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Abstract

Just as many of us, I am also prone to handle engineering achievements as being a construction built from solid,
reliable, brick-like components. Naturally, this not true in all senses. However, just like living species of mother
Nature, electrical systems may not require perfect predictability in all aspects to operate correctly but only in
the important ones. Hence, the central questions are ”what is important?” and ”how to design systems for it?”.

In this aspect, the stability of the systems we use, is a must ; the applicability is a need ; the noise tolerance
is a desire.

In the light of these findings, I concentrated on these questions in my work with special regard to a non-
conventional computational paradigm, named Cellular Neural/Non-linear Networks Universal-Machine (CNN-
UM) paradigm.

First, I dealt with questions of stability of a newly invented version of the CNN-UM, then I applied the CNN
to calculate a computationally heavy task in a stochastic framework, finally, I drew a new stochastic system, in
which noise, eventually, assists in signal transfer, rather than distorts the signal.
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Chapter 1

Introduction

The field of non-linear science rises a lot questions that we are not ready to solve and we are left without any
hope of solving them in the near future. There are certain equations that received much higher respect than
others. In the past 15 years, many efforts has been spent on understanding and exploiting the capabilies of one
of them called Cellular Non-linear/Neural Network (CNN). The main driving force of these works was the hope
that the construction is simple enough to get implemented in analog very large scale integrated circuitry (aVLSI)
but complex enough to be able solve general, parallel, computing problems and several computationally hard
(e.g. NP) tasks quickly (in P) and efficiently. Here, I am not to answer the question whether it was successful
or not but I hope that I contributed to the world’s knowledge on this particular equation with my work both
in application and in theoretical directions. According to this I have covered three topics.

The first topic covers stability analysis of the a multi layered version of CNN which aims to clarify that which
parameter constellations can this particular version of CNN be used for any purpose. The main problem here
is to ensure, with proof, that stable and reproducible output of the circuitry can be reached. This requirement
is a natural expectation for any device, but analog circuitry sometimes have hard time to meet this criterion.

Opposed to the first topic, which is a rather theoretical issue, the second topic focuses on much more applica-
tion oriented questions. Namely, I have discovered, an interesting formalism that lets us to calculate optical-flow
estimation on aVLSI circuitry in which multi-scale information is incorporated. Interestingly enough, the al-
gorithm I proposed provides, sub-pixel accuracy that is currently unbeatable in the aVLSI community and is
comparable to very complex, cca. 10 years old algorithms on digital platforms.

Thirdly, I introduce a phenomena called ”smooth stochastic resonance”. Stochastic resonance (SR) occurs
when the signal-to-noise-ratio (SNR) at output of a non-linear device is maximized by additional noise at the
input. Stochastic resonators (SRT) known before, were able to demonstrate this behavior only with abrupt
jumps at the output. However, it resulted in the maximization of the SNR, it was inconvenient enough to apply
for anything. Hence it was desirable to obtain an easy-to-use solution for this.

In the following sections I give very short summary of the findings that are detailed longer in the subsequent
chapters and at the same time serves as a summary of theses.

1.1 First Thesis: Stability of MLCNN

Since the introduction of the Universal Machine (UM) on Cellular Neural/Non-linear Networks, many works
has been devoted to the analysis of the principle and the circuitry. Inspired by biology, namely retina, the

13



14 CHAPTER 1. INTRODUCTION

multi-layer architecture was also designed and fabricated in analog VLSI (aVLSI). Although, there were not
much works published on the stability of these type of networks. Hence, there was a need to set up bounds on
parameters in which engineers can search for useful constellations (or templates).

I was able to give a formalism that let us to generalize most of theorems claimed on single-layer-CNN to
multi-layer-CNN. Being able to use this tool, I presented several new theorems and made a strong conjecture
in the circle of networks with two and arbitrary number of layers. Theorems were selected with special regard
to the applicability.

For the sake of readability let us define single layer Full-Range CNN as

τ ˙̂x = −g(x̂) + Â ∗ x̂ + B̂ ∗ û + ẑ (1.1)

where ∗ denotes convolution operation and its multi-layer counterpart (MLCNN) as

τp
˙̂xp = −g(x̂p) +

L∑
o=1

Âop ∗ x̂o + B̂p ∗ ûp + ẑp (1.2)

where p is the layer number, L is number of layers, τ is the time constant of layer p, Âop, B̂p are the feedback
template from layer o to layer and feed forward templates to layer p, respectively. The matrices x̂, û, ẑ, are the
’state’, ’input’ and ’bias’ . Finally, function g is a non-analytic and defined as

g((x̂)ij) =

{
0 , if |(x̂)ij | < 1
limm→∞ (|(x̂)ij | − 1) ·m·sgn((x̂)ij) , else .

Once we found the way to generalize equ. 1.2 in form of equ. 1.1 (see chapter 2), we can transfer theorems
from single layer to two and multi-layer CNNs. (i.e. 2LCNN, MLCNN). Being armed with such a tool, I have
generalized 7 theorems and 1 strong conjecture. The criteria of the theorems that maintain stability in case of
a 2 layer CNN with 3x3 templates, can be sloppily below.

A two layer CNN is completely stable in the

• Symmetric templates case: if not only templates operating each layers (i.e. intra-layer template) are
symmetric, but those that are operating among layers (i.e. inter-layer template) are symmetric to each
other (i.e. cross-symmetric),

• τ -cross symmetric case: if intra-layer template elements are symmetric and inter-layer template elements
are cross-symmetric up to a constant multiplicative factor. (i.e. so called layer time-constant τ)

• Non-symmetric case: if items of the templates follow a pattern of geometric series (i.e. the ratio of the
neighboring elements are constant) in both horizontal and vertical directions, and similar mirroring rule
as above applies to the inter-layer templates,

• τ -non symmetric case: the theorem above holds, for any ratio of intra layer time-constant

• Sign symmetric case: if the sign pattern of the intra-layer templates are strictly sign-symmetric and follow
the same sign pattern, and the inter-layer templates are equal to that or are their inverse

• ”Sign patterns for larger templates” case: if the sign alteration frequency of the inter-layer template
elements in both, horizontal and vertical, directions is either 0 or 1, while the intra-layer sign patter is
equal to that or is the inverse of that.
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In case of a CNN with arbitrary number of layers in the

• ”Sign patterns of large templates for more than 2 layers” case: if the sign alteration frequency of the
inter-layer template elements in both directions is either 0 or 1, while the matrix describing the inversions
compared to that (i.e. sign modifier matrix) is a so-called chess-board type.

Several numerical and symbolical computations support the conjecture that the CACE architecture (e.g.
2LCNN with inter-layer templates that have only a central non zero element) is stable in the staturated region
in the

• ”Non-reciprocal 1D CACE” case: if both inter-layer, intra-layer templates are sign anti-symmetric and
the central element of the intra-layer feedbacks are greater than one.

This is detailed in chapter 2.

1.2 Second Thesis:Analog-VLSI, Array-Processor Based, Bayesian,

Multi-Scale Optical Flow Estimation

Optical flow (OF) estimation aims to derive a motion-vector field that characterizes the motion on a video
sequence of images. Since the motion cannot be deterministically derived, I turned the problem into a stochastic
optimization framework, in which multiple-scale view of the subsequent images is used at once. This was done
to reduce the effect of the error prone cases (also known as blank wall or aperture problem), which are main
source of the artifact in OF estimation.

1.2.1 A CNN friendly stochastic multi-scale Optical Flow estimation model

A fundamentally a new multi-scale OF model was designed in which I showed two ways of formalizing the
Bayesian incorporation of multiple scales, leading essentially to the same equations to compute in the model.
The new algorithm was found to be optimally fitting to the architecture of the CNN-UM by the application of
which it was accelerated by 3 orders of magnitudes compared digital architectures.

1.2.2 On-chip tests

Due to the resolution (128x128) and reliability of the CNN-UM implementation (ACE16k), first in the history,
the new general-purpose, aVLSI-based OF estimator was tested on a standard image sequence (Yosemite) that is
used as the main performance indicator in the computer vision community. However the new solution performs
with fair accuracy compared to the digital sequential competitors (i.e. sub-pixel absolute error and average
angular error (AAE) ≈ 10◦), but it runs at 100 frames per second (fps) on-chip, and the on-chip tests relax well
to simulations (AAE ≈ 3.5◦). On pixel-per-second basis, the new method outperforms any aVLSI solutions
with at least one maginitude difference, while the accuracy is comparable to digital solutions which is unique.

1.3 Third thesis: Smooth Stochastic Resonance

Stochastic Resonance (SR) is a phenomenon in which a system with input signal and noise shows a well defined
peak in the signal-to-noise (SNR) characteristic at the output as the function of the noise (RMS) at the input.
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I have invented a new class of stochastic resonator (SRT) and Stochastic Resonance phenomena. The new
SRT consist of a classical SRT, one or more time derivative circuits and the same number of time integrators.
First, the incoming signal with additive noise is time derivated, then it passes through a classical SRT, and,
finally, it is time integrated. This is the Integro-Differential SRT (IDSRT). The resulting SR phenomena show
a well defined SR. The main virtue of the new system is the ability the produce arbitrary smooth output which
was unprecedented before. Interestingly, the signal transfer and SNR are the best at the high frequency end.

1.3.1 The analysis of IDSRT

First, I clarified the analysis of the stochastic resonator called Level Crossing Detector (LCD) and reproduced
the results the corresponding experiment, then I gave the analysis of the IDSRT with symmetric and asymmetric
LCD. Furthermore, I showed the model’s ability of transferring the SR characteristics of the LCD to IDSRT
but the later one can produce arbitrary smooth output.

1.3.2 The experimental results on IDSRT

Simulation results confirmed the calculations mentioned above.



Chapter 2

Stability of Multi-Layer Cellular

Neural/Non-linear Networks

2.1 Brief

We have found a formalism that lets us present generalizations of several stability theorems (see [CR90, CC92,
Gil93, For02]) on Multi-Layer Cellular Neural/Non-linear Networks (MLCNN) formerly claimed for Single-Layer
Cellular Neural/Non-linear Networks (CNN). The theorems were selected with special regard to usefulness in
engineering applications. Hence, in contrast to many works considering stability on recurrent neural networks,
the criteria of the new theorems have clear indications that are easy to verify directly on the template values.
Proofs of six new theorems on 2-Layer CNNs (2LCNN) related to symmetric, τ -symmetric, non-symmetric,
τ -non-symmetric, and sign-symmetric cases are given. Furthermore, a theorem with a proof on a MLCNN with
arbitrary template size and arbitrary layer number in relation to the sign-symmetric theorem is given, along
with a conjecture for the one-dimensional, two-layer, non-reciprocal case.

2.2 Introduction

The analysis of the stability of Multi-Layer Cellular Neural/Non-linear Networks (MLCNN) [CY88a, CR90] is
motivated by the appearance of a new 2-Layer CNN Universal Machine (CNN-UM) architecture called CACE
(Complex cell Analog-and-logic non-linear Computing Engine) [RFR+02], that has already been manufactured.
Interestingly, the region of stable operation (i.e. template values) of Multi-Layer architetures’ has not been
analyzed as intimately as its Single-Layer counterpart which is still far from being entirely clarified yet.

However they are not completely discovered yet, several important spatio-temporal phenomena have been
experimentally tested and its relevance in modeling has been demonstrated ref. [CTTA00].

Our papers main virtue is a formalism that enables us to treat Multi-Layer architectures as simple as a
Single-Layer CNN.

The main results refer mostly for a 2-Layer CNN. Namely, we show that a 2LCNN is stable

• if the inter-layer feedback templates are symmetric, and the intra-layer feedback template is cross-
symmetric or τ -cross symmetric (i.e. weighted with the corresponding layer time constant),

17



18 CHAPTER 2. STABILITY OF MLCNN

• if in the class of non-symmetric templates, the so-called constant-ratio rule holds among the template
entries,

• if all of the templates match to a single sign pattern in which sign alteration frequency is a fixed one or zero
in both horizontal and vertical directions and the phases of the two inter-layer feedbacks are equivalent
while the inter-layer feedbacks may vary upto a constant phase compared to them.

Similarly to that, MLCNN with arbitrary layer number is stable with arbitrary template size if a similar
hypothesis holds with the extension that the matrix of the phase changes is in the class of chess board type
matrices.

In the following, the CACE architecture is described step-by-step (Sec. 2.3) starting from the Chua Yang
model of CNN, then its compact vector form is reviewed with the extension to multi-layer equivalent equations
that made the generalization of the formerly known theorems possible (Sec. 2.4), and new theorems are presented
in Sec. 2.5. The appendix recalls the known and the new proofs with our unified formalism to help the reader,
however our contribution can be found in the main part.

2.3 Multi-Layer and CACE Architectures

2.3.1 Chua-Yang Model [CY88a]

A CNN operates on a lattice-structured set of state variables (x̂)ij , i ∈ {1, ..., N}; j ∈ {1, ...,M}1 input (ûij)
and bias map (ẑij) influenced by each other via a small set of local connection variables, called template (Â and
B̂). Both the variables and the templates are arranged in matrix form. In hardware implementations the size
of the templates usually does not extend beyond the neighborhood of radius r = 1, which mean a 3×3 template
size (i.e. r = 1⇔ ∃(Â)kl 6= 0 : k, l ∈ {−1, 0, 1}).

The system is governed by the following differential equation,

τ( ˙̂x(t))ij = −(x̂(t))ij +
∑

kl∈Sr(ij)

(Â)kl · (ŷ(t))i+k,j+l +
∑

kl∈Sr(ij)

(B̂)kl · (û(t))i+k,j+l + (ẑ(t))ij

or in short
τ ˙̂x = −x̂ + Â ∗ ŷ + B̂ ∗ û + ẑ (2.1)

where ∗ symbolizes the convolution operator. Note that capitals are constants.

(ŷ)ij = f((x̂)ij) =
(|(x̂)ij + c| − |(x̂)ij − c|)

2c
(2.2)

where c is usually chosen to be 1.
This model was introduced by Chua and Yang in ref. [CY88a] therefore it is called Chua-Yang model

(CYCNN).

2.3.2 Full-Range Model [ERVDVC94]

For practical reasons, different types of non-linearities were introduced. One of them is the so-called Full-Range
model, which limits the operational range of state variables (x̂)ij , rather than limiting the output as in Eq.
(2.1),

1We index and use brackets of matrices as (mij(t))kl, where (ij) refers to the submatrix in the ith row jth column of the
hypermatrix (m) at time (t) and (kl) refers to the matrix element in kth row lth column.
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τ ˙̂x = −g(x̂) + Â ∗ x̂ + B̂ ∗ û + ẑ (2.3)

where

g((x̂)ij) =

{
0 , if |(x̂)ij | < 1
limm→∞ (|(x̂)ij | − 1) ·m·sgn((x̂)ij) , else .

(2.4)

Since the majority of the stability works was made on CYCNN model and almost exclusively FRCNN model
was implemented, one might asks the question whether the stability theorems claimed for CYCNN holds for
FRCNN too? Some important aspects of the differences between the two models (i.e. CYCNN and FRCNN)
were examined in ref. [CG03], where it was observed that even the trajectories of the two models might depart
qualitatively, the convergence criteria of all the stability theorems that have been known so far are still intact.

The function g() is a limit function because of its asymptotic definition. A definition like this, indeed,
imposes difficulties in numerical tractability and in functional analysis but it is easier to implement and it
speeds up the operation (either convergence or instability) compared to the CY model. Furthermore, it reduces
noise sensitivity in the analog implementations.

2.3.3 Multi-Layer Architectures

Even though Multi-Layer CNN (MLCNN) architectures have been known since 1991 [CS91], it did not generate
as many publications as the Single-Layer architerures did since, which is probably due to its increased complexity
in the analysis.

Multi-layer architectures consist of two or more sets of indexed state variables influenced via (Â)op kernels
where o and p refer to the so-called from and to layers, respectively. Disregarding the technical difficulties in
VLSI implementations, MLCNNs could be defined as,

τp
˙̂xp = −g(x̂p) +

L∑
o=1

Âop ∗ x̂o + B̂p ∗ ûp + ẑp

where L defines the number of layers (p ∈ {1, ..., L}).
One should note that the entries in vector τ might vary from layer to layer. For a simple case like L = 2

(i.e. 2LCNN), one can get,

τ1
˙̂x1 = −g(x̂1) + Â11 ∗ x̂1 + Â21 ∗ x̂2 + B̂1 ∗ û1 + ẑ1

τ2
˙̂x2 = −g(x̂2) + Â12 ∗ x̂1 + Â22 ∗ x̂2 + B̂2 ∗ û2 + ẑ2.

(2.5)

Defining the same architecture with respect to Chua-Yang model,

τ1
˙̂x1 = −x̂1 + Â11 ∗ ŷ1 + Â21 ∗ ŷ2 + B̂1 ∗ û1 + ẑ1

τ2
˙̂x2 = −x̂2 + Â12 ∗ ŷ1 + Â22 ∗ ŷ2 + B̂2 ∗ û2 + ẑ2.

2.3.4 CACE Architecture

In ref. [RFR+02] the CACE architecture with a complete CNN-UM core is defined as
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τ1
˙̂x1 = −g(x̂1) + Â11 ∗ x̂1 + â21 · x̂2 + b̂1 · û1 + ẑ1

τ2
˙̂x2 = −g(x̂2) + â12 · x̂1 + Â22 ∗ x̂2 + b̂2 · û2 + ẑ2.

(2.6)

One can define CACE architecture with respect to Chua-Yang model as

τ1
˙̂x1 = −x̂1 + Â11 ∗ ŷ1 + â21 · ŷ2 + b̂1 · û1 + ẑ1

τ2
˙̂x2 = −x̂2 + â12 · ŷ1 + Â22 ∗ ŷ2 + b̂2 · û2 + ẑ2.

In Eq. (2.6) lower case â21, â12, b̂1, b̂2 refer to scalar values which are multiplied by the state and the input
vectors, rather than convolved with them. This simplification is due to the costs of implementation belonging
to the fully connected inter-layer feedback templates. Nevertheless, interesting spatio-temporal dynamics can
evolve in this structure.

In Fig. 2.1 one can compare differences between a 2-layer and a CACE architecture.

