density does not drop below 5 − 3% [13, 18, 12]. Therefore,

the evaluation presented here is essential to show how fast the DRR rendering

can be done on the GPU for registration purposes.

2.3 Materials and Methods

During the work connected to the DRR rendering the following materials and

methods were used. First, I give a condensed overview of GPUs. After the

algorithm is specified together with four optimization rules for the realization,

the datasets are itemized, and the measurement setup is depicted.

2.3.1 GPU

Recent GPU models are capable of non-graphic operations and are programmable

through general purpose application programming interfaces (APIs) like C for

CUDA [39] or OpenCL [40]. In this Chapter, C for CUDA nomenclature is used.

The description below is a brief overview of GPUs, and only those notations

are summarized that have an impact on the performance of the DRR rendering.

An extensive description of GPUs is found in Appendix A. A schematic block

diagram of a GPU can be seen in Figure 2.3(a).

A function that can be executed on the GPU is called a kernel. Any call to

a kernel must specify an execution configuration for that call. This defines not

just the number of threads to be launched but their logical arrangement as well.

Threads are organized into blocks and blocks build up a grid. An illustration

11
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(a) (b)

Figure 2.3: (a)Schematic block diagram of a GPU. (b) Illustration of logical
hierarchy of execution. Threads are organized into blocks and blocks are groupped
to form a grid.

can be seen in Figure 2.3(b). The dimensionality of a block or a grid can be one,

two or three. The number of threads in a block is referred to as block size. This

is a three tuple of positive integers but in this work only one-dimensional blocks

and grids are considered. For a given (total) number of threads, the block size has

a great impact on the performance and there have been no explicit rules to find

its optimal value for an algorithm implementation. Physically, the scheduling of

threads within a block on a streaming multiprocessor (SM) is done in fixed units.

This fixed unit is called ’warp’ and comprises of 32 threads. The warp size is

32 on all GPUs that are employed in this work. As a consequence, the vendor

advises block sizes that are multiples of 32, at least 64 to avoid underutilization

as a rule of thumb. The parallel thread execution (PTX) [41] is an intermediate,

device independent GPU language above architecture specific instruction set.

During the compilation, the kernel is translated first to PTX and then compiled

to device dependent code.

Texture memory is a special kind of memory space hidden from direct access

from a kernel function. It is a read only, cached memory optimized for spatially

coherent local access. Its caching is managed via texture processing clusters

(TPC) that is a group of SMs. Each TPC has one channel to access its cache

space. The texture memory is read through a texture reference specifying the

reading and interpolation mode.

12
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Table 2.2: GPUs used in this work. Streaming Multiprocessors (SMs) are a
compact group of cores. Texture Processing Clusters (TPCs) are responsible
for texture memory that is a cached read-only memory employed in this work.
Compute capability is composed of a major and a minor version number used by
the vendor denoting architectural versions. See Appendix A.4 for details.

8800 GT 280 GTX C2050 570 GTX 580 GTX

cores 112 240 448 480 512

SMs 14 30 14 15 16

TPCs 7 10 14 15 16

compute capability 1.1 1.3 2.0 2.0 2.0

CLKproc (GHz) 1.5 1.3 1.15 1.5 1.5

CLKmem (GHz) 0.9 1.1 1.5 2 2

bus width (bit) 256 512 384 384 384

released in 2007 2008 2009 2010 2010

2.3.2 Algorithm and realization

A ray is a line segment determined by the virtual X-ray source position and a pixel

location on the virtual image plane in the 3D scene (Figure 2.4). The logarithm

of a pixel intensity is the line integral of the ray segment inside the volume.

There are two basically different ways to map the task on a many core hard-

ware. The first possible approach is volume based. The contribution of voxels of

a volume tile is calculated for each pixel in the image, and then iterated to the

next tile inside the volume. The second one is ray based, namely, each thread

follows a ray and approximates the line integral along the ray known as DRR

pixel intensity or sampling value. The first method was rejected because random

sampling is applied on the DRRs to reduce the computational burden of calculat-

ing the objective function for a given point in the 6 dimensional parameter space.

Furthermore, one voxel can contribute to many pixels locally on the image plane.

So the internal bandwidth of the GPU would have been wasted by very inefficient

global memory reads and by repetitive uncoalesced writes.

The algorithm has two main parts. The goal of the first part is to obtain a

13
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Figure 2.4: DRR rendering. Pixel intensities are approximated line integrals
along the dashed line segments (volume interior). ROI is resampled for each
DRR rendering. Similarly, the CT position and orientation are varied by uniform
distribution.

normalized direction vector corresponding to the ray calculated by the thread,

an entry and an exit point on the volume of the given ray. This goal is reached

through several steps. First the 2D position of the pixel (within the virtual image

plane) corresponding to the ray is transformed into the coordinate system of the

CT data. This is followed by the calculation of the entry and exit points of the

ray on the CT volume. Then the normalization follows that resizes the direction

vector to be equal to a side of a voxel in the volume. The second main part is

the main loop that approximates the line integral (see Listing 2.1).

The following optimization rules were applied to maximize the efficiency of

the implementation of the algorithm:

1. Slow ‘if else’ branches shall be replaced with ternary expressions that are

compiled to ‘selection’ PTX instructions that are faster than any kind of

branching PTX instructions.

2. Data that is read locally and in an uncoalesced way shall be placed in

texture memory provided it is not written.

3. Avoid division if possible and use the less precise, faster type (div.approx,

dif.full instead of div.rnd).

4. If the denominator is used multiple times calculate inverse value and mul-

14
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tiply with it.

Rules 1, 3 and 4 have impact on the first part of the algorithm and the Rule

2 applies to the second part. A conditional statement can be realized with two

different assembly constructs. The more general is the conditional jump. All if-

else statements are compiled to conditional jumps. This instruction causes first

a 12 CLK waiting delay and then the different code paths are serialized out.

However, the other possibility is less flexible, the select (ternary) instruction is

executed within a single CLK.

Although divisions are unavoidable, their optimized usage have major impact

on the performance of the first part especially on the two newer GPUs. The two

older devices have two different divisions, a basic and a faster one. The basic has

60 CLK while the fast has a 40 CLK delay. The two newer devices are based on

the Fermi architecture that is capable of IEEE compliant floating point operations

(addition, multiplication, division, rounding modes, etc.) as well. The delay of

an IEEE compliant division is several hundred CLKs. The second rule effects the

main loop, more precisely its efficiency.

Listing 2.1: Main loop inside the kernel: line integral approximation along a

ray. ‘integ’ is the integral on the voxel intensities traversed, ‘pos’ is the actual

position inside the volume, its initial value is on the volume surface, ‘dir’ is a voxel

sized direction vector. ‘Image3D’ is the 3D texture with linear interpolation and

‘tex3D’ is a built in texture reading function. ‘C’ and ‘K’ are scaling constants

corresponding to the scanning protocol. They give a linear approximation of the

mapping between Hounsfield Unit and attenuation coefficient of the given voxel

on the X-ray hardness defined by the scanning protocol

f loat i n t e g = 0 .0 f ;

for ( int j = 0 ; j < int ( r ay l eng th ) ; ++j )

{
i n t e g += tex3D( Image3D , pos . x , pos . y , pos . z ) ;

pos . x += d i r . x ;

pos . y += d i r . y ;

pos . z += d i r . z ;

}
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Pixe lValue [ threadID ] = exp(−C∗ i n t e g + K) ;

2.3.3 Data and measurement

The rendering plane is chosen to be 300×300 mm2 with a resolution of 750×750.

An ROI size of 160×90 mm2 (400 × 225 pixels) is selected within it. The ROI

is sampled randomly: the locations of the pixels are chosen by a 2D uniform

distribution. Several sampling ratios (1.1− 9.1, 11− 44%) and full sampling are

investigated: rendering of 1024, 1536, 2048, 3072, 4096, 6144, 8192, 10240, 20480,

30720, 40960 and 90000 pixels (full sampling, 400× 225 pixels). This last case is

referred to as full ROI DRR. Each pixel intensity is calculated by one thread on

the GPU. So the number of pixels are equal to the number of threads launched

on the device.

The measurements can be divided into two sets. The first set is done on four

GPUs (8800 GT, 280 GTX, Tesla C2050, 580 GTX), the used GPU compiler

and driver version was 3.2 and 260.16.19, respectively. The hosting PC contained

an Intel Core2 Quad CPU, 4GB of system memory running Debian with Linux

kernel 2.6.32. In this case two datasets were used a CT scan (manufactured by

GE Healthcare, CT model Light Speed 16 see Figure 2.5(a)) of a radiological

torso phantom (manufactured by Radiology Support Devices, Newport Beach,

CA, model RS-330 see Figure 2.5(b)) and a scan from an annotated data set [42].

The former is referred to as phantom dataset and the latter is referred to as pig

dataset. The resolution of the reconstructed image was 512× 512× 72 with data

spacing (0.521 mm, 0.521 mm, 1.25 mm) in the case of the phantom dataset. Its

dimensions are regular for spine surgery aided with 2D to 3D image registration.

The reconstructed image of the pig dataset has the following dimensions: 512×
512 × 825 with data spacing (0.566 mm, 0.566 mm, 0.4 mm). In the first set of

measurements only the block size dependence of the optimized kernel using all

rules was measured. If the sampling ratio is below 10% the phantom dataset is

used since this scenario is relevant for 2D to 3D registration. If the sampling ratio

was above 10% the pig dataset was used. These measurements show clearly the

block size characteristics of the GPUs.

The second set of the measurements is done on two GPUs (Tesla C2050, 570
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(a) (b)

Figure 2.5: Illustration of (a) CT scanner [43] and (b) radiological phantom [44]

GTX), the used compiler and driver was 5.5 and 331.67, respectively. The hosting

PC contained an Intel Core i7 CPU, 8GB of system memory running Debian with

Linux kernel 3.12. In this case only the phantom dataset was used. This set of

measurements highlights the impact of the rules presented in Section 2.3.2 on the

DRR rendering kernel performance.

The pixel locations were resampled for each kernel execution. Similarly, for

each kernel execution the initial reference pose of the CT volume was varied

(perturbed) in the range of ±20 mm and ±15 deg by uniform distribution. The

perturbation of the volume pose and the resampling of the pixel locations mimic

the repetitive DRR rendering need of a 2D to 3D registration process. It shall

be noted that other results [13, 18, 12] showed that 2D to 3D image registration

algorithms can robustly converge with good accuracy even if only a few percent

of the pixels are sampled randomly.

2.4 Results

First, I demonstrate the performance gain caused by the rules described in sub-

section 2.3.2 in consecutive order. This is presented together with the results

from the optimization of the block size on a recent version of the GPU compiler

and driver. Then the block size dependence is demonstrated on an old version of

the GPU driver showing that this characteristic appears regardless of the driver

or the GPU.
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Table 2.3: Impact on kernel performance using rules 1 and 2 described in sub-
section 2.3.2. Kernel execution times are average of 100 executions and the unit
µs. Columns topt present execution times of kernels using all rules. Columns
tbranch present execution times of kernels using all rules but rule 1. Columns
tlinear present execution times of kernels using all rules but rule 2.

Tesla c2050 570 GTX

# of pixels topt tbranch tlinear topt tbranch tlinear

1024 234 258 553 181 206 408

1536 319 339 639 263 295 462

2048 466 490 1094 358 403 656

3072 648 689 1275 572 617 1101

4096 969 1112 1935 693 722 1310

full DRR 2666 2763 5278 2259 2375 5221

10240 2307 2560 4591 1739 1843 3738

20480 4469 4539 8623 3359 3728 6012

30720 6515 6971 13766 4961 5357 9912

40960 8808 9249 19465 6571 7359 13026

The results of the first two rules are presented in Table 2.3. The missing

branching optimization resulted in a 6-13% performance decrease, 8% in average

if the optimized version is considered 100%. The linear memory caused a 1.75-

2.4 times slowdown consequently on both GPUs based on the Fermi architecture

nearly independent from the block size and number of threads.

Rules 3 and 4 can be measured effectively only together so, in the following

these rules are covered together with the block size dependence of the execution

time. In Figures 2.6-2.13 the execution time dependence of division pattern and

block size on Tesla C2050 GPU and GTX 570 GPU. Both GPUs show similar

characteristics. First of all, the gain is 2.3 if the best result of the optimal kernel

is compared to the best result of the kernel with bad division pattern in the case

of 1024 threads. This ratio is in the range of 1.92-2.36 on the Tesla C2050 GPU

18

DOI:10.15774/PPKE.ITK.2014.005



and in the range of 1.75-2.25 on 570 GTX GPU.

From 1024 to 3072 threads (see Figures 2.6-2.9) the performance of the kernel

using the unoptimized division pattern is lower or equal to the optimized kernel

independently from the block size. These are the cases when the SMs of the

GPUs are not filled completely. However, these are the cases that are used in

2D-3D registration in most cases.

In the case of larger number of threads there is a range where the bad division

pattern performs better than the optimized one provided the same block size is

used (see Figures 2.10-2.13). The reason is as follows. In all cases the execution

time is built up of two dominating components and the block size has completely

the opposite effect on them. The first component is the pack of division operations

in the first part of the algorithm and the second one is the repetitive texture fetch

operation in the main loop. If the block size increases the effectiveness of the

divisions increases as well (see the identical nature of the first part of the green

lines in Figures 2.10-2.13). In case the block size decreases to the optimum the

effectiveness of the texture fetch with this reading pattern increases. The weight

of the two component is different in the case of the optimized division pattern

compared to the unoptimized division pattern, the execution time curve is shifted

as well. Since the weight of the divisions decreased in the case of the optimized

pattern the direction of the shift is towards the smaller number of threads in a

block.

My previous results showed similar characteristics [32] on two additional hard-

wares with older compiler and driver. These results are presented in Table 2.4

and referenced in Table 2.1.

