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Abstract

My work aims at making a step towards efficient image understanding

through the possibilities of fusing the top-down and the bottom-up ap-

proaches. In this dissertation I put the focus on the investigation of bottom-

up image segmentation and the points where injection of top-down knowl-

edge into a data-driven segmenter is possible.

The first problem I have been working on was the fast segmentation of high

resolution images. The motivation for using high resolution images is that

this way one can obtain more information from the segmentation output,

with objects or object details that otherwise could not be retrieved due to

their small extent. Identification of a higher number of details can enhance

the robustness of recognition and classification and it can also provide ad-

ditional cues that top-down knowledge could be applied to. The downside

of increasing the physical resolution, i.e. the number of pixels is that the

amount of data to be processed grows, which has a negative impact on the

running time. To overcome this problem, I constructed and implemented a

framework that works in a data-parallel way, and therefore it can efficiently

utilize the powerful computational capabilities of many-core environments.

The principal idea of the system was inspired by the mean shift algorithm,

which I extended with a quasi-random sampling scheme for further accel-

eration, and a cluster merging procedure to reduce over-segmentation. In

addition, I proposed a method (named abridging) to reduce the overhead

caused by parallelization.

The second problem I addressed was making an adaptive image sampling

scheme, in order to take the local content of the image to be segmented

into account. I had two simultaneous goals. On one hand, to eliminate

superfluous computations for homogeneous regions with minimal content,

DOI:10.15774/PPKE.ITK.2013.005



thus to keep the amount of time required for the segmentation to a content-

dependent minimum. On the other hand, to preserve an output quality

similar to that of the näıve version, which is applied to every single input

pixel without using any kind of sampling. To achieve this, I need not only

to determine the number of samples required to maintain a certain seg-

mentation quality, I also have to face the difficulty of finding a good spatial

distribution of the samples. I developed an automated mechanism that is ca-

pable of solving this task. Additionally, the scheme uses a single-parameter

for both the selection of sample candidates and for the registration of the

strength of the bond between the pixels and their clusters. This way, the

representation of the system remains compact, which enables the segmen-

tation of large images as well. Furthermore, this bond confidence strategy

enables each pixel to be associated with the most similar class, with respect

to its spatial position and color. I designed the adaptive sampling method

to fit into the realized parallel framework.
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Összefoglalás

Célom, hogy doktori munkámmal előremozd́ıtsam a különböző

modalitású információk fúziójára alapuló képi értés tudományterületét.

Disszertációmban a hangsúlyt egy olyan bottom-up elvű, moduláris

szegmentáció kutatására helyeztem, amely a klaszterezés folyamata során

létrejövő osztályhierarchia különböző szintjein és pontjain ad lehetőséget

top-down elvű, szemantikus, illetve feladat specifikus információk befecsk-

endezésére.

Elsőként egy olyan eljárást dolgoztam ki, amely gyorsan képes magas fel-

bontású képek szegmentációjára. A magas felbontás használatát az in-

dokolja, hogy seǵıtségével a szegmentáció kimenetéből olyan részleteket

is kinyerhetünk, amelyek méretükből adódóan kisebb pixelszámú képeken

nem jelennek meg. Ezen többlet információk előseǵıtik a különböző felis-

merési-, és klasszifikációs feladatok pontosabb működését, és kiszéleśıtik

a top-down módszerekkel elérhető tudás felhasználásának lehetőségeit.

A fizikai képméret növelésének hátránya, hogy a feldolgozandó ada-

tok mennyisége is nő, amely negat́ıv hatást gyakorol a szegmentációs

algoritmusok futási idejére. Ezen probléma áthidalására olyan kere-

trendszert konstruáltam, amely párhuzamośıtott belső szerkezetéből ki-

folyólag ki tudja használni a sokprocesszoros számı́tógép architektúrákban

rejlő magas számı́tási kapacitást. A keretrendszer magját a mean

shift algoritmus inspirálta, melyet a további sebességnövekedés érdekében

kiegésźıtettem egy kvázi-véletlen elven működő mintavételezési eljárással, il-

letve olyan osztályösszevonó lépést alkottam hozzá, amely hatékonyan képes

a túlszegmentáció csökkentésére. Mindezeken felül bevezettem egy eljárást,

amely csökkenti a párhuzamośıtásból fakadó többletmunkát.
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A második kutatási területem egy olyan, adapt́ıv mintavételezési eljárás

megalkotására fókuszált, amely a kép tartalmának (content) lokális

jellemzői alapján dolgozik.

Kutatásomnak két célja volt: egyfelől a szegmentáció futási idejének mini-

malizálása a képtartalom függvényében, egyszersmind kimenet minőségének

azonos szinten tartása a naiv (tehát az összes képponton dolgozó,

mintavételezést nem tartalmazó) eljárással. Ezen célok teljeśıtéséhez

nem csak a mintavételezéshez használt elemek számának, hanem ezek

topografikus poźıcióinak meghatározása is szükség van. A problémák

megoldására egy autonóm módon működő eljárást alkottam, amely ezen

feladat megoldásán túl egy darab paraméter értéke alapján valóśıtja meg a

mintavételezést és ebben tárolja az osztályok és a pixelek között fennálló

kötés erősségét is. Ezáltal a rendszer reprezentációja tömör módon

képezhető le, ı́gy mód nýılik magas pixelszámú képek szegmentációjára is.

Ez a stratégia arra is lehetőséget biztośıt, hogy a pixeleket a sźınük és térbeli

poźıciójuk alapján hozzájuk leginkább hasonĺıtó osztályokhoz rendelhessük

hozzá. Ezen adapt́ıv módszert a fent ismertetett párhuzamos keretrend-

szerbe illesztettem be.
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Nothing in this world can take the place of persistence. Talent

will not; nothing is more common than unsuccessful people

with talent. Genius will not; unrewarded genius is almost a

proverb. Education will not; the world is full of educated dere-

licts. Persistence and determination alone are omnipotent.

— Calvin Coolidge
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Chapter 1

Introduction

The automation of tasks that can increase the quality, or extend the duration of human

life has been under permanent and heavy research for a long period of time. Such tasks

include, but are not restricted to jobs that are simply too monotonous (e.g. surveillance,

or 24/7 quality assurance of mass produced items moving on a conveyor belt) or can not

be done by humans because of biological reasons (e.g. flight or automotive navigation

tasks or medical imaging). In many of these problems we use visual data partially or

exclusively, thus the accurate processing, or even more, the understanding of visual

information is inevitable for the refinement of the next generation of these machines.

Of course, for the automation of complex human activities, machines and algorithms

need to be equipped with a sensory-algorithmic arsenal, somewhat similarly to the

senses we humans possess. Many of the more complex tasks that await to be mechanized

are based not just on the processing, but on the “understanding” of visual information.

The difficulty lies in the fact that besides the “sensory” input obtained by our eyes, the

human brain uses complex cognitive information during the interpretation of the scene

it sees.

For example, we easily identify a tennis ball in case we have already seen one

before. Looking at a bag of balls that have a similar color, we can grab one without

any hesitation, even though the boundaries of neighboring balls may not be clearly

visible due to poor lighting conditions. This is because we know something about the

size and shape of such an object.

Interpreting this procedure in the language of image understanding, we can make

two observations. The first is that high-level metadata (having a priori knowledge on

1
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1. INTRODUCTION

the physical properties of a ball) can highly aid the accuracy of execution. On the

other hand, a top-down approach can not succeed without using information provided

by a complementary bottom-up processing (seeing the pile of balls, utilizing the retina

channels to extract low-level information), because it is the fundamental basis which

high-level information is applied upon.

Being one of the most successful and straightforward sources to use, image under-

standing has always been inspired by the human visual system. As of today, many of the

most successful algorithms in the field of segmentation (inside the broader area of com-

puter vision) utilize certain combinations of top-down and bottom-up approaches. Just

as we know plenty about how the human visual system works and processes low-level

visual information, we also know how to efficiently conduct certain image processing

tasks from the pixel level, in a bottom-up manner. However, just like in the case of

neurobiologists and psychologists who investigate the way how semantic information

might be represented in the human brain, scientists in the field of computer vision have

their own difficulties in finding an appropriate abstract representation and efficient

application of top-down data.