2

x1

x

^

^

(a) General 2-layer CNN (2LCNN) architecture

2x

x1

^

^

(b) The CACE architecture

Figure 2.1: The fully inter-connected MLCNN and the sparsely interconnected CACE architectures are depicted
on the left and right, respectively. Intra-layer feedback templates (Â11 and Â22) are symbolized by self-closing
arrows on the layers (x̂1 and x̂2), intra-layer feedback templates are symbolized by arrows between the layers.
The differences between CACE and 2-layer architectures are emphasized by the width of the arrows referring to
the size of convolution kernel

Note that in contrast to former CNN implementations τ1 and τ2 time constants are programmable.

2.4 Compact Vector Form

At the first sight, the parts most difficult to handle in the system of equations are the convolutions. To get rid
of them, a standard rewriting method is used.

Consider a state equation of an M ×N CNN. In the compact form, new vectors (x̃, ỹ, ũ) are introduced by
repacking variables by an invertible rearrangement

(x̃)i+M ·j = (x̂)ij . (2.7)

In order to be able to write the equivalent system of equations, the form of the kernels needs to be reformu-
lated as well, resulting in a Block Toeplitz matrix shown in Fig. 2.2.
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(b) The same kernel in compact matrix representation form

Figure 2.2: To transform the convolution in Eq. (2.1) to vector-matrix multiplication, a matrix-to-vector repack-
ing described by Eq. (2.7) was used therefore, the matrix of kernels needed to be converted to the so-called compact
matrix form having Block Toeplitz structure as shown on the right-hand side.

So the equivalent system of equations may be written as

τ ˙̃x = −g(x̃) + Ãx̃ + B̃ũ + z̃

Applying this to a 2LCNN, one can write Eq. (2.5) as

τ1
˙̃x1 = −g(x̃1) + Ã11x̃1 + Ã21x̃2 + B̃1ũ1 + z̃1

τ2
˙̃x2 = −g(x̃2) + Ã12x̃1 + Ã22x̃2 + B̃2ũ2 + z̃2.

(2.8)

By packing the state, the output, the input and the bias map vectors of the two layers in single vectors, as
xT = (x̃T

1 , x̃T
2 ), yT = (ỹT

1 , ỹT
2 ) etc., one can write

τ ẋ = −g(x) + Ax + Bu + z (2.9)

where hypermatrices τ,A, B were created by similar concatenation as

τ =

(
τ1I 0
0 τ2I

)
, A =

(
Ã11 Ã21

Ã12 Ã22

)
, B =

(
B̃1 0
0 B̃2

)
, (2.10)

where I denotes the identity matrix. Each hypermatix is of size 2MN × 2MN . Note that, the compact vector
form of CNN is exactly the same as Eq. 2.10. It can easily be extended for arbitrary number of layers with
arbitrary size of templates. The form still holds.

However it needs to be remarked that there is one order of magnitude difference in the degree of freedoms
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of the convolution kernels (df(Âij) → 4 × 9) and their counterpart matrices (df(Aij) → 2MN × 2MN).
Naturally, not all stable solutions for matrix A can be transformed to a kernel. The main constraint on the
matrix structure is the principle of spatial invariance.

The obtained form provides a powerful tool, by which many of the known theorems claimed for Single-Layer
CNNs can be generalized to MLCNN architectures. All we need to do is to carefully revise all steps that might
touch the degree of freedom of matrix A and explore all the new possibilities inherent to its greater being.

In the next sections we give a far not complete list of theorems that can be extended in this manner.

Definition 1. If in network none of the cell’s state depends explicitly on the cell’s position (or site index) then
the network is called spatially invariant.

In the definition above, implicit dependence might refer to dependence on index differences.
Disregarding boundary conditions the definition can be formulated for a Single-Layer CNNs as,

(A)ij = function(i− j) (2.11)

(read as: the entries of matrix A depend exclusively on a function of the difference of the entries’ horizontal
and vertical indexes), which is equivalent to the definition of Toeplitz matrices. Similar constraints apply to
MLCNNs,

(Akl)ij = function(kl, i− j). (2.12)

Definition 2. The definition of the locality can be formulated as

(Â)ij = 0 : ||i, j|| > r ⇒ Aσ(k,l;i,j) = 0 : ||i, j|| > r

where σ is an invertible mapping of state variables from Â to A.

Remark 1. The Bidirectional Associative Memory (BAM) neural network resembles a 2LCNN to a certain
extent. This network was introduced by Kosko [Kos88] as,

( ˙̂x1)i = −(κ1)i(x̂1)i +
p∑

j=1

(Â1)ji · (ŷ2)j + (φ̂1)i

( ˙̂x2)i = −(κ2)i(x̂2)i +
p∑

j=1

(Â2)ji · (ŷ1)j + (φ̂2)i.

which is equivalent to,

1
(κ1)i

( ˙̂x1)i = −(x̂1)i +
1

(κ1)i

 p∑
j=1

(Â1)ji · (ŷ2)j + (φ̂1)i


1

(κ2)i
( ˙̂x2)i = −(x̂2)i +

1
(κ2)i

 p∑
j=1

(Â2)ji · (ŷ1)j + (φ̂2)i

 .

(2.13)

This network can be regarded as a one dimensional, two-layer, fully connected, heteroassociative network. With
the matrix concatenation formalism provided above the Eq. (2.13) can be rewritten as,

χ̃ ˙̃x = −x̃ + Ãỹ + φ̃
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where χ̃ =

(
χ1 0
0 χ2

)
composed of χ1 = diag{1/(κ1)1, 1/(κ1)2, ..., 1/(κ1)P } and

χ2 = diag{1/(κ2)1, 1/(κ2)2, ..., 1/(κ2)P }) denotes the neuron charging time constant, x̃T = (xT
1 , xT

2 ) and Ã =(
0 χ1 ·A1

χ2 ·A2 0

)
denotes the connection matrix. ỹT = (yT

1 , yT
2 ) is given by (ỹ)i = si(xi(t)) where si represent

the neural activation function with the well-known sigmoid characteristics and finally φ̃T = ((χ1φ̃1)T , (χ2φ̃2)T )
is a constant additive term.

It looks clear that the only difference between 2LCNN and BAM is manifested in spatial invariance and
locality criteria of A. Apart from this, the two networks’ dynamical behaviour is equivalent.

In sections (Sec. 2.5.1, 2.5.3 ) we start from the τ1 = τ2 = 1 case and develop toward the τ1 6= τ2 case in
(Sec. 2.5.2, 2.5.4), while theorem 5 is left unaffected by the modification of temporal parameters (layer time
constants) but spectacular extension for larger template size is detailed in Sec. 2.5.5.

2.5 Main Results

Probably the most widely used approach for concluding systems’ stability is done by means of Lyapunov
functions. Sometimes it is particularly difficult to write an appropriate Lyapunov functional for a given system
since its definition is not constructive. Fortunately, several Lyapunov functions have been introduced for CNN
versions but other stability considerations coexist. In the following sections, several of them will be introduced.

2.5.1 Symmetric Case

The root of the following theorem can be found in ref. [CR02] for Single-Layer CNNs, where perfect central
symmetry is assumed for the template elements. Our new theorem is a logical extension to that, and proposes
relation for interconnecting template elements.

Definition 3. Cross symmetry is defined as centrally mirrored equivalence of template elements in Â12 and
Â21. (i.e. (̂A12)kl = (Â21)−k−l or see Fig. 2.3(b)).

Definition 4. A dynamical system (ẋ = f(x(t)), x(t0) = x0, x ∈ Rn, f : Rn → Rn) is said to be completely
stable if for ∀x0 ∈ Rn:

lim
t→∞

x(t, x0) = const

(ref. [Gil93])

Theorem 1. A 2-layer CNN is completely stable2 if

• The template values are central symmetric for intra-layer feedback sub-template elements (Â11, Â22),

• The template values are cross symmetric for inter-layer feedback sub-template elements (Â12, Â21),

• Layer time constants are unity (τ1 = τ2 = 1),

• f() is continuously differentiable, bounded and f ′() > 0,

2Here we restrict ourself to non autonomous systems hence constant u(t) and z(t) are assumed.
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• All equilibrium points are isolated.

The interpretation of the criteria: The first criterion was probably the very first known by the CNN commu-
nity known as central symmetry. In Fig. 2.3 arrows point to template elements are need to be equal to satisfy
central symmetry (Fig. 2.3(a)) and cross symmetry (Fig. 2.3(b)).

A11 22, A
^^

(a) First criterion: Central-symmetry must hold for
intra-layer feedback template elements

^

^

A

A

12

21

(b) Second criterion: Cross-symmetry must hold
for inter-layer feedback template elements

Figure 2.3: Arrows point to kernel entries needed to be equal to satisfy the first two criteria of Theorem 1

The example below meets both criteria above.

Â11 =
.2 .3 .5

.4 2 .4

.5 .3 .2

Â12 =
.1 .5 .2

.2 1 .2

.3 .3 .4

Â21 =
.4 .3 .3

.2 1 .2

.2 .5 .1

Â22 =
.1 .2 .3

.1 2 .1

.3 .2 .1

Later we will recall the trajectory limit length theory of Forti et al in ref. [For02] which enables us to drop
the last two hypotheses of this theorem as well.

Proof: Assume a continuously differentiable and bounded bijective function y(x), then the equilibrium points
of Eq. (2.9) are isolated.

In the case of symmetric, spatial invariant templates, the compact matrix is symmetric (A = AT ), which
lets us write a Lyapunov function of the form,

V (x) = −1
2
yT Ay +

2MN∑
i=1

[∫ yi

θ

f−1(v)dv

]
− yT Bu− yT z (2.14)

which is the first Lyapunov function introduced for CNNs in [CY88a].
In ref. [CY88a] it is proved that x(t) is bounded (∃Xl : |x(t)| < Xl,∀t) which means the boundedness of

V (x). Having a bounded V () and being its time derivative along the trajectory negative (see appx. A.1), V ()
is an appropriate Lyapunov function of the system.
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By applying LaSalle’s invariant principle [LaS67], one can conclude that all trajectories are convergent to
the invariant set defined by M = {x : V̇ (x) = 0} ∀x ∈ Rn. In fact, complete stability derives from the
connectedness of the ω-limit set of each trajectory.

Corollary: In the case of Single-Layer CNNs, the symmetric property of matrix (A = AT ) implies the
symmetry of the Â template ((Â)kl = (Â)−k −l). In the case of 2LCNN this property implies slightly different
rules, as well.

Obviously, the symmetry is repeated for Â11 and Â22 intra-layer feedback templates ((Âii)kl = (Âii)−k −l i ∈
{1, 2}), since their spatial arrangement in hypermatrix A is identical to that of the original CNN from at least
the symmetric point of view (i.e. diagonal matrix positions). The only difference arises in case of inter-layer
feedback matrices for which the following rule can be concluded,

Ã21 = ÃT
12 ⇒ (Â12)kl = (Â21)−k−l.

This relation is called cross-symmetry between inter-layer feedback sub-template elements.

Remark 2. It must be noted that the case of perfectly symmetric intra-layer feedback and perfectly anti-
symmetric inter-layer feedback case ((Â12)kl = −(Â21)−k−l) has already been studied in ref. [FLMM93].

2.5.2 τ-Symmetric Case

The case of non-unity τ was neglected in the former sections. Now, the model to be examined is extended and
by relying on a theorem proposed in ref. [For02] a new theorem is given. The method overcomes the problem
of non-invertible input/output activation function f() in Eq. (2.14), which therefore can be piecewise linear
(PWL) or piecewise analytic. Furthermore the theorem proofs the stability in case of non-isolated equilibrium
points, too. (see appx. A.2)

Theorem 2. A 2-layer CNN is completely stable if the template values are

• Central symmetric for intra-layer feedback sub-templates elements (Â11, Â22)

• τ -cross symmetric for inter-layer feedback sub-templates elements (Â12, Â21)

• f() is continuously differentiable, bounded and f ′() > 0

• All equilibrium points are isolated.

Due to the methodology of the proof, the theorem can be extended to the Absolutely Stable class of global
pattern formation, similarly to the theorem of M. Forti, which means complete stability for any choice of
parameters defining Âij , B̂i, ûi, ẑi i, j ∈ {1, 2} satisfying the symmetry criteria given above.

The interpretation of the new criterion: Compared to the previous theorem, a modification appears in the
τ -cross symmetric criterion which is depicted in Fig. 2.4 by using the same symbols.

Proof: Let us rearrange the equations of a 2-layer CYCNN

τ1
˙̃x1 = −x̃1 + Ã11ỹ1 + Ã21ỹ2 + B̃1ũ1 + z̃1

τ2
˙̃x2 = −x̃2 + Ã12ỹ1 + Ã22ỹ2 + B̃2ũ2 + z̃2
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τ
2

^

^
A

12

21

A

1
τ

Figure 2.4: For non-unity τ values, τ -cross symmetric rule holds, i.e. weighted template values pointed pairwise
by the arrows are the same where the weights are the corresponding time constants.

as

˙̃x1 = − 1
τ1

x̃1 + 1
τ1

Ã11ỹ1 + 1
τ1

Ã21ỹ2 + 1
τ1

(
B̃1ũ1 + z̃1

)
˙̃x2 = − 1

τ2
x̃2 + 1

τ2
Ã12ỹ1 + 1

τ2
Ã22ỹ2 + 1

τ2

(
B̃2ũ2 + z̃2

)
Again, by the concatenation of equations (as in Eq. (2.8)), one can obtain,

ẋ = −τx + A∗y + B∗u + z∗ (2.15)

where

A∗ =

(
1
τ1

Ã11
1
τ1

Ã21

1
τ2

Ã12
1
τ2

Ã22

)
, B∗ =

(
1
τ1

B̃1 0
0 1

τ2
B̃2

)
and

z∗ =

(
1
τ1

z̃1

1
τ2

z̃2

)
, τ =

(
τ1 · I 0

0 τ2 · I

)
.

Consequently, we obtained original CYCNN equation again with the exception of matrix τ . The Lyapunov
function introduced in appx. A.2 implies strict symmetry requirement on A∗. This requirement implies sym-
metric Â11 and Â22 which is the same as in the hypothesis of the previous theorem. Hence compared to the
previous theorem, the only modification this matrix τ multiplication leads to can be written as(

1
τ1

Ã21

)T

=
1
τ2

Ã12

or
τ2(Â12)kl = τ1(Â21)−k−l, (2.16)

which is the τ -cross symmetric rule. This rule is depicted in Fig. 2.4.
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2.5.3 Non-Symmetric Case

Being armed with the new formalism, another Lyapunov function can be rewritten, which again implies a
specific relation of intra- and inter-layer template values. This case can be regarded as an extension of the case
given in ref. [Gil93] which considers single-layer networks only.

Theorem 3. A 2-layer CNN is completely stable if

• The constant ratio rule holds for intra-layer feedback sub-template elements (Â11, Â22)

• The constant ratio rule holds between inter-layer feedback sub-template elements (Â12, Â21)

• Zero additive term (B̂ ∗ û + ẑ = 0) is present

• Layer time constants are unity (τ1 = τ2 = 1)

• f() is continuously differentiable, bounded and f ′() > 0

• All equilibrium points are isolated.

The interpretation of the criteria: The so-called constant ratio rule is a term for the rule specified by M.
Gilli, et al. It explains the stability criterion as a ratio of template elements. We say a template is conform to
the rule, if the ratio of the northern and southern template elements multiplied by the ratio of the eastern and
western elements is equal the ratio of north-southern and south-western elements (see Fig. 2.5 for explanation).
Similarly, in a 2LCNN, the same rule must hold for intra-layer feedback sub-template elements, too.

With the same symbolism used in Fig. 2.5, the constant ratio rule between the two layers is displayed in
Fig. 2.6(a) which is articulated in terms of the inter-layer feedback sub-template elements.

A A
^ ^

Figure 2.5: The constant ratio rule of template elements holds if the ratio of the northern and southern template
elements (vertical gray arrows) multiplied by the ratio of the eastern and western elements (horizontal gray
arrows) is equal to the ratio of north-southern and south-western elements (black arrow). Or in short ane

asw
=

an

as

ae

aw
and anw

ase
= an

as

aw

ae
. In case of a 2-Layer CNN (2LCNN), intra-layer feedbacks (i.e. Â11 and Â22) must

possess this property.

The example below satisfies the criteria of the theorem in question:

Â11 =
.4 .4 .8

.4 0 .8

.1 .1 .2

Â12 =
1.2 1.2 2.4

1.2 .3 2.4

.1 .3 .6

Â21 =
.4 .4 .8

.4 .1 .8

.1 .1 .2

Â22 =
1.6 1.6 3.2

1.6 0 3.2

.4 .4 .8
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A11
^

A12
^

A21
^

(a) Eq. (2.20)

A11
^

A21
^

A12
^

(b) Eq. (2.21)

Figure 2.6: The required constant ratio rule between inter-layer feedback template elements

Proof: Assume a Lyapunov function in the following quadratic form,

V (x) = −1
2
yT Py, (2.17)

where P = D(A−I) is symmetric and consists of non-negative entries only. If there exists a D = diag{d1, d2, ..., dMN}
diagonal matrix which satisfies the symmetry criterion for P , the network is completely stable. (for the proof
see appx. A.3)

Let us introduce a formalism,

aij =

{
(A)ij − 1 , if i = j

(A)ij , else .
(2.18)

From the diagonality assumption on D, one can write Pik = diaik, and from the symmetricity assumption
on P , Pik = Pki ⇔ diaik = dkaki.

From the principle of spatial invariance we have a Toeplitz type restriction on matrix A, (see Fig. 2.2(b))
The neighboring elements of D must obey the following relation,

di

di+1
=

ai+1,i

ai,i+1
=

ae

aw
. (2.19)

Consequently, every Nth neighboring elements are in relation

di

di+N
=

ai+N,i

ai,i+N
=

an

as
.

Since the above holds for all i, the di/di+1 constitute a geometrical series along the diagonal of D. (i.e.
di/di+N = (di/di+1)N , qN ). As a consequence,

di

di+N+1
=

di

di+N

di

di+1
=

ai+N+1,i

ai,i+N+1
=

ane

asw
=

an

as

ae

aw

di

di+N−1
=

di

di+N

di

di−1
=

ai+N−1,i

ai,i+N−1
=

anw

ase
=

an

as

aw

ae
.
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These relations describe the constant ratio rule. By writing A instead of Ã (i.e. extension from one single
layer to double layer), the consequences for 2LCNN can be examined.