On 8800 GT GPU optimal block size is 8 in all cases. The increase of the

execution time with respect to the optimal execution time is in the range of

57, 3 − 116, 8% the mean of the increase is 82%. On 280 GTX GPU optimal

block size is 8 in all cases. The increase of the execution time with respect to

the optimal execution time is in the range of 8, 3− 27% the mean of the increase

is 18.7%. On Tesla C2050 GPU optimal block size varies from 10 to 16. The

increase of the execution time with respect to the optimal execution time is in

the range of 5 − 23%, the mean of the increase is 9.3%. On 580 GTX GPU

optimal block size varies from 8 to 16. The increase of the execution time with
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(a)

(b)

Figure 2.6: Execution time dependence on division pattern and block size n the
case of 1024 threads. On the x axes there is the block size and the y axes is the
execution time in ms. Red curve corresponds to mean of measurements applying
all rules, while green curve corresponds to measurements applying only rules 1
and 2. (a) Shows characteristics in the case of Tesla C2050 GPU. (b) Shows
characteristics in the case of 570 GTX GPU.
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(a)

(b)

Figure 2.7: Execution time dependence on division pattern and block size n the
case of 1536 threads. On the x axes there is the block size and the y axes is the
execution time in ms. Red curve corresponds to mean of measurements applying
all rules, while green curve corresponds to measurements applying only rules 1
and 2. (a) Shows characteristics in the case of Tesla C2050 GPU. (b) Shows
characteristics in the case of 570 GTX GPU.
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(a)

(b)

Figure 2.8: Execution time dependence on division pattern and block size n the
case of 2048 threads. On the x axes there is the block size and the y axes is the
execution time in ms. Red curve corresponds to mean of measurements applying
all rules, while green curve corresponds to measurements applying only rules 1
and 2. (a) Shows characteristics in the case of Tesla C2050 GPU. (b) Shows
characteristics in the case of 570 GTX GPU.
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(a)

(b)

Figure 2.9: Execution time dependence on division pattern and block size n the
case of 3072 threads. On the x axes there is the block size and the y axes is the
execution time in ms. Red curve corresponds to mean of measurements applying
all rules, while green curve corresponds to measurements applying only rules 1
and 2. (a) Shows characteristics in the case of Tesla C2050 GPU. (b) Shows
characteristics in the case of 570 GTX GPU.
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(a)

(b)

Figure 2.10: Execution time dependence on division pattern and block size in
the case of 10240 threads. On the x axes there is the block size and the y axes
is the execution time in ms. Red curve corresponds to mean of measurements
applying all rules, while green curve corresponds to measurements applying only
rules 1 and 2. (a) Shows characteristics in the case of Tesla C2050 GPU. (b)
Shows characteristics in the case of 570 GTX GPU
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(a)

(b)

Figure 2.11: Execution time dependence on division pattern and block size in
the case of 20480 threads. On the x axes there is the block size and the y axes
is the execution time in ms. Red curve corresponds to mean of measurements
applying all rules, while green curve corresponds to measurements applying only
rules 1 and 2. (a) Shows characteristics in the case of Tesla C2050 GPU. (b)
Shows characteristics in the case of 570 GTX GPU
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(a)

(b)

Figure 2.12: Execution time dependence on division pattern and block size in
the case of 30720 threads. On the x axes there is the block size and the y axes
is the execution time in ms. Red curve corresponds to mean of measurements
applying all rules, while green curve corresponds to measurements applying only
rules 1 and 2. (a) Shows characteristics in the case of Tesla C2050 GPU. (b)
Shows characteristics in the case of 570 GTX GPU
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(a)

(b)

Figure 2.13: Execution time dependence on division pattern and block size in
the case of 40960 threads. On the x axes there is the block size and the y axes
is the execution time in ms. Red curve corresponds to mean of measurements
applying all rules, while green curve corresponds to measurements applying only
rules 1 and 2. (a) Shows characteristics in the case of Tesla C2050 GPU. (b)
Shows characteristics in the case of 570 GTX GPU
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(a) 8800 GT (b) 280 GTX

(c) Tesla C2050 (d) 580 GTX

Figure 2.14: Large thread numbers (40960) on 8800 GT, 280 GTX, Tesla C2050,
and 580 GTX in the case of the Pig dataset. The execution time of the optimized
kernel is depicted as a function of the block size. The results of the four GPUs
can be seen. It is clear that the best block size is in the range of 8-16. This is an
unexpected result since the physical scheduling of threads is made in warps (32
threads).
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Table 2.4: Optimized execution characteristics on old compiler and driver [32].
Columns ‘to’ represent the means of optimized execution times of DRR computing
kernel in µs. Columns ‘bs’ show optimized block sizes for device and thread
number pairs. Columns ‘SU’ present speedup of execution times compared to
naive block size of 256.

8800 GT 280 GTX Tesla c2050 580 GTX

# of pixels to bs SU to bs SU to bs SU to bs SU

1024 1257 160 1.12 547 96 1.61 417 10 2.44 297 8 2.44

1536 1588 10 1.25 826 160 1.3 510 14 1.97 342 16 2.07

2048 2128 14 1.37 1144 12 1.1 690 32 1.45 391 16 1.78

3072 3016 8 1.34 1480 8 1.3 886 32 1.92 550 192 1.21

4096 3922 10 1.56 1922 10 1.32 1159 64 1.57 700 128 1

6144 5815 16 1.59 2641 10 1.51 1508 64 1.64 1006 192 1.3

8192 7300 32 1.09 3424 10 1.36 2222 128 1.31 1290 256 1

full ROI 5269 128 1.34 4545 32 1.31 3989 128 1.1 2666 128 1.17

respect to the optimal execution time is in the range of 8.2− 14.8% the mean of

the increase is 11.1%.

2.5 Discussion

In this Chapter, 4 rules are presented that proved to be an essential aid to op-

timize a fast DRR rendering algorithm implemented in C for CUDA on more

contemporary Nvidia GPUs. Furthermore, a significant new optimization pa-

rameter is introduced together with an optimal parameter range in the presented

case. The presented rules include arithmetic, instruction and memory access op-

timization rules as well. The performance gain is presented corresponding to the

4 rules as well as to the block size. For thread numbers required to the reg-

istration (1024-3072) all rules caused performance gain independently from the

block size. However, outside this interval, gain from the division pattern vanishes

and changes to loss if the block size is not taken into account together with the

division pattern. Namely, for the same block size the execution time is better in

the case of unoptimized division pattern than in the case of optimized division
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pattern (see rules 3-4 in Section 2.3.2). It is illustrated in Figures 2.10-2.13. A

likely explanation is given for this phenomenon in Section 2.4.

I have showed through several experiments that the block size is an important

optimization factor and I have given the interval (between 8 and 16) where it

resides in nearly all cases for randomly sampled DRR rendering independently

from the hardware. These optimized values differ from values suggested by the

vendor in nearly all cases. Additionally, the same interval has been determined

with similar characteristics on an old compiler and driver combination on two

other older GPUs as well. This indicates that this characteristic is independent

from the compiler and the driver and it is an intrinsic property of the NVIDIA

GPUs. Further measurement data is provided in the Appendix C.

The ray cast algorithm is embarrassingly parallel: the pixels are independent

from each other and similarly, integrals of all disjoint segments of a ray are in-

dependent too. Another advantage of the algorithm is its independence from

the pixel and virtual X-ray source locations. The performance bottleneck of the

algorithm is its bandwidth limited nature. For each voxel read instruction there

are only four floating point additions. There are possibilities to improve even

further the execution time. Line integral of disjoint segments can be computed

independently. This enables the complete integral of one pixel to be calculated by

one or more blocks. A block works on a segment that can be either the complete

line inside the volume or a fraction of it. In the case of full ROI DRRs the block

and grid size can be chosen to be 2D, so a block renders a small rectangle of the

ROI. This arrangement may be more effective, since the locality is better than in

the 1D case, which was used in this work. Completely different approaches can

not be much faster in the random case because rendering is bandwidth limited.

The presented results outperform a similar attempt from the literature [31, 30].

The comparison is easier to the work of Dorgham et al. [31]. In one case nearly

the same (8800 GT and 8800 GTX) and in another the same (580 GTX) GPUs

were used. Both the 3D data and the number of rendered pixels are in the same

range (512×512×267 vs 512×512×72 in the case of 3D data and 512×267 vs

400×225 in the case of number of pixels). Furthermore, the GPU compiler and

driver is assumed to be the same because of the date of the publication. After

normalizing by the ratio between the 3D data and the number of pixels a 5.1
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times speedup appears in the case of 8800 GT GPU and 1.81 times speedup in

the case of 580 GTX GPU [32]. If different compiler and driver is allowed than

the result of Dorgham et al. on 580 GTX can be compared to the the result of 570

GTX GPU (see Table 2.3) normalized with the number of SM-s. The speedup is

2.33.

The comparison to the work of Gendrin et al. [30] is hard since, we have only

implicit information on the speed of the DRR rendering. It presents an on-line

registration at the speed of 0.4-0.7s. However, the 3D CT volume is preprocessed

by (a) intensity windowing (b) and the unnecessary voxels are cut out. The

windowing eliminates pixels under and above proper thresholds and maps the

voxel value to a 8 bit range. Furthermore, not only the ROI is remarkably smaller

than in our case but the projected volume as well. Unfortunately, there is no

precise information about the reduced volume size making the exact comparison

hardly possible.

2.6 Conclusions

Execution time optimization is in the heart of real time applications. Finding

optimization rules and optimal parameters is a non-trivial task. I showed that

the rules I defined are indeed effective optimization rules in several important

and relevant cases on more GPU hardware. I emphasized the effect of block size

on the performance. Furthermore, I determined its optimal range for the DRR

rendering. Of course, these results should help in any other cases when the task

contains calculation of random projection.

To automatically register the content of an X-ray projection to a 3D CT,

20-50 iteration steps are required. For each iteration, 10-20 DRRs are computed

depending on the registration procedure. On the whole this amounts to 200-700

DRRs to be rendered for a registration to converge. DRR rendering is the most

time consuming part of the 2D to 3D image registration. Following the presented

implementation rules, the time requirements of a registration process can be

decreased to 0.6-1 s if full-ROI DRRs are applied. If random sampling is used

the time requirement of registration can be further reduced to 0.07-0.5 second

resulting in quasi real time operability. This achievement allows new services and
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protocols spread in the practice in the fields where real time 2D to 3D registration

is required like patient position monitoring during radiotherapy, device position

and trajectory monitoring and correction during minimally invasive interventions.

The code-base was integrated into a prototyping framework of GE. As for my last

information the company considered the possibility to use the module in later

upcoming softwares.
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Chapter 3

Initial condition for efficient

mapping of level set algorithms

on many-core architectures

This Chapter is organized as follows. Section 3.1 summarizes the related work.

Section 3.2 describes the interface propagation in an introductory level and pre-

sents the fast LS method of Shi. Section 3.3 gives the necessary definitions and

tools to handle rigorously the theoretical results presented in Section 3.4. It is

followed by Section 3.5 presenting the proofs of the Theorems. This part of the

dissertation focuses on the initial condition and its impact on the evolution in both

theoretical and practical ways. The theoretical part is covered in Sections 3.4 and

3.5. The context of the practical side is laid down in Section 3.7 namely it shows

the conventional and the proposed initial condition families. This Section helps to

understand the significance of the results. Section 3.6 describes the two hardware

platforms namely, a mixed mode CNN-UM implementation and a GPU, that

executed the two case studies described in Section 3.8. This Section also presents

some examples of the Theorems and demonstrates a segmentation example. It is

followed by Section 3.9 comparing the Shi LS evolution against a numerical PDE

approximation in three cases using different force fields. Section 3.10 gives the

discussion and Section 3.11 concludes this Chapter.

The use of Level Set (LS) based curve evolution has become an interesting
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research topic due to its versatility and accuracy. These flows are widely used

in various fields like computational geometry, fluid mechanics, image processing,

computer vision and material science [6]. In general, the method entails that one

evolves a curve, surface or image with a partial differential equation (PDE) and

obtains the result at a point in the evolution.

There is a subset of problems where only the steady state of the LS evolution

is of practical interest like segmentation and detection. In this Chapter, only this

subset is considered. In addition, I do not form any operator or force field (F ) for

driving the evolution of the LSs. However, two theoretically worst case bounds

of the required number of iterations are proposed to reach the steady state for a

well defined class of LS based evolution. These bounds depend only on the initial

condition. Furthermore, the bounds only allow an extremely small number of

iterations if the evolution is calculated with a properly chosen initial condition.

These kinds of evolutions are calculated very quickly on many-core devices.

The subject of this Chapter is both theoretical and practical. The theoretical

side is clearly two new Theorems in the worst case of the required number of

iterations of the LS evolution of [45]. This evolution omits the numerical solution

of the underlying PDE and successfully approximates it with a rule based evolu-

tion. It is based on the sign of the force fields (F ) normal to the curves to be to

change. Theorem 1 gives a general bound and Theorem 2 assumes a special kind

of discrete convexity defined in Section 3.3.

The practical side is presented through two case studies, namely, the LS evo-

lution of Shi can be mapped in a straightforward way on two completely different

many-core architectures. With a lot of small curves in the initial condition, which

would be unfeasible on a conventional single core processor, the proposed The-

orems ensure small number of iterations. Additionally, with the change in the

initial condition (instead of one curve, a lot of small curves are used) the com-

puting width of the many-core platform is utilized.

3.1 Related Work

The first successful method to speed up the LS evolution was introduced by [46].