My work aims at making a step towards efficient image understanding through the

possibilities of fusing the top-down and the bottom-up approaches. In this dissertation

I put the focus on the investigation of bottom-up image segmentation and the points

where injection of top-down knowledge into a data-driven segmenter is possible.

The first problem I have been working on was the fast segmentation of high resolu-

tion images. The motivation for using high resolution images is that this way one can

obtain more information from the segmentation output, with objects or object details

that otherwise could not be retrieved due to their small extent. Identification of a

higher number of details can enhance the robustness of recognition and classification

and it can also provide additional cues that top-down knowledge could be applied to.

The downside of increasing the physical resolution, i.e. the number of pixels is that

the amount of data to be processed grows, which has a negative impact on the running

time. To overcome this problem, I constructed and implemented a framework that

works in a data-parallel way, and therefore it can efficiently utilize the powerful com-

putational capabilities of many-core environments. The principal idea of the system

was inspired by the mean shift algorithm [1], which I extended with a quasi-random

sampling scheme for further acceleration, and a cluster merging procedure to reduce
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Figure 1.1: An intuitive example for differences in content amount. Both images have a

resolution of 14.5 megapixels, but while the one on the left contains a single object in front

of a homogeneous background, the image on the right has far more details.

over-segmentation. In addition, I proposed a method (named abridging) to reduce the

overhead caused by parallelization.

The second problem I addressed was making an adaptive image sampling scheme,

in order to take the local content of the image to be segmented into account. I had

two simultaneous goals. On one hand, to eliminate superfluous computations for ho-

mogeneous regions with minimal content, thus to keep the amount of time required for

the segmentation to a content-dependent minimum. On the other hand, to preserve

an output quality similar to that of the näıve version, which is applied to every single

input pixel without using any kind of sampling. To achieve this, I need not only to

determine the number of samples required to maintain a certain segmentation quality,

I also have to face the difficulty of finding a good spatial distribution of the samples. I

developed an automated mechanism that is capable of solving this task. Additionally,

the scheme uses a single-parameter for both the selection of sample candidates and for

the registration of the strength of the bond between the pixels and their clusters. This

way, the representation of the system remains compact, which enables the segmenta-

tion of large images as well. Furthermore, this bond confidence strategy enables each

pixel to be associated with the most similar class, with respect to its spatial position

and color. I designed the adaptive sampling method to fit into the realized parallel

framework.

Observe Figure 1.1 as an illustration for the intuitive justification of the content-

adaptive concept.

Quantitatively, both images in this figure consist of more than 14 million pixels.

3
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1. INTRODUCTION

Theoretically, for a näıve, data-driven segmentation algorithm it would take about the

same amount of time to segment them, since it considers each and every pixel in the

same manner. Applying a sampling technique can definitely accelerate the procedure,

but it is not difficult to see that if we aim at maintaining the same level of detailedness

in the two segmented images, some regions of the image on the right will be required

to be sampled a lot more dense than in the case of the left one.

During the analysis of a huge variety of generic, real-life images of different res-

olutions, I realized that the inputs are likely to have huge differences in the amount

of content, and that the majority of them shows remarkable redundancy in the fea-

ture characteristics that could be exploited for the acceleration of the segmentation

procedure. Thus, the need for content adaptivity was established, as this way, inhomo-

geneous image regions containing many details could be sampled densely, thus such rich

information is kept in the output, while homogeneous regions may be sampled loosely,

such that the segmentation of these regions could be fast.

I also observed that besides “traditional”, well-known analytical aspects (such as

running time, parallel scalability, or output accuracy that can be measured by various

metrics), the amount the of content in the input image should be taken into account

not just for faster and more efficient segmentation, but for more accurate evaluation

and comprehensive comparison of such lossy segmentation algorithms as well. The

amount of processing (thus: the running time) of these techniques can show a greater

variance than the non-sampling methods, which might make running time comparison

difficult. More importantly, as it will be discussed in Subsection 2.5.3, human-made

ground truth provided as the reference for the evaluation of output quality is difficult to

accurately supply even for images of low resolutions and it often incorporates subjective

factors. Consequently, the comparison of the output quality of different algorithms is

not straightforward.

In the computer vision community, characterizing content from the information

theoretical point of view is not a novel concept, however, proper description and quan-

tification of the image content is still under ongoing research, and therefore it is not

covered by the present dissertation beyond a certain depth. On the other hand, to

cope with the lack of a numerical metric, I invented a subjective measure (the kappa-

index) that is assigned by humans to describe the complexity of image content. Besides
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the evaluation made utilizing many well-known and widely used metrics, the correla-

tion analysis of the running times of the proposed framework and the kappa-index has

proven that the proposed adaptive system can segment images of less content faster

but at the same time it preserves the details of busy image regions.

As of today, if I could start all over again from the beginning, I would definitely

switch the order, and pursue adaptivity first before parallelism, because posteriorly it

seems more rational to construct the efficient sampler first, and speed it up even more

by making it parallel only after1. However, the investigation of the second problem

actually arose from the findings of the evaluation of the parallel framework that was

constructed prior to the content-adaptive scheme. For this reason, by the time the

algorithmic background of the content-adaptive extension was ready and was mapped

into the parallel scheme, neither the hardware, nor the datasets used for the evaluation

of the parallel system were the same.

Consequently, the framework of the dissertation follows the sequence of my research.

Chapter 2 gives a short introduction to image segmentation and the problems and

concepts lying in this field. The discussion is started by considering the fundamentals

of the two main design approaches: the top-down approach and the bottom-up ap-

proach. Covering their pros and cons, the focus is put on the bottom-up scheme, as it

is employed in most segmentation systems that are constructed regardless of whether

they are built upon top-down or even top-down-bottom-up hybrid inner structures.

The most prominent bottom-up algorithms are summarized and briefly evaluated. The

mean shift nonparametric segmentation algorithm is discussed in depth, because it

was used as the basis of the proposed framework. The end of the chapter summarizes

the main properties of publicly available datasets and the supplied metrics that are

nowadays the most widely used tools for the evaluation and comparison of segmenta-

tion algorithms. Since to my knowledge there exist no high resolution databases for

such purposes, the image sets used to assess the framework are described. It is argued

that the evaluation made in the high resolution domain should be enhanced with the

analytical aspect of image content, thus a subjective rating is defined to characterize

it.

1Although this sequence might have introduced constraints during the parallelization of a sampler

that was originally designed to be sequential.
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Chapter 3 describes the design of the generic building blocks of the parallel seg-

mentation framework that consists of two phases. With the focus put on parallelism,

the first phase decomposes the input by nonparametric clustering. In the second phase,

similar classes are joined by a merging algorithm that uses color and adjacency infor-

mation to obtain consistent image content. The core of the segmentation phase is the

mean shift algorithm that was fit into the parallel scheme. In addition, feature space

sampling is used as well to reduce computational complexity, and to reach additional

speedup. The system was implemented on a many-core GPGPU platform in order to

observe the performance gain of the data-parallel construction. The chapter discusses

the evaluation made on a public benchmark and the numerical results proving that

the system performs well among other data-driven algorithms. Additionally, detailed

assessment was done using real-life, high resolution images to confirm that the segmen-

tation speed of the parallel algorithm improves as the number of utilized processors is

increased, which indicates the scalability of the scheme.

Chapter 4 discusses the method of how the building blocks of the parallel algorithm

were extended to operate with respect to the content of the input image. In case of

the segmentation phase, the bond confidence concept is introduced, which incorporates

an intelligent sampling scheme and a nonlinear pixel-cluster assignment method. The

proposed sampling can adaptively determine the amount and spatial position of the

samples based on the local properties of the image and the progress of the segmentation.

Sampling is driven by a single bond confidence value that is calculated without overhead

during the mean shift iterations. The same parameter guides the pixel-cluster mapping

that can ensure that each picture element is associated with a class having the most

similar characteristics. The method of determining similarity in the merging phase has

been extended to tolerate the rapid changes in intensity, hue, and saturation, which

occur frequently in real-life images. The focus during the evaluation of the framework

has been put onto output accuracy that is measured on three publicly available datasets

using numerous metrics and a high resolution image set. The detailed results underline

that the output quality of the framework is comparable to the reference but works an

order of magnitude faster.