The same rule applies for A11 independently of the other submatrix element in the hypermatrix. Having
a geometrical series in D̃ = {d1, ..., dMN , dMN+1, ..., d2MN} it leads to the following similar, but much trickier
rules,

di

di+MN
=

ai+MN,i

ai,i+MN
=

a21
c

a12
c

Consequently,

di

di+N+MN
=

di

di+N

di

di+MN
=

ai+N+MN,i

ai,i+N+MN
=

a21
n

a12
s

=
a11
n

a11
s

a21
c

a12
c

di

di+1+MN
=

di

di+1

di

di+MN
=

ai+1+MN,i

ai,i+1+MN
=

a21
e

a12
w

=
a11
e

a11
w

a21
c

a12
c

.

For diagonal compass points (i.e. south-western, south-eastern, north-western, north-eastern),

di

di+N+1+MN
=

di

di+1

di

di+N

di

di+MN
=

ai+N+1+MN,i

ai,i+N+1+MN
=

=
a21
ne

a12
sw

=
a11

n

a11
s

a11
e

a11
w

a21
c

a12
c

=
a11
ne

a11
sw

a21
c

a12
c

(2.20)

di

di+N−1+MN
=

di

di−1

di

di+N

di

di+MN
=

ai+N−1+MN,i

ai,i+N−1+MN
=

=
a21
nw

a12
se

=
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n

a11
s

a11
w

a11
e

a21
c

a12
c

=
a11
nw

a11
se

a21
c

a12
c

.

The relation of Eq. (2.20) is depicted in Fig. 2.6(a)

By similar considerations one can get,

a21
se

a12
nw

=
a11

se

a11
nw

a21
c

a12
c

a21
sw

a12
ne

=
a11

sw

a11
ne

a21
c

a12
c

.

And from similar rearrangements, it is easy to show that

a21
sea

12
se

a21
nwa12

nw

=
a11
n

a11
s

a11
w

a11
e

=
a11
nw

a11
se

a21
swa12

sw

a21
nea

12
ne

=
a11
n

a11
s

a11
e

a11
w

=
a11
ne

a11
sw

(2.21)

which can be depicted as in Fig. 2.6(b).

By examining the Block Toeplitz structure of A, one can conclude that the spatial invariance criterion that
lead to the conclusions above, do not imply any relation between dMN and dMN+1. This would be particularly
interesting so as to conclude whether D can be divided into two parts in which two independent geometrical
series are formed or if it must form a single one.

To answer this controversial question, let us write what we used in the deduction of the rules above a bit
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more formally. The first step (Eq. (2.19)) can be written as

di

di+c
=

ai+c,i

ai,i+c
= qc, (2.22)

which must hold regardless of the following substitution (j = i + c),

dj−c

dj
=

aj,j−c

aj−c,j
= qc (2.23)

Roughly, if c ≥ MN then Eq. (2.22) (see Fig. 2.7(a)) leads to Eq. (2.21) and Eq. (2.20), while Eq. (2.23)
(see Fig. 2.7(b)) implies symmetric rules

a21
ne

a12
sw

=
a22

ne

a22
sw

a21
c

a12
c

,

which completes the contant ratio rule in general.

A11 A21

A12 A22

c

c

~ ~

~~

i

i

(a) Eq. (2.22)

A11

~

A12

~
A22

~

A21

~

c

j

j

c

(b) Eq. (2.23)

Figure 2.7: The ratio of the elements pointed to by arrows in matrix (Ã) are in relations that are described by
the corresponding equations

2.5.4 τ-Non-Symmetric Case

Similarly to the theorem in Sec. 2.5.2, here we examine the effect of using non-unity layer time constants (τ),
summarized in the following theorem as,

Theorem 4. Theorem 3 holds for any ratio of layer time constants.

Theorems which define a larger than zero set measure of region of parameters in which stability holds could
only have importance in engineering practise. From this aspect, Theorem 4 theorem significantly contributes
to Theorem 3.

Proof: A Lyapunov function similar to Eq. (2.17) is used, but here H = (A∗− τ) which modifies Eq. (2.18)
as,

aij =

{
(A∗)ij − (τ)ii , if i = j

(A∗)ij , else .
(2.24)
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τ
1
1

τ
1
2

A11 A21

A12 A22

c

c

~ ~

~~

Figure 2.8: The matrix A∗ first used in Eq. (2.15) and later in Eq. (2.24) has this structure. Its submatrices
are multiplied by 1/τ1 and 1/τ2 where they are gray and white, respectively. In the proof of theorem 4 this matrix
must be symmetrized by multiplying it by D in order to satisfy the corresponding hypothesis.

Let’s map matrix elements as aij∗ → aij as

a11∗ =
1
τ1

a11 a21∗ =
1
τ1

a21

a12∗ =
1
τ2

a12 a22∗ =
1
τ2

a22
(2.25)

Hence, the rule above transforms Eq. (2.20) to

a21∗
ne

a12∗
sw

=
a11∗

ne

a11∗
sw

a21∗
c

a12∗
c

=

1
τ1

a21
ne

1
τ2

a12
sw

=
1
τ1

a11
ne

1
τ1

a11
sw

1
τ1

a21
c

1
τ2

a12
c

=
a21
ne

a12
sw

=
a11
ne

a11
sw

a21
c

a12
c

(2.26)

which means that the mapping does not change the original statements.
The reason is simply as follows: during the mapping, Ã is modified as in Fig. 2.8 and depending on the

magnitude of c, this leads to two distinct cases in the equations which can be derived from the symmetry
criterion on matrix P ∗:

1. The 1 < c < MN case leads to rules, where the matrix elements referred to as ai,i+c and ai+c,i are in the
same hypermatrix partition, so their ratio will not change by multiplying the elements of the partition by
an arbitrary non-zero constant (i.e. a∗i,i+c/a∗i+c,i = ai,i+c/ai+c,i).

2. The MN < c < 2MN case leads to rules which simplify the ratio exactly the same way as in Eq. (2.26).

Hence, one can see that τ values always simplify, which validates the theorem.

2.5.5 Sign Symmetric Case

The theorem introduced in ref. [CR90] and later used in ref. [CC92], prescribes the sign relation of template
elements rather than the perfect relation of template values, which defines a much larger class of stable templates.
Now, these findings are generalized to multi-layers.
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Theorem 5. A 2LCNN is stable almost everywhere if,

• Intra-layer feedbacks (Â11,Â22) are strictly sign-symmetric (see Fig. 2.10)
sgn(Âkk)ij = (−1)i+j or
sgn(Âkk)ij = (−1)i or
sgn(Âkk)ij = (−1)j or
sgn(Âkk)ij = (−1)0 ∀k ∈ {1, 2}

• The sign of both of the inter-layer feedbacks are equal to that of the intra-layer feedbacks or its inverse
(see Fig. 2.11)
sgn(Âk,3−k) = −sgn(Âkk) or
sgn(Âk,3−k) = sgn(Âkk)

The following template is an arbitrary example for the first template group in the second row of Fig. 2.11.

Â11 =
−1 .1 −1

.1 1 .1

−1 .1 −1

Â12 =
.2 −2 .2

−2 2 −2

.2 −2 .2

Â21 =
.3 −3 .3

−3 3 −3

.3 −3 .3

Â22 =
−4 .4 −4

.4 4 .4

−4 .4 −4

Convergence almost everywhere is a weaker condition than the complete stability because it can refer to
unstable cases like equilibrium points, limit cycles and chaotic trajectories, though as a pathological only. The
consequences define a much wider class of solutions than the previous theorems (say, a class of set of non-isolated
solutions), which makes these theorems suitable for engineering purposes.

Definition 5. A dynamical system is stable almost everywhere if the set that does not converge to a constant
equilibrium point has a Lebesque measure zero3 (see ref. [CC92]).

In the proof of Theorem 5 we will generalize the stability criterion given in ref. [CC92], following Hirsch’s
theorem in ref. [Hir85], claimed for cooperative/competitive systems.

Definition 6. A dynamical system ẋ = F (x), F ∈ C1 is cooperative if

∂Fi(x)
∂xj

≥ 0 ∀i 6= j

which means that the Jacobian matrix possesses the non-negative off-diagonals only property at every location.

Definition 7. A dynamical system ẋ = F (x), F ∈ C1 is irreducible if a sequence of indexes from i to j exists
(∃{n1 = i, n2, n3, ..., nm−1, nm = j}) such that

∆F (x)nl,nl−1 6= 0, ∀i, j
3The definition of stable almost everywhere is used in Hirsch sense. [Hir85].
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where l ∈ {2, ...,m} or equivalently, ∃P permutation matrix such that, P∆F (x)PT =

(
X Y

0 Z

)
).

Let us consider it in case of a 2LCNN,

∂F (x)i

∂xj
= (A)ij

∂fi(x)
∂(x)i

where
ẋ = F (x) = −x + Ay + Bu + z.

By finding a suitable transformation, our dynamical system can be transformed into a co-operative system.
A solution is given by changing variables x→ Jx′, where J is chosen to be diag{(−1)n1 , (−1)n2 , ..., (−1)nMN }
and ni ∈ (0, 1). Consequently, we get

Jẋ′ = −Jx′ + Af(Jx′) + Bu + z | J−1· (2.27)

ẋ′ = F ′(x′) = −x′ + J−1Af(Jx′) + J−1Bu + J−1z

As a consequence the Jacobian matrix of F ′ is

∆F ′(x′) = J−1A ∆f(Jx′)J − I

where ∆f()ij = δijf
′
i() and I = δij . Since they are diagonal, they commute and by a A′ = J−1AJ substitution

one can get,
∆F ′(x′) = J−1AJ ∆f(Jx′)− I = A′ ∆f(Jx′)− I.

Note that J = J−1 which will ease the considerations later. The Jacobian matrix at every off-diagonal is,

∂F ′
i (x

′)
∂x′j

= (A′)ij
df(v)
dv

∣∣∣∣
(Jx′)j

.

If A′ is irreducible, non-negative at every off-diagonal position, the system is stable almost everywhere.
Hence, we are looking for all appropriate J matrices, which might lead to an irreducible A′ with non-negative
off-diagonals. The task is now to find a methodology that generates all the possible solutions.

Note that irreducibility is intact under a JAJ affine transformation.
In general, rewriting an ODE equation into a compact form as it was done in case of the CNN (in Eq.

(2.9), resulting in a matrix A), will not code all the constraints that the original system (i.e. CNN) had. These
constraints include the principle of spatial invariance or diverse type of boundary conditions. As long as the
principle of spatial invariance considerably decreases the degree of freedom of the matrix, the later constraint
may alter only the structure of the Block Toeplitz matrix.

As a result of this investigation, we present all the possible solutions where Dirichlet boundary condition is
assumed.

Every Jii = (−1) will result in a sign inversion of the corresponding (i.e. ith) column and (i.e. ith) row as
depicted in Fig. 2.9.

Matrix A is not only Toeplitz but also sparse, which means that non-zero entries are located exclusively at
diagonal and co-diagonal positions of the diagonal and co-diagonal blocks of the matrix. In case of a 2LCNN,
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i.

i.

A’

Figure 2.9: The sign inversion of A under a JAJ transformation caused by a single negative entry (i.e. (−1))
in the diagonal of matrix J at the ith position, where black regions refer to the sign-inverted part of the matrix.

the same applies to the intra-layer feedback and the inter-layer feedback blocks in the hypermatrix. For a
template size larger than 3× 3, co-diagonals are filled up to the rth order.

First, for the sake of simplicity, we collected the solutions for a CNN of size MxN. In order to get spatial
invariant solutions, realize that invariant co-diagonals must appear in the matrix A. In order to get this structure
in A, we must have a periodic sign series in J (i.e. periodic ni, too). The periodicity may be zero, unity, N or
mixture of them (call it a composite later) which results in diverse but invariant, sign inverted blocks in matrix
A.

One can conclude that only a few possibilities remain for J :

• Identity cases: n1 = 0, n2 = 0, . . . , nMN = 0 ⇒ J = {−1,−1, . . . ,−1} which is equivalent to n1 =
1, n2 = 1, . . . , nMN = 1 ⇒ J = {1, 1, . . . , 1} since both projects A onto A′ without any effect

• Alternating cases: J = {1,−1, 1, ..., (−1)MN} or J = diag{−1, 1,−1, ..., (−1)MN} leads to chess table
sign arrangement in A′ which correspond to the vertically striped structures in the template

• N block cases: J = diag{1, 1, ..., 1︸ ︷︷ ︸,−1,−1, ...,−1︸ ︷︷ ︸, 1, 1, ..., 1︸ ︷︷ ︸, ..., (−1)M−1} and its inverse

J = diag{−1,−1, ...,−1︸ ︷︷ ︸, 1, 1, ..., 1︸ ︷︷ ︸,−1,−1, ...,−1︸ ︷︷ ︸, ..., (−1)M} where multiple series of ones and minus

ones follow each other in blocks of Ns. These Js produce chess table arrangements in the A′ as well but
with square sizes of N . These cases correspond to the horizonally striped structures in the template

• Composite of block N and alternating cases: Any multiplication of the alternating cases and the block
cases leads to new solutions. These cases form the class of stable templates with chess table sign patterns.

The systematic sign-inversions in A correspond to sign inversions at the template sign patterns. We can
visualize the rules above. If the sign pattern of a template matches to one of the sign patterns depicted in Fig.
2.10, the template belongs to the class of stable almost everywhere templates.

Figure 2.10: These are the template sign symmetries of the spatially invariant solutions of (JAJ)ij ≥ 0, where
Jij = (−1)nkδij. The black regions refer to the sign-inverted part of the template. Non-negative, non-positive
and arbitrary values are at black positions, white positions and gray positions respectively.
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The transformation of the found configurations of Js to the case of 2LCNN leads to a larger set of stable
template sign patterns which are given as follows.

The use of two independent layers (Â12 = 0 and Â21 = 0) recalls the Single-Layer CNNs’ cases and implies
the stability criteria specified above. Interesting questions arise whenever the two layers inter-connect via
non-zero inter-layer feedback templates.

While seeking for all possible configurations of Js of 2LCNNs, we will point out that one more case exists
which multiplies the number of solutions of those found in the case of the Single-Layer CNNs’ class.

• MN block case: n1 = 0, n2 = 0, ...nMN = 0, nMN+1 = 1, nMN+2 = 1, ...n2MN = 1 or its inverse. Both
have the same influence. They result in an inversion on the off-diagonal matrices in hypermatrix A which
corresponds to a sign inversion in the inter-layer feedbacks.

Next, for the generalization of the solutions given above, the parity of the CNNs size (MN) has to be fixed,
since it affects the sign inversion patterns for inter-layer feedbacks (Aij i 6= j).

As long as the even parity case prescribes the same patterns for both inter-layer feedbacks (Â21, Â12) and for
the intra-layer feedback (Â11, Â22) patterns, the odd case inverts the sign patterns of the inter-layer feedbacks.

It may be easier to describe the sign inversions in J as a composition of waves. (e.g.
∑

j sgn(sin(ωji))).
Considering the question above in this frame, we can describe it as a phase shift between the two halves of

Js or an addition of a new wave the sum in the odd case. The wavelength of this wave should be 2MN.

Remark 3. The mixture of inversions where the first half of matrix J follows one pattern (or periodicity ωj),
while the other half follows another, does not lead to spatially invariant patterns in Ã12 and in Ã21, consequently
they cannot result in a realizable inter-layer feedback template. For this reason these types of patterns must be
excluded.

Remark 4. The class of stable sign patterns which can be generated from the considerations above results in
templates that follow the same sign periodicity in both intra-layer and inter-layer feedback templates. Note
that, they can be inverses of each other.

However, the odd case of MN inverts our claim for the inter-layer feedback, the parity of the size itself has
no effect on this stability criterion at all. (see Fig. 2.11).

Figure 2.11: The set of stable sign patterns. 2 by 2 groups refer to the intra-and inter-layer feedback templates’
signs. Within each group, the templates are arranged in the following order: ( A11 A21 ; A12 A22 ).

Remark 5. So far we have not considered the role of the layer time constants (τ) in this theorem with respect to
its unity or non-unity. In fact, there is no need for any consideration since time constants can be only positive,
hence no modification can have an effect on this theorem.
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Invariant Topologies

In ref. [CR02], we can find two more solutions (see Fig. 2.12) that are hard to prove with the given formalism,
however, can be generated by topologically invariant transformations.

- 0 +
0 A 0
+ 0 -

+ 0 -
0 A 0
- 0 +

Figure 2.12: Two sign patterns from the class of stable templates

Considering the topological structure of the network of what these patterns seemingly assume, equivalence
may be found between the displayed patterns and the sparse but sign symmetric CNNs. (see Fig. 2.13).

(a) A stable CNN sign-pattern
from Fig. 2.10

(b) An equivalent but sparse net-
work realization of same sign
pattern

0

0

0

0 0

0

0

0

(c) A topologically equivalent
network obtained by rotation of
(b)

Figure 2.13: The steps of transformation needed to get the patterns shown in Fig. 2.12.

Without mentioning all the possible combinations of topologically invariant transformations applied on CNN
and alike networks (see ref. [Rad00]), the rotated, but sparse version of stable patterns that can be obtained
by the trick presented above are displayed in Fig. 2.14.
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Figure 2.14: All sign patterns generated by rules depicted in Fig. 2.13.

Sign Patterns for Larger Templates

In the former sections, we restricted ourselves merely to double-layer architectures (2LCNN) with 3×3 template
size. By assuming larger template sizes, the matrix responsible for describing dynamics of the CNN in the first
role will gradually lose its relative sparseness, hence it would complicate the deduction of most of the rules
summarized in the theorems above. Due to the simplicity of the application of Hirsch’s theorems and the wide
range usability of the matrix concatenation technique in Eq. (2.10), theorems may be extended in the direction
of even more layers and larger template sizes, resulting in rules which are still not too complicated to check
against the templates.

The logic we follow will be roughly that

JAJ = funcion(i− j) ⇒ J = diag{(−1)n1 , (−1)n2 , (−1)n3 , ..., (−1)nN }. (2.28)
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In other words, we seek all solutions of Js composed of any series of power of (−1)s which is resulted by the
Toeplitz, or more precisely Toeplitz like, conditions on JAJ .