It introduces the narrow band technique. The original LS method required cal-
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culations over the entire domain, while the narrow band method constructs a

narrow band (also called tube) around the zero LS of φ and restricts the numer-

ical solution of the LS PDE to this band. If the zero LS reaches the boundary of

the narrow band a new tube is constructed. A local method was proposed [47]

with better big O characteristics. Both methods are labeled as narrow banding

methods.

However, I am not presenting any PDE operators and do not design any

force field. Instead, I direct the reader to the classical book of Sapiro [7] who

gives a detailed picture from the art of PDE operator design for a given purpose.

Furthermore, a short summary is given here which gives a picture of this field.

In general two approaches are possible; (i) an energy functional is constructed

and this functional is minimized; or (ii) the equation is formed following certain

physical rules. The two approaches can replace each other if some conditions are

met. There are several results [48, 49, 50] regarding edge, region and model based

evolutions. Edge based methods use implicitly the gradient to drive the evolution

of the curve [51, 52]. Unfortunately, the capture range of these methods are rather

small and require close initialization. Region based evolutions are driven not by

the gradient but by the intensity and this is corrected by regularization terms [48].

Model-based approaches have an initial a priori information on the object and

incorporate this to the energy functional [53]. It can be seen that energy functions

evolved from the simplest gradient to the more complicated quantities. This has

two reasons: (i) more and more complicated images are processed and segmented

and (ii) the evolution may be trapped in a local minima. There are efforts to

maintain the second reason. It has been shown that the evolution can depend

on the chosen metric [54] and that the classical scalar product based L2 space

is unsuitable for shape analysis. In [55] Sobolev norm was used instead of the

unsuitable L2 norm and showed that this norm allows new energies to implement

otherwise considered unfeasible due to convergence or other problems.

There are multiple results reporting successful mapping of various curve evolu-

tion methods to many-core platforms. The first attempt to map an LS evolution

to graphics hardware was presented in [56]. In this work the full LS model in

2D was solved without regularization term and the operations had to be cast to

graphics rendering pipeline primitives. In [57] the authors presented an inter-
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active 3D sparse solver for GPU. This realization uses again the graphics API

(OpenGL) and the rendering pipeline. The specialty of this work is the possibility

to interactively tune many parameters of the evolution. Two later works [58, 59],

applied the computing unified device architecture (CUDA) of NVIDIA. Both pa-

pers worked with 3D volumes. The work in [58] mapped a sparse solver while

others [59] used a higher order scheme to evolve the LSs. Cellular Neural Net-

works (CNN) [60] proved to be an inspiring construct. There have been results

regarding the mapping of LS like evolutions to CNN [61, 62, 63]. In [61] the

authors successfully mapped a nonlinear, global histogram modification operator

to local nonlinear CNN dynamics. The PDE was discretized in space and was

converted to coupled nonlinear ODEs. The histogram modification was combined

with embedded morphological processing to get a smooth result. Later, [63] real-

ized an on-line boundary detection algorithms, called topographic cellular active

contours based on curve evolution to extract the volume of the right atrium.

More specifically, three types of evolutions are realized on a CNN-UM ASIC im-

plementation (ACE-16k). These methods are partially based on the fundamental

work of Kass et al. [64] and on the LS evolution [65, 66]. These papers and re-

sults indicate that various LS evolutions can be mapped and used on different

many-core platforms. In this Chapter, I’m focusing on a given type of evolution

and for this evolution I give two Theorems upper bounding the required number

of iterations of the evolution process.

3.2 Background theory of LS

I present here the formulation of boundary value and initial value PDE which

describe the interface motion. These formulations could lead to two efficient

schemes, to the Fast Marching Method and to the Narrow Band Level Set Method.

However, I focus here on the theoretical aspects and only the LS based formu-

lation is discussed in details. Additionally, some computational advantages are

summarized. Later the evolution method of Shi [45] is described that omits the

numerical approximation of the underlying PDE and uses a rule based approach.

Since my work is based on his result, this method is covered in more detail.
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3.2.1 Formulation of interface propagation

Consider a boundary, a curve in two dimensions or a surface in three dimensions

separating two regions. Imagine that this curve is modified by a force field F . The

goal is to track the motion of the interface during the evolution. If F has both

tangential and normal component then only the normal component plays role in

deforming the shape of the interface. It shall be noted that F changes the curve

meaning its parametrization and shape as well, but the tangential component

changes only the parametrization and the normal only its shape. The proof is

simple and based on the chain rule, for details see chapter 2 of [7]. The force field

F , may depend on many factors, can be written as:

F = F (L,G, I) (3.1)

where L, G and I stand for local, global and independent properties. Local

geometric features are curvature, normal direction, etc. Global properties are

those that depend on the shape and position of the front. For example it may

incorporate terms with integrals along the front and associated equations. Inde-

pendent properties are those that are independent of the space of the front such

as underlying fluid velocity that passively convects, transports the front.

A large part of the challenge in these problems is to construct an adequate

force field F or energy function E to be minimized. This is a separate problem

that will not be discussed in this dissertation. I direct the interested reader

to [6, 7] and other works of Osher, Malladi, Mumford, Sethian and Sapiro.

Let us fix for a moment F > 0. Than the front moves always outward. A

possible way to characterize the position of the interface is to extract it from

the arrival time of each position. Since the sign of F is fixed, the arrival time is

unique and it is a function. Using the simple fact that distance = rate ∗ time, I

have got:

dx = FdT, 1 = F
dT

dx
(3.2)

In multiple dimensions ∇T is orthogonal to the LSs of T, so:

|∇T |F = 1, T = 0 on γ0 (3.3)
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where γ0 is the initial location of the boundary. Thus, the motion is characterized

as the solution of a boundary value problem. From the boundary value scenario

the fast marching methods emerged as effective schemes, but these methods are

not used in this thesis.

Suppose now that the front moves in both directions because there are no

assumptions on the sign of the force field. So it can move over a point several

times and the arrival time will not be unique and it is not a single valued function.

The interface can be embedded into a higher dimensional function φ as its zero

level set. Now the evolution of the interface is linked to the evolution of the LS

function φ through a time dependent problem that is of initial value type. Now

I have:

φ(γ(t), t) = 0. (3.4)

From the chain rule,

φt +∇φ(γ(t), t) · γ′(t) = 0. (3.5)

Since F is responsible for the speed in the normal direction, than γ′(t) · n = F ,

where n = ∇φ/|∇φ|. This yields to the classical LS evolution equation:

φt + F |∇φ| = 0, (3.6)

given φ(x, t = 0).

There are several advantages of the formulation described above. It is un-

changed in higher dimensions. Topological changes in the evolving front are han-

dled naturally since it is a LS of φ. This formulation relies on viscosity solutions

of the associated PDE in order to guarantee the unique and entropy-satisfying

weak solution. These analytical weak solutions can be approximated by computa-

tional schemes that were developed to handle hyperbolic conservation laws. The

interested reader is directed to chapters 2-6 of [6] where the material summarized

here is discussed in a wider extent with a mathematically rigorous way.
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3.2.2 Fast LS without solving PDEs

I have chosen the LS method of Shi [45] because of the following reasons. First,

its memory footprint is extremely small compared to other narrow banding like

algorithms. The size of the active front recalculated in every iteration cycle is the

smallest, only two pixels wide. This decreases the computational pressure as well.

Furthermore, the calculation does not contain any data dependent conditional

branching. This fact indicates the possible effectiveness of the mapped algorithm

to an arbitrary many core device and makes easier to do the de facto topological

mapping of the algorithm.

Now the LS method of Shi [45] is summarized. This method is based on a key

observation made during the analysis of the evolution of LS on regular grid. In

the LS method, the curve γ is represented implicitly by the LS function φ. Let us

assume that φ is defined over a domain D ⊆ Rk, where (k ≥ 2) and the domain

is discretized into a grid. D may denote both the domain and the set of points

from the grid.

Given the function φ, two sets of neighboring grid points can be uniquely

defined Lin and Lout for γ as shown in Figure 3.1(a).

Lin = {x|φ(x) < 0 and ∃y ∈ N(x) that φ(y) > 0}, (3.7)

Lout = {x|φ(x) > 0 and ∃y ∈ N(x) that φ(y) < 0} (3.8)

where N(x) is the discrete neighborhood of x. As it can be seen in Figure 3.1,

Lin is the set of neighboring grid points that are inside γ and Lout is the set

of neighboring points that are outside. For a given γ, the choice of φ can be

arbitrary but the two sets are uniquely defined.

To evolve a curve, one must solve numerically the underlying PDE, see Equa-

tion (3.6), according to the classical LS methods. As φ evolves, so does γ. This

is nicely illustrated in Figure 3.1. However, at points A and B the curve moves

outward and inward respectively and the corresponding values of φ change sign

but this is done in a computationally intensive way (the PDE is solved numeri-

cally according to a proper numerical scheme and solver). The key observation is

as follows. The same motion can be done by simply switching point A from Lout
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(a) before step (b) after step

Figure 3.1: Curve representation and motion by Lin and Lout. Motion of the
curve can be obtained by switching points between Lin and Lout. This is done
according to the sign of F at the points of the sets so the computationally intensive
numerical approximation of the LS PDE is omitted.

to Lin and switching point B from Lin to Lout if only the final state of the zero LS

is of actual interest. Based on this observation, one shall examine only the sign

of the speed field F on the points of Lin and Lout and if some required conditions

(described later) are met, the corresponding point is switched from one set to the

other and vica versa.

φ(x) =



−3, if x ∈ Ω and x /∈ Lin inner points

−1, if x ∈ Lin

1, if x ∈ Lout

3, if x ∈ Γ and x /∈ Lout outer points

(3.9)

Where Ω is the object region and Γ is the background region.

For faster computation the range of φ is limited to {−3,−1, 1, 3} as it is

presented in Equation (3.9), similarly, the possible values of F are restricted to

{−1, 0, 1}. This restriction to φ is a rough approximation of the signed distance
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function. Additionally, from the value of the LS function φ at a given point

its location is determined relative to interface γ. Before the algorithm itself is

described two procedures are defined.

The first one is called switch in and is described in Algorithm 3.1. This

procedure removes a point from Lout, places it in Lin and performs some additional

operations like updating φ and the neighboring pixels. The second one, switch out

is depicted in Algorithm 3.2, and it is quite similar. It takes a point from Lin,

places it in Lout and performs the same required additional operations.

Algorithm 3.1 Switch in operation

Require: x ∈ Lout

1: function switch in(x)
2: delete(Lout, x)
3: add(Lin, x)
4: φ(x) ← −1
5: for ∀y ∈ N(x) do
6: if φ(y) = 3 then
7: add(Lout, y)
8: φ(x) ← 1
9: end if

10: end for
11: end function

Algorithm 3.2 Switch out operation

Require: x ∈ Lin

1: function switch out(x)
2: delete(Lin, x)
3: add(Lout, x)
4: φ(x) ← 1
5: for ∀y ∈ N(x) do
6: if φ(y) = −3 then
7: add(Lin, y)
8: φ(x) ← −1
9: end if

10: end for
11: end function
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Algorithm 3.3 Shi LS evolution

1: procedure evolve(Na,Lout, Lin)
2: i ← 0
3: stopCondition ← calculateStoppingCondition(Lout, Lin, i, Na)
4: while stopCondition do
5: calculateForce(Lout,Lin)
6: for ∀x ∈ Lout do . scan Lout

7: if F (x) > 0 then
8: switch in(x)
9: end if

10: end for
11: cleanLin()
12: for ∀x ∈ Lin do . scan Lin

13: if F (x) < 0 then
14: switch out(x)
15: end if
16: end for
17: cleanLout()
18: end while
19: end procedure

Algorithm 3.4 Stopping condition for Shi LS evolution

1: function calculateStoppingCondition(Lout, Lin, i, Na)
2: if i ≥ Na then
3: return true
4: end if
5: stop ← true
6: for ∀x ∈ Lout do
7: if F (x) > 0 then
8: stop ← false
9: return stop

10: end if
11: end for
12: for ∀x ∈ Lin do
13: if F (x) < 0 then
14: stop ← false
15: return stop
16: end if
17: end for
18: end function
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The pseudo-code of the main loop of the Shi LS evolution can be seen in

Algorithm 3.3. At every iteration the force field for all points within the two sets

are computed first. After that, the two lists are scanned sequentially to evolve the

curve first outward later inward. After scanning each sets some points become

interior or exterior points due to the newly added neighboring points. These

points are eliminated from the sets by the two cleaning processes (see lines 11

and 17 in Algorithm 3.3). Scanning Lout and applying switch in() moves the

curve outward while scanning the other set and applying the other switching

operation realizes an inward motion. The stopping condition is as follows either

the predefined maximum number of iterations are reached or the curve reached

a steady state namely the force field on each pixel within the active front has the

correct sign, and no further motion is required. The pseudo-code is available in

Algorithm 3.4. A detailed description and analysis of this method can be found

in [67].

3.3 Definitions

Now the necessary abstract elements are constructed and defined to be able to

formulate the theoretical worst case bounds in Section 3.4. Although, the ma-

jority of the definitions are straightforward, there are some delicate differences in

some of the definitions like minimum and minimal path which have great impor-

tance. Furthermore, these constructs and definitions may not completely be the

same that are given in discrete topology. The definitions are nicely illustrated in

Figure 3.2 and the caption describes some further details. In this Chapter these

definitions are used all along.

Definition 1 (path). A path p between x and y is a sequence of points xl(l =

0, 1, ..., L) ∈ D subject to xl ∈ N(xl+1) and x = x0 and y = xL.

Definition 2 (connected region). A set of points A forms a connected region if

and only if there exists a path p between every x,y ∈ A subject to ∀xl ∈ p is an

element of A.