Chapter 5 contains the summary of the dissertation with a short discussion on the

methods of investigation, my theses that encapsulate the new scientific results, and

examples for the application of my results.
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The dissertation is closed with the References and the Appendix containing addi-

tional segmentation examples.
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Chapter 2

Image Segmentation

This chapter gives a short introduction to image segmentation and to

the problems and concepts lying in this field. The discussion starts by

considering the fundamentals of the two main design approaches: the

top-down approach and the bottom-up approach. Covering their pros

and cons, the focus is on the bottom-up scheme, as it is employed in

most segmentation that are systems constructed regardless of whether

they are built upon top-down or even top-down-bottom-up hybrid inner

structures. The most prominent bottom-up algorithms are summarized

and briefly evaluated. The mean shift nonparametric segmentation al-

gorithm is discussed in depth, because it was used as the basis of the

proposed framework. The end of the chapter summarizes the main prop-

erties of publicly available datasets and the supplied metrics that are

nowadays the most widely used tools for the evaluation and comparison

of segmentation algorithms. Since to my knowledge there exist no high

resolution databases for such purposes, the image sets used to assess

the framework are describe. It is argue that the evaluation made in the

high resolution domain should be enhanced with the analytical aspect of

image content, thus a subjective rating is defined to characterize it.
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2. IMAGE SEGMENTATION

2.1 Introduction

By the segmentation of an image we mean the partitioning of its pixels. Segmentation

is a broad discipline in the field of image processing and computer vision2 and is applied

as a crucial intermediate step in several different tasks of pattern recognition, detection,

and high-level image understanding. As most tasks in these fields are relatively easy

for the human observer, algorithms designed for segmentation often try to get inspira-

tion from the biological procedure of human visual perception [3, 4, 5, 6, 7]. The latest

computational/algorithmic interpretation of segmentation is modeled as the interactive

processing of two streams with opposite direction: the data obtained by top-down (or

knowledge-driven) analysis and data gained via bottom-up (or data-driven) analysis [8].

Bottom-up information stands for the set of attributes acquired directly from the raw

input material, and top-down information represents the a priori, semantic or acquired

knowledge that is embedded in the segmenter. Consequently, generic, multipurpose

segmentation frameworks are easier to design utilizing data-driven methods, because

they use a finite set of rules in low-level attribute spaces in which both local and global

features can be extracted on demand. On the other hand in real-life tasks target ob-

jects have diverse appearance and in most cases complex hierarchy, such that they can

be better isolated, when additional top-down information is available [9]. Bridging the

semantic gap [10], as the synthesis of top-down and bottom-up approaches is often

referred to, is still under heavy research, as so far no successful attempts have been

made to find a representation applicable in both approaches.

The difficulty of the initiative is that compact taxonomies, efficient for top-down meth-

ods, are too abstract for bottom-up procedures, whereas pixel based representations are

hard to aggregate into useful high level information required by the knowledge-driven

direction. Another major difference between the data-driven and knowledge-driven

approaches is that while a bottom-up system can be employed by itself, a top-down

structure requires the help of cues obtained via a bottom-up analysis [11, 12, 13, 14].

For this reason, state of the art segmentation algorithms either choose to apply area-

specific top-down information, thereby restricting themselves to a given segmentation

2As Gonzales and Woods [2, Ch. 1] point out, the limits between image processing and computer

vision are rather soft as most boundaries are artificial and limiting. Consequently, these two will be

used in a similar manner throughout this dissertation.
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2.2 Bottom-up Image Segmentation

task, or they follow the data-driven scheme and utilize low-level properties with high

descriptive power, but with somewhat lower accuracy on the object level [15].

My investigation is centered around the unsupervised subbranch of clustering meth-

ods that follow the bottom-up scheme and are applied to generic color images. The

motivation behind this choice is that these methods are widely used in practical sce-

narios due to their autonomous nature, relatively low complexity, and discrete length

rule collection.

2.2 Bottom-up Image Segmentation

In this section the basic notions of data-driven segmentation are briefly covered and

the strengths and challenges connected to the approach are summarized. The second

part of the section gives an overview of the most frequently used image segmentation

algorithms that follow the bottom-up scheme.

In the field of image segmentation, features are typically characteristic attributes

of a single pixel that are either original/provided (such as e.g. color channel intensity

or the topographic position in the mesh) or derived (such as edge information or the

impulse response of a filter). The feature space is formulated via the concatenation of

the features, and its dimensionality (and consequently: the feature space representation

of a pixel) equals the number of features. In the algorithmic level, pixels are represented

in an abstract form by feature space elements (FSEs), such that Γ : PI → F denotes

the function from picture element indices PI = {1, ..., n} of the input image I (where

n = |I|) to the feature space F. Then, ∀i ∈ PI , Γ(i) = χi ∈ F. This numerical

representation puts quantities of different properties into a unified frame, consequently

image processing algorithms can utilize generic methods from various fields such as

machine learning, data mining, neural networks or combinatorics.

2.2.1 Problem Formulation

In real-life scenes, objects have varying appearance due to changes in lighting, occlu-

sion, scale, viewing angle, color, etc. To cope with the lack of high-level information,

data-driven techniques (such as cue combination [7, 16], various types of graph-based

segmentations [17, 18, 19], mixture model fitting [20], superpixels [21] or the mean shift

algorithm [1]) use various low-level features, and apply different similarity metrics to
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2. IMAGE SEGMENTATION

formulate of perceptually meaningful clusters. Since the processing is conducted at the

pixel level, computational complexity of these algorithms is often superlinear or in some

cases even quadratical subject to the size of the input (i.e. the number of pixels). In

practice the actual size of the input is also an important factor, because that is what

influences running time besides algorithmic complexity. The two main components of

the input size are the resolution of the image and the number of features assigned to

the pixels.

Increasing the number of features (i.e. dimensions of the feature space) can lead to

a better output quality, as it can increase the discriminative power of an algorithm, but

this direction does not lead to a universal rule of thumb for two reasons. Reason one

is the curse of dimensionality [22], when the data becomes sparse due to the extended

number of dimensions, such that robust discrimination becomes difficult. Reason two

is that handling such a feature space may lead to a heavy memory load with frequent

accesses, which influences the running time in a highly nonlinear manner above a certain

image size.

The second aspect of complexity is related to the number of pixels (i.e. number of

elements in the feature space), since most tasks in computer vision can highly benefit

from using images of increased resolution, as a consequence of which the amount of

data to be processed will grow.

For this reason, several acceleration techniques have been proposed since the birth of

the algorithms mentioned above, with the aim of reaching higher segmentation speeds

while maintaining the same quality level. Speedups are either achieved in a lossless way,

with algorithmic optimization and parallelization techniques, or in a lossy manner,

which in one way or another involves the reduction of processed data. The main

difference between these two methodologies is that the approaches belonging to the

former category normally do not affect the output quality, whereas the latter ones

usually have a negative impact on it. Hence, the extent of the quality loss should

be judged with respect to the speedup gained. Despite the lossy processing, most of

such acceleration techniques do not give the user any control over the quality of the

segmentation output, eroding this way the benefits of the increased resolution.
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2.2.2 Related Work

In this subsection segmentation methods that build upon the bottom-up segmentation

approaches listed above are considered, with the aim of achieving the highest possible

speedup while maintaining a reasonably small (if any) quality corruption. An

additional example belonging here is the mean shift method, but since it plays an

important role in the proposed framework, it will be discussed in the next section.

Cue combination [23] used in the field of segmentation is a relatively young

technique having ancestors coming from the field of boundary detection [24, 25]. The

latest variant was introduced by Arbeláez et al. [16] in 2011, who designed a composite

segmentation algorithm consisting of the concatenation of the globalized probability

of boundary (gPb), the ultrametric contour map, and the oriented watershed. The

method utilizes gradients of intensity, color channels, texture, and oriented energy

(the second-derivative of the Gaussian), each at eight orientations and three scales

resulting in a sum of 96 intermediate stages. Their optimal composition into a single

detector is obtained by using previously trained parameters. Such a vast palette of

features enables the algorithm to be one of the most accurate data-driven segmentation

techniques available [16]. The price on the other hand is an enormous computational

complexity, resulting in a runtime of several minutes for a single image. Catanzaro et

al. [26] successfully sped up the computation of the gPb by mapping it to a GPGPU

architecture. The drawback of the parallel implementation lies in the increased

memory demand of the contour detector, which extremely increases the cost of the

hardware required.