Due to the Einstein formalism,

sgn(JAJ) = sgn(JijAjkJkl) = sgn(δijJi Ajk δklJl) = JiJl = ζ ⊗ ζT

where vector ζT = [J1, J2, ..., Jn] and ⊗ symbolizes the diadic multiplication operator.

Since JiJl = JlJi, ζ ⊗ ζT is always symmetric, hence Eq. (2.28) may be written as,

ζ ⊗ ζT = sgn (function(|i− j|)) (2.29)

Definition 8. A matrix with a chess board type sign pattern is defined as a matrix composed of rectangles of
the same sign (zero included) from which none of the these rectangles are in contact with another of the same
sign.

Lemma 1. There exists a constructive way to determine ζ from ζ⊗ ζT , if and only if ζ⊗ ζT is sign symmetric,
has positive diagonal and has chess board type signs exclusively.

No proof is required.

Only symmetric chess board type sign patterns in ζ ⊗ ζT satisfy the left-hand side of the Eq. (2.29)
since any sign inversion in J causes sign inversion in the corresponding row and column at one time. Only
diagonal sign patterns satisfy the right-hand side of the same equation. The two patterns that meet both of
the statements above are the homogeneous one and the chess board signed one which are produced by constant
(e.g. J = diag{1, 1, 1, ..., 1}) or alternating series (e.g. J = diag{−1, 1,−1, ..., 1}), respectively, or their inverse
(already shown in Sec. 2.5.5).

Note that these special chess board types of matrices resemble to chess boards since the used rectangle size
is unity.

To be more precise, one can realize that the constraint (i.e. right-hand side of the Eq. (2.29) above applies
for a single-layer one-dimensional network exclusively where the matrix A is Toeplitz.

Concluding remarks on non one-dimensional structures involves Block Toeplitz matrices which extend the
degree of freedom of ζ and of J as

ζ ⊗ ζT = sgn

function(

horizontal dependency︷ ︸︸ ︷
|i− j| ,

vertical dependency︷ ︸︸ ︷
|[i/N ]− [j/N ]| )


where [.] denotes the integer truncation. The terms [i/N ], [j/N ] refer to partitions in A that are needed to

have homogeneous sign field.

Indeed, the searched unknown function() is depending on [i/N ] − [j/N ], which explains Toeplitz like sign
alterations just like it was required for matrix elements in the one-dimensional case. This leads to the case that
has already been shown in Sec. 2.5.5.

Continuing this methodology toward two-layers, one might write the MN block case as

ζ ⊗ ζT = sgn (function(|i− j|, |[i/N ]− [j/N ]|, |[i/MN ]− [j/MN ]|)) (2.30)

which points much further in a constructive way.
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For example the alternating and the N block alternating cases correspond to the alternating signs in templates
in horizontal or in vertical directions that can be expanded for larger than 3× 3 templates, like 5× 5.

Later we will see Eq. (2.30) is only a special case which holds for two-layers only but not for larger networks.

Due to the concatenation technique introduced in Sec. 2.4, as the degree of freedom of function() gradually
increases, the number of solutions for J multiplies.

Now, we can claim our next theorem,

Theorem 6. A 2LCNN with an arbitrary template size is stable almost everywhere if,

• The horizontal sign alteration frequency in all the templates are equal to one or zero up to the exception
of the intra-layer feedback’s central element,

• The vertical sign alteration frequency in all templates are equal to one or zero up to the exception of the
intra-layer feedback’s central element,

• The phase of the alteration are equal in groups sgn(Â11) = sgn(Â22) and sgn(Â12) = sgn(Â21) but may
vary between groups.

For better understanding the expression alteration frequency see Fig. 2.15.

Figure 2.15: Sign alteration frequencies of 5×5 templates are depicted. On the left-hand side, both the horizontal
and the vertical sign alteration frequency are equal to one. In the center, horizontal sign alteration frequency is
equal to one while vertical sign alteration frequency is zero. The one on the right-hand side is just opposite of
the previous one.

Below an example is given for the theorem above,

Â11 =

−1 1 −1 1 −1

−1 1 −1 2 −1

−1 1 .1 3 −1

−1 1 −1 4 −1

−1 2 −3 4 −5

Â12 =

1 −1 1 −1 1

1 −1 1 −2 1

1 −1 1 −3 1

1 −1 1 −4 1

1 −2 3 −4 5

Â21 =

1 −1 1 −1 1

1 −1 1 −2 1

1 −1 1 −3 1

1 −1 1 −4 1

1 −2 3 −4 5

Â22 =

−1 1 −1 1 −1

−1 1 −1 2 −1

−1 1 −.1 3 −1

−1 1 −1 4 −1

−1 2 −3 4 −5
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Sign Patterns for More Layers

Considering it for more than two layers, the Toeplitz constraint does not hold as in Eq. (2.30) but we can write
as,

ζ ⊗ ζT = sgn(function(|i− j|, |[i/N ]− [j/N ]|, |[i/MN ]|, |[j/MN ]|)) (2.31)

The reason is that, the interaction of cells i and j must be fixed and be a function of the difference of the
indexes (i.e. spatially invariant) as long as i and j are located in the same layer, the interaction of cells from
the layer [i/MN ] and [j/MN ] may vary from layer-to-layer. For example, the interaction of the 1st layer to
the 2nd must not be the same as the 2nd layer to the 3rd one. According to the given equation, they must not
even be in a kind of sign-symmetric relation.

In relation to the identified multi-layer criteria, the left-hand side of Eq. (2.31) may be rewritten as

JL � (ζ1 ⊗ ζT
1 ) = ζ ⊗ ζT

where � denotes the Kronecker matrix multiplication of a ”small” sign modifier matrix JL and the single-
layer interaction sign-matrix (ζ1 ⊗ ζT

1 ).
For example in a three-layer case, the sign modifier matrix may be

JL =

 1 −1 −1
−1 1 1
−1 1 1


which explains that the interaction between layers 1, 2 and 1, 3 are in a kind of competitive (negative

feedback) relation, while all the rests are in a kind of cooperative (positive feedback) relation (for details see
[Hir85]).

Finally, summarizing this finding in a theorem:

Theorem 7. A CNN with arbitrary number of layers and with arbitrary but fixed template size is stable almost

everywhere if,

• The horizontal sign alteration frequency in all the templates are equal to one or zero up to the exception
of the intra-layer feedback’s central element,

• The vertical sign alteration frequency in all templates are equal to one or zero up to the exception of the
intra-layer feedback’s central element,

• Sign modifier matrix is chess board type, symmetric and positive diagonal (see the Lemma 1).

2.5.6 Non-reciprocal Case

Definition 9. When the template values of a CNN are sign-anti-symmetric, the CNN is called non-reciprocal.

In ref. [CR90] the complete stability is conjectured and supported non-reciprocal CNNs. The studied
dynamics of opposite sign valued template system cover a column-wise (or row-wise) coupling of cells exclusively,
which means dynamics are row/column-wise independent of each other, thus it is called one-dimensional CNN
or 1DCNN. For the summary, see appx. A.5.
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Based upon very similar considerations on the structure of the Jacobian matrix, a new conjecture is given,
which extends the former stability theorem (complete stability conjecture) to a column-wise (or row-wise)
coupled 1D CACE architecture.

Definition 10. A one-dimensional CACE is composed of two inter-connected one-dimensional CNNs with
intra-layer feedback of neighborhood radius one, and with scalar inter-layer feedback.

Conjecture 1. A 1D CACE, will always settle in a saturated region and converge to stable equilibrium point if

• Inter-layer feedbacks are sign anti-symmetric,

• Intra-layer feedbacks are sign anti-symmetric,

• The central element of the intra-layer feedbacks is greater than one. (Akk)c > 1.

which means the stability of a non-reciprocal CACE architecture.

The interpretation of the criteria: The criteria above defines the following template structure:

Â11 = a b −c Â12 = e

Â21 = h Â22 = j k −l

where a, b, c, j, k, l > 0 and e · h < 0.

Similarly to the Single-Layer 1D CNNs case, if any cell (k) reaches the saturated region (β), it will generate
a −1 at kth (or at (k + ML)-th if it is on the second layer) diagonal position in the concatenated Jacobian
matrix, and zeros above and below. A concatenated Jacobian matrix is constructed in a way similar to that
of matrix A and is constructed from Â in Eq. (2.10). Having zeros in a column with the exception of the
diagonal, the corresponding eigenvalue can be explicitly given (= −1) and the system can be reduced by a
factor of one by neglecting the corresponding row and column. Chua, et al in ref. [CR90] found a recursive
method to calculate the determinant of the remaining band matrix (Ã), consequently they could point out that
only positive eigenvalues exist in the reduced system. This implies that at least one cell will eventually reach
the saturated region again from which it never returns.

A similar consideration applies to the CACE case, but no generative solution like this has been found so
far for determinant calculation which is inevitable for a system of arbitrary size. Instead, we confirmed all
possibilities by a symbolic software package and we claim:

For having positive principal minors of all possible configurations with an assumption on Â11 and Â22 as
given above, a non-contradictory solution may exist if and only if Â21 and Â12 are of opposite sign scalars.

The example below generates the trajectory in Fig. 2.16.

Â11 = 1 2.5 −1 Â12 = −1

Â21 = 1 Â22 = 1 2.5 −1
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Pattern Evolution on Layer #1 in a 1D CACE
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Figure 2.16: The time evolution of the one-dimensional CACE structure with a non-reciprocal template.

2.6 Conclusion

A description of a complex cell CNN-UM architecture (CACE) along with the MLCNN is given. This is
motivated a survey on the possibilities of generalization of stability theorems from Single-Layer architectures
to Multi-Layer architectures.

The power of a new formalism was demonstrated by claiming several theorems and one conjecture on multi-
layer architectures inherently including the CACE architecture.

By means of constructed new Lyapunov functions the layer time constants dependence of the theorems was
made possible.

The inference of the formalism we developed is proved to be useful in gerenalization of many theorems and
Lyapunov functions. Its consequences are not completely explored, therefore, it is worth carrying out further
investigations in the class of multi-layer neual architectures.
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Chapter 3

Analog-VLSI, Array-Processor Based,

Bayesian, Multi-Scale Optical Flow

Estimation

3.1 Breif

Optical flow (OF) estimation aims at derive a motion-vector field that characterizes motions on a video sequence
of images. In this paper we propose a new multi-scale (or scale-space) algorithm that generates OF on Cellular
Neural/Non-linear Network Universal Machine (CNN-UM), a general purpose analog-VLSI hardware, at reso-
lution of 128x128 with fair accuracy and working over a speed of 100 frames per second. The performance of
the hardware implementation of the proposed algorithm is measured on a standard image sequence. As far as
we are concerned this is the first time when an OF estimator hardware is tested on a practical-size standard
image sequence.

3.2 Introduction

In general, a visual sensory systems (VSS) can be interpreted as a system that records light in a 2 dimensional
(image) plane reflected by illuminated, 3 dimensional, real-world objects. The objects of the environment that
are subject to motion relative to the observer induce a motion-vector field in VSSs. The objective of Optical
Flow (OF) calculations is to estimate this vector field, which describes the transformation of one image to the
consecutive one.

Far from being exhaustive, a review on existing OF methodologies will be given along with relation to the
proposed method in sec. 3.3

In a simplistic approach one can classify techniques used in OF deduction depending on the basis as optical
flow constraint (OFC), gray value matching (e.g. block matching (BM)), correlation (ref. [Ana89]), phase (cross
correlation), higher order statistics (ref. [BJ96, SL01]), or energy [Hee88, SRC98].

In spite of the fact that BM approaches possess considerable disadvantages such as relatively high compu-
tational needs (i.e. quadratic in block size and quadratic in maximal vector size), BM has several advantages.

Firstly, in case of large displacements (larger than the support used for calculating the OFC) the validity of

43
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OFC is questionable since the higher order terms (H.O.T.) of the Taylor expansion becomes a significant factor
that is neglected in OFC. Secondly, it is very simple to be calculated and formulated. Thirdly, it overcomes
the OF ambiguities (only) within the applied block size (sec. 3.5) at the expense of the vector field bandwidth.
Forthly, it is more robust against local intensity flicker than differential or variational techniques. Fifthly, it is
essentially parallel, which might indicate the applicability an already implemented a general purpose, analog-
VLSI network, the Cellular Neural/Non-linear Network Universal-Machine (CNN-UM) (sec. 3.7.2). Sixthly,
unlike OFC based methods, it does not rely on non-neural operations such as division or matrix inversion.

It is for these reasons why we turned to the BM type of approaches and we have found that:

• by the application of diffusion to multiple diffusional lengths (or equivalently time durations) a multi-scale
view can be generated which method involves a cheap (∼ µsec) CNN-UM operation only

• these views are incorporated in a Bayesian optimal estimation (sec. 3.6) of the OF, which resolves the
trade-off between the spatial bandwidth and accuracy (sec. 3.5) and leads to sub-pixel accuracy (sec. 3.8)
outperforming many of the known models, as our simulation and measurements show.

It is difficult to compare the computational complexity of algorithms running on analog massively parallel
architecture versus ones running on digital sequential hardware but we made an effort and found that: The
powerfulness of the new computational model implemented on CNN-UM versus Neumann computer architecture
is pointed out. The performance gain is in the range of (O(N3)), due to its strongly parallel computing
architecture (see appx. B.1, appx. B.2) which makes it competitive in this aspect, too.

N.B. motion sensing and OF are essentially the same. Both aim at determining the motion vector field
but they can determine the optical flow only. OF is the perceivable vector field, while the motion vector field
is the projection of 3D motions onto the focal plane. Motion sensors were, usually, designed considering local
information only and are not designed to be able to cope with the blank wall or the aperture problems. Contrary,
OF solution are hoped to be able to, to a certain extent. There are numerous aVLSI motion sensors available
today (ref. [HKLM88, HKSL90, KM96, ECdSM97, KSK97, Liu98, HS02, RF04]) and there only few OF chips
(ref. [SRC98, SD04, MEC04]). There is also an FPGA based soft solution implementing an old theory (ref.
[MZC+05]), published recently.

Opposed to the special-, single-purpose circuitry listed above, we used a general purpose aVLSI circuitry.
The performance results are demonstrated in sec. 3.8. First in the history a VLSI solution is tested on a standard
optic flow test sequence (Yosemite) that is common in vision community. The simulations show performance not
very high compared to elaborated numerical solutions such as variational or differential methods but still, the
solution seems to be satisfactory and is implementable on a parallel, general purpose aVLSI hardware, which is
a great advantage. Interestingly, the chip measurements nicely converge to the theoretical limit that was given
by simulations. The speed of the solution is above 100 frames per second (fps). By increasing the quality of the
circuitry used, this may be increased by at least one order of magnitude in the near future.

3.3 Problem formulation and solutions

The problem may be written in several forms. Depending on the formulation, diverse types of solution coexist
that may solve the formalized problem effectively; however, they might diverge from the real OF. Consequently
the formulation and the solutions, usually, involve heuristics. Here, we wish to give a brief summary based on
a generic functional minimization.
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The first and most inevitable assumption in the formulation is that exists a spatio-temporal persistency and
a continuity of the brightness values or patterns in the image. This may be coded in a term called brightness
constancy (BC),

||dI|| → 0 (3.1)

By keeping the first term of the Taylor expansion of equ. 3.1, it results in∣∣∣∣∣∣∣∣v̄∇I − ∂I

∂t

∣∣∣∣∣∣∣∣→ 0, (3.2)

where v̄ and t denotes the velocity and the time, respectively. This is, usually, referred to as OF Constraint
(OFC) or the differential form of BC. Equ. 3.1 may be written in time-discretized form as

|I(1)(p̄)− I(2)(p̄ + v̄)| → 0, (3.3)

where p̄ denotes the position in the subsequent images I(1) = I(t) and I(2) = I(t−∆t), respectively. Equ. 3.3
is commonly referred to as block-matching (BM) criteria.

Unfortunately, solving any form of equ. 3.1 for v̄, it does not give a unique solution in all cases due to
the fact that there is only one linear constraint on a twoüdimensional vector field. For this reason, regularized
solutions were formalized with additional constraints ensuring smoothness and discontinuity of the vector field:
φ(∇u) → 0 and φ(∇v) → 0, where v̄T , (u, v), and φ : R2 → R is a suitable non-linear function1 with this
double objective.

In real-world measurements, noise is an a limiting factor difficult to avoid. Methods derived from the
considerations above may suffer from noise sensitivity. They can be extended with noise rejective terms c(∇I)
which penalizes noise both in the image and as a result in the vector field, too.

The generic solution may be searched as minima (e.g. v̄ = arg minv̄ E(v̄)) of an integral over the image (Ω)

E(v̄) =
∫

Ω

∣∣∣∣∣∣∣∣v̄T∇I +
∂I

∂t

∣∣∣∣∣∣∣∣ dp̄︸ ︷︷ ︸
A

+ατ

[∫
Ω

φ(∇u)dp̄ +
∫

Ω

φ(∇v)dp̄

]
︸ ︷︷ ︸

B

+αh

∫
Ω

c(∇I)||v̄||dp̄︸ ︷︷ ︸
C

, (3.4)

where ατ and αh are weighting constants.

In this functional, other functionals may be used as a plug-in replacement for terms meeting the objective
of the original term. Hence, term A may be replaced by the integral of BM instead of that of the OFC, or term
B may be extended with additional constraints too. In ref. [SJ96, GL96] authors found it important to prevent
vector field from rotation and divergence. (e.g.

∫
Ω

φ(div(v̄), rot(v̄))dp̄ )

In its generic form, it is nearly impossible to have a fast and uniquely converging minimization of equ. 3.4;
however, most OF estimators, which we are currently aware of, can be fit in with the this equation.

1Different φ’s were found to be effective in OF calculations. A short list of the well-known versions is given.