The length of a path is a non-negative integer (L) and L = |p| − 1, where |.|
denotes the number of points in the path.
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(a) path (b) connected region (c) minimum path

(d) minimal path, diameter (e) convex region (f) configuration

Figure 3.2: The illustration of definitions: (a) shows an eight connected path
(light gray) between the two endpoints (dark gray); (b) shows a connected region
in blue, notice that there is at least one path from each point to all the other
points; (c) shows a four and an eight connected (green, and red respectively) min-
imum path between the two endpoints (dark gray); (d) shows two minimal paths,
each one is inside the blue connected region, furthermore, the four connected one
(green) is the four connected diameter of the connected region as well; (e) shows
a convex region, the blue one is an eight connected convex region while adding
the black points to the blue ones the region becomes a four connected convex
region; (f) shows a configuration, light red represents Lin points, dark red points
are inner points, blue points are Lout points and white ones are outer points.
This represents the actual state of φ together with Ω, the object region and Γ the
background region.
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Definition 3 (minimum path). A path pmin is a minimum path, if @p′ 6= pmin,

subject to Lp′ < Lpmin
and xp′

0 = xpmin
0 ,xp′

L = xpmin

L .

between x and y.

Minimum path is usually not unique and can depend on the chosen discrete

neighborhood. The distance between x and y is a non-negative integer that is

exactly the length of a minimum path between the two points. This is a real

metric and is going to be referred to as dd.

Definition 4 (minimal path). Within a connected region A, a path p between x

and y is minimal if and only if A∩p = p and there are no shorter p′ paths within

A between x and y.

Like the minimum path, the minimal path may not be unique and may depend

on the chosen neighborhood.

Definition 5. The diameter B of a connected region is the longest minimum

path having at least its endpoints within the connected region.

Definition 6 (convex region). A connected region is considered as convex if all

minimal paths are minimum paths at the same time.

Definition 7 (configuration). A configuration C = {D × φ} is the actual state

of the LS function, namely, the shape of the zero LS and the connected regions

(Ωp,Γq) composing the object and the background region.

Now I have all the necessary tools to establish proper worst case bounds on

the number of iterations required by the Shi LSM to converge.

3.4 Theoretical Results

Theorem 1 (general bound). Let the true object region be denoted by Ω∗ and let

it be composed of P connected regions Ω∗p (where p = 1...P ). Similarly, let the

true background region be denoted by Γ∗ and let it be composed of q connected

regions Γ∗q (where q = 1...Q). Assume that F > 0 in Ω∗ and F < 0 in Γ∗. At

initialization, C is chosen such that Ω = ∪iΩi, Γ = ∪jΓj and Ω∗p ∩ Ω 6= ∅, ∀p =
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1...P and (D \ Ω) ∩ Γ∗q 6= ∅, ∀q = 1...Q. Then, the Shi LSM converges to Ω∗

in Nit ≤ max(maxi(|Ωi|),maxj(|Γj|)) iterations, where |.| denotes the number of

elements in the region.

Theorem 2 (convex bound). Let the true object region Ω∗ be composed of P

connected regions Ω∗p (where p = 1...P ) and the true background region Γ∗ be

composed of q connected regions Γ∗q (where q = 1...Q). Assume that F > 0 in Ω∗

and F < 0 in Γ∗. At initialization, C is chosen such that Ω = ∪iΩi, Γ = ∪jΓj

and Ω∗p ∩Ω 6= ∅, ∀p = 1...P and (D \Ω)∩ Γ∗q 6= ∅, ∀q = 1...Q. If either Ω∗ or Γ∗

is convex than the Shi LSM converges to Ω∗ in Nit ≤ max(maxi(BΩi
),maxj(BΓj

))

iterations, where B denotes the diameter of the given region.

Theorem 1 gives a general upper bound on Nit and the iteration cycle checking

the stopping condition is not necessary if the number of iterations has reached this

upper bound. This worst case bound is approached if Ω∗ or Γ∗ are degenerated

in some sense (see Figure 3.6(d) and Table 3.2 for example). However, in many

cases the stricter bound can be applied. The proofs are presented in the next

Section, namely in Section 3.5.

The possibility of choosing the initial shape of the regions Ωi and Γj is essential

to minimize the required number of iterations. It shall be noted that according

to the Shi LSM, all calculations are done in the active front that have direct

connection with the initial shape of the aforementioned regions. Making both Ωi

and Γq smaller, the smaller the worst case bounds become. This statement leads

us to Section 3.8, namely, how to construct initial conditions that are minimal or

optimal in the sense of worst case bounds. In the same time, evolutions started

from the proposed initial conditions are more effective on a many-core architecture

than the ones started from conventional initial conditions [68]. It should be noted

that the presentation above does not depend on the dimensionality of the data so

the Theorems are general from this point of view and the dimension of the region

can be arbitrary.
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3.5 Proofs of the Theorems

Proof of the general bound. Let Ωa = Ω∗∩Ω =
⋃P

p=1 Ωa
p. These are fixed sets and

will not change during the evolution process. Furthermore, F (xk) > 0, ∀xk ∈ Ωa

which ensures that Ωa ⊆ Ω as Ω evolves.

At initialization for each Ωi two cases are possible. First case: Ωi ∩ Ω∗ = ∅.
Then Ωi ⊆ Γ∗ so, F (x) < 0. On the boundary of Ωi, Lin,i, a switch out operation

is applied so the diameter of Ωi becomes smaller with two in every iteration.

Second case: Ωi ∩ Ω∗ 6= ∅. Then the longest possible path in Ωi gives the upper

bound of the number of iterations that is obviously upper bounded by the number

of points in Ωi. Following similar arguments, also this can be shown for Γj. Taking

the maximum of the upper bounds completes the proof of Theorem 1.

One can argue that this proof gives a stricter bound than it is stated in the

corresponding theorem. Even so there is a constant multiplier C ≤ 1 between the

number of pixels in a connected region and the longest possible path. C = 1 if

the object is a one pixel wide long line, it is asymptotically 0.5 if it is a curved one

pixel wide path with one pixel wide separation. So setting the bound to exactly

the number of points is reasonable and valid.

Proof of the convex bound. Obviously, the first case of the proof of Theorem 1

obeys the desired bound. The second case is as follows. Since Ω∗ is convex the

length of the longest path is bounded by the diameter of Ωi. In worst case Ωi∩Ω∗

is one of the endpoints of the diameter. Following similar arguments, this can

also be shown for Γj. Taking the maximum of the diameters in each initial and

background region completes the proof of Theorem 2.

3.6 Many-core hardware platforms

In this work two different hardware platforms are used. As it was depicted in

the beginning of the first Chapter, the many core architectures have become a

must due to physical constraints like power dissipation and wiring delay. In this

context the local connections become more and more attractive. This fact appears

in both platforms. The very nature of CNN is based on local connections while
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connection inside the GPU is realized mainly as memory access that have three

different types depending on the accessibility level and the access delay of each

type nicely illustrates the heavy cost of global communication.

Firstly, the CNN-Universal Machine (CNN-UM) is covered together with the

specific hardware implementation that was used during the experiments. Then

the necessary notions and details of GPU hardware are summarized. This is not

an extensive description. The unfamiliar reader is directed again to Appendix A

and B, where the material regarding GPUs and CNN-UM is covered in a wider

extent.

3.6.1 CNN-Universal Machine

The experiments were done on an Eye-RIS v1.3 vision system (VS) (Anafocus

Ltd., Seville, Spain). It consists of a Q-Eye, Altera NIOS-II 32-bit RISC mi-

croprocessor and on chip RAM. The Q-eye is a QCIF (176 × 144) monochrome

image sensor focal plane processor (vision system on a chip, VSoC) with 7-8 bit

de facto accuracy. It is a fine grain CNN-UM implementation with nearest neigh-

borhood capable operations. There is one to one correspondence between each

sensor/input, CNN cell and output. Additionally, each cell can reach multiple

local analog memory and local logic memory elements. These elements are phys-

ically next to the CNN cells. The microprocessor handles the memory, the I/O

ports and organizes the execution. It can be programmed in C. The consump-

tion of the complete VS is below 750 mW. The VS was programmed using the

Eye-RIS Application Development Kit, a complete Eclipse based development

environment.

3.6.2 GPU

Recent GPUs are feasible for non-graphic operations as well and programmable

through general purpose application programming interfaces (APIs) like C for

CUDA [39] or OpenCL [40]. In this Chapter, OpenCL nomenclature is used.

The description below is a brief overview of GPUs. For detailed description of

GPU architecture and GPU computing see Appendix A. In addition to the basics,

it gives only those details that have great influence on the LS evolution.
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A function that can be executed on the GPU is called a kernel. Any call to a

kernel must specify an NDRange for that call. This defines not only the number

of work-items to be launched, but also the arrangement of groups of work-items

to work-groups and work-groups to the NDRange. The dimensionality of a work-

group can be one, two or three.

Physically, the elementary computing element is the computing element. A

few computing elements together with a given amount of SDRAM, scheduling

unit(s) and special function unit(s) form a computing unit (CU). A device consists

of several CUs and a global memory (off-chip).

The experiments were done on an NVIDIA 780 GTX GPU. It has 12 CUs,

192 computing elements and 48KB shared memory in each CU and 3 GB global

memory. The hosting PC runs on Intel core i7-2600 CPU @3.4 GHz with 8 GB

system memory, the operating system is Debian with Linux kernel the GPU driver

version is 325.15.

3.7 Initial conditions

The final state of the LS evolution depends on two factors. The first one is the

applied force field. The second one is the initial state of the LS function also

referred to as initial condition. Like it was mentioned in the introduction, the

question of the properly constructed force field is not discussed here. However, I

give an overview of the commonly used initial conditions. This helps to under-

stand the impact of the theorems. Bearing in mind that there are force types

that do not or hardly depend on the initial condition, for example, the region

active-contour [69], average misclassificational probability functional [70] or the

active contour without edges [48] methods. First, this section describes and il-

lustrates the commonly used initial condition types (also referred to as sparse

initial condition) and in the second part it presents the proposed initial condition

(also referred to as dense initial condition) family keeping the required number

of iterations low, fitting more naturally on many core devices [68].
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3.7.1 Common initial conditions

The most common initial condition is a single curve. The size, shape or placement

requires human specification or depends on the available a priori information that

is available for the specific application. However, in most publications it is a single

square or circle either covering nearly the whole image or just a tiny spot inside

the true object region.

Some examples for common initial conditions are illustrated in Figure 3.3(a)-

(h). The interested reader is directed to the literature referenced in this chapter to

find more examples for the commonly applied initial conditions. There are several

advantages of these kind of initial conditions. First. there is full control on the

convergence and the selectivity of the evolution. Second, a broader type of force

fields can be applied since with properly chosen initialization the resulted local

minima can coincide with the desired or true object in more cases (for example

see purely edge based forces [51, 52]).

However, there are some drawbacks as well. First, this kind of initial condition

may miss some significant parts of the true object region provided it may not

contain or intersect with it in every cases. To avoid this problem either a priori

information shall be incorporated or human interaction is required to provide

a sensible initial curve. There are no bounds on either the required number

of iterations or other measures describing the required number of artificial time

steps or like. Furthermore the calculations are slow if the initial condition is

far (in Hamming, Hausdorff or Wave metric) from the true object. Another

characteristic which is neither advantage nor disadvantage that this kind of initial

condition fits well to a single CPU core.

3.7.2 Proposed initial condition family

Theorems 1 and 2 gives bounds on the required number of iterations. The value

of these bounds depends only on the initial condition. Theoretically the smaller

the connected regions in the initial condition the smaller the bounds are. This

implies initial conditions with as small connected regions as possible supposing

it converges to the desired output. This requires usage of proper force functions

being able to handle the initial condition family.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3: Illustrates the commonly applied initial consditions. (a) courtesy of
T. Chan and L. Vese. (b) courtesy of A. Lefohn, J. Cates and R. Whitaker, (c)
courtesy of N. Joshi and M. Brady, (d) courtesy of G. Sundaramoorthi, A. Yezzi,
A. C. Mennucci and G. Sapiro, (e) courtesy of M. Roberts, J. Packer, M. C. Sousa
and J. R. Mitchell, (f) courtesy of Y. Shi and W. C. Karl, (g) courtesy of Y. Shi,
(h) courtesy of Y. Shi, (i) courtesy of H. Wu, V. Appia and A. Yezzi.
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(a) (b) (c)

Figure 3.4: Proposed initial condition family. The whole area of the image is
covered with small active fronts. It keeps the required number of iterations under
the desired number. The size and shape of the tiny curves can tuned as required
and of course a priori information can be incorporated as well. (a) shows an
8 × 8 pixel block of an initial condition minimizing the bounds. (b) shows an
initial condition which theoretically does not minimize the bound due to the large
connected region outside the curves. However, practically there is extremely little
chance that the true object region lies completely outside the curves. (c) shows
an initial condition incorporating a priori information as a form of a spatial mask.

A few illustrations of this initial condition family can be seen in Figure 3.4.

The advantages of this family are as follows. Many core implementations are

significantly faster if the evolution is started from this kind of initial condition

(up to 18× on GPU on 4Mpixel images, see Table 3.1 for measurement data) [68].

However, it must be noted that this kind of initial condition is not completely

unknown (see Figure 3.3(i)), it is not widely used according to the literature.

Furthermore, there has not been carried out any analysis in this field to the best

of my knowledge.

3.8 Experiments

Theorems 1 and 2 give upper bounds on the required number of iterations (Nit).

A practical proposal of this Chapter is to construct configurations that have as

low worst case bounds on Nit as feasible and can be computed efficiently on

many-core architectures. This scenario is presented and verified through two

case studies. The first one is on an Eye-RIS v1.3 VS that contains a hardware
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implementation of the CNN-UM and the second one is on a GPU [68].

The whole image is covered with many-many small active fronts, and as a

consequence, the intersection condition of Theorems 1 and 2(Ω∗p ∩ Ω 6= ∅) is au-

tomatically fulfilled. Some interesting aspects of this statement will be presented

in the discussion.