In 2004, Felzenszwalb and Huttenlocher [18] described an unsupervised graph-based

segmentation algorithm, where each pixel is assigned to a node. Edges between nodes

have weights representing the dissimilarity between the two connected nodes. The

procedure carries out pairwise region comparison and performs cuts to find a Minimum

Spanning Tree (MST). The novelty given by Felzenszwalb is that the segmentation

criterion is adaptively adjusted to the degree of variability in neighboring regions of the

image. To improve this, Wassenberg et al. [27] designed a graph-cutting heuristic for

the calculation of the MST. Parallel computation is enabled by processing the image
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in tiles that results in minimum spanning trees. The component trees are connected

subject to region dissimilarity and hence, a clustered output is obtained. The system

works with a performance of over 10MPixel/s on high resolution satellite photos.

However, the article does not give any high resolution segmentation example, nor do

the authors provide any numerical evaluation for the low resolution examples displayed.

Salah et al. [19] consider image clustering as a maximum flow-minimum cut

problem, also known as the graph cut optimization. The aim of this algorithm is to

find the minimum cut in a graph that separates two designated nodes, namely, the

source and the target. Segmentation is done via an implicit data transform into a

kernel-induced feature space, in which region parameters are constantly updated by

fixed point computation. To improve segmentation quality, the procedure computes

the deviation of the transformed data from the original input and also a smoothness

term for boundary preserving regularization. The paper presents an extensive overview

of segmentation quality including grayscale and color images, as well as real and

synthetic data. The algorithm reaches excellent scores in most benchmarks, however, in

some cases image size normalization was necessary due to unspecified memory-related

issues. Further in this field, Strandmark and Kahl [28] addressed the problem of

parallelizing the maximum flow-minimum cut problem. This is done by cutting the

graph to subgraphs such that they can be processed individually. Subgraph overlaps

and dual decomposition constraints are utilized to ensure an optimal global solution,

and search trees are reused for faster computation. The algorithm was tested both

on a single machine with multiple threads and on multiple machines working on a

dedicated task. Test fields include color images, CT and MRI recordings, all processed

with over 10 million samples per second, however, parallelization speedups were not in

all cases present. The lack of quality indicators does not allow the reader to observe

output accuracy.

The normalized cuts spectral segmentation technique was published by Shi and

Malik [17] in 2000. Being different from graph cuts, it performs graph partitioning

instead of the maximum flow-minimum cut optimization problem. Edge weights

represent pixel affinities that are calculated using spatial position and image feature

differences. Cuts are done by observing the dissimilarity between the observed sets as
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well as the total similarity within the sets. The algorithm has a few difficulties. First

off, the final number of clusters is a user parameter that needs to be estimated. Second,

graph partitioning is computationally more complex than the previously described

optimization problems. Third, minimizing the normalized cut is NP-complete. Fourth,

memory requirements of this technique are quadratical. To overcome the third

problem, Shi traced back the cut operations to a regular eigenvalue problem using

approximation. As an alternative, Miller and Tolliver [29] proposed spectral rounding

and an iterative technique to reweigh the edges of the graph in a manner that it

disconnects, then use the eigenvalues and eigenvectors of the reweighed graph to

determine new edge weights. Eigenvector information from the prior step is used as a

starting point for finding the new eigenvector, thus the algorithm converges in fewer

steps. Chen et al. [30] aimed at handling the memory bottleneck arising in the case,

when the data to be segmented is large. Two concurrent solutions were compared: the

sparsification of the similarity matrix achieves compact representation by retaining the

nearest neighbors in the matrix, whereas the Nyström approximation technique stores

only given rows or columns. To achieve additional speedup, most matrix operations

were encapsulated into a parallel scheme finally both approaches were extensively

tested for accuracy and speed discussing many particular details. Results indicated

that the approximation technique may consume more memory and has a bit worse

output quality, but works faster than the sparsification.

Despite its usual role as being only a preprocessor, the superpixels method is also

discussed due to the latest improvements. The algorithm was originally introduced by

Ren and Malik [21] and is technically a variant of the graph cuts. The normalized cuts

algorithm is utilized to produce a set of relatively small, quasi-uniform regions. These

are adapted to the local structure of the image by optimizing an objective function

via random search that is based on simulated annealing subject to the Markov Chain

Monte Carlo paradigm. As the procedure requires multiple runs, the segmentation is

relatively slow (in the magnitude of several dozens of minutes for a small image) and

requires the training of certain parameters. For a more consistent output, Moore et

al. [31] added a topographic constraint, such that no superpixel could contain any

other, also they initialized the algorithm on a regular grid to reduce computational

complexity. The algorithm also utilizes pre-computed boundary maps that can
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heavily affect the output quality. Another fast superpixel variant (called turbopixels)

was proposed by Levinshtein et al. [32], who utilized a computationally efficient,

geometric-flow-based level-set algorithm. As a result, the segments had uniform size,

adherence to object boundaries, and compactness due to a constraint which also

limited under-segmentation. Another variant, called simple linear iterative clustering

(SLIC) was proposed by Achanta et al. [33]. The algorithm is initialized on a regular

grid, then cluster centers are perturbed in a local neighborhood, to the lowest gradient

position. Next, the best matching pixels from a square neighborhood around the

cluster center get assigned to the cluster using a similarity measure based on spatial

and color information. Finally, cluster centers and a residual error are recomputed,

until the displacement of the center becomes adequately small, and connectivity is

enforced by relabeling disjoint segments with the labels of the largest neighboring

cluster. The algorithm has been reported to achieve an output quality better than

turbopixels at a lower time demand due to its linear computational cost and memory

usage. Ren and Reid [34] documented the parallelized version (called GPU SLIC, or

gSLIC) that achieved a further speedup of 10-20 times compared to the serial SLIC

algorithm, such that it runs with 47.61 frames per second on video stream with VGA

resolution.

The main difficulty of mixture models used for image segmentation lies in the es-

timation of the parameters used to build the underlying model. In 2007, Nikou et

al. [20] described a spatially constrained, hierarchical mixture model for which special

smoothness priors were designed with parameters that can be obtained via maximum

a posteriori (MAP) estimation. In 2010, further improvements were introduced by the

same authors [35]: the projection step present in the standard EM algorithm was elim-

inated by utilizing a multinomial distribution for the pixel constraints. In both papers

extensive measurements were performed to evaluate the speed and the output quality

of the algorithms. The proposed enhancements make the algorithm accurate, but com-

putationally expensive, furthermore, the number of clusters remains a user parameter.

Yang et al. [36] proposed to model texture features of a natural image as a mixture of

possibly degenerate distributions. The overall coding length of the data is minimized

with respect to an adaptively set distortion threshold. Thus, possible redundancy is

minimized and the algorithm can merge the data points into a number of Gaussian-like
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clusters using lower dimensional structures. Good output quality is verified by several

different measurements, however, the running time is measured in the magnitude of

minutes.

2.3 Mean Shift Segmentation Algorithm

2.3.1 Motivation

During my research made under the umbrella of the data-driven paradigm, I have spent

quite a lot of time studying the capabilities and properties of the algorithms described

in the previous section, including the relation between the running time and quality of

the output. In my opinion, the best segmentation qualities in this field are achieved by

algorithms that, at the cost of increased running time, either utilize a vast arsenal of

features [16], or define some kind of cluster hierarchy [37] and try to find an optimal

matching.

Systems that work with many features perform well because they solve the clustering

problem in a “brute-force” way by collecting as many information about the pixels (and

often implicitly about their neighborhood regions) as possible.

Hierarchical algorithms are often composed using multiple scales or iterative syn-

thesis. The presence of cluster hierarchy can offer several benefits. Differences in object

scale and texture can be handled well, furthermore, the structure of the output clusters

can be quickly and easily reorganized according to the desired output. Such systems

are usually based on the over-segmentation of the image that is followed by the merging

of select segments. This two-level procedure allows the usage of flexible rules that can

adapt to the progress of the joinder.