Author φ(s)

Geman and Reynolds s2

1+s2

Malik and Perona log(1 + s2)
Green 2 log(cosh(s))

Aubert 2
√

1 + s2 − 2
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Lucas and Kanade ([LK81]) provided the following form in early times of OF estimators

E(v̄) =
∫

Ω

W ∗
∣∣∣∣∣∣∣∣v̄T∇I +

∂I

∂t

∣∣∣∣∣∣∣∣ dp̄,

where a Gaussian convolution kernel W was used for providing smoothness of v̄, that has extended the regions
in terms of p̄ where unique solutions exist. While the solution can be given directly by a matrix inversion (if non
singular) the solution of the Horn Schunk model (i.e. E(v̄) =

∫
Ω

∣∣∣∣v̄T∇I + ∂I
∂t

∣∣∣∣2
2
dp̄ + ατ

∫
Ω
||∇u|| + ||∇v||dp̄)

can be approached iteratively, only [HS81].
A comprehensive analysis on the properties of functions left open in equ. 3.4, on the set of admissible

solutions (existance, unicity) along with a high quality solution is given in ref. [ADK99, AK02]. Unfortunately,
there is still a very hard trade-off between OF quality and processing time. The partial differential equations
(PDE) dropping out from the analysis of the equations above, usually, converge very slowly, hence they may
not be applied in applications where real-time processing is a criterion by means of limited power and in limited
space. However, interesting simplifications may be made, which opens space for invention in analog chip design.
Many motion- and OF-chips were fabricated in the past. Without going into details, they share many common
properties such as:

• they are made for special purpose,

• they are, usually, called bio-inspired or neuromorphic due to their on-chip photo-sensors and cellular
structure (only local connections exist in a matrix structure) resemble to the retina or the primary visual
cortex in most engineers’ perspective,

• they operate in discrete space and continuous time,

• sometimes even the off-chip communication is made asynchronously via Address Event Representation
(AER),

• VLSI elements are used either in mixed or mainly in analog (non saturated) mode,

• they either realize the corresponding Euler-Lagrange equation that are in loose relationship with consid-
erations above or are simple ad-hoc motion sensors (e.g. Elementary Motion Detector)

• the results are rather noisy.

In fact, the circuitry we relied on (CNN) shares many of these charateristics. It is called ”bio-inspired”,
cellularly structured, implemented in analog VLSI, operates in continiuous time, it is compact. But, in con-
trast to all of them, it is proved to be general purpose (via Turring equivalence) leaving space for analogic
programmability. At the first look, CNN may be perceived as a well parameterizable PDE solver. The most
straightforward approach would imply solutions that realize some of these PDEs on CNN-UM. This can be done
by decomposing the PDE based solution into CNN friendly system of equations. The raising difficulties are,
usually, two-fold. On the one hand, the non-linear terms of the resulted PDEs, usually, require calculations of
divisions and/or H.O.T. On the other hand, the convolutional structure of the CNN (which involves the spatial
invariant criteria) is, usually, broken by the PDEs resulted.

In our solution, we constructed a stochastic framework in which the maximum of the probability distribution
function (PDF) p(v|I(1), I(2)) was searched (i.e. v̄ = arg maxv̄ p(v|I(1), I(2))). This was done to let multiple-scale
view of the images cooporate in a non-deterministic way and lead to a Bayes optimal resolution of the trade-off
between spatial bandwidth and accuracy (see the next section).
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Interestingly, the algorithm obtained by the considerations above uses very simple parallel operations that
can be executed on CNN-UM and exploits its fully parallel nature. The experiments show that it is extremely
accurate on simple tests (note the sub-pixel accuracy in fig. 3.6) and on standard tests it remains fair (even on
aVLSI) compared to complex digital implementations. Furthermore, it operates over 100 fps, which reserves a
unique place for it.

3.4 Block or Region Matching Based Techniques

The major advantages of using BM is the ability to successfully suppress image flicker and its simplicity in
hardware realization.

Definition 11. Region or block is a collection of pixels that are located within the boundaries of size r around
p̄.

Rq
p̄ = {(x, y) : ||(x, y)− p̄||∞ < r , r = 2q},

where q refers to the size of the region in logarithmic scale. Without loss of generality we may use any type
of norm but for practical reasons the applied norm is l∞ or maximum norm.

Definition 12. The measure Summed Squared Difference of two images at p̄ = (x, y) in a given region is,

SSD(I(1), I(2), Rq
p̄) =

1
|Rq

p̄|
∑

ξ̄∈Rq
p̄

||I(1)(ξ̄)− I(2)(ξ̄)||2.

Without loosing most of the important characteristics of the squared differences, we can also use the norm
l1, which is particularly important in CNN implementation. Note that |Rq

p̄| is not a norm but the size of the
set (i.e. the area of the region) which is, obviously, constant for a fixed q.

The simplest BM approach would mean a search for the best match or fit of a particular region in an image
(I(1)) around a pixel (p̄) by offsetting the region by ∆p̄ = v̄ · ∆t in the image (I(2)). The measure is called
Displaced Frame Difference (DFD) (see fig. 3.1) and can be defined as

DFD(I(1), I(2),∆p̄, Rq
p̄) =

1
|Rq

p̄|
∑

ξ̄∈Rq
p̄

|I(1)(ξ̄ + ∆p̄)− I(2)(ξ̄)|. (3.5)

To avoid aliasing effects windowing or pre-filtering is commonly applied. We used a Gaussian window
function in its simplest form so as to define the Gaussian DFD measure as,

DFDGauss(I(1), I(2),∆p̄, Rq
p̄) =

1
|Rq

p̄|
∑

ξ̄∈Rq
p̄

|I(1)(ξ̄ + ∆p̄)− I(2)(ξ̄)| · e−α‖ξ̄−p̄‖22

= |I(1)(p̄ + ∆p̄)− I(2)(p̄)| ∗W, (3.6)

where α is a constant parameter to adjust.

Please note that l1 norm becomes particularly useful since the equ. 3.6 can be written as

DFDGauss(I(1), I(2),∆p̄, Rq
p̄) = |I(1)(p̄ + ∆p̄) ∗W − I(2)(p̄) ∗W |.
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II
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Figure 3.1: Displaced Frame Difference between two frames at a certain position (p̄) at a given displacement
(∆p̄) of a region (R) is calculated as 1

|Rq
p̄|
∑

ξ̄∈Rq
p̄
|I(1)(ξ̄ + ∆p̄)− I(2)(ξ̄)|

The objective of OF estimation is to find

v̄∆t = arg min
∆p̄

DFDGauss(I(1), I(2),∆p̄, Rq
p̄),

where v̄ refers to velocity which can be determined as v̄ = ∆p̄/∆t. It simply means that the algorithm should
find the displacement of every pixel with the smallest cost. Here the cost should be meant in terms of energy
or DFD (above).

Block matching approaches sometimes use correlation maxima which has the advantage of being less sensitive
to illumination alterations compared to DFD methods but they have the disadvantage of increased calculation
needs involved the multiplication. In restricted circumstances we can claim that seeking for the minima of
DFDGauss expression maximizes the correlation (equ. 3.7) as well

CorrGauss(I(1), I(2), v̄, Rq
p̄) =

1
|Rq

p̄|
∑

ξ̄∈Rq
p̄

|I(1)(ξ̄ + ∆p̄) · I(2)(ξ̄)| · e−α‖ξ̄−p̄‖22 = |I(1)(p̄ + ∆p̄) · I(2)(p̄)| ∗W (3.7)

For this reason DFD based methods are, usually, referred to as correlation based techniques and we will
refer to them interchangeably.

For the sake of short writing, we will refer to the measure of matching (DFD) as DFD(I(1), I(2),Rq
p̄ , v̄) ⇔

DFDq(I(1), I(2), v̄), where q refers to the scale that is exponentially related to the window size (R) (i.e. with
q = 0, 1, 2, ... refers to region of Rq

p̄ = 1x1, 2x2, 4x4, ...) as mentioned in definition 11.

When larger Gaussian window (W in equ.3.6) is applied , thanks to the averaging characteristics of the
window, will result in an image with degraded spatial bandwidth.

The blur caused by these integrating type of filters (such as window functions) is equivalent to applying a
bandwidth degrader or changing the view of an image to a larger scale (see appx. B.1). In the algorithm we
propose, we combine multi-scale (i.e. sections of the scale space) information of a single image but we will not
estimate the optimal scales to use.
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3.5 Ambiguities in Optical Flow Techniques

The ambiguities that spoil the measurement of the OF may be explained in terms of block matching, too; There
are two typical cases of the ambiguities. In a thought experiment, assume a moving rectangle as indicated in fig.
3.2(a)) which translates in the direction pointed by the arrow. Having a correlation window (i.e. block) of size
depicted in the figure one can conclude that correlation maxima will provide correct information at the corners
(1) of the rectangle. However, there is no correlation peak inside the black rectangle (3) and the correlation
maxima is not an isolated point but a line around the edges (2). In the latter case, the normal flow might be
calculated only, which seems to be the best guess based on the local information but one can see it is not optimal
in a global sense. These problems they are called as blank wall problem and aperture problem, respectively.

Considering these error prone cases, the moving object can be partitioned into regions where 1) the correct
optical flow can be calculated (light grey area), 2) the aperture problem appears (dark grey area) or 3) the
blank wall problem appears (black area) (see fig. 3.2(b)).

To overcome these problems one might suggests to increase the correlation window size but it would lead

• to the gradual decrease of bandwidth and,

• to the quadratic increase in computational needs (and time).

This dilemma is called the bandwidth/accuracy trade-off.
In our model, the dilemma is hoped to be gradually removed. In the hierarchic calculation schema (explained

later in sec. 3.6) the CNN provides an alternative computational scheme that solves the Gaussian shaping and
correlation simultaneously in square root increase of time.

The similarity between this dilemma and equ. 3.4 should be noted. Equ. 3.4 is written in a form to overcome
the OFC ambiguities by means of the neighborhood while keeping the OFC term minimal.

3.6 Bayesian Incorporation of Scales

According to the considerations of the previous section, one can see that the main source of distortions in the
search for DFD minima (or correlation maxima) is rooted in the applied measurement technique. One has to
note that using the differential form of the OFC does not help. The problem appears similarly, as a singularity
of the corresponding matrices. To overcome these problems, we propose a stochastic model by associating a
measure of fitness (DFD) with a similarity likelihood as,

pq(I(2)|v̄, I(1)) ∝ exp
{
−DFDq(I(1), I(2), v̄)

}
. (3.8)

There are several notes we have to make here:

• The form of the fitness (DFD) is somewhat arbitrary which could be correct in many other forms.

• The only property we expect from the likelihood is to be inversely proportional to this particular fitness.

• This likelihood defines a measure proportional to the likeliness of being the correct warp of a region of
size 2qx2q from one image to the other. (e.g. the normalization would be over the I(2)).

Based on this likelihood, by Bayes theorem for the aposterior we have,

pq(v̄|I(1), I(2)) =
pq(I(2)|v̄, I(1)) pq(v)

pq(I(2))
∝ pq(I(2)|v̄, I(1)) pq(v)
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1
3

2

(a) Assume a moving rectangle in the pointed di-
rection. Correlation maxima identifies the direction
of motion in the corners (1) but it is ambiguous at
the edges (2) and there is no maxima at all in the
center regions (3).
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(b) Partions (slash, cross, filled patterns) around the hypothetic moving rectangle
(dashed) where no problem, aperture problem and blank wall problem appears,
respectively, depending on a given correlation window size (large on the left, small
on the right).

Figure 3.2: Identification of typical problems appearing in OF

Since the denominator does not depend on v̄ for which we are to maximize this expression, we can drop it.
As it is common in Bayesian decisions, having a good prior hypothesis is crucial in making reasonable decisions.
This is the Ockham’s razor. In OF calculus, the question of good priors had left space for a lot of debates in
the literature too (ref. [AB86]).

Thinking in multiple scales, from the study of ambiguous situations, we might conclude that the prior can
be the larger scale (q + 1) estimation of the OF. This helps to reconstruct the OF at a given (q) scale with
propagating the information available at the larger scale. (i.e. associate pq(v)← pq+1(v̄|I(1), I(2))) as,

pq(v̄|I(1), I(2)) ∝ pq(I(2)|v̄, I(1)) pq+1(v̄|I(1), I(2)).
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This recursive scheme can be written in explicit form as,

p(v̄|I(1), I(2)) ∝ p0(v̄)
∏
q

pq(I(2)|v̄, I(1)) = p0(v̄) exp

[
−
∑

q

DFDq(I(1), I(2), v̄)

]
.

Certainly, we are interested in the vector field (or OF) at the finest scale which is,

v̄ = arg max
v̄

p(v̄|I(1), I(2)) = arg min
v̄

[
− log p0(v̄) +

∑
q

DFDq(I(1), I(2), v̄)

]
. (3.9)

Note that, however, we formulated the problem is in the log-domain, by disregarding the constant first term
in equ. 3.9, the calculation to be done here remains as simple as addition of DFDs and an extremum search.

An alternative formulation was suggested by Cs. Szepesvari in a personal communication leading essentially
to the same results (For details see appx. B.4).

The resulted calculation scheme defines a Bayesian incorporation of the multi-scale measurements. (see fig.
3.3)
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Incorporation at scale q

Null hypothesis

Hypothesis at scale q

Best guess at scale q

Best guess at scale q+1

Measurement at scale q+1

Measurement at scale q

Figure 3.3: Bayesian incorporation of multiple scales: optimal PDF (probablity distribution function) at scale
q + 1 becomes a hypothesis at scale q. This, along with the likelihood (measurement) at scale q, can give the
posterior (best guess) at scale q by Bayesian inference.

In this induction-like rule, we will need a prior for the whole model. We choose a zero mean Gaussian for
this which biases for slow speed. Preference of such has been found to play role in human perception [WA98].
In most cases it is not necessary to have a well parametrized null hypothesis (covariance), since it affects the
results only marginally which is, in fact, quite a desirable characteristic of a model. Note that, if Gaussian was
chosen as a prior, then the calculation of the expression log p(v̄0) becomes simply quadratic.

This model should optimally resolve the trade-off in sec. 3.5, where the term optimal is meant in Bayesian
sense.

The recursive calculation scheme above might recall ref. [WC99], in which the author got similar conclusion
to ours with respect to calculating the Bayesian optimal distribution. Noteworthly, he has found that subsequent
experiments (or measurements), even with a simplistic model of the ”world” (prior), can gradually reinforce or
refute hypotheses and, finally, they are incorporated in an optimal estimation.

It has to be noted that numerous multi-scale (ref.[BB95, Ana89, BAK91, Enc86, Gla87, MP98]) and also
Bayesian OF models (e.g. ref. [Zel04], [LM95]), are known in the literature. Furthermore, in ref. [Sim99] a
Bayesian multi-scale differential OF estimation by Simoncelli2 was published.

2At surface level, it may seem that our model is similar to the one by Simoncelli, who also considered a probabilistic multi-
scale setup. However, Simoncelli’s assumption are rather different from ours. In particular, he worked with OFC-based models
where he made assumption on the distribution of the noise corrupting the images’ time derivative and the flow field, whilst we
do not introduce flow-field noise. He introduced multi-scale framework in which the mean and the covariance of the estimation is
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3.7 The Evolution of the Algorithm

3.7.1 The First Approach

First, let us overview the steps of the proposed algorithm.

• initiate the DFD with null hypothesis,

• measure DFD at a scale,

• accumulate the DFD in order to obtain the log of optimal PDF at the current scale,

• repeat the last two steps for all scales,

• finally, select a minima of the accumulated DFD.

Writing it in pseudo code see alg. 1.

Algorithm 1.

log PDF generation

Initial DFD is either even or zero mean Gaussian

Cycle for scale (q)

Cycle for position (p̄)

Cycle for displacement (v̄)

Cycle for DFD (ξ̄)

Accumulate for

DFD(v̄(p̄)) = 1
|Rq

p̄|
∑

ξ̄∈Rq
p̄
|I(1)(v̄ + ξ̄)− I(2)(ξ̄)| ·W (ξ − p̄)

End cycle DFD

End cycle (v̄)

End cycle (p̄)

End Cycle (q)

MAP selection

Cycle for position (p̄)

Cycle for displacement (v̄)

copy v̄MAP (p̄) = arg maxv̄ p(v̄(p̄))

End cycle (v̄)

End cycle (p̄)

Due to the extreme size of calculations (O(N7)), for having results in reasonable time, optimization is
desirable. We have found that by means of CNN-UM the reduction of the need of operations is somewhere in
the magnitude of O(N3) (see appx. B.2).

propagated (updated and corrected) by a linear Kalman filter from higher scales to lower scales.
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3.7.2 The Concept of CNN-UM

A short review on the structure of the Cellular Non-Linear/Neural Network Universal Machine (CNN-UM)
architecture is given in order to let the reader capture the origin of the inherent power of the structure that we
are to exploit here. For further explanation, see ref. [CY88b, RC93]

The governing equation of the space invariant CNN core can be written in a convolutional form as,

ẋ = −x + A ∗ y + B ∗ u + z (3.10)

y = f(x) =
1
2
(|x + 1| − |x− 1|)

where A and B are called templates and are realized in a matrix form of size 3x3 in current implementations,
x, y, u, z are called state, output, input and bias images, respectively, and are realized in a matrix form of
NxN . On the mixed signal VLSI implementation (ACE16K see ref. [ZDCE02]) we use for demonstration
purposes, N = 128. The CNN-UM is constituted by the CNN core as a workhorse and other quasi peripheral
components, which makes the CNN core programmable. It consists of local and global analog memories (LAM,
GAM), local and global logic memories (LLM, GLM respectively), a local logic unit (LLU), etc. In the ACE16k
implementation, there is also a binary masking possibility that prevents any cell taking part in the transition
of state (x), if the associated binary value in the mask is set.

The advent of the analogue VLSI implementation of the CNN-UM is that, in principle, almost any stable
output can be reached in a fixed time independently of the vector (image) size. This is, usually, in the magnitude
of few µsec. One of the most outstanding characteristics of the ACE chip series is its very sensitive on-chip
optical sensor that enables very high frame-rate image capturing (up to 30,000 frames per second [ZR04]) and
parallel processing in place of the focal plane sensors.

The CNN core being a recurrent network, its behavior can be extremely complex but we are interested
in region of parameters where a stable output can be reached. There is no need to mention that there is an
extremely long list of authors who dealt with the stability of CNN and recurrent networks, in general, but we
use only a simple-to-understand constellation of parameters.

In order to get deterministic result of the convolution defined in equ. 3.10 external cells (boundary cells)
must be assumed with definite values. The global boundary condition (BC) defines its type, which can be fixed
(or constant), periodic (or toroid), zero flux ( or Neumann ), gradient-flux.