3.8.1 A case study on CNN-UM

In Appendix B a short overview is given on the CNN-UM. Now the details of the

mapped algorithm are described. The perspective in this scenario is the prece-

dence of locality which becomes increasingly important as the technology feature

size decreases and delay together with power consumption of global communica-

tion increases. As a consequence, the local communication (cellular nature) will

become the only viable option.

The mapped algorithm is based on the set theoretic description of the LS

function. In addition to Lin and Lout two other sets are defined representing the

inner points of Ω and outer points of Γ

Fin = {x ∈ D|φ(x) < 0 ∧ x /∈ Lin} (3.10)

Fout = {x ∈ D|φ(x) > 0 ∧ x /∈ Lout} (3.11)

In other words, the respective value of φ of the neighbors of each point in these

sets have the same sign as the value of φ at the point itself.

Figure 3.5 shows the UMF diagram of the algorithm together with the load

and store operations. Templates AND, OR denote elementary logic, ANDNOT

performs logic subtraction (Op1∧¬Op2), DIL4 and ERODE4 are the 4 connected

dilatation and erosion (spatial logic). All templates are of the nearest neighbor

kind and are described in details in Appendix B. In the ‘Update Lout’ phase,

foutmask is computed first. It contains the points that are going to move out-

ward. foutmask is used in three different ways. It is subtracted (ANDNOT)

from Lout, added (OR) to Lin and dilated (DIL4, ANDNOT, AND) to generate

its own outer neighbors. This is the new stepped Lout part and the unchanged

parts are added with an OR operation. The resulting set is finalized as the new
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Figure 3.5: UMF diagram of LS evolution. Rectangles denote memories, bold
short horizontal lines with capital operator names on the left denote template
operations. Dashed lines indicate the phases corresponding to the four cycles of
the Shi LSM. Black rectangles denote final forms of sets in that phase. Thin
lines ending with arrows denote data-flow from memory to an operation, from an
operation to an operation or from an operation to a memory.
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Lout (black rectangle in Figure 3.5). From the old Fout the new Lout is subtracted

(ANDNOT) to get the new Fout (again black rectangle in Update Lout phase).

Finally the modified Lin is added to Fin. In the ‘Clean Lin’ phase the merged

foutmask, Lin, and Fin is the only input. The new Lin is the outer pixel layer of

this merged input. The new Fin is obtained by a simple four connected erosion

while Lin is the result of a subtraction. ‘Update Lin’ and ‘Clean Lout’ are nearly

identical, only the input of the operations are switched, and another mask is used

(finmask).

In this case study the force field F is assumed to be known and quantized to

-1, 0 and 1. Simple templates are used without feed-back dynamic (non central A

template elements are zero). This ensures the template operations to be robust

and fast. The different types of discrete neighborhoods can be implemented

through the type of the dilation and erosion. In this specific case 4 connectedness

is used. All template operations reach their stable solution within 2τ .

The algorithm is implemented on the Eye-RIS 1.3 VS. One step of the algo-

rithm is performed in 400− 440µs on a QCIF image. It must be noted that the

actual computing is finished within 60−70µs and the remaining time (340−370µs)

is required for the data movement from the main memory of the Eye-RIS (on the

Altea NIOS-II microprocessor) to the Q-Eye chip memory.

3.8.2 A case study on GPU

The iteration process is divided into two steps. The first one is the planner step

and the second is the evolution step. The elementary block of the image that

is minimally processed is a tile. Its size in our case is 16 × 16 pixels both on

the input and φ image. The planner creates the so-called plan. It contains the

position offsets of the tiles that are calculated actually in the iteration step. The

pseudo-codes of both kernels are presented.

Functions have ‘(...)’ after their names. The ith element of an array is ac-

cessed by the ‘[i]’ operator. Identifiers starting with capital ‘L’ denote variables

that are shared among the threads of the same work-group and are placed in

the local memory. The only exception is the ‘LID’ variable. The function call

‘barrier(Local)’ serves as a synchronization point within a work-group namely,
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all threads of the work-group shall execute this command before any of them

can issue a new instruction. This is required to ensure data consistency of the

local variables used for local data share. The hardware can execute global atomic

operations. These operations are thread safe but the order of the serialization

shall assumed to be random. Furthermore, it can return the state of the written

variable before the actual, de facto operation (for example addition) takes place.

The pseudo-code of the planner kernel is provided in Algorithm 3.5. The

planner works on the indicator image. The indicator is a tiny image and each

pixel of the indicator is true if the corresponding tile on the input image shall be

processed in this iteration and false otherwise. This kernel is run in a 2D fashion

namely, that each thread corresponds to a single pixel on the indicator image and

to a whole tile on φ and the input image. A pixel is changed from false to true if

any neighboring tile have active front on its connecting side. This functionality

is represented by the ‘checkNeighborActivity(...)’ function. The size of the plan

is calculated by local prefix-sum work-group wise, and global atomic addition is

used to correctly determine the offset of the work-group within the plan (line 16

in the pseudo-code of the planner kernel).

A prefix-sum operation requires n numbers and n threads/processors. There

is a complete ordering defined on the threads. The output of each thread is a

number that is the sum of all numbers corresponding to threads not greater than

the given thread. This is an optimal way to determine the writing place of each

thread within an array provided each thread writes different amount of data. The

time complexity of the operation is O(log2 n)

The pseudo-code of the evolution kernel is provided in two parts: Algo-

rithm 3.6 and 3.7. The evolution kernel processes only those tiles of the LS

function that are inserted in the plan. The evolution kernel makes a step either

inward or outward direction depending on the sign of the force field on the LS

function. This is done simultaneously unlike in the sequential algorithm. Each

work-group processes a 16× 16 tile provided in the plan and writes the complete

tile back to the global memory. First, each work-item calculates force field of the

corresponding pixel (‘calcForce(...)’) then the new value of the pixel of the LS

function (‘calcNewPhi(...)’). The force can be an arbitrary operator, during the

experiments it was a pure region based term. It is beneficial if the force term can
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Algorithm 3.5 planner kernel

1: function Planner(Indicator, φ, plan, planSize)
2: LID ← getLocalID() . ID within the work-group
3: GID ← getGlobalID() . ID within all threads of all work-groups
4: LSize ← getLocalSize() . size of the work-group
5: pixel ← readImage(Indicator,GID)
6: isActive ← pixel = true
7: for ∀ NGID ∈ neighboring GIDs do
8: isActive ← checkNeighborActivity(NGID,φ,isActive) . see text
9: end for

10: writeImage(Indicator,GID,isActive)
11: LPositions[LID] ← isActive . local array of the writing position
12: barrier(Local) . work-group level synchronization
13: doLocalPrefixSum(LPositions)
14: barrier(Local)
15: if LID = 0 then
16: LOffset ← atomicAdd(planSize,LPositions[LSize]) . see text
17: end if
18: barrier(Local)
19: LPositions[LID] ← LPositions[LID]+LOffset
20: barrier(Local)
21: if isActive then
22: plan[LPositions[LID]] ← GID
23: end if
24: end function
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be composed only from small radius local operations.

The neighbors of each pixel are updated by a combined Switch operation

(pseudo-code available in Algorithm 3.8) as the switch out() and switch in() op-

erations require according to the neighborhood pattern (the pseudo-code shows 4

connectivity). It is followed by the cleaning of the active front (see lines 28-33 in

Algorithm 3.6) to maintain the two pixel width. The boundary of the tile requires

special care, namely, to properly update the corresponding neighboring pixels of

the LS function and the indicator image. The kernel checks whether there was

any activity inside the tile. It is done by parallel reduction. It is an optimal

operation to sum up n numbers on n processors in O(log2 n) time. Finally, the

corresponding pixel of the indicator image is set to false if there is no activity

within the tile.

Table 3.1 shows execution time measurements of the work-efficient parallel

algorithm on NVIDIA 780 GTX GPU compared to a baseline single-threaded

implementation on Intel core i7-2600 CPU. The execution time was measured

by the gettimeofday() C-function which has microsecond resolution. The table

specifies the image resolution, the initial condition configuration, and presents the

mean of the execution time of an iteration on GPU, on CPU and the speedup. The

iteration time on the GPU contains the execution time of both kernel functions

(planner, iteration). The two kernels evenly share the execution time in the case

of conventional, sparse initial condition; however, in the case of dense iteration

steps, the ratio of the evolution kernel can shift to 30:1 with respect to the planner.

3.8.3 Number of iterations

In the experiments more initial configurations were tested. In each configuration,

regions of Ω and Γ were placed in a chessboard like pattern as it is showed in

Figure 3.6(a) and 3.6(b). Two sample objects are presented in Figure 3.6(c) and

3.6(d) that shall be detected. Additionally, the two objects represent the two

object families: the degenerate and convex ones having worst case bounds stated

in the Theorem 1 and 2.

Iteration examples are presented in Table 3.2 together with the two different

bounds of the given configuration. The number of iterations (Nit) was measured
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Algorithm 3.6 evolution kernel Part 1

1: function Evolve(Image, Ind, φ, plan, planSize, ... )
2: LID ← getLocalID()
3: LSize ← getLocalSize()
4: GrID ← getGroupID()
5: if LID.x = 0 and LID.y = 0 then
6: GPosition ← plan[GrID] . offset of the tile
7: end if
8: barrier(Local)
9: GID ← {LID.x + GPosition.x*GrID.x, LID.y + GPosition.y*GrID.y,}

10: pixel ← readImage(φ,GID)
11: F ← calcForce(pixel,GID,φ, I, ...)
12: pixel ← calcNewPhi(pixel,GID,φ) . see rules in switch {in,out}
13: LPixels . a local array for the tile with borders
14: LPixels[LID] ← pixel
15: barrier(Local)
16: if LID.y = 0 then . fetch neighboring pixels around the tile
17: calcTileBorders(LPixels, GID,φ, I, NORTH, ... )
18: calcTileBorders(LPixels, GID,φ, I, SOUTH, ... )
19: calcTileBorders(LPixels, GID,φ, I, WEST, ... )
20: calcTileBorders(LPixels, GID,φ, I, EAST, ... )
21: end if
22: barrier(Local)
23: switch(nN , LPixels, NORTH)
24: switch(nE, LPixels, EAST)
25: switch(nS, LPixels, SOUTH)
26: switch(nW , LPixels, WEAST)
27: pixel ← LPixels[LID]
28: if pixel = -1 and nN < 0 and nE < 0 and nS < 0 and nW < 0 then
29: pixel ← -3
30: end if
31: if pixel = 1 and nN > 0 and nE > 0 and nS > 0 and nW > 0 then
32: pixel ← 3
33: end if
34: writeImage(pixel, GID, φ)
35: . Here ends the first part of the evolution kernel
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Algorithm 3.7 evolution kernel Part 2

36: LPixels[LID] ← pixel
37: writeBorder(LPixels, φ, Ind, NORTH)
38: writeBorder(LPixels, φ, Ind, EAST)
39: writeBorder(LPixels, φ, Ind, SOUTH)
40: writeBorder(LPixels, φ, Ind, WEST)
41: isActive . local array of size LSize
42: isActive[LID] ← pixel = -1 or pixel = 1
43: barrier(Local)
44: doParalelReduction(isActive)
45: barrier(Local)
46: if LID.x = 0 and LID.y = 0 and isActive[0] = 0 then
47: writeImage(false, GPosition, Ind)
48: end if
49: end function

Algorithm 3.8 Switch operation for GPU evolution

function switch(nDIR, LPixels, DIR)
idx ← remap(LID,DIR) . connects logical and physical layout
nDIR ← LPixel[idx]
LPixel[idx] ← (pixel = -1 and nDIR = 3)?1: nDIR

barrier(Local)
nDIR ← LPixel[idx]
LPixel[idx] ← (pixel = 1 and nDIR = -3)?-1: nDIR

barrier(Local)
end function
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Table 3.2: Examples of the Theorems. The image is 1282 pixels. Configuration
C was set as squares arranged into n rows and n columns in a chessboard like
pattern (see Figure 3.6(a)-(b)). Two different objects were tested: a circle in the
center with radius 11 pixels and a snake-like degenerate object. Configuration
and objects are presented in Figure 3.6

number of squares in n rows and n columns

1 22 42 82 162 242 322 642

bound according to Theorem 1 642 322 256 64 16 9 4 1

bound according to Theorem 2 127 63 31 15 7 5 3 1

Nit for Figure 3.6(c) 26 16 9 6 4 3 3 1

Nit for Figure 3.6(d) 145 68 18 7 6 3 3 1

(a) C: n = 1 (b) C: n = 2

(c) convex object (d) degenerate object

Figure 3.6: This figure presents initial conditions and two test objects representing
the two extremities.
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on the original sequential algorithm of Shi and these values are presented in the

Table. It is below or equal to the worst case bounds in every cases.

In the case of CNN-UM, Nit coincides with the values presented in the Table,

while in the case of GPU implementation, Nit is consistently higher with one

iteration. This means that it exceeded the bounds in the case of n = 32 and n =

64. However, the reason is as follows: the boundary pixels of the subregion have

one iteration delay in the cleaning process. This causes the additional iteration

so it is not a violation of the Theorems.

3.8.4 Segmentation example

In this subsection I present the applicability of the described initial condition on a

real task. The selected problem is white matter segmentation from a T1 weighted

3D image. The image originates from the 3T MR scanner of the Semmelweis

University (SU) I. Neurological department. The image is taken from a healthy

male human who participated in a cognitive experiment done by the Faculty of

Information Technology and Bionics and the SU.

The 3D image is processed slice by slice in a sequential manner. In this way

the information extracted from the previous slice is available for the actual slice.