However, both systems have a notable downside. Calculation, caching, and browsing

a large number of features requires a huge processing background and, as discussed in

Subsection 2.2.1, frequent and heavy memory access. Especially because of the latter,

the segmentation speed of such methods is very slow even for images with moderate

resolution.

Algorithms that rely entirely upon the created hierarchy can suffer from finding a

proper condition for the selection of the optimal scale, which requires the presence of

additional heuristics or even a-priori information that is often not directly available.
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In conclusion, if segmentation speed is also a factor besides the quality of the output,

hierarchical algorithms are a better choice for segmentation. Making these observations

I have selected the mean shift algorithm to be the basis of the proposed framework for

the following reasons:

1. Nonparametric property: Unlike k-means-like algorithms [38], the mean shift

method does not require the number of output clusters to be defined explicitly

(see Subsection 2.3.3).

2. Efficient texture filtering: The kernel function utilized by the algorithm

performs discontinuity preserving smoothing without adding overhead (see

Subsection 2.3.3).

3. Possibility of parallelization: The algorithm is built on a highly data-parallel

[39] scheme that can be employed by many-core systems (see Subsection 3.2.4).

4. Modular structure: The algorithm can be modified to construct a hierarchical

cluster map in the background. The scheme starts with an over-segmentation

that is succeeded by an iterative merging procedure. This modular scheme offers

numerous points where task-dependent low-level rules, or optionally, high-level

semantic information can be injected (see Sections 4.1, 4.3 and Subsections 4.2.1

and 4.2.3).

5. Data reduction: The algorithm can be modified to utilize sampling, which

reduces its complexity (see Subsections 3.2.1 and 4.2.1).

6. Easy extension: Optionally, the algorithm can easily be extended to work with

additional features if required by the segmentation task (see Subsection 2.3.2).

The following subsections discuss the origins and fundamentals of the mean shift

method.

2.3.2 Origins: Kernel Density Estimation

The mean shift image segmentation procedure was introduced by Comaniciu and Meer

[1] in 2002, highly building upon the work of Cheng [40] and Fukunaga and Hostetler

[41].
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The origin of the algorithm can be derived from kernel density estimation (KDE),

which is a robust tool for the analysis of complex feature spaces. Let the feature space

be a d -dimensional Euclidean space that is constructed from the input domain via a

mapping. Selection of the adequate feature space can highly depend on the given task,

but its proper selection results in the benefit that characteristic features get represented

in the form of dense regions. Thus, if we consider the feature space as an empirical

probability density function, the dense regions will induce high probability. Such local

maxima of the function are called modes. Image segmentation using KDE is done

via retrieving the position of the modes, and associating a subset of data with them

based on local properties of the density function. As a preliminary step towards mode

seeking, let {χi},∀i ∈ PI denote a set of feature points in a feature space F = Rd with

distribution f(χ). The kernel density estimator of this set can be written as

f̂h,K(χ) =
ck,d
nhd

∑
i∈PI

k

(∥∥∥∥χ− χih

∥∥∥∥2
)
, (2.1)

where h > 0 is the bandwidth of the nonnegative, radially symmetric kernels of a

function K (such as the Gaussian, or the Epanechnikov) that integrates to one because

of the normalization constant ck,d > 0, k(x) is the profile of kernel K for x ≥ 0, and

n denotes the number of FSEs. Modes of the density function are a subset of the

positions where the gradient of the function is zero. Mean shift is an iterative hill

climbing algorithm that steps towards the steepest ascent in each iteration. Also, it is

proven to converge into locations where the gradient of the estimate is zero [40], which

enables it to find the modes without explicit estimation of the density. By following

the transformations given in [1, Sec. 2.1], the density gradient estimator can be written

in the form of

∇̂fh,K(χ) =
2ck,d
nhd+2

∑
i∈PI

g

(∥∥∥∥χ− χih

∥∥∥∥2
)∑i∈PI χig

(∥∥χ−χi
h

∥∥2)∑
i∈PI g

(∥∥χ−χi
h

∥∥2) − χ
 , (2.2)

where g(x) is the profile of kernel G(χ) = cg,dg(‖χ‖2). The second term of this equation

represents the difference between the weighted mean of kernel G(χ) and its centroid,

and is called mean shift (see Figure 2.1).
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Figure 2.1: Sematic illustration of the mean shift iteration in 1D. Convolving a kernel

function with the sparse set of feature space elements (FSEs) gives an estimate for the

kernel density. Modes induced by the densest FSE regions encode large, coherent image

regions. In each iteration t, the mean of the applied kernel G(χt
i) is calculated, and the

kernel steps towards the steepest ascent. Should the distance between previous and current

positions of the centroid of the kernel get reasonably small, a mode is found.

2.3.3 Segmenter

Comaniciu utilized the algorithm on a joint feature space consisting of color data (re-

ferred to as range information) and topographic image coordinates (referred to as spatial

information). Thus, a feature point is considered to be a five-dimensional vector in the

form of χi = (xr,i; xs,i) = (γ1,i; γ2,i; γ3,i;xi; yi), where xr,i and xs,i represent the three-

dimensional range coordinates in the selected color space and the spatial coordinates

in a two-dimensional mesh of pixel i, respectively. In case the kernel is Gaussian, its

property of separability can be exploited and the mean shift vector in the joint feature

space can be written in the form of

χt+1
j =

∑
i∈PI

χjg

∥∥∥∥∥xr,i − xtr,j
hr

∥∥∥∥∥
2
 g

∥∥∥∥∥xs,i − xts,j
hs

∥∥∥∥∥
2


∑
i∈PI

g

∥∥∥∥∥xr,i − xtr,j
hr

∥∥∥∥∥
2
 g

∥∥∥∥∥xs,i − xts,j
hs

∥∥∥∥∥
2
 (2.3)

where χt+1
j , j ∈ PI is the newly calculated position of the mean at iteration t+ 1, PI is

the set of pixels in input image I, xtr,j and xts,j are respectively the range and spatial

coordinates of the current position of the mean in the feature space, xr,i and xs,i are

the range and spatial coordinates of the FSEs within the support of the kernel, hr and
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2.3 Mean Shift Segmentation Algorithm

hs are the respective kernel bandwidth parameters, finally, g(x) denotes the Gaussian

kernel:

g

(∥∥∥∥x− x0

σ

∥∥∥∥2
)

=
1

(
√

2πσ2)d
e
−
‖x− x0‖2

2σ2 . (2.4)

The iterative mean shift procedure retrieving the local maxima of the probability

density function operates the following way.

For ∀j ∈ PI :

1. Initialize χ0
j = χj .

2. For t > 0, compute the new mean χtj of kernel j using 2.3, and center the kernel

window into this position.

3. If stopping criterion ∥∥∥χtj − χt−1j

∥∥∥ < ε (2.5)

is satisfied for a given threshold ε, then continue to step 4, otherwise go to step

2. (Note: this dissertation refers to the phenomenon of meeting this criterion as

saturation, for which the time instant is denoted by tsat.)

4. Store the feature space position of χtj into the output vector ψj .

A subset Bj = {χi ∈ F : i ∈ PI , |Bj | ≤ n} that converges into a small tolerance

radius of a ψj location is the basin of attraction of that mode. The FSEs in the basin

of attraction belong to its cluster and inherit the color information of mode ψj . Sets of

mode candidates lying in a close neighborhood are joined together into a single mode.

Robustness of a pixel-cluster assignment for a given pixel can be tested by observing the

position of the saturation in the case when the mean shift iteration is reinitialized from

a slightly perturbed seed point (see the capture theorem in [1, Sec. 2.3]). Subsequent to

the saturation of all kernels initialized from χi,∀i ∈ PI feature points, the image pixels

can be decomposed into p � n non-overlapping segments of similar color defined by

their respective modes ψp. Clusters with an element number smaller than the smallest

significant feature size M are eliminated.

Figure 2.2 displays the flowchart of the mean shift in the way it was proposed by

Comaniciu and Meer.
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No 

The mean shift nonparametric segmentation algorithm 

t = t + 1  

Figure 2.2: Flowchart of the mean shift nonparametric segmentation algorithm.