3.7.3 The Exploitation of the Concept

To make the handling of the CNN core easier, one can decompose it into two parts. The first part is the
autonomous part (ẋ = −x + A ∗ y), the second is a fix term part (B ∗ u + z) that contributes to the evolution
of the equation as a constant.

If, e.g., A = 0, called control mode, CNN simply copies the fix term into vector(image) x. Note the usefulness
of such a simple operation. It achieves a convolution and vector addition of an image of N2 pixels in a single
step.

In the calculation of DFD (see right hand side (RHS) of equ. 3.5) one can notice a term which is an average
of differences of a particular region (Rq

p̄) around the point p̄. This difference (i.e. I(1) − I(2)) can be calculated
in control mode by a [B0,0 = −1] 3 template. Naturally, a translation operator was applied to generate the shift
of images before the subsequent subtraction took place which can be achieved by a single B template operation.

3In general, template elements (i.e. Aij and Bij), if not indicated otherwise, are assumed to be zero.
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By putting an image in u, applying [B0,1 = 1] results in a translated image copied into x.

The autonomous part of the CNN core can effectively calculate the average ( 1
|R|
∑

ξ̄∈R) of a given region
as quick as, for example, a pixel-wise difference calculation by means of an isotropic diffusion operator (i.e. A

is central symmetric positive definite with B = 0) This equation asymptotically approaches the average (i.e.
x(t)→ [x(0)]average) if conservative BC is applied.

If we apply a masking window of Rq
p̄ that enables CNN to operate around a pixel p̄, then a diffusion operator

is able to calculate the average in this window. This recognition lets us spare the Cycle for DFD and save
O(N2) operations as shown below,

Algorithm 2.

log PDF generation

Cycle for scale (q)

Cycle for position (p̄)

Cycle for displacement (v̄)

Generate mask (Rq
p̄) for the next CNN operations

Template running: Diff(v̄) = Translate(I(1), v̄)− I(2)

Template running: average of Diff within Rq
p̄ by means of a mask.

End cycle (v̄)

End cycle (p̄)

End Cycle (q)

Instead of calculating the simple DFD, the Gaussian windowed version (DFDGauss) can be obtained by
dropping the masking window and applying a single diffusion with impulse response exactly the same as the
Gaussian windowing function. (see appx. B.1). This step spares 2 cycles for p̄ and adds a diffusion with few µsec

expense. The gain on the complexity of the algorithms is estimated in appx. B.2. See the modified algorithm
below,

Algorithm 3.

log PDF generation

Cycle for scale (q)

Cycle for displacement (v̄)

Template running: Diff(v̄) = |Translate(I(1), v̄)− I(2)|.

Template running: Diffusion of Diff(v̄) for τq

End cycle (v̄)

End Cycle (q)

One can visualize the steps to be done as in fig. 3.4.
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DFD at different scale Inverse of the most likely PDF Select Maximum APosteriori
(i.e. minima of the inverse)

DFD at different scale

diffusion

diffusion

Displaced Frame Difference:

I(t+Dt)

I(t)

OF

DSP operationsCNN operations

Figure 3.4: Calculation scheme of the proposed algorithm: First, DFD in every direction is calculated between
the succeeding frames, then the corresponding log PDF is calculated. Second, diffusion is applied to DFD then
its PDF is calculated. It is repeated until the length of the repeated diffusion operations produce the profile of
the desired largest Gaussian window size. Finally, a pixel-wise addition of log PDFs is aggregated in a single
PDF in which the selection of the peaks gives the MAP decision.

Selecting the minima of ((2vmax + 1) x (2vmax + 1)) number of images at every pixel, can be achieved
optimally on CNN, in principle, but unfortunately, not feasable yet. This is since, on the one hand, the number
of on-chip implemented LAMs is very small (specifically 8 LAMs on ACE16k ), therefore, read-out and write-in
operations from/to the chip gets unavoidable, so almost all the benefits we had by on-chip processing is lost.
On the other hand, analog memories fade by time passing, therefore, even if one would have enough number
of on-chip implemented LAMs, during repeated comparisons the noise increases so much so that the results of
these comparisions became useless. Hence, it is preferable to do the maximum selection on a dedicated Neumann
processor (DSP - digital signal processor) which, among other calculation tasks, controls the otherwise passive
ACE16k and maintains connection to the digital ”world”.

By analyzing the algorithm, one can realize that by increasing the scale, the average of a given region is
calculated repeatedly. Due to the commutativity of the summation operator in equ. 3.9, the order of the
calculations can be reversed, resulting in a significant contribution to the speed increase if performed by CNN.
This is due to the fact that calculating a diffusion can be interrupted at any time and continued with no
disturbance. After all, all we have to calculate is the sequence of the only temporal parameter τi for which the
diffusion must be active in order to reach the next step. Thanks to this rearrangement, the estimation of OF
starts from small scale and progresses towards larger scales, while the PDFs multiply in between.

In appx. B.3, we publish on-chip diffusion tests achieved for standard test functions such as the Heaviside
step function and the rectangular test function. These tests make possible to estimate the chip’s diffusion
time constant by experience and give some heuristic analysis of the deterministic and stochastic noise sources
distorting the measurement of the DFDGauss.

3.8 Performance Analysis

In this section we detail the outcome of several experiments. The first and the second examples are made by
using an artificially ”panned” camera in order to have a good performance meter ( as a constant motion vector
at every pixel ) and for demonstrating the effect of the diffusion on single scales. For the given purpose, we
had set up a steady scene viewed by a low quality camera, then we picked two subsequent frames and cropped
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them. The first image is done at the top left and the second one at the bottom right (see fig. 3.5) by 3x3 pixels,
each. This was to avoid random pattern (and shot noise) noise-correlation between the frames, which would be
a significant help for any OF algorithm, using a single image, and cropped two times, similarly to ours. In this
course, we were also faced with the pulse noise of the un-switchable Auto Gain Control (AGC) of the camera,
which significantly decreased the quality of the correlation between frames, too. However, if one is to design an
OF algorithm for real life applications, he/she probably needs to cope with external, already existing built-in
mechanisms and global noise sources, like the AGC.

(a) Frame #1: Bottom-right band of 1 pixel width
is sliced from the first image

(b) Frame #2: Top-left band of 1 pixel width is
sliced from the second image

Figure 3.5: In order to get an etalon for OF performance analysis, an artificial translation (panning) was
introduced by slicing the frames of a video flow recorded from a steady scene.

As long as the first experiment that was produced by simulation, the second one was carried out on-chip
measurements, using the cropped images. The third and the fourth experiments’ input was the standard
Yosemite image sequence (ref. [Bla]), done by simulation and on-chip, respectively. Finally, the last example is
another multi-scale example that was made on-chip, grabbed by the optical sensor of the chip at 10,000 fps.

3.8.1 Single Scale Analysis

In this series of experiments, we examined the effect of changing the diffusion length on the artificially panned
images. The model performs as one can expect. The measure displayed measure both the motion vector’s
absolute error and its degree error. Due to the artificial setup of the experiment, the error decreases gradually,
as scale increases (see fig. 3.6).

Due to the similarity of fig. 3.6 and fig. 3.7, similar conclusions apply but, apart from the low sampling
rate of the later one, one might notice the increase of the error over 1 µsec of diffusion time. Without any
in-depth analysis, we think that this is due to the strengthening offset drift of the chip, which is more-or-less
proportional to time.

Based on these graphs, two distinct and controversial claims can be stated:

• By decreasing the scale, the reliability of the measurements increases,

• As the diffusional length decreases, the spatial bandwidth of the motion vector information increases.

This is another form of the accuracy/spatial bandwidth dilemma. Hence, the combination of multiple scales
seems to be a ultimate trade-off.
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(b) The relative error of the motion vectors’ degree is depicted
as the function of scale.

Figure 3.6: The relative error of the etalon translation is demonstrated. Note the increase of the reliability by
the increase of the scale.

However, in the proposed framework we unified the advantages of multiple scales and tried to bypass the
disadvantages, there are leftover questions . These mainly regard the selection of the cuts of the scale-space.
Currently, we did cuts in an evenly distributed fashion in the log domain with an arbitrary chosen unit.

3.8.2 Multi-Scale Analysis

First simulations were made on the Yosemite standard test sequence (fig. 3.8) for demonstrating the quality of
the algorithm, then a 128x128 crop of the same sequence was tested on-chip (fig. 3.9).

Tests was made with the on-chip sensor at extra high frame rate (fig. 3.10),too. The pill on the image is
moving in south-south east direcetion.

In order to choose the right scales to use in the model, we made few simulations with focusing on the
combinations of the scales (fig. 3.11), and we have found that by gradually increasing the scale, the effect of the
multi-scale information reinforcement is getting more-and-more pronounced, while a low level of information
degradation is perceivable, too.

3.8.3 The qualitative performance

Table 3.1 summarizes the qualitative performance of our method measured on the Yosemite sequence.

Table 3.1: Error performance on the ”Yosemite without clouds” sequence (100% dense) using only 2 frames.
AAE stands for Average Angular Error and AVE stands for Average Vector Norm Error.

Basis for comparison / errors AVE AAE. STDD of AVE STDD of AAE.
(float) sim vs. ground truth∗ 0.5 9.6 0.48 11
(float) chip vs. ground truth 0.81 25 0.54 15
(float) chip vs. simulation 0.95 9.9 0.73 20
(int) sim vs. ground truth∗ 0.35 4.9 0.57 10
(int) chip vs. ground truth 0.41 3.8 0.55 14
(int) chip vs. simulation 0.43 1.3 0.63 10

Lines marked with ∗ in superscript indicate measurements made on the full size Yosemite image (316x252),
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(c) The vector field by using 4 scales (diffusion to 0, 1, 0.5
and 2 µs on-chip.)

Figure 3.7: The sub-figures (a) and (b) are, essentially, the same graphs as in fig. 3.6 but made on ACE16k
chip, using the standard test image Lenna. The resulted vector field is demonstrated in sub-figure (c). N.B.
The vector field is generated by 128x128 resolution but it is sampled for displaying only.

while the ones not marked were made in chip size (128x128) only. This a cropped version of the Yossemite at
coordinate 100,50.

The difference in the number of pixels, reasons why eventually the average angular error (AAE) of chip vs.
ground truth is better than sim vs. ground truth.

These results were obtained without any fine tuning of the used scales (i.e. diffusion lengths τq’s and λq’s in
equ B.5). It should also be noted that the model generates a 100% dense vector field. Due to the quantization
of v̄, there is a theoretical limit on the angular error in the model ranging from 6.3402◦ to 22.5◦. The model
seems to perform in the tested range with a considerable variance (STDD). In order to make comparisions fit
to theoretical limitations of our model, the components of v̄ were rounded. In Table 3.1 these lines begin with
”(int)”, while those measurements that were made with the original performance meter begin with ”(float)”.
This also explains why (int) measurements are considerably better.

In Table 3.2, a far not complete list of methods are given capable of generating 100% dense vector field.

Note that, no qualitative performance results were published on the very standard Yosemite sequence in case
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(a) The test image and vector field

(b) The vector field only

Figure 3.8: Evaluation on the Yosemite standard test sequence by simulation

of the few existing aVLSI OF solutions. Solutions with resoltion of 15x15 at 500 fps [SD04], or with resolution
of 95x52 at 30 fps [MEC04] publish performance measures on proof-of-concept kind of tests (few geometric
objects traslating in predefined directions).

In a recent paper [MZC+05] an FPGA based digital OF solution is given with resolution 256x256 at 60 fps
implementing the original Horn & Schunk.

It should also be noted that there are numerous high quality methods and as far as we are concerned,
the method of Brox et al [BBPW04] and Aubert et al [ADK99] are far the best, but their computational
requirements are tremendous, which postpones the possibility of using them in on-line, realtime applications in
the visible future.
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Figure 3.9: The vector field of the Yosemite sequence using 4 scales (diffusion applied for 0, .5, 1 and 2 µs
on-chip). Strong noise diffuses from the left bottom corner of the chip (see last figure in appx. B.3).

Figure 3.10: The vector field of a pill moving upward grabbed at speed of 10,000 frames per second (diffusions
applied for 0, .5, 1 and 2 µs on-chip).

3.9 Conclusion

Based on some of the known phenomena attributed to VSS (Bayesian inference, multi-scale view), we have
formulated a simple, but usable multi-scale OF algorithm that was shown to be applicable in a mixed signal
VLSI technique. As other experiments showed, simple ad-hoc approaches (such as edge detection with center-
surround filters) can easily improve the performance of the developed algorithm but here we have concentrated
on the formalism itself which proves to be powerful both in computational complexity and in accuracy on a
general purpose aVLSI hardware versus special purpose hardware with the largest resolution. The resolution of
the chip we used was enough to measure reasonable performance meter on standard image sequence (Yosemite)
over 100 fps. Formerly, the conducted simulations pointed out a theoretical limit on the accuracy of the
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Table 3.2: Comparison of models (100% dense) on ”Yosemite without clouds” sequence. AAE stands for Average
Angular Error.

Model AAE
Uras [UGVT88] 10.44
Horn & Schunk (HS,original) 6.79
Lucas & Kanade (LK) 5.71
Black & Anandan 4.56
CLG (combined HS&LK)[BWS05] 4.32
Simoncelli [Sim99] 3.55
Brox et al [BBPW04] 0.89

algorithm, which the analog on-chip results seem to get close to, robustly. This is achieved as fast as none of
the existing solutions exceeding our accuracy, even in digital hardware at this resolution.

Although the main disadvantage of the algorithm is the inevitably large memory needs, which increases
quadratically with the size of the motion vector but, as we have shown, it can be kept limited.

Further investigation should be made to determine the optimal distribution of scales on given images (scale
space analysis) what is currently made as a regular sampling only. It is also desirable to determine if the
aggregated PDF provides more information than a single vector field. We assume that this increased information
may be exploited easily in standard image processing tasks such as segmentation.
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(a) Frame #1 (b) Frame #2

Figure 3.11: An example: the camera is panned to follow the airplane; i.e. the background is moving while the
target is appearing steady.
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(a) Diffusion of 4 pixels is applied

(b) Diffusion from 4 to 8 pixels is applied

(c) Diffusion from 4 to 16 pixels is applied

Figure 3.12: The gradual reinforcement of the motion vector information by scale change is depicted. Note
the ”smoothing” of the motion vectors in the background of the airplane, even in regions where no measurable
image gradient (i.e. local information) is present, whereas the area of the zero motion vectors get the shape of
the airplane.
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Chapter 4

Smooth Stochastic Resonance

4.1 Brief

A new class of stochastic resonator (SRT) and Stochastic Resonance (SR) phenomena are described. The new
SRT consist of a classical SRT, one or more time derivative circuits and the same number of time integrators.
The incoming signal with additive noise is first time derivated, then passes through the classical SRT and finally
it is time integrated. The resulting SR phenomena show a well defined SR. Moreover the signal transfer and
SNR are the best at the high frequency end. A particular property of the new system is the much smoother
output signal due to the time integration.

4.2 Introduction

Stochastic Resonators (SRTs) (see Refs. [BAS81, WM95, BV97]) are one of the most intensively studied topic
concerning noise assisted signal transfer. The particularity of these systems is that the signal power and signal-
to-noise-ratio (SNR) at the output expresses well defined maxima versus the input noise strength.

Classical SRTs are threshold based devices. Therefore their output amplitude executes large abrupt jumps.
This behavior is often disadvantageous in practical signal processing systems.

The motivation of the present work is to introduce a new class of SRTs and stochastic resonance (SR)
phenomena which can produce arbitrary smooth amplitude while their SNR is as good as that of classical
systems. Another important property of the new system that, under practical conditions, it has a frequency-
resonance.

In the next sections, first the general integro differential stochastic resonator (IDSR) system is introduced
in Sec. 4.3; then one appropriate realization we used is introduced in Sec. 4.4; the theoretical results are given
in Sec. 4.5; and the simulation results are presented in Sec. 4.6.

Finally, according to the fact, that we rely on the findings of Ref. [Kis96] and it has not been published in
journal, we survey the main results of this article with respect to the signal in the linear response limit.

4.3 Integro-Differential Stochastic Resonators

The integro-differential stochastic resonator (IDSRT) is a classical stochastic resonator with a time-derivation
unit added before the output and a corresponding time-integration unit added at the output (see Fig. 4.1).

65
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Most of known stochastic resonators produce “rough” output containing “discontinutities”, such as sharp spikes,
random telegraph signals, abrupt switchings between amplitude levels. In an IDSRT, the expected “roughness”
is significantly less because of the time-integration. Higher-order IDSRTs, with multiple derivators at the input
and correspondingly multiple integrators at the output, will obviously produce an even smoother output. It is
important to note that the smoothing effect works only on discontinuities added by the original SRT but not
against discontinuities which may be found in the input signal.

D  (.)n nI   (.)SRInput Output

Figure 4.1: Integro-Differential Stochastic Resonator system architecture.

4.4 First order Integro-Differential SRT with a Level-Crossing-Detector

Having a well understood stochastic resonator, the so-called Level Crossing Detector (LCD), we applied it for
the realization of the given model.

In general, an LCD emits spikes at its output whenever its input crosses a predefined threshold level. These
spikes are now integrated in the new model, so instead of spikes stair like function appears at the output due
to the integration. (see fig. 4.2)

U
t

U
in

t

U
out

Level Crossing Detector

t

Input OutputI(.)D(.)

Figure 4.2: Integro-Differential LCD architecture.

With higher order derivatives and higher order integrations we can get parabolic approximations which must
be a “smooth” approach to the signal, particularly if it is sine wave function.

One might think that applying a simple linear at the output of an SRT would produce a sufficiently smooth
output. True, however the unpleasant phase shift would appear which does not happen if IDSRT is used.

On the other hand, we need to consider the fact that not only the signal is integrated in the post processing
filter but the errors, too. In order to reduce its slowly varying component, not only the ideal integrator (i.e.
numerical sum called stepwise integrator) but the leaky integrator was tested, as well.

In the next section we show how these particular linear input/output transformations affect the SR models
in general.