The force field is a region based one with curvature based regularization. The

intensity range of the white matter coincides with intensity range of the bone

in T1 weighted images. To eliminate the skull bone from the images a simple

wave operation is used. The first object regions appearing on the slices processed

sequentially is the skull bone. This is used for the next slice to eliminate the

bone parts in a wave like manner. This easy method eliminated completely the

boney parts on 90% of the slices and on the remainder a small part containing

only few pixels (8 × 2) remained. The regularization term is the curvature that

is handled by one linear heat diffusion operator on the slice. This is equivalent

with the Gaussian filtering of the curve or regularizing the curve with directly

the curvature through the force field.

This algorithm was implemented in a CNN-UM simulation environment called

MatCNN and SimCNN implemented in Matlab and Simulink. In Figure 3.7 the

result of the segmentation can be seen. The slices are selected from the region
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39th and 75th slices. It shall be noted that these results are just demonstrating

the applicability of the proposed initial condition.

3.9 Validation

In this section, we compare the result of the exact numerical implementation and

the Shi LSM for three different force fields: mean curvature motion, Chan-Vese

and geodesic active region (GAR). The quantitative comparison is made by the

dice coefficient. Given the state of the two LS functions Ω1 and Ω2 of the two

different methods, the coefficient is defined as

d(Ω1,Ω2) =
2Area(Ω1 ∩ Ω2)

Area(Ω1) + Area(Ω2)
(3.12)

Its value is in the range of 0 and 1; 0 means complete difference and 1 means

complete agreement. The size of the images is 200× 200 pixels in all three cases.

3.9.1 Mean curvature flow

In this case, the force field is defined as

F = −κ (3.13)

where κ is the (Euclidean) curvature of the LS. It is the norm of the second

derivative of γ with respect to the (Euclidean) arc length (κ = ‖γss(s)‖, s is the

arc length parametrization of the curve). Another possible, precise and easier

way to calculate the curvature of an LS from φ is as follows:

κ = div grad
∇φ
‖∇φ‖

(3.14)

This force term appears in almost every LS flow as a smoothing and regular-

izing term. The steady-state solution is a circle with infinitesimal diameter. In

practice, the object region vanishes as the artificial time increases. In this case,

not only the steady state but the evolution itself is also investigated. This is an

autonomous motion and does not have any control term from an external image.
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Figure 3.7: White matter segmentation on T1 weighted MR image. Results are
only demonstrating the applicability of the proposed initial condition.
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The details of the numerical approximation are as follows. The LS function

φ is a signed distance function. It was recalculated after every 30 iterations.

The artificial time (Tmaximum) runs to 800 units. The time step (∆t) size has

been set to 0.4. The curvature has been calculated from the LS function from

Equation 3.14.

In the case of the fast LS evolution, the curvature was calculated according to

the work Merriman, Bence and Osher (MBO) [71, 72], namely, by G⊗ φ, where

G is a 2D Gaussian of a given variance.

Figure 3.8 shows the test initial condition for mean curvature motion and the

state of the evolution after 20, 40, 60 and 80 iterations of the fast LS evolution.

Figure 3.9 shows the dice coefficient between the first 80 steps of the fast LS

evolution and the corresponding state of the numerical approximation.

3.9.2 Chan-Vese flow

This method was proposed in [48] and its speed term is defined as

F = µκ− λ1(c1 − I)2 + λ2(c2 − I)2 (3.15)

The parameters are set as follows: µ = 1, λ1 = 0.8, λ2 = 0.8. I represents the

input image intensities, the constants c1 = 0.5 and c2 = 0 are simply the means

of pixel intensities inside and outside the zero LS. The artificial time parameter

runs to 180 units, the time step is 0.5 units. The total number of iterations is 360.

The initial condition is 25 circles arranged uniformly in five rows and five columns

each with diameter 27 pixels. The LS function (signed distance) is recalculated

in every 30 iterations for the numerical solution. The steady states of the two

Cahn-Vese evolutions are shown in Figure 3.10(a). The dice index of the two

states is 0.998.

3.9.3 Geodesic active regions flow

This method was proposed in [69]. This method combines boundary and region-

based information to segment an image. In this method, the pixel intensities are
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(a) initial condition (b) Nit = 20 (c) Nit = 40

(d) Nit = 60 (e) Nit = 80

Figure 3.8: Comparison of mean curvature evolution of PDE approximation and
fast LS evolution. This shows the initial condition and evolution of fast LS (white
line) and numerical PDE approximation (black line). (a) Test initial condition for
validation of mean curvature motion: fast LS evolution against numerical PDE
approximation. The test region contains positive, negative and zero curvature
regions and singularities as well. (b) State of evolution fast LF at Nit = 20 and
PDE approximation at T = 56.8. (c) State of evolution fast LF at Nit = 40 and
PDE approximation at T = 190.8. (d) State of evolution fast LF at Nit = 60 and
PDE approximation at T = 405.6. (e) State of evolution fast LF at Nit = 80 and
PDE approximation at T = 706.8.

67

DOI:10.15774/PPKE.ITK.2014.005



Figure 3.9: Dice index of mean curvature evolution. Ω1 is the state of the fast LS
evolution, and Ω2 is the state of the numerical solution. The similarity between
the two states is very high.

(a) Chan-Vese (b) GAR

Figure 3.10: Validation of fast LS evolution. (a) CV (b) and (B) GAR flow. Red
corresponds to the numerical PDE solution while blue corresponds to the fast
LSM. The two curves are nearly the same and the dice index is 0.998 in both
cases.
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modeled with a Gaussian mixture model (GMM). The force field is as follows:

F = −α log

(
P (I|R1)

P (I|R2)

)
+ (1− α)

(
bκ+∇b ∇φ

|∇φ|

)
(3.16)

where R1 and R2 are the regions to be separated, b is a strictly decreasing function

of boundary probability, and α is a balancing constant. In our case α = 0.3, and

b is defined as follows:

b =
1

1 + ‖∇G⊗ I‖
(3.17)

Here G is a 2D Gaussian with σ = 3. The GMM parameters are calculated from

the image histogram with a recursive expectation maximization algorithm. The

artificial time runs to 6 units, the time step is 0.02 units. The total number of

iterations is 300. The LS function (signed distance) is recalculated in each 30

iterations for the numerical solution. The initial condition is the same as in the

case of Chan-Vese evolution, 5 × 5 circles each with the diameter of 27 pixels.

Steady states are shown in Figure 3.10(b). The dice index of the two states is

0.998.

3.10 Discussion

In this chapter, given our investigation of the initial condition and the required

number of iterations as a function of it, we presented two bounds on the required

number of iterations of LS evolution of Shi. The bounds were proven theoretically

and checked experimentally with the original algorithm and also with two different

mappings of the algorithm on many-core machines (GPU, CNN-UM). The bounds

depend only on the initial configuration of the LS function. The many-core

realizations required not only a very small number of iterations less than or equal

to the bounds, but the execution of an iteration was also fast (see Table 3.1 for

detailed measurement data).

In addition to the drastic decrease of the required number of iterations, the

total execution time decreases as well if dense initial condition is used for the

evolution. The total execution time on CPU with sparse initial condition is

comparable to the total execution time with dense initial condition. For the
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smaller images, the dense initial condition was less effective by 30% to 15%; but

in the case of the biggest image, the dense iteration was the faster by 35%. In the

case of the dense initial condition on GPU, there is a significant speedup compared

to the sparse initial condition in all cases since our proposed dense initial condition

together with the algorithm utilizes the properties of the underlying architecture.

Therefore, greater performance gain can be achieved on GPU if dense initial

condition is used.

A great property of the results is their scalability. This is true for the perfor-

mance as a function of cores and for the number of iterations as a function of size

of the disjoint active fronts. Considering the chessboard-like initial configuration

with increasingly finer regions, the general bound is proportional to the area of

the regions and the convex bound is proportional to the half perimeter of the

regions. This is changed in three dimensions to the volume of region in the case

of general bound and half of the longest perimeter of the volume in the case of a

convex bound.

The assumption on F is stronger in Theorem 1 than the one that was given

in the convergence analysis in [45]. In the examples presented there, our stronger

assumption stands for at least one of the regions Ω∗,Γ∗. However, there may

be cases when for a short period of iterations the sign of F changes. Typically,

this is the case when inside the true object region, the actual state of the LS

function contains a concave background region with high negative curvature.

In these cases, the curvature-based term can be greater than the region term

(the pixel-intensity-based terms), but this is a temporary effect. As soon as the

local concavity is vanished, the region term becomes again greater and the sign

of F changes back. Furthermore, as it was declared in the introduction, the

construction of the force field and its components is out of the scope of this

dissertation. Additionally, the validations indicate that the method converges de

facto to the same state as the exact numerical solutions.

The fact that the active front of the initial condition covers the whole image

has a special consequence, namely, separate, disjoint regions of the same object

or multiple target objects can be found automatically without user interaction.

For example, the gray matter of the brain on an MRI slice can be disconnected

and may be composed of 8 to 20 disjointed regions on the given slice. The
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problem of detecting all regions is greatly simplified with the proposed dense

initial condition. Similarly, a selected group of cells in a histology image can

show this property as well. Additionally, histology images can be extremely

large (2 to 30 Mpixel), and the performance gain of our proposed method (initial

condition together with the parallel algorithm) becomes more expressed on larger

images. A conventional sparse initialization can easily fail this task, with wrongly

chosen initial condition, see for instance the initialization and evolution of a gold

standard LS implementation of [73], which is a widely used framework for medical

image segmentation and analysis.

Figure 3.11 shows an example. The evolution from a single-circle initial condi-

tion is presented on Figure 3.11(b), while our result is presented on Figure 3.11(c)-

(d). It demonstrates its potential and it may be an initial condition for fine-tuning

the segmentation with another method. Of course, the dense iteration may have

the drawback of increased false-positive rate, for example see Figure 3.11(d) where

the evolution runs with slightly different parameters, but this could be handled

with more sophisticated force fields or building a priori information into the

initial condition.

I have evaluated the precision of the Shi method by three different force fields.

The results were compared to the solutions of the numerically approximated PDE

evolutions. Since the time steps satisfied the Courant-Friedrich-Levis condition

(∆t · F < ∆x) these numerical approximations can be viewed as ones extremely

near to the exact (analytical) solutions. I have not evaluated other fast LS meth-

ods since the Shi method is one of the fastest ones with very small memory foot-

print that can be transformed into an effective memory access layout on GPU.

There are some limitations due to the lack of enough logic memory on the Q-Eye

breaking down the performance even so it is a lightweight, fast and low power

realization. On CNN-UM there may be further directions to incorporate differ-

ent wave operators and shift from the fully feed forward approach to include feed

back terms as well.

It must be emphasized that the case studies presented here are not necessarily

optimal mappings of the Shi LS evolution by any means. The purpose of pre-

senting them is twofold: (1) to highlight the advantage of the proposed initial

condition concept especially on those machines and (2) to give a proof of concept
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(a) original image (b) result of the evolution using
conventional initial condition

(c) result of the evolution using
the proposed initial condition 1

(d) result of the evolution using
the proposed initial condition 2

Figure 3.11: Initial condition dependence of evolution. (a) Shows the original
image to be segmented (gray matter of the brain). (Figure 3.11(a) is reproduced
from [73]). (b) Shows the reached solution of evolution started from a single
circle initial condition. (c) Shows the reached solution with our proposed initial
condition (32 × 24 curves with diameter 3 pixels) with force field containing a
priori information. (d) Shows the reached solution of evolution with slightly
modified parameters compared to the evolution shown in Figure 3.11(c) without
the built-in a priori information.
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mapping of this fast evolution on two totally differently organized (virtual and

physical) many-core machines.

3.11 Conclusions

To automatically detect and segment objects in an image or on a region of it, the

LS based algorithms are feasible tools. In this Chapter, it was shown theoreti-

cally and experimentally through two case studies that the initial condition plays

an essential role in decreasing the execution time. It must be emphasized that

this is only validated on many-core architectures where the computations can be

distributed among the cores.

Based on the initial condition configuration, two worst case bounds were given

on the required number of iterations depending on the convexity of the true object

or background region. The bounds are proven theoretically and some example

experiment were done. Additionally, the execution time of one iteration was

measured on two different architectures showing a very fast total execution time

till the convergence.

In the case of the proposed dense initial condition, there is a significant

speedup compared to the sparse initial condition in all cases since our dense

initial condition together with the algorithm utilizes the properties of the under-

lying architecture. Therefore, greater performance gain can be achieved (up to

18 times speedup compared to the sparse initial condition on GPU).

The results and tools presented in this Chapter provide a method to efficiently

calculate LS algorithms mapped on many-core architectures and ensure bounds

on the execution time through the two Theorems.
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Chapter 4

Conclusions

In principle this dissertation covered two main fields, the DRR generation on

GPU, and the initial condition dependence of LS, and one minor field, GPU and

block size optimization, connected to the DRR generation. Each field has its

added value and has impact on medical imaging either directly or indirectly. The

most direct contribution is clearly the DRR generation on GPU. It has many

time critical applications in various fields from diagnosis through intervention to

therapy. The work itself was motivated from the industry as well. The findings

of the optimization were examined in a wider extent and it has become a com-

pletely new and surprising result in execution time optimization on GPUs. LS

based algorithms and methods have applications in several different fields from

mathematics, physics, engineering and computer science. Among the many two

fields should be mentioned: computer vision and medical imaging analysis. How-

ever, it is even possible that other LS fields may benefit from the proposed initial

condition family.
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Summary

4.1 Materials and methods

DRR rendering is realized in CUDA C of Nvidia. I examined several optimization

rules and parameters to be able to fit the task on a given hardware. I have made

experiments on GPUs based on different architecture generations (8800 GT, 280

GTX, Tesla C2050, 570 GTX, 580 GTX). Furthermore, two different compiler

and driver combinations have been used (3.2 compiler + 260.16.21 driver, and

5.5 compiler + 331.67 driver). Two different datasets have been utilized. The

first is a CT scan made from a radiological torso phantom (Radiology Support

Devices, Newport Beach, CA, model RS-330) with resolution 512× 512× 72, the

other is a scan taken from a pig head with resolution 512 × 512 × 825 from an

annotated database [42]. The phantom imitates the attenuation of human tissue

like lungs, bone, arteries, etc. In the X-ray spectrum I have made measurements

on complete DRRs and randomly sampled ones as well. The parameters of the

rendering have been set to values that are relevant in the case of minimally

invasive surgeries (region of interest, ROI and sampling rate).