Operation Feature space transformation (denoted by Γ) is displayed for the sake of clarity.

PI denotes the pixel indices of input image I, hr, hs, ε, χ, ψ,C and M denote the range and

spatial bandwidth, the termination threshold for the mean shift iterations, a feature space

element, a mode candidate, a cluster and the smallest significant feature size, respectively.

Note that the final elimination step is optional.
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Despite the listed advantages, the algorithm has a notable downside. Since the

näıve version, as described above, is initiated from each element of the feature space,

the computational complexity as pointed out by Cheng [40] is O(n2) with the main bot-

tlenecks being the calculation of the weighted average and the retrieval of neighboring

pixels in the feature space.

2.4 Acceleration Strategies

Several techniques were proposed in the past to speed up the procedure, including

various methods for sampling, quantization of the probability density function, par-

allelization and fast nearest neighbor retrievement among other alternatives. For the

sake of a comprehensive overview, the most common and effective types of acceleration

available in the literature are arranged into two main groups depending on the way of

the approach. These algorithms are discussed in the next two subsections.

2.4.1 Algorithmic Modifications

The first group of methods achieves faster segmentation performance via the modifica-

tion of the algorithm itself.

DeMenthon et al. [42] reach lower complexity by applying an increasing band-

width for each mean shift iteration. Speedup is achieved by the usage of fast binary tree

structures that are efficient in retrieving feature space elements in a large neighborhood,

while a segmentation hierarchy can also be built at the same time.

Yang et al. [43] accelerate the process of kernel density estimation by applying an

improved Gaussian transform, which boosts the summation of Gaussians. Enhanced

by a recursively calculated multivariate Taylor expansion and an adaptive space sub-

division algorithm, their method reached linear running time for the mean shift. In

another paper [44] Yang et al. used a quasi-Newton method. In this case, the speedup

is achieved by incorporating the curvature information of the density function. Higher

convergence rate is realized at the cost of additional memory and a few extra compu-

tations.

Georgescu et al. [45] speed up the nearest neighbor search via locality sensitive

hashing that approximates the adjacent feature space elements around the mean. As

the number of neighboring feature space elements is retrieved, the enhanced algorithm
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can adaptively select the kernel bandwidth, which enables the system to provide a

detailed result in dense feature space regions. The performance of the algorithm was

evaluated through texture segmentation task as well as through the segmentation of a

fifty-dimensional hypercube.

Several other techniques are proposed by Carreira-Perpiñán [46] to achieve

speedups: he applied neighborhood subsets, spatial discretisation and an algorithm

based on expectation-maximization [47]. From these variants, spatial discretisation

turned out to be the fastest. This technique divides the spatial domain of the image

into cells of subpixel size and forces all points projecting on the same cell to converge to

the same mode. This way the total number of iterations is reduced. He also analyzed

the suitability of Newton’s method, and later on proposed an alternative version of the

mean shift using Gaussian blurring [48], which accelerates the rate of convergence.

Luo and Khoshgoftaar [49] use the mean shift [1] to create the over-segmentation

of the input. The resulting clusters are then merged utilizing multiscale region merging

that is guided by the minimization of a minimum description length–based criterion.

Comaniciu [50] proposed a dynamical bandwidth selection theorem, which reduces

the number of iterations till convergence, while at the same time it determines the

proper kernel bandwidth to be used. The method estimates the most stable covariance

matrix for each data point across different scales. Although the analysis is unsupervised

the range of scales at which the structures appear in the data has to be known a priori.

The selected bandwidth matrices are employed in the variable-bandwidth mean shift

for adaptive mode detection and feature space partitioning.

Wang et al. [51] utilize a dual-tree methodology. A query tree and a reference tree

are built during the procedure, and in an iteration, a pair of nodes chosen from the

query tree and the reference tree is compared. If they are similar to each other, a mean

value is linearly approximated for all points in the considered node of the reference

tree, while also an error bound is calculated. Otherwise the traversal is recursively

called for all other possible node pairs until it finds a similar node pair (subject to

the error boundary), or reaches the leaves. The result of the comparison is a memory

efficient cache of the mean shift values for all query points speeding up the mean shift

calculation. Due to the applied error boundary, the system works accurately, however

the query tree has to be iteratively remade in each mean shift iteration at the cost of

additional computational overhead.
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Lastly, the work of Wang et al. [52] is mentioned, who by the use of anisotropic

kernels aim at improving the quality rather than the speed of the segmentation pro-

cedure. The benefit of these kernels over simple adaptive solutions is that they adapt

to the structure of the input data, therefore they are less sensitive to the initial kernel

bandwidth selection. However, the improvement in robustness is accompanied by an

additional cost of complexity. The algorithm was tested on both images and video,

where the 5D feature space was enhanced with a temporal axis.

2.4.2 Feature Space Modifications

The second group of methods focuses on reducing the content of the feature space,

so that segmentation can be performed on a smaller amount of data, decreasing the

number of required calculation steps.

Guo et al. [53] aim at reducing the complexity by using resampling: the feature

space is divided into local subsets with equal size, and a modified mean shift iteration

strategy is performed on each subset. The cluster centers are updated on a dynamically

selected sample set, which is similar to the effect of having kernels with iteratively

increasing bandwidth parameter, therefore it speeds up convergence.

Paris and Durand [37] employed a hierarchical segmentation scheme based on

the usage of Morse-Smale complexes. They used explicit sampling to build the coarse

grid representation of the density function. The separability property of the Gaussian

convolution is exploited to quickly extract the modes of the function, then clusters

are formulated using a smart labeling solution with simple local rules. The algorithm

does not label pixels in the region of cluster boundaries; this is done by an accelerated

version of the mean shift method. Additional speedup was obtained by reducing the

dimensionality of the feature space via principal component analysis.

Pooransingh et al. [54] initialize kernels from randomly sampled positions of the

feature space. At each iteration, the center of mass was calculated using the feature

space elements situated within the range bandwidth. After convergence, the FSEs

involved in the procedure inherited the color information of the found mode. This

way, a reduced number of samples is used to cluster the input, thus the computational

demand is decreased.

Zhou et al. [55] employed the mean shift procedure for volume segmentation. In

this case the feature space was tessellated with kernels resulting in a sampling of initial
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seed points. All mean shift kernels were iterated in parallel and as soon as the position

of two means overlapped, they were concatenated subject to the assumption that their

subsequent trajectory will be identical. Consequently, complexity was reduced in each

iteration giving a further boost to the parallel inner scheme. Sampling on the other

hand was performed using a static grid which may result in loss of information in the

case when there are many small details on the image.

Xiao and Liu [56] also propose an alternative scheme for the reduction of the

feature space. The key element of this technique is based on the usage of kd-trees.

The first step of the method is the construction of a Gaussian kd-tree. This is a

recursive procedure that considers the feature space as a d-dimensional hypercube, and

in each iteration splits it along the upcoming axis in a circular manner until a stopping

criterion is met, providing a binary tree. In the second step of this algorithm, the mean

shift procedure is initialized from only these representative leaf elements resulting in

modes. Finally, the content of the original feature space is mapped back to these modes.

The advantage of this sampling scheme is decreased complexity, which, along with the

utilization of a GPGPU, boosted the segmentation performance remarkably.

Freedman and Kisilev [57, 58] apply sampling on the density function, forming

an approximated version of the kernel density estimate. The mean shift algorithm is

initialized from every sample of the compact KDE, finally each element of the origi-

nal data set is mapped backwards to the closest mode obtained with the mean shift

iteration.

Zhang et al. [59] approached the problem of complexity from the aspect of sim-

plifying the mixture model behind the density function, which is done using function

approximation. As the first step, similar elements are clustered together, and clustering

is then refined by utilizing an intra-cluster quantization error measure. Simplification

of the original model is then performed using an error bound being permanently mon-

itored. Thus the mean shift run on the simplified model gives results comparable in

quality to the variable bandwidth mean shift utilized on the original model, but at a

much lower complexity and hence with a lower computational demand.

Finally, the EDISON system [60] is considered that is a popular tool for the

evaluation of mean shift due to its public availability and straightforward usability.