4.5 Theoretical Results

In the processing line the derivator (Dn()) of order of (n) processes its input (denoted by in) providing the
input for the LCD (denoted by diff). The LCD’s output (denoted by lcd) is integrated (In()) which is the
output (denoted by int = out) the entire process. (see fig. 4.3).
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noise

signal

in(t) diff(t) lcd(t) int(t)=out(t).

nD  (.) LCD nI  (.)

n(t)

s(t)

Figure 4.3: Nomenclature of the measurement points of the system we will refer to. The symbol ’+’ in the circle
is an adder.

The SNR is calculated for sinusoidal input singals as

SNR(fs) =
P

S(fs)
,

where P is the signal contribution to the power spectral density (PSD) to the noise power spectra (S(f)) at fs.

The main purpose of the theoretical analysis is to specify SNRout

SNRin
(f) analytically and derive its absolute

maxima in explicit form.

4.5.1 Input

The input of the system (denoted by in(t)) consists of a hard limited white (S(f) = S) noise in the frequency
domain (denoted by n(t)) and a signal (denoted by s(t));

in(t) = s(t) + n(t).

The cut-off frequency of band limited white noise is fc (i.e. the noise correlation time fc ≈ 1/τc). The rms
of noise is denoted by σin.

The signal is a sinusoidal wave with amplitude A and frequency fs = ωs/2π.

The sinus wave signal’s Fourier Transform (FT) can be written as ŝ(f) = Aδ(fs−f), thus the power of such
a signal is

Pin =
1
2

∫ ∞

0

(ŝ(f))2df =
A2

2
. (4.1)

Since the white noise has uniform PSD, Sin = σ2
in

fc
holds. In this way,

SNRin =
A2fc

2σ2
in

. (4.2)

4.5.2 Derivation

A derivation applied to in(t) does not change the SNR(f) albeit changes the PSD of Pdiff (fs) and Sdiff (fs)
compared to Pin and Sin, respectively.

In general, a derivation in time domain (TD) is a multiplication by jω in the Fourier domain (FD)

ŝdiff (f) = j2πfAδ(fs − f) = jωAδ(fs − f).
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For this reason, the power of the signal (or noise) becomes dependent on its frequency as

Pdiff (fs) =
1
2

∫ ∞

0

(ŝ(f))2df =
1
2

∫ ∞

0

(ωAδ(f − fs))2df = ω2
s

A2

2
(4.3)

which applies to the PSD of the noise too as

Pdiff (fs) = ω2
s Pin(fs) (4.4)

Sdiff (fs) = ω2
s Sin(fs).

For this reason, in their ratio ω2
s always simplifies as

SNRdiff (fs) =
Pdiff (fs)
Sdiff (fs)

= SNRin(fs). (4.5)

While, the SNR is intact under this linear transformation, the rms of the noise changes as,

σ2
diff =

∫ fc

0

Sdiff (f)df =
∫ fc

0

(2πf)2Sindf =
4π2

3
f3

c Sin =
4π2

3
f2

c σ2
in.

Note that, the noise of diff(t) is not white.

4.5.3 LCD

Definition 1. An asymmetric level crossing detector (LCD) emits an impulse of amplitude (B) for duration
of τ0 (uptime) on its output (y(t) = lcd(t)), whenever its input (x(t) = diff(t)) crosses the threshold level (Ut)
in increasing direction at time (ti).

y(t) = LCDasym(x(t)) = B
∑

i

1(t− ti)− 1(t− (ti + τ0))

where
x|t−i ≤ Ut and x|t+i ≥ Ut

Definition 2. A symmetric level crossing detector (LCD) emits a positive impulse or a negative impulse for
duration of τ0 on its output (y(t) = lcd(t)), whenever its input (x(t) = diff(t)) crosses the positive threshold
level (Ut) in increasing direction or crosses the negative threshold level (−Ut) in decreasing direction at time
(ti), respectively.

y(t) = LCDsym(x(t)) = LCDasym(x(t))− LCDasym(−x(t)).

The SNR gain of an LCD is detailed in Ref. [Kis96] and a brief is given in appx. C.1, regarding the case
when SNR is within the linear response limit. From there we recall the results we rely in the calculation of SNR
gain of IDSRT.

Unfortunately, in case of the IDSR, the LCD is fed by non-white noise, so the result cannot be applied from
there as a one-to-one replacement.

The average mean firing rate (ν0) of a one-directional zero-crossings can be written similar to Eq. C.1 as

ν0 =
2

σdiff

(∫ fc

0

f2Sdiff (f)df

) 1
2

. (4.6)
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Because of the variation in the spectral characteristics (Sdiff (f) = (2πf)2Sin), the integral in Eq. 4.6 can
be written as ∫ fc

0

f2(2πf)2Sindf = 4π2 f5
c

5
Sin = 4π2 f4

c

5
σ2

in,

so Eq. 4.6 simplifies to

ν0 =
2

2π√
3
fcσin

2π
f2

c√
5
σin =

2
√

3√
5

fc.

The SNRlcd is similar to Eq. C.6 up to a substitution of the signal’s amplitude in the IDSR setup which is
ωsA, so it gets

SNRlcd =
U2

t

σ4
in

ν(Ut)ω2
sA2.

Since Eq. 4.5 holds, by means of Eq. 4.2 the SNR gain (µ) is,

µ =
SNRlcd

SNRdiff
=

U2
t

σ4
in

exp
{
−U2

t

2σ2
in

}
2
√

3√
5

fcA
2ω2

s

A2fc

2σ2
in

=
4
√

3√
5

U2
t

σ2
in

exp
{
−U2

t

2σ2
in

}
ω2

s .

Assuming α = U2
t

2σ2
in

it simplifies to

µ =
8
√

3√
5

αexp {−α}ω2
s . (4.7)

The extrema of Eq. 4.7 is at dµ/dα = 0 which results in |αext| = 1.
Using the considerations given in appx. C.2 regarding the symmetric LCD case opposed to the asymmetric,

the maxima can be written as

µ =
8z
√

3√
5e

ω2
s (4.8)

where z is 1 if asymmetric, or 2 if symmetric LCD is examined. One can conclude that the maxima of the
system became signal frequency dependent.

4.5.4 Integration

Considerations similar to Sec. 4.5.2 apply to the integration. The only difference is in Eq. 4.3, where instead of
multiplying by ωs, division must take place. Just as in Eq. 4.5, ωs it will cancel. This means that by integrating
the output of the LCD (lcd(t)), no SNR variation will appear;

SNRout = SNRlcd

so theoretically the Eq. 4.8 characterizes the overall performance.
It seems to be very attractive from the point of SNR gain since it provisions SNRgain > 1. According to

the experiments, we have found that the IDSR hardly reaches the performance of the LCD because the signal
amplitude (at the input of the LCD) goes out of the linear response limit as the frequency increases, however
in the low frequencies regime the theory fits well to the experiments.

Note that, after the input derivation, the sinusoidal signal amplitude will be proportional to the frequency.
So, if we increase the signal frequency, the signal gets greater at the LCD. However the noise is constant. As
it is well-known, the non-linear response limit is reached when the signal amplitude at the input of the SRT is
greater than the RMS noise. Exactly that happens in this case. This is another important point which shows
that not only the input noise is transformed but also the input signal by this operation. We have a new system
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here which has a new behavior which is radically different from the classical SRTs.

4.6 Simulations

4.6.1 Input - Gaussian White Noise Generation

Large number of uniformly distributed random variables added together according to central limit theorem,
provides accurate Gaussian process.

The rms of the noise was measured in every experiment rather than scaled after measuring in single experi-
ment as is common.

Since the analog LCD simulation in Ref. [Kis96], the fill factor of the impulse at the LCD’s output was less
than 10% in terms of the noise correlation time constant, first we built the experiment similar to that.

In order to reproduce the circumstances of the analog experiment, we needed a noise source at least 10 times
slower than the impulse we can generate in the system. Equivalently, the noise had to be filtered by sharp low
pass filter of 10th the cut-off frequency of the frequency corresponding to spike’s uptime. While in TD, stepwise-
(we refer to it as oversampling) and linear-interpolation was tested, in FD, linear Finite Impulse Response filters
were tested. By means of these techniques, we have found that the measurements are non sensitive for this
particular fill factor a up to 100% fill factor. However we need to point out that aliasing type of errors might
appear in simulations that has to be circumvented in all cases. It can be done by buffers of size of least common
multiples and/or filtering in FD. We used the fastest case when the noise correlation time constant is equal to
the uptime of the LCD, which means that every item in the buffer corresponds to a random sample and the
LCD emits an impulse for duration of one sample.

4.6.2 SNR measurements

SNR measurement is based on separate signal and noise estimation.

Because of the structure of the experiment is such that we are in possession of the signal’s frequency at the
input (hence at the output), we can obtain the power of this particular frequency at the output by a simple
“read out” from the measured PSD.

The background noise estimation is not that obvious. The particularly interesting noise is in the vicinity of
the signal in the PSD. We measured it by simply averaging the PSD around the signal of a given narrow region.
Specifically, we used fixed number of +/ − 5 frequency samples excluding +/ − 1 samples around the signal.
(NB: since DFT was used frequency resolution is predefined)

According to the findings of the Sec. 4.5, SNRs were checked on in, diff, lcd, out points of the system. The
graphs generated by in this way are the base of our experimental analysis. (see fig. 4.8 and fig. 4.9).

4.6.3 Derivation

According to the numerical instability of the numerical derivation, the numerical curve considerably departs
from the theoretical one in fig. 4.7(b). Hence the Eq. 4.5 must hold up to the point of breakdown which implies
that our measurement is supposed to be accurate no higher frequency than this. Thus Eq. 4.7 has at least
the same high frequency limit. This can be justified in fig. 4.5 where the SNRin and SNRdiff versus signal
frequency fits well in this region.
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f

Figure 4.4: The SNR measurement is based on the PSD. Signal’s power can be determined by a simple “read
out” at given frequency. The background noise is computed by averaging numerous samples of the PSD in the
vicinity of the signal’s frequency.
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Figure 4.5: SNR vs. signal frequency at different points in the system at a given rms. Theoretical SNRout

curve is fitted to the numerical results in the numerically stable region. Theory explains signal transfer in the
linear response limit which holds for up to 1500Hz.

4.6.4 LCD

Both asymmetrical and symmetrical LCD were tested with output impulse length equal to the noise sampling
time. It is worth noticing that however the input noise of the LCD is colored, the output of the LCD is
transformed to white noise in a considerable wide bandwidth which might have large potentialities in signal
processing applications.

4.6.5 Integration

Achieving numerical integration in the TD leads to error prone results in the FD. Our experience supports this
unreliability of the power spectra already show on fig. 3.20 in Ref. [Ran87]. We have found that this is due to
the low representation degree of even conjugate signals with frequency lower than 1/T in the FD obtained by
FT (including DC component). Unfortunately the stepwise integration biases the spectra into this frequency
range. In general, the integration formula widely used in FD, in case of non analytical functions performs very
badly with Discrete FT (DFT). There at least two ways to avoid this numerical problem. Either windowing
(e.g. Gaussian) or analog (or leaky) type of integration (with time constant τ � T/2) of the data in the DFT’s
buffer. We turned to leaky integration and tested the effect varying the integration time constant at τ = 50/fc

and τ = 10/fc.
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4.6.6 Experimental results

In this section we give all the graphs of the measured systems. First, time series are shown, then PSDs are
given, SNRs, SNR gain (SNRout/SNRin), signal power versus signal frequency and versus rms.

A short time course of an experiment is demonstrated in fig. 4.6.
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Figure 4.6: Time course of noise+signal at different measurement points of the system within the same experi-
mental setup. The applied configuration was: Symmetric LCD, Ut = 0.45, fc = 12000Hz,A = 0.1, B = 5, τ0 =
0.833µs, fs = 10Hz.

Note the apparent positive tendency in fig. 4.6(d) in the range of 0...0.05s induced by the signal of fs = 10Hz

which reflects the motivation of the IDSR setup, that is a smoother estimation of the signal at input by the
output.

In fig. 4.7, the PSD graphs of the same experiment is given in fig. 4.6.
In the experiments, we used the following parametrization: Noise cut-off: fc = 12000Hz, signal amplitude:

A = 0.1, LCD threshold Ut = 0.45, LCD impulse amplitude: B = 5, LCD uptime: τ0 = 0.833. The scanned
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Figure 4.7: PSD of 500 averaged experiments with Ut = 0.45, fc = 12000Hz,A = 0.1, B = 5, τ0 = 0.833µs, fs =
1800Hz, rms = 0.2341. The number of samples used was N = 4096 that corresponds to T = 0.341s time.

signal frequency range is {14Hz, ..., 4500Hz} The rms was varied within the range of {0.01388...0.5625} in
logarithmic steps (i.e. multiplied by 1.0559 in each step). Rms values were obtained by measurements rather
than scaling the noise according to a single measurement.

In fig. 4.8(a), SNRs are measured at different points in the system at a single rms using asymmetrical LCD
with stepwise integrator. According to the expectations the SNRin and SNRdiff is equal for the whole regime
tested. Note that the equivalence holds even over the breakdown point (4500Hz) of the derivator. The output
of the LCD fits well to the theoretical quadratic curve (just as in fig. 4.5) but the output of the integrator
departs qualitatively from this. The reason is already detailed in Sec. 4.6.5. As mentioned, the solution is
twofold. Applying leaky integrator (see sub-figures c, d, e, f in fig. 4.8) (which reduces the low frequencies in
the spectra) and symmetrical LCD (which reduces the DC component) (see sub-figures b, d, f in fig. 4.8).

Interestingly in the experimental setup we used in generating all figures, the SNRout reaches its maxima at
around rms = 0.04 at any signal frequency which would require further analysis. (see fig. 4.9(a)).

It is demonstrated in fig. 4.9(b) the maxima of the signal power and the maxima PSD at the same frequency
is not at the same point as function of rms which is the proof for the noise assistance in the signal transfer.

Depending on the rms, the SNR gain increases rapidly in all experiments and reaches its maxima before 0.2.
By further increasing the rms the SNR gain remain constant (see in fig. 4.9(c)) which means that the SNRout

becomes proportional to the SNRin at almost around the maxima. This absolute maxima of all experiments
goes just a little bit above (0.868) the well known LCD’s limit (0.849) although it happens in the region where
the derivation is declared to be unreliable. (see fig. 4.9 and the Appendix)
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(b) The symmetrical integro-differential system
with stepwise integration. The maximal mea-
sured SNR gain is 0.806.
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(c) The asymmetrical integro-differential system
with leaky integrator (τ = 50/fc). The maximal
measured SNR gain is 0.626.
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(d) SNRout versus signal frequency at a single
rms (0.19). The symmetrical integro-differential
system with leaky integration (τ = 50/fc). The
maximal measured SNR gain is 0.868.
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(e) The asymmetrical integro-differential system
with leaky integration (τ = 10/fc). The maxi-
mal measured SNR gain is 0.70.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  1000  2000  3000  4000  5000

S
N

R
 (a

rb
itr

ar
y 

un
it)

Signal Frequency [Hz] 

SNRin
SNRdiff
SNRlcd
SNRout

(f) The symmetrical integro-differential system
with leaky integration (τ = 10/fc). The maxi-
mal measured SNR gain is 0.866.

Figure 4.8: SNRout versus signal frequency at a single rms (0.19) The experimental setting was as in fig. 4.7.

4.7 Conclusion

We have introduced and demonstrated the viability of a new class of SRs. Another important characteristics
of the system is signal and noise characteristics are the bests at the high frequency end, where most Shannon
Information is transfered. (see Ref. [BK02, Sha49, KHA01])
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setting was as in fig. 4.8.
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A.1 Proof of Symmetric Case

Proof for Lyapunov Function in Theorem 1[CR02] (rewritten here).

V (x) =
2MN∑
i=1

[∫ yi

θ

f−1(v)dv

]
− 1

2
yT Ay − yT Bu− yT z

Since A is positive definite,

V̇ (x) =
2MN∑
i=1

f−1((y)i)(ẏ)i − ẏT Ay − ẏT Bu− ẏT z

By substituting f−1(y) = x,

V̇ (x) = ẏx− ẏT Ay − ẏT Bu− ẏT z

= −ẏT (−x + Ay + Bu + z)

= −ẏT ẋ

By ∆f(x) ≡ diag{f ′((x)1), f ′((x)2), ..., f ′((x)2MN )} one can write ẏ = ∆f(x)ẋ, which results in

V̇ (x) = −ẋT ∆f(x)ẋ

Since ∆f(x)ij > 0 ∀i, j ⇒ V̇ (x) < 0.
Q.E.D

A.2 Proof of τ Symmetric Case

In the proof of Theorem 2 we relied on the stability of the Eq. (2.15).

Definition 13. A diagonal mapping H ∈ P if and only if for i = 1, ..., N, hi(xi) : R → R is a continuous,
non-decreasing bounded PWL function such that hi(0) = 0.

In ref. [For02] a fundamentally new approach is used for proving the theorem in which the author claims
that a neural network (N) written in the form,

ẋ = −Dx + Ah(x) + c (A.1)

is completely stable if h ∈ P, where D is diagonal, c is an arbitrary constant and A is symmetric. The
trajectory limit length theory which Mauro Forti et al develops ensures stability even in cases where non-
linearity (h) is totally not invertible caused piece-wise linear (PWL) with horizontal sections. These horizontal
sections lead to degenerate cases (where the infinitely many non-isolated equilibrium points exist) hence, only
non-strict Lyapunov function can be given. A Lyapunov function like this involves the analysis by LaSalle’s
invariant sets principle that may be rather complicated.

These horizontal sections play crucial role in increasing the networks learning capability (Vapnik-Chervonenkis
dimension) compared to sigmoid (tanh()) like neural input/output activation functions. As the number of these
horizontal sections increase, the pattern formation capability increases too, which simply enriches the family of
stable patterns.
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The following global Lyapunov function Eq. (A.2) is associated with Eq. (A.1) that overcomes the problem
of the assumption of invertible f(). It was assumed in Appendix A, too, indeed it is rooted in the methodology
of ref. [Hop84].

V (x) = −1
2
hT (x)Ah(x)− hT (x)c +

N∑
i=1

Di

∫ xi

0

ρ
dhi

dρ
dρ (A.2)

which holds for all the affine systems, too.