During my work connected to LS methods I was required to understand the

hyperbolic conservation laws as well as the concept of viscosity solutions from

the field of partial differential equations (PDE). The viscosity solution is defined

as the solution of the following PDE G(u)ux + ut = εuxx, subject to ε tends

to 0. The theory of LS methods and the underlying equations are essential to

understand for specific tasks like segmentation and curve motion. Additionally

I required the basic notions of discrete topology and convex sets to be able to

construct the proofs of my theorems. Execution time measurements were done

on Eye-RIS v1.3 vision system (VS) and on Nvidia 780 GTX GPU.
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4.2 New scientific results

Thesis 1.

I formed a ruleset (1)-(4) allowing the rendering of DRRs to be performed effi-

ciently on Nvidia GPUs. This step is responsible for the slowness of 2D to 3D

registration. I applied the rule-set on the calculation of randomly directed line

integrals for DRR rendering and systematically searched the block size parameter

in the theoretically possible range. According to my findings the value of block

size for efficient rendering is in the range of 8-16 threads in a block unlike the

theoretical suggestions. So the 2D to 3D registration can be performed in real

time for surgical need depending on the application in 0.5-10 frames per second.

I showed that DRR rendering can be performed in 0.2-2.2 ms in the case of a

region of interest (ROI) containing fully a lumbar vertebra (16×9 cm2, 400×225

resolution).

1. Slow ‘if else’ branches shall be replaced with ternary expressions if possible

that are compiled to selection ‘parallel thread execution’ (PTX) instructions

that are faster than any kind of branching PTX instructions.

2. Data that is read locally and in an uncoalesced way shall be placed in texture

memory provided it is not written.

3. Avoid division if possible and use the less precise, faster type (div.approx,

dif.full instead of div.rnd).

4. If the denominator is used multiple times calculate inverse value and mul-

tiply with it.

I presented measurements on randomly sampled DRRs executed on GPU

first [32]. The effectiveness of the first and second optimization rules are presented

in Table 2.3. The cumulative effect of the third and the fourth rules as a function

of the block size is presented in Figures 2.6-2.13.

The missing branching optimization resulted in a 6 − 11% performance de-

crease, 8% in average on Tesla C2050 GPU while 6− 13% decrease on 570 GTX

GPU, if the optimized version is considered 100%. The linear memory caused a

1.75-2.4 times slowdown consequently on both GPUs.
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The optimal block size in the case of the optimized kernel is always in the

range of 8-16 threads in a thread block. This property was tested in a former

version of compiler and driver as well as on four different top GPUs (8800 GT,

280 GTX, Tesla C2050, 580 GTX). The characteristics of the optimized kernel

were similar in this software environment too.

Publications connected to this thesis group: [I]. The thesis claim is specified

and paraphrased in details in the second chapter of my dissertation.

Thesis group 2.

I present bounds on the required number of iterations of the LS method of Shi [45]

and this bound depends only on the initial condition. I propose an initial condi-

tion family that decreases the bound in a flexible and effective way. Additionally,

evolutions started from this initial condition family require drastically reduced

time to converge.

Thesis 2.1 I discovered two new theorems, one for a general case and another

for a convex case to determine the worst case required number of iterations of

the Shi LS method to converge to the solution. These bounds depend only on the

initial condition. I developed proofs for both cases and supported the bounds with

experiments. The results are utilized in thesis claim 2.2.

Let us consider a subset of Zn, say D. A point x ∈ D is characterized by its

coordinates (x = (x1, ..xk)). A path p between x and y is a sequence of points

xl(l = 0, 1, ..., L) ∈ D subject to xl ∈ N(xl+1) and x = x0 and y = xL. A set

of points A forms a connected region if and only if there exists a path p between

every x,y ∈ A subject to ∀xl ∈ p is an element of A. A minimum path pmin is the

shortest path meaning there are no shorter p′ paths between x and y. Minimum

path is usually not unique and can depend on the chosen discrete neighborhood.

The diameter B of a connected region is the longest minimum path having at

least its endpoints within the connected region. A connected region is considered

as convex if all minimal paths are minimum paths at the same time.

Theorem 1 (general bound). Let the true object region be denoted by Ω∗ and

let it be composed of P connected regions Ω∗p (where p = 1...P ). Similarly the

true background region be denoted by Γ∗ and let it be composed of q connected
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regions Γ∗q (where q = 1...Q). Assume that F > 0 in Ω∗ and F < 0 in Γ∗. At

initialization, C is chosen such that Ω = ∪iΩi, Γ = ∪jΓj and Ω∗p ∩ Ω 6= ∅, ∀p =

1...P and (D \ Ω) ∩ Γ∗q 6= ∅, ∀q = 1...Q. Then, the Shi LSM converges to Ω∗

in Nit ≤ max(maxi(|Ωi|),maxj(|Γj|)) iterations, where |.| denotes the number of

elements in the region.

Theorem 2 (convex bound). Let the true object region Ω∗ be composed of P

connected regions Ω∗p (where p = 1...P ) and the true background region Γ∗ be

composed of q connected regions Γ∗q (where q = 1...Q). Assume that F > 0 in Ω∗

and F < 0 in Γ∗. At initialization, C is chosen such that Ω = ∪iΩi, Γ = ∪jΓj

and Ω∗p ∩Ω 6= ∅, ∀p = 1...P and (D \Ω)∩ Γ∗q 6= ∅, ∀q = 1...Q. If either Ω∗ or Γ∗

is convex than the Shi LSM converges to Ω∗ in Nit ≤ max(maxi(BΩi
),maxj(BΓj

))

iterations, where B denotes the diameter of the given region.

Figure 3.6 shows two sample objects. While Figure 3.6(d) shows a concave ob-

ject requiring a number of iterations as its number of pixels in the worst case, Fig-

ure 3.6(c) shows a convex object requiring a number of iterations upper bounded

by its diameter in the worst case.

Table 3.2 explains through an example the effect of initial condition on the

bounds. The resolution of the image is 128 × 128 pixels, the initial condition

configuration is a chessboard like pattern. The number of squares was placed

in n rows and n columns according to the values of the first row of the Table.

Second and third rows show the general and convex bounds corresponding to

initial condition configuration. The last two rows contain the number of iterations

required to converge to the objects shown in Figure 3.6.

Thesis 2.2 I proved that the evolution of the Shi method can be mapped effi-

ciently to many core architectures provided it is started from an initial condition

that minimizes the bounds stated in thesis claim 2.1. I implemented it on two

architectures: on CNN-UM and on GPU. The results supported the claims.

The smaller the connected regions in the initial condition, the lesser the re-

quired number of iterations to be able to converge. This kind of initial condition

is used seldom because the number of processed pixels is O(N ×M) in one iter-

ation in the case of an N ×M image since the small curves fill the whole image.

In the case of an evolution starting from an initial condition containing a single
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curve one iteration processes O(N + M) pixels. It shall be noted is an initial

condition is “far” from the true object region then the number of pixels to be

processed increases to O(k(N+M)) where k ∼ max(N,M) leading to complexity

O(N ×M). Since the initial conditions are “far” from the real object in most

cases the complexity of the two different evolution is asymptotically the same.

It follows from thesis claim 2.1 that densely placed curves with small diameters

keep the worst case bound on the number of iterations according to the theorems

low. On the Eye-RIS VS the execution time of one iteration is independent

from the type of initial condition while in the case of GPU a mild deviation is

experienced together with the drastic decrease of the number of iterations.

The algorithm mapped to CNN-UM is implemented on the Eye-RIS 1.3 VS.

The realization uses only simple templates, one step of the algorithm is performed

in 400− 440µs on a QCIF image. It must be noted that the actual computing is

finished within 60 − 70µs and the remaining time (340 − 370µs) is required for

the data movement from the main memory of the Eye-RIS (on the Altea NIOS-II

microprocessor) to the Q-Eye chip memory.

The execution times of the algorithm mapped to GPU are summarized in

Table 3.1. It is clear that evolutions started from the proposed initial condition

family perform much better in all cases than the ones started from conventional

initial conditions. In an extreme case it caused 24 times speedup (2, 048× 2, 048

image resolution, 210 · 560 vs. 7 · 684).

It can be seen that both on CNN-UM and GPU a significant speedup can be

achieved in the case of the LS evolution of Shi if the proposed initial condition

family is used.

Publications connected to this thesis group: [II, III, IV]. The thesis claim is

specified and paraphrased in details in the third chapter of my dissertation.

4.3 Application fields

I demonstrated that it is possible to perform 2D to 3D registration during image

guided therapy applications at the speed of (0.5-10 fps). This is essential and

has great impact on the following applications. Furthermore, the problem was

solved with the constant consulting with field experts from GE Healthcare and
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the technical knowledge and code-base were forwarded to the French research and

development team.

The claims of the second thesis group can be utilized for faster segmentation

or detection. The application fields of these methods are known. Naturally I

emphasize the analysis of medical images. It is straightforward that I managed to

utilize an initial condition that was considered unfeasible until now. Additionally

the results from thesis claim 2.1 give guarantee which is essential in time critical

applications.
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Appendix A

GPU

In the past 6-10 years GPUs have become programmable, massively parallel,

manycore devices with very high theoretical computing capacity and bandwidth

(see Figure A.1). The reason behind the anomaly of GPU an CPU theoretical

floating point capacity is that GPUs are specialized for exactly these kinds of

operations (multiplication, addition). On the contrary, CPUs have to handle a

lot of other kind of operation types (integer, transcendental operation, division

etc.) and a large portion of the chip is filled with cache memories and flow control.

Two vendors provide programmable GPUs, AMD and Nvidia. During my

work Nvidia GPUs were used. These devices are programmable through general

purpose APIs. One is the CUDA platform [39] and the other is the OpenCL

standard [40]. The former one is Nvidia specific, and OpenCL is a royalty-free

standard for cross-platform, heterogen parallel programming. It is implemented

by many vendors. In this dissertation the CUDA platform an ecosystem is used for

measurements in Chapter 2 and OpenCL is used for measurements in Chapter 3.

The CUDA ecosystem consists of several components: the CUDA enabled

GPU, the driver, the middleware and libraries, and the selected language. There

are a lot of CUDA libraries and middleware available “off the shelf” (Fourier

transform, BLAS, performance primitives, LAPACK, sparse solver, random gen-

erator, Matlab primitives, Mathematica routines etc.). They are fairly optimized

and represent a good trade-off between fast realization and performance. The

OpenCL consists of the single header API (free) and its implementation that

is provided by the vendors like Intel, IBM, Apple, AMD, Nvidia, QUALCOM,
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(a) GFLOPS

(b) bandwidth

Figure A.1: Theoretical GFLOPS of GPUs an Intel CPUs and theoretical band-
width of GPUs. The computing capacity increase shows exponential characteris-
tics while the bandwidth increase is more likely to be linear. It is clear that GPUs
have one order of magnitude higher theoretical computing capacity and this seems
to be constant over this period not counting small variations. However, there are
small fluctuations the two vendor manufacture GPUs having similar theoretical
performance.
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Table A.1: Nomenclature dictionary, giving each concept the corresponding name
in CUDA and OpenCL

CUDA name OpenCL name

thread work-item

block work-group

grid of blocks of threads ND-range

streaming multiprocessor (SM) compute unit (CU)

cuda core processing element

local memory private memory

shared memory (per SM) local memory (per CU)

texture object read only image object

surface object write only image object

ARM, etc. No further tools are provided. Most concept in the two nomenclatures

have one to one correspondence as it is shown in Table A.1

A.1 Programming model

A C like function that can be executed on the GPU is called a kernel. This is

a CUDA C/OpenCL extension to the C++/C language. During execution, the

kernel is executed N times in parallel by N different threads. Any call to a kernel

must specify an execution configuration for that call. This defines not just the

number of threads to be launched but the arrangement of groups of threads to

blocks and blocks to a grid. The dimensionality of a block and a grid can be one,

two or three. The number of threads in a block is referred to as block size and

limited to 1024.

Thread blocks are required to be independent, namely they have to be able

to be executed in any order in parallel or in series. Threads in a thread block

can cooperate and share information via on-chip memory space called shared

memory. One can place synchronization points and barriers within the source
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code to regularize the access and to ensure the validity of the memory content.

The programming model assumes that the CUDA threads are executed on

a physically separate device and works as an accelerator/coprocessor for given

types of operations. The main program is executed on the CPU called host and

the kernel is called by the host. Additionally, the device (GPU) and the host

(CPU) does not share a common memory space. Therefore, the host program

manages the allocation and deallocation of memory spaces in the global memory

of the device.

A.2 Memory

Threads can access data from multiple memory spaces. There are three basic

hierarchical levels. Each thread has its own per-thread local/private memory.

Threads in a block share a given amount of on-chip shared memory. The third

space is called global memory accessible from all threads and can have the lifetime

of the application itself. The memory hierarchy can be seen in Figure A.2. There

are two additional memory spaces readable by all threads: texture and constant

memory spaces. The global, texture and constant memory spaces are optimized

for different usage. Texture memory also offers several kind of addressing modes

and data filtering for given types.