This application implements the mean shift segmentation algorithm as published by

Comaniciu and Meer [1], and operates in the Luv color space. Optionally, the EDISON
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offers speedup strategies present both during the mean shift iterations (using a path

assigned strategy) and during the subsequent mode merging (using region adjacency

graphs and graph contraction). The system works fast due to its advanced C++ im-

plementation.

2.5 Evaluation

Arguably, the two most frequently used performance indicators utilized to characterize

the efficiency of a clustering algorithm are the running time demand and the out-

put accuracy of the segmenter. Although there exist special cases in which algorithm

assessment is driven exclusively by a single aspect, but in general, a comprehensive

evaluation needs to incorporate both dimensions. The reason neither of these prop-

erties can adequately describe the capabilities of a segmenter per se is that in spite

of being perpendicular axes of evaluation, there is a strong trade-off between them.

Consequently, the task of algorithm assessment is to estimate an optimum along this

tradeoff curve with respect to possible priorities. The next subsection highlights some

of the fundamental relations of possible aspects of analysis, furthermore the complexity

of providing a proper quality description is discussed.

2.5.1 Traditional Analytical Aspects

Being a primary property, it is easy to define and to measure the running time demand

of a segmentation algorithm: it is the amount of time required to provide the clustered

output from the input.

Output accuracy is a much more ambiguous property. The first difficulty we face

if we try to characterize accuracy is the methodology of evaluation, for which Zhang

et al. [61] give the following taxonomy: (i) subjective or objective, (ii) system-level

or direct, (iii) analytical or empirical, (iv) supervised or unsupervised. The second

main difficulty, as mentioned in the introduction, is the characterization of meaningful

segments. Figure 2.3 illustrates these problems through examples.

The parts highlighted in the left side of the figure illustrate the difficulty of finding

universal rules of similarity. In real-life images, different objects often have similar

color, shape and texture (as shown by region of interests (ROIs) a1) and a2)), but at

the same time, intra-object properties can vary significantly (see ROI b)). Using the
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Figure 2.3: Examples for different clustering problems in bottom-up image segmenta-

tion. The boundary colors of the region of interest (ROI) windows encode the area in the

corresponding image they are taken from. The butterfly and the cougar were delineated

manually with purple for the sake of visibility. The left side of the figure illustrates the

difficulty of the integration of segments based on static thresholds: pixel regions with sim-

ilar texture and color properties can belong to different objects (ROIs a1) and a2)), on

the other hand, regions with different colors can belong to the same object (ROI window

b)). In the right side of the figure an over-segmented version of input image e) is shown,

with white segment boundary labels (g)) and without them (f)). Note that for the sake of

clarity, the main object has been manually delineated in e). It is quite clear that the clus-

ters covering the flower in ROIs i2) and i3) should be merged, because they have similar

color that is different from their neighborhood. However, in the case of ROIs h2) and h3)

the boundaries of the underlying objects are somewhat ambiguous, because they depend

on whether distinguishing the leaves is necessary in the given context, or is it preferable to

treat them as a single background cluster. Despite having different colors, the yellow and

black parts of the wing present in ROIs j2) and j3) should also be merged, since they form

a single object. (Images are from [62], ROI sizes are 40x40-45x45 pixels.)
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feature arsenal referred above can work extremely well for these types of problems.

The right side of the figure shows an input image e), its over-segmented version with

white segment boundary labels g) and without them f). Three different cluster merging

situations are shown here.

1. Easy task: Intuitively, in ROIs i2) and i3), the clusters with the similarly grayish

color should be merged.

2. Ambiguous task: In ROIs h2) and h3), the green clusters can be merged depending

on the task. In case we are interested in the details of the image background, the

leaves should remain independent, otherwise they should be assigned to a single

background cluster.

3. Hard task: Clusters in ROIs j2) and j3), have completely different characteristics,

however, they belong to the same object and therefore should be put into the

same cluster.

Image segmentation in general is an ill-posed problem in the sense that a meaningful

segment [63] is determined by the actual task [7, 62, 64, 65] and object boundaries can

be highly subjective (see row 5 in Figures 4.6 and B.1 for practical examples).

The third difficulty is the selection of proper metrics for measuring accuracy, which

is not straightforward either [66, 67, 68]. Finally, obtained results should be comparable

to the results of other algorithms.

As of today, the de facto standard for comparing segmentation algorithms is

to measure performance on public databases that offer an off-the-shelf solution in

a unified framework for the four problems enumerated above. In addition to the

Berkeley Segmentation Dataset and Benchmark (BSDS) [16], which is the most widely

used dataset, evaluation was also performed on the Weizmann Institute Segmentation

Evaluation Database (WIDB) [69]. The results for both datasets will be discussed in

detail in Subsection 2.5.3.

While these datasets (especially the BSDS) provide solid background for segmenta-

tion quality evaluation, their applicability is somewhat limited, because they contain

images of relatively low resolution, which can be a third axis of evaluation. In the

context of segmentation, resolution is basically equivalent to the number of input image

pixels.
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My argument here is that results measured on the datasets mentioned above can

not be generalized onto images of higher resolution for three reasons.

First, as it was discussed in Subsection 2.2.2, most segmentation algorithms have a

nonlinear complexity. However, the expected running time demand can be estimated

with some precision with advanced complexity analysis.

Second, many algorithms utilize lossy speedup techniques to reduce running times

which may introduce an image dependent effect on the running time demand, and even

more importantly, on the quality of the output.

Third, fixing the resolution of the input images is in itself insufficient, because it

does not say anything about the amount of useful information present in the image. As

the proposed system is built upon a sampling scheme, it important to address image

content [64] besides physical resolution. Due to the subjective nature of usefulness of

information, it is hard to give a precise definition, but the output complexity of seg-

mentation made by humans can be regarded as a good measure. Since image size and

computational demand are highly related, using a higher resolution is only justified if

it provides additional useful information, subject to the given task. As lossy algorithms

achieve speedups via reduction of the amount of data to be processed, it is their re-

sponsibility to neglect only redundant information. If a lossy algorithm acts carelessly

in this regard, then the enlargement of the resolution can become of no effect, because

the relevant additional details may get lost. In the computer vision community, char-

acterizing content from the information theoretical point of view is not a novel concept,

but proper description and quantification of the image content is still under ongoing

research. The main goal is to find an adequate formalization of what is considered

useful in a human perception aspect. A few approaches that deal with similar tasks in-

volving saliency, entropy, local contrast scale, and other low level descriptors are briefly

summarized in the following.

2.5.2 Content—An Additional Analytical Aspect

Image content appears in the literature mostly related to compression, content-based

image retrieval (CBIR), and image matching, all having somewhat different aims.

In the case of CBIR and matching, the majority of algorithms focus on finding

characteristic regions in the image, and calculate certain similarity measures only for
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Figure 2.4: The four main aspects required for an extensive performance evaluation of a

segmentation algorithm. The significance of each of these aspects is influenced by the goals

and priorities of the given task, which determines the optimal tradeoff between them.

the identified region(s) of interest. On the other hand, compression methods work on

the entire image, but the aim in this case is to encode it with as few bits as possible.

Kadir and Brady [64] proposed a biology-inspired algorithm aiming at the descrip-

tion of image content in salient image regions. According to this approach, saliency

detection is done in a multiscale environment. For each scale, entropy is calculated

from the distribution of local grey-value invariants taken around the detected salient

points of interest. The method then searches across the isotropic scale space for scale

localized regions with high entropy, which then are used for object recognition, tracking

and classification.

Another approach of measuring regional entropy was presented by Yanai and

Barnard [70] that estimates the visualness of concepts. The paper describes an al-
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gorithm that performs probabilistic region selection for regions that can be linked with

a given concept “X” (e.g. yellow, ancient or female) from images which are labeled

as “X” or “non-X”. Next, a measure of the entropy of the selected regions based on a

Gaussian mixture model for regions is computed. A low level of entropy means that

the concept in question can be linked with the region features, but if the entropy is

more like that of random regions, then the concept has some other meaning which is

not captured by the selected features.

Moghaddam et al. [71] uses a purely bottom-up approach to describe image content.

Descriptors include color, edge strength and orientation, and texture measurements.