The steps of the proof are recalled from ref. [For02] with variables remapped to our system and with standard
Chua-Yang non-linearity (f()) applied instead of (h(x)) as,

1) A non-strict global energy function is introduced that overcomes the inversion of the non-invertible (PWL)
input/output activation function,

V (x) = −1
2
yT A∗y − yT (B∗u + z∗) +

2MN∑
i=1

(τ)ii

∫ xi

0

ρ
dyi

dρ
dρ.

The deduction of V̇ (x) ≤ 0 is, practically, equivalent to the one in Appendix A, but with Dini derivatives
at non-differentiable points of f().

2) The existence of a function like this is exploited to prove that the total length of the trajectory

L(y∞) = lim
t→∞

∫ t

0

||ẏ(σ)||2dσ <∞

is finite which means that y(t) must be convergent,

3) which implies the convergence of x(t), as well.

Q.E.D

A.3 Proof of a Non-symmetric Case

A typical quadratic Lyapunov function (Eq. (A.3)) is assumed in Theorem 3 coming from ref. [Gil93] and the
proof is rewritten here with slight modifications.

V (x) = −1
2
yT Py (A.3)

We rely on the same Lyapunov function, where the existence of a D matrix is hypothesed which will symmetrize
H = (A− I) (I refers to the identity matrix) in order to get a symmetric P (i.e. P = DH = HT DT ), positive
definite matrix. By ∆f(x) ≡ diag{f ′((x)1), f ′((x)2), ..., f ′((x)2MN )} one can write

V̇ (x) = −yT P ẏ = −yT P∆f(x)ẋ

= −yT P∆f(x)(−x + Ay)
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Because ∆f(x)x = ∆f(x)y, by substitution,

V̇ (x) = −yT P∆f(x)(−y + Ay)

= −yT P∆f(x)(A− I)y

= −yT P∆f(x)Hy

= −yT HT DT ∆f(x)Hy

= −yT HT (DT ∆f(x))Hy

Since (DT ∆f(x))ij > 0 ∀i, j ⇒ V̇ (x) < 0

Q.E.D

Remark 6. In contrast to the original theorem, where D is assumed to be diagonal, we found that this matrix
property is not required to be met, at all. However, it can be proved that only Toeplitz matrices may appear
in such a role but resulting in no extra constraints on structure of matrix A. Consequently it would make no
sense to complicate the calculations with these cases.

A.4 Proof of the τ-non Symmetric Case

In the proof of Theorem 4 the quadratic Lyapunov function may be written as,

V (x) = −1
2
yT Py

associated to the non-unity τ system with non-symmetric templates. Hence with assuming symmetric P = DH

where H = (A− τ), similar to that of in Appendix C, equations develop as,

V̇ (x) = −yT P ẏ = −yT P∆f(x)ẋ

= −yT P∆f(x)(−τx + Ay)

= −yT P∆f(x)(−τy + Ay)

= −yT P∆f(x)(A− τ)y

= −yT HT (DT ∆f(x))Hy

Since (DT ∆f(x))ij > 0 ∀i, j ⇒ V̇ (x) < 0

Q.E.D
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A.5 The Conjecture

During the support of Conjecture 1 we relied the complete stability of a non-reciprocal 1D CNN in ref. [CR90].
In this case matrix A will have the following structure,

Â =

0 0 0
s p -s
0 0 0

 Ã =



p −s

s p −s

s
. . . . . .
. . . −s

s p


These types of matrices (Ã) belong to the class P , which possess the unique property that all of its principle
minors are strictly positive as well as the real part of their eigenvalues.

For similar reasons, simple cases when all cells are either in the linear region (α) or in saturated region (β),
lead to a Jacobian matrix with either positive eigenvalues (∆f(x) = Ã−I) only, or −1 eigenvalues (∆f(x) = −I)
only, respectively. While the calculation of the principal minors in the latter case is obvious, the first one can
be done by an elegant recursive rule proposed by Chua, et al.

Eigenvalue calculation when a single cell is in region β and the rest is in region α, may be decomposed to
the above cases, which enables the author to conclude the following remarks:

Remark 7. Regarding the trajectories of anti sign-symmetric CNNs,

• No trajectory can settle outside the saturated region,

• Any trajectory in the saturated region converges to a stable equilibrium point inside the same region,

• All trajectory in the linear region tends to leave the region.

This support the conjecture of complete stability.
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B.1 The diffusion PDE and the corresponding IIR equivalence

B.1.1 Diffusion PDE

Next we brief the solution of a diffusion PDE, and compare it to the use of a Gaussian window function, and
,finally, point out their equivalence.

The following differential equation describes a diffusion process

D

2
∇f(x, t)− ∂f(x, t)

∂t
= 0.

Let the solution be fj(x, t), where j refers to the initial conditions. First, set it to

f1(x, t = 0) = δx,0,

then solution is
f1(x, t) =

1√
2πt

exp
{
−x2

2t

}
. (B.1)

Now, having a vector composed of samples s(i) in discrete space as an initial condition as,

f2(x, t = 0) =
∑

i

s(i) δx,i,

then the solution is,
f2(x, t) =

∑
i

s(i)f1(x + i, t) = s ∗ f1(x, t), (B.2)

where ’∗’ denotes the convolution operator, and i iterates through the discrete space.

B.1.2 Gaussian convolution window

Infinite Impulse Response (IIR) filtering means

y = s ∗ IIR (B.3)

where y is the filter output, IIR is the filter and s is the input. If IIR is assigned to a certain Gaussian function
(e.g. equ. B.1), then equ. B.3 turns to be equivalent to equ. B.2 with a proper time step (i.e. t = t0), which
means, applying diffusion and using convolution of Gaussian filter provides the the same result.

From equ. B.3, one can also conclude that if diffusion is done as an elementary operator, then Gaussian
window filtering is accelerated the by O(N2) orders of magnitude.

B.2 Algorithm Complexity

The complexity of algorithms is given in this section.
First, the alg. 1 is analyzed.

• It has to calculate the DFD at every pixel O(N2), for all possible vectors O(M2),

• then, the convolution for kernel size K at every scale (S), for O(N2,M2,K2, S) cost.

• Finally, get the maxima on a per pixel basis for O(N2,M2) const.



B.3. ON-CHIP DIFFUSION 85

(a) Fix-pattern noise of ACE16k after diffusion
of 10µs, starting from a zero level input

(b) Attenuated fix-pattern noise of (a) with off-
set = 139, gain = 11.0

Figure B.1: Fix-pattern noise characteristics

Hence, the upper limit is O(N2,M2,K2, S).
Second, the complexity of alg. 3 is given.

• The DFD is done in O(M2) time.

• The generation diffused versions for O(M2,K)

• Finally, get the maxima at every pixel on DSP O(N2,M2)

Note that, this solution has is only O(N2,M2) complexity since all the rests is done in CNN, in the device
that is essentially parallel and the speed of which does not depend on the number of pixels.

Probably, it is not fair to compare a sequential (Neumann) architecture to a fully parallel analog one (CNN)
in terms of complexity. For this reason, we might refer to the complexity term as a complexity in CNN sense
opposed to the traditional complexity concept; complexity in Neumann sense.

B.3 On-chip Diffusion

Unfortunately, analog circuits always face noise problems, hence implemented algorithms need tuned to be
robust against it. For this reason, we have recorded in-diffusion fix-pattern noise transfer characteristics of the
Heaviside step-function (fig. B.1) and the rectangular function on the ACE16k (fig. B.3).

Fix-pattern noise was measured by loading a zero level picture input into a LAM, then after a few micro-
seconds of diffusion, it was read-back from the same LAM.

We registered the following type of errors

• There was a bias towards white (in CNN terms it is referred to as -1 and associated with the negative
supply voltage) in the middle region of the chip that is probably due to the supply problems of the chip.
(see fig. B.2)

• Structured noise along the y axis; the source is probably the A/D converters’ unequalizedness (narrow
arrows in fig. B.2) which is associated to the cells on a per column basis,

• Cell bias which is probably the least significant factor,
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Figure B.2: 3d plot of section 0-50, 0-50 pixels (x,y) of B.1. The wide arrow points into the direction of the
offset bias, while the weak arrows point to a somewhat regular noise along the y axis.

• Shot-noise which is fairly suppressed as multiple experiences show.

Similar to this, in recording the step function characteristics, test images (fig. B.3(a),B.3(b)) were loaded into
a LAM, few micro-seconds of diffusion was applied then the image was read back. Along with the considerable
fix pattern noise, note the significant zero level error, too.

B.4 Alternative model background

An alternative formulation to multi-scaling was suggested by Cs. Szepesvari in a personal communication
leading, essentially, to the same results.

Let us define a multi-scale representation of the image:

I → {I1, I2, . . . , Iqmax
}

where Iqmax , I. The images (I1, I2, . . . , Iqmax−1) are generated by the respective operators f2, . . . , fqmax :
[−1, 1]m → [−1, 1]m) by fq(Iq) , Iq−1 where q = 2, . . . , qmax and where m is the number of pixels. We call Iq

the image I at qth scale. Here fi is a non-invertible scaling operator. In practice fi is a blur operation.
We assume that I(2), the image of the next time-step depends stochastically on I(1), (the current image)

and the flow field v̄(v̄ ∈ R2m). The following assumptions are made on this dependence.

A1.1 p(I(2)
q |I(2)

q−1, I
(1), v̄) = p(I(2)

q |I(2)
q−1, I

(1)
q , v̄) which means that the qth scale of image I(2) depends on

image I(1) only through the qth scale of I, assuming I
(2)
q−1, image I(1) and v̄.

A1.2 Specifically, for q = 1, p(I(2)
1 |I(1), v̄) = p(I(2)

1 |I
(1)
1 , v̄).

A2.1 supp p(I(2)
q = .|I(2)

q−1, I
(1)
q , v̄) = f−1

q (I(2)
q−1) where the inverse of I

(2)
q−1 under fq is defined as f−1

q (I(2)
q−1) ={

I
(2)
2 |fq(I

(2)
q ) = I

(2)
q−1

}
.

A2.2 For any I
(2)
q ∈ supp p(I(2)

q = .|I(2)
q−1, I

(1)
q , v̄) and p(I(2)

q |I(2)
q−1, I

(1)
q , v̄) = exp

(
−λq DFD(I(2)

q , I
(1)
q , v̄)

)
with λq > 0.
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(a) The Heaviside test function (b) The rectangular test function
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(c) The evoltion of the trajectory of CNN as a response to
Heaviside test function
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(d) The evoltion of the trajectory of CNN as a response to
rectangular test function

Figure B.3: Evolution of the intensity profile (fig. B.3(c),B.3(d)) at the horizontal center line of the images (fig.
B.3(a),B.3(b)) when subject to diffusion. The maximal diffusion time applied in these experiments was 10µs.
Within this period the full-length half-width (λ) distance was 20 pixels.

A2.3 Specifically, for q = 1, p(I(2)
1 |I

(1)
1 , v̄) ∝ exp

(
−λq DFD(I(2)

1 , I
(1)
1 , v̄)

)

Our aim is to compute the MAP estimate of v̄ given I(1), I(2) and v̄, i.e. arg maxv̄ p(v̄|I(1), I(2)). By Bayes
theorem and dropping the normalization term,

p(v̄|I(2), I(1)) ∝ p(I(2)|I(1), v̄) p(v̄)

By the definition of I
(2)
qmax , p(I(2)|I(1), v̄) , p(I(2)

qmax |I(1), v̄). Let us define an expression for p(I(2)
q |I(1), v̄), q =

2, . . . , qmax. By the properties of conditional likelihood, since I
(2)
q−1 is a function of I

(2)
q ,

p(I(2)
q |I(1), v̄) = p(I(2)

q |I
(2)
q−1, I

(1), v̄) p(I(2)
q−1|I(1), v̄). (B.4)

The equation allows us to derive a recursive expression for p(I(2)
q |I(1), v̄). Recognize the recursion in this

expression (i.e. left hand side of the equation and the last term). From A1.1 and A2.2

p(I(2)
q |I

(2)
q−1, I

(1), v̄) = p(I(2)
q |I

(2)
q−1, I

(1)
q , v̄) = exp

(
−λq DFDq(I(2), I(1), v̄)

)
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Hence, by equ. B.4 and using A1.2 and A2.3, we get

p(I(2)|I(1), v̄) ∝ exp

(
−

qmax∑
q=1

λq DFDq(I(2), I(1), v̄)

)
.

Because we have no smoothness constraint on v̄, this becomes a separable expression of v1, . . . , vm:

qmax∑
q=1

λq DFDq(I(2), I(1), v̄i) (B.5)

hence, the MAP estimate of v̄ can be obtained componentwise and is the same as equ. 3.9 extended with the
ability to weight scales with λi.
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C.1 Analysis of Level Crossing Detector

Here we brief the results of Kish from Ref. [Kis96] with respect to a signal in the linear response limit of an
LCD (see Def. 1. 2. ) fed by white noise and sinusoid signal.

The question of our interest is the maximal SNR gain (= SNRin/SNRout) that can be obtained from this
system. SNRin can be formalized in a way as in Sec. 4.5.1 so Eq. 4.2 still holds.

To determine SNRout = SNRlcd, first, the mean impulse production frequency (ν(Ut)) is given as a function
of constant input s(t) = 0 with fixed threshold Ut (see Rice formula in Ref. [Ric44, Ric45] for zero crossings
and its generalization, for example, in Ref. [Kis96] for non-zero threshold levels) as

ν(Ut) =
2
σ

(∫ fc

0

f2Sin(f)df

) 1
2

exp
{
−U2

t

2σ2
in

}
(C.1)

adding a signal s(t) to the noise is essentially the same as modulating the threshold Ut as Us
t = Ut− s(t), hence

ν(Us
t ) =

1
σin

(∫ fc

0

f2Sin(f)df

) 1
2

︸ ︷︷ ︸
ν0

·exp
{
−(Ut − s(t))2

2σ2
in

}
. (C.2)

As a part of the expression, ν0 denotes the mean uni-directional zero crossing frequency of the input noise.

Assuming a white PSD for the noise (Sin(f) = Sin = σ2
in/fc), ν0 can be written as,

ν0 =
1

σin

(
Sin

∫ fc

0

f2df

) 1
2

=
1

σin

√
Sin

√
f3

c

3
=

fc√
3

(C.3)

and the Taylor expansion of Eq. C.2 around Ut is

ν(Us
t ) =

(
1 +
−Ut

σ2
in

s(t) + . . . + h.o.t.

)
ν(Ut)

≈ ν(Ut) +
(
−Ut

σ2
in

ν(Ut)
)

︸ ︷︷ ︸
νgain(Ut)

s(t) = ν(Ut) + νgain(Ut)s(t) (C.4)

where h.o.t. refers to higher order terms. Note that, the contribution of the signal is merely the last term. Since
the signal is very slow compared to the mean firing rate of the Poisson process. (i.e. fs � ν)), the time average
of the impulse sequence emerged by reason of the modulation can be approximated as

Uav = Bτ0νgain(Ut)s(t). (C.5)

A device like this can be interpreted as an impulse-width modulator where the modulation is a sinus wave,
which has the power

Plcd = (Bτ0νgain(Ut)A)2.

Not like this is the background noise, which is a steady Poisson process with ν(Ut) mean repetition rate.
Campbell’s theorem (for f > 0) applies to this as

Slcd(f) = ν(Ut)B2 (sin(ωτ0))2

ω2
.
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In the low frequency range, sin(x)/x→ 1 so

Slcd = ν(Ut)B2τ2
0

which leads to
SNRlcd =

νgain(Ut)2

ν(Ut)
A2.

By substituting νgain,

SNRlcd =
U2

t

σ4
in

ν(Ut)2A2

ν(Ut)
=

U2
t

σ4
in

ν(Ut)A2. (C.6)

Finally with Eq. 4.2 in the denominator, the SNR gain (µ) is

µ =
SNRlcd

SNRin
=

(U2
t /σ4

in) ν(Ut)A2

A2fc/(2σ2
in)

=
2
fc

U2
t

σ2
in

ν(Ut). (C.7)

By substituting Eq. C.1 (i.e. ν(Ut)) in this by means of Eq. C.3,

µ =
2
fc

U2
t

σ2
in

fc√
3
exp

{
− U2

t

2σ2
in

}
=

2√
3

U2
t

σ2
in

exp
{
− U2

t

2σ2
in

}
.

This means that the SNR gain is independent of the applied signal frequency. Indeed, it seems to be
independent of signal amplitude, too, but this is only due to linearization we made in Eq. C.4, so it is dependent
but only up to the higher order terms effect.

To get the maxima consider using α = U2
t

2σ2
in

so

µ =
1√
3

α exp {−α}

from which it can be seen that dµ/dα = 0→ |αext| = 1, hence the maxima is

max
{

SNRlcd

SNRin

}
=

4
e
√

3
(C.8)

C.2 Symmetric Level Crossing Detector

Symmetric LCD’s SNR can be concluded by assuming two asymmetric LCDs with U+
t = Ut and U−

t = −Ut in
Eq. C.3, so the positive (ν+) and negative threshold crossing rates (ν−) are,

ν+(Us
t ) = ν0 · exp

{
−(Ut − s(t))2

2σ2
in

}
ν−(Us

t ) = ν0 · exp
{
−(−Ut − s(t))2

2σ2
in

}
(C.9)

After linearization as in Eq. C.4,

ν+(Ut) = ν(Ut) + νgain(Ut)s(t)

ν−(Ut) = ν(Ut)− νgain(Ut)s(t).
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Since the positive and negative impulses,

U+
av = B τ0νgain(Ut)s(t)

U−
av = (−B)τ0νgain(Ut)(−s(t))

are summed in the time domain, the average value

Usym
av = U+

av + U−
av = 2Uav

in terms of Eq. C.5, which means the signal power is P sym
lcd = 4Plcd, while the background noise power is

doubled only (i.e. Ssym
lcd = 2Slcd) since the two independent Poisson processes’ power can be added. Thus their

ratio, the SNR, is doubled compared to the asymmetric case (SNRsym
lcd = 2SNRlcd) which means the SNR gain

is doubled, as well. By Eq. C.8, the maximal SNR gain, can be written in general form as,

max
{

SNRlcd

SNRin

}
=

4z

e
√

3

where z is 1 in asymmetric and 2 in symmetric LCD case.
This result is important since the this is the first time, as far as we are concerned, to get real SNR gain in

the small signal limit with sinusoidal signals.
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