A.2.1 Texture memory

Texture memory is read from kernels using dedicated functions. This is called

texture fetch. Each fetch specifies a parameter called texture reference. The

reference specifies:

• The texture and memory space is bound together via the texture reference.

A given memory region may bound to several different reference at the same

time.

• The dimension of the texture can be one, two or three dimensional. Addi-

tionally, the number of texels (texture elements) per dimension are given in

the reference.
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(a) register file (b) shared memory

(c) global memory

Figure A.2: Memory hierarchy of Nvidia GPUs.

• The type of a texel can be a 1, 2 or 4 component vector of primitive data

types (float, char, short, int, unsigned types, etc).

• The read mode can be normalized or unnormalized. In the first case the co-

ordinates are normalized into the range [-1.0;1.0] or [0.0;1.0]. In the second

case no conversion is performed.

• The addressing mode. This specifies the behavior on the boundaries and in

the case of out of range requests: clamped, circular, mirrored, or wrapped.

• The filter mode which specifies the return value based on the input coor-

dinates. Linear filter mode performs linear interpolation: bilinear in 2D

and trilinear in 3D. Point filter mode returns the texel nearest to the input

reading location.

It is a cached, read only, globally visible space. In graphics rendering tex-

tures are used widely and the hardware components are usually optimized for

2D locality. The details of the caching are not revealed by Nvidia. However,

a work [74] gave a detailed micro-benchmark allowing to predict some features.

In this work the 280 GTX GPU was considered to have compute capability 1.3.

85

DOI:10.15774/PPKE.ITK.2014.005



This architecture has two levels of texture cache L1 and L2, 5KB and 256 KB

respectively. It was proved experimentally that texture reading does not reduce

reading latency but reduce DRAM bandwidth demand.

A.2.2 Register file

The number of 32-bit registers per SM is varying from 8K-64K depending the

micro architecture. Devices with compute capabilities 1.x have 8K, or 16K 32-bit

register file. Fermi type devices have 32K 32-bit, and Kepler devices have 64K

32-bit register file.

A.2.3 Global memory

Global memory is accessible by all threads and physically placed off chip. Access-

ing it causes a delay of 400-600 clock cycles. On devices with compute capability

1.x it is uncached, later architectures have both L1 and L2 caches. 2.x devices

have 16KB or 48KB L1 cache in each SM. It is configurable from the host pro-

gram. The physical size of the L2 cache is 768 KB. In compile time it can be

decided to use the L1 cache or just the L2 cache. The cache line is 128 byte.

A.2.4 Shared memory

Shared memory is a non-cached, per-SM memory space used by threads in a

block to share data with other threads from the same block. The amount of

shared memory is varying. Devices with compute capability 1.x have 16KB per

block. The parameters of the kernel function occupy also shared memory so this

reduces slightly its size. On Fermi and Kepler architectures, its amount is 16KB

or 48KB depending on the choice of L1 cache size. It is organized into 16 banks on

Tesla architecture and 32 on Fermi and Kepler GPUs. The read latency according

to [74] is less than 40 clock cycles on devices with 1.x compute capability.
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A.3 Compilation and execution flow

Kernels can be written for CUDA in CUDA C/C++ or in CUDA instruction

set architecture (ISA) called parallel thread execution (PTX). In both cases not

counting few minor corner cases the code is device independent and has to be

compiled by nvcc to produce executable binary (cubin). In the case of OpenCL,

kernels can be implemented in the OpenCL extension of the C language that is

vendor independent or in vendor dependent form that is loaded as executable

binary.

The compilation can be off-line or just in time (JIT) in the case of CUDA.

Off-line compilation separates host and device code first and later from the device

code creates PTX code and then a cubin object. Just in time compilation allows

the host program to load a PTX for further compilation to cubin code or directly a

cubin object. In OpenCL only JIT compilation exists, however the binary object

of the compiled kernel function can be queried by the OpenCL API for later use.

In CUDA one can chose the PTX version to be compiled to. In this way, sig-

nificant differences can be experienced in performance. For example, arithmetic

can be IEEE compliant or not. While the IEEE compliant version is complete

within 200-250 clock cycles, the fast version is complete within 40-60 cycles in

the case of single precision floating point division. Similarly, the presence or com-

plete absence of caching can modify the performance. In OpenCL we have fewer

parameters to drive the compilation of the kernel.

In the case of Nvidia devices threads within a block are arranged into con-

secutive groups called warps during execution. A warp is the group of threads

scheduled together physically on the device. Threads within a warp start to-

gether but have their own instruction address counter and register state so they

can branch, diverge and converge. However, this is very inefficient. The warp is

the parameter of the physical device and it is independent from the used API.

A.4 Architecture of GPUs

Nvidia architecture in general Physically a device consists of SMs, cache

and memory controllers. An SM contains cuda cores, special function units
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(SFU), warps schedulers, register files, and shared memory. The SFU is a ded-

icated floating point unit executing built-in floating point functions like square

root, exponential, sin, cos, logarithm, etc. Nvidia refers to this arrangement as

single instruction multiple threads (SIMT).

Groups of SMs compose the texture processing clusters (TPCs). These or-

ganizations share some additional hardware elements like texture caches, texture

fetching units. These elements are invisible to the programmers.

The compute capability of a device is defined by two numbers. The first

is a major revision number and the second is a minor revision number. Major

revision numbers indicate same core architecture. 1 denotes Tesla architecture,

2 is for Fermi architecture, and 3 is for Kepler architecture. Unfortunately, the

word ‘Tesla’ has two different meanings. It can mean an architecture family with

compute capability 1.X. The other meaning is a product line for GPUs made for

high performance general purpose computing. Minor revision number indicates

fine architectural or capability differences for example 8800GTX: 1.0; 8800GT:

1.1; 280GTX: 1.3; Tesla C2050 and 580 GTX: 2.0.

Nvidia Tesla architecture There are 8 cores, 32 KB SDRAM as shared mem-

ory, 2 SFUs and 1 warp scheduler in a SM in this architecture. This family

incorporates the 8, 9, 100, 200, 300 and Tesla 870-1070 series of GPUs.

Nvidia Fermi architecture There are 32 or 48 cores, 64 KB SDRAM, 4 SFUs

and 2 warp schedulers in an SM in this architecture. This architecture introduces

L1, L2 caching. The L2 is 768 KB accessible from all SMs. The L1 is implemented

per SM and resides in the SDRAM in a configurable way. The 64 KB is divided

into two parts: the L1 and the shared memory. Their size can be 16 KB or 48 KB

as they are configured. This family includes the 400, 500 and Tesla C2050-M2090

series of GPUs.

Nvidia Kepler architecture There are 192 cores, 64+48 KB SDRAM, 32

SFUs and 4 warp schedulers in a SM in this architecture. The 64 KB is config-

urable between the shared memory and the L1 cache as in the Fermi architecture.

Additionally the architecture introduces an additional 48 KB read only data cache
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that is accessible by the developer. This family includes the 600, 700 and Tesla

K10-K40 series of GPUs.

AMD Southern Islands architecture The device consists of CUs, L2 cache,

global data share memory, and memory controllers. Each CU contains 64 vector

processor, a scalar core, 64×256×32 bit vector register file, 512×32 bit scalar

register file, 64 KB local data share memory and a texture unit. Unlike Nvidia,

AMD has made the complete ISA of the devices open. So, the exact capabilities

of the hardware are known.
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Appendix B

The CNN Computer

Cellular neural networks (CNNs) are regular, single or multi-layer, parallel pro-

cessing structures with analog nonlinear dynamic units called cells. The state of

the cells is continuous in time. Their connectivity is local in space. The program

of a CNN is determined by the pattern and strength of the local connectivity, the

so-called template. The time-evolution of the cells, “driven” by the template and

the cell dynamics, represents the elementary instruction in CNN (both in equilib-

rium or non-equilibrium states of the network can define results). The standard

CNN equation [60] contains first order cells placed on a regular grid of one layer.

The CNN Universal Machine (CNN-UM, [75]) is a cellular wave computer

architecture that includes CNN dynamics as its main instruction. To ensure

stored programmability, a global programming unit is added to the standard

CNN and for reuse of intermediates, each cell contains a few local memories.

Additionally, every cell might be equipped with local sensors to provide input

(for example optical) and further circuits to perform operations per cell.

Using the CNN-UM, one can design and run analog and logic CNN wave

algorithms. It is known that CNN-UM is universal as a Turing Machine [75]

in the sense that a CNN-UM can present all the behaviors that a predefined

CNN dynamics can show. Furthermore, it is universal as a nonlinear operator

as well. Therefore, many problems can be solved by this machine. Its structure

fits naturally for image processing. There are lots of methods for solving image

processing problems based on partial differential equations [7] which need huge

computational power in the most cases. Most of these kind of problems can be
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Figure B.1: CNN cells in 2D rectangular grid. Each cell has connections to its
neighbors within the neighborhood radius. In this case the radius type is nearest
neighbor and the dark gray cell has 8 additional neighbors marked with light
grey.

transformed into CNN algorithm too.

B.1 Standard CNN dynamics

The cellular nonlinear network (CNN) is a locally connected, analog dynamical

cell network, which has two or more dimensions. The common CNN architecture

consists of an M×N rectangular grid of cells c(i, j) with Cartesian coordinate

(i, j)i = 1..M, j = 1..N

Each cell is connected to its (nearest) neighbors within a given range (Nr).

This is nicely illustrated in Figure B.1.

A template has two main parts, feedforward and feedback matrices. These

parts are called A and B templates. The z on Equation (B.1) is the offset (bias)

term. In the simplest case the template is given by 19 numbers, 9 feedback,

9 feedforward and one bias terms. This 19 number template is an elementary

operation of CNN-UM and codes a complex spatial-temporal dynamics. A CNN

algorithm might contain templates and logical operations as well. The following
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differential equation system describes the dynamics of the network:

d

dt
xij(t) = −xij(t) +

∑
kl ∈ Nr

Akl,ijykl(t) +
∑

kl ∈ Nr

Bkl,ijukl(t) + zij (B.1)

Here xij, uij, yij stand for the state, input, and output of the cell ij.

Each cell has a state, an input, and an output that is a nonlinear function

of the state. The nonlinear function can be arbitrary but in the majority of the

cases it is the piecewise linear approximation of a sigmoid function defined as:

f(x) =


1 if x ≥ 1

x if − 1 ≤ x ≤ 1

−1 if x ≤ −1

(B.2)

In cases when Akl,ij and Bkl,ij does not depend on (i, j) the template is called

space invariant. Since the 2D and regular nature of the grid of cells, the state,

input and output of the whole CNN can be represented as an image with M×N

pixels. The value of a pixel varies between -1 (white) an 1 (black) in the case of

input and output, the possible range of the state is unbound theoretically.

The structure of linear templates used in the LS evolution algorithm can be

seen in Equation (B.3). Feedback and feed forward templates A and B are central

symmetrical. So each template element is described by 3 numbers (single central

element, neighbors of the central element according to the 4 connectivity and

4 elements in the corners). Typical parameter values of the used operators are

listed in Table B.1.

A =

a2 a1 a2

a1 a0 a1

a2 a1 a2

 ;B =

b2 b1 b2

b1 b0 b1

b2 b1 b2

 ; z (B.3)
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Table B.1: Template parameter values

A B z Boundary

Template a0 a1 a2 b0 b1 b2 z condition

AND 2 0 0 1 0 0 -1 Dirichlet, 0

ANDNOT 2 0 0 -1 0 0 -1 Dirichlet, 0

OR 2 0 0 1 0 0 1 Dirichlet, 0

DIL4 0 0 0 1 1 0 4 Dirichlet, -1

ERODE4 0 0 0 1 1 0 -4 Dirichlet, -1

Figure B.2: Illustration of a CNN-UM.
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B.2 CNN Universal Machine

The CNN-UM is based on the standard CNN (see Figure B.2). This is a pro-

grammable analogical processor array with own language defined by the template

operations and several VLSI implementations. The cells contain local analog

and logic memories and may contain sensors, and miscellaneous aiding circuitry.

These universal cells are controlled by the global analogic programming unit

(GAPU). The GAPU has four main parts. These parts are responsible for the

analog program, the logical program, switch configuration and the control flow.

Algorithms designed for CNN-UM can be represented on a universal machine

on flows (UMF) diagram. The UMF is a purely continuous computational model

capable of describing and characterizing the capabilities of a CNN-UM. From a

practical point of view a UMF diagram of a CNN-UM consists of the following

primitives: template execution (specifying the template values, input and state

images, boundary condition, execution time), branching, looping, and the flow of

data. It is a directed graph, which may have cycles in itself.
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Appendix C

Block size dependence of DRR

rendering

In Figures C.1-C.4 the block size dependence of execution time can be seen on

the four GPUs: 8800 GT, 280 GTX, Tesla C2050, and 580 GTX. The block size

is on the (logarithmic) X axes, the execution time in µs is on the y axes. The

measured block sizes are 8, 10, 12, 14, 16, 32, 64, 96, 128, 160, 192, 224, 256, 384,

and 512. Each subfigure shows the characteristic of the given GPU with a fixed

number of threads as follows: 1024, 15360, 20480, 25600, 30720, and 35840.
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(a) 10240 (b) 15360

(c) 20480 (d) 25600

(e) 30720 (f) 35840

Figure C.1: 8800 GT–Large thread numbers.
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(a) 10240 (b) 15360

(c) 20480 (d) 25600

(e) 30720 (f) 35840

Figure C.2: 280 GTX–Large thread numbers.
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(a) 10240 (b) 15360

(c) 20480 (d) 25600

(e) 30720 (f) 35840

Figure C.3: Tesla C2050–Large thread numbers.
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(a) 10240 (b) 15360

(c) 20480 (d) 25600

(e) 30720 (f) 35840

Figure C.4: 580 GTX–Large thread numbers.
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