Regions of interest were selected online by the user. Main target applications include

CBIR and medical applications.

Abbademi et al. [72] discusses perceptual texture features, such as coarseness, con-

trast, direction, and busyness (also they mention regularity and roughness). They

conducted psychological experiments to determine the correspondence between the

rankings obtained with these computational measures and rankings given by human

subjects. All measures showed a strong correlation between the psychological the com-

putational variants with coarseness having the highest correspondence.

In this dissertation no metric is given that could be used for the estimation of

the useful content amount in images, rather, a subjective rating to characterize the

amount of content in an image is defined. The kappa-index (κ), a human perception-

based degree that is calculated as the mean of ratings provided by subjects, who are

asked to assess the amount of useful content in the image. A scale from 1 to 5 have

been used, where 1 means a “sparse image that contains only a few objects and large,

homogenous regions”, and 5 refers to a “packed image having many identifiable details

and rich information content”. For a given image I, the kappa-index is obtained the

following way:

κ(I) =

∑
u∈U ru(I)

|U |
(2.6)

where I denotes the input image, U is the set of participants and ru(I) is the rating

assigned to image I by participant u.

Since the algorithm described in Chapter 4 uses a content-adaptive sampling

scheme, a high correlation was expected to be observed between its running time and

the kappa-index.
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Finally, although this dissertation does not address it, energy consumption is

mentioned for the sake of completeness, as it is also a frequently used aspect of evalu-

ating algorithmic efficiency.

2.5.3 Databases

Due to its public availability, the standardized evaluation framework provided with

it, and the versatile, well-documented metrics it uses, the Berkeley Segmentation

Dataset and Benchmark can be considered a quasi-standard tool for the evaluation

of segmentation and boundary detection algorithms. Its first version (referred to as

BSDS300 [62]) contains 200 training images and 100 test images of natural scenes.

The current version (referred to as BSDS500 [16]) utilizes all images of the BSDS300

as training images and has an additional test set of 200 images. Since the benchmark

provided for the current version is backwards compatible, output accuracy is still worth

measuring on the BSDS300 as well, as it is comparable with existing results. Both

datasets provide multiple human-labeled segmentations for each image as ground truth,

thus output quality assessment can somewhat take into account the ambiguity caused by

the segmentation task (as discussed under “output accuracy” in Subsection 2.5.1), hence

a perfect segmentation score is practically impossible. The evaluation method follows

the traditional validation scheme on both datasets, such that algorithm development

and parameter optimization is allowed only on the training set. Once an optimal system

setting is found, quality assessment in done on the test set only with this setting. The

resolution of all images is 481 × 321 pixels. Albeit being a popular assessment tool,

the BSDS does not stand without criticism. As the authors note as well, images in the

dataset offer a limited range of scales due to their static resolution and photographic

bias. The consequence, as Alpert et al. [69] pointed out, is that the delineation of

objects present in the references are often subject to semantic considerations, moreover,

ground truth images are often under-segmented.

Alternatively, they proposed the Weizmann Institute Segmentation

Evaluation Database (WIDB) [73] that takes a different approach to assess the

output quality of clustering algorithms. The WIDB consists of two sets of grayscale

images, each containing 100 samples. The difference between the sets is that the images

in the first one contain one foreground object that stands out from its surroundings (in

terms of grayscale intensity or texture), whereas the second set has images with two
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individual foreground objects that often have different scales as well. Multiple human-

made ground truth segmentations are available for all images, but unlike in the case

of the BSDS, participants preparing the reference were asked to mark the foreground

object(s) only. A pixel is considered to belong to a foreground object only if it was

marked so by at least two annotators.

In this regard, the WIDB is rather an evaluation set for foreground-background

separation than generic segmentation. Each image is 300 pixels wide with various

heights.

As for high resolution images, I have no knowledge of a publicly acknowledged,

annotated dataset that is suitable for such evaluation tasks. As it was discussed in

the previous subsection, image and reference image interpolation is not viable. Such

a framework should consider novel aspects that were not required to be taken into

account in the lower resolution case, simply because of image scale.

First off, taking into account image content is not circumventable (see Figure 1.1).

Furthermore, high resolution images may contain more complex information that is

often further strained with environmental “noise”, such as shading or reflection. In the

case of adaptive and other lossy segmentation methods this fact makes it inevitable to

make a deliberate positioning along the task-dependent tradeoff curve between output

quality and runtime, since deviations in running time are directly related to the amount

of content in the image. Content-based metrics could also provide information about

the descriptive and discriminative power of possible features and cues.

Second, the framework should not punish over-segmentation as much as it currently

does for the relatively small images, since the original aim of using high resolution inputs

is to gain more detailed information.

Third, since high resolution images can contain a huge amount of information,

the traditional unsupervised scheme using human-made ground truth may lead much

greater variations in the references, which might require either more advanced compari-

son metrics (see Subsection 2.5.1), or a fundamentally different evaluation methodology.

Further aspects and an overview of existing unsupervised evaluation alternatives

are discussed in detail by Zhang et al. [61]. The composition of such a niche framework

exceeds the scope of the current dissertation, but it would be very important for the

standardized evaluation of segmentation techniques on high resolution images.
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The primary aim of high resolution measurements was, to assess the running

time of the segmentation algorithm. However, the secondary aspect during the evalua-

tion of the parallel system (discussed Chapter 3) and the adaptive framework (discussed

in 4) was different.

Since in the former case, such measurements were meant to demonstrate how the

system performs on an enhanced number of FSEs, an image set consisting of 15 high

quality images was formulated in five different resolutions.

In the latter case, the main dimension of evaluation was not how the alternation of

resolution influences the running time, but how the varying amount of content does.

Consequently, a test set consisting of 103 color images have been complied, each having

a resolution of 10 megapixels. Next, 15 subjects were asked to rate the useful content

of all images and the kappa-index was calculated using Equation 2.6.

2.5.4 Metrics

The definition and the main characteristics of the standard metrics provided by the

datasets are briefly summarized in the following. In the definitions it is assumed

that O is the output segmentation to be evaluated, and G is a set of ground truth

segmentations.

1. Segmentation Covering

The Segmentation Covering (C) (not to be confused with either FSEs that a kernel

might “cover”, or coverage, the percentage of bound FSEs) is a region-based metric

that measures the normalized average of the topographic overlap between clusters of

the segmentation output and the ground truth clusters. Let C and C ′ denote a ground

truth segmentation G ∈ G and regions (clusters) of O respectively. Their normalized

overlap score ω is then defined as

ω(C,C ′) =
|C ∩ C ′|
|C ∪ C ′|

, (2.7)

where ω ∈ [0, 1]. Then, the covering of the output segmentation by a ground truth

segmentation is

C(O,G) =
1

n

∑
C′∈O

|C| max
C∈G

ω(C,C ′), (2.8)
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where n is the total number of pixels in the image. Consequently, the covering C(O,G)

is defined as the average of covering values of all ground truth segmentations in G. The

definition implies that the domain of C is [0, 1], and higher values represent segmenta-

tions closer to the ground truth(s). The metric is supplied for the BSDS500 framework.

2. Probabilistic Rand Index

The Probabilistic Rand Index (PRI) is a pixel-based metric that compares pixel

pairs in the segmentation output to ground truth segmentations:

PRI(O,G) =
1(
n
2

)∑
i,j
i<j

[bij(O)pij(G)+

(1− bij(O))(1− pij(G))] , (2.9)

where

bij(Q) =

{
1, if CQi = CQj ,

0, else
(2.10)

is a binary number denoting whether a pair of output image map pixels i and j have

the same pixel-cluster mapping values (see Section 4.1) in segmentation Q, and the

probabilities pij are estimated by averaging bij over the ground truth set:

pij(G) =

∑
G∈G Pr(bij(G) = 1)

|G|
. (2.11)

The definition implies that the domain of PRI is [0, 1], and higher values represent

segmentations closer to the ground truth(s). The metric is supplied for the BSDS500

framework.

3. Variation of Information

The Variation of Information (V I) is an entropy-based metric. For output image

O and ground truth G ∈ G it is calculated as:

V I(O,G) = H(O) +H(G)− 2I(O,G) (2.12)

where H denotes the entropy of a segmentation Q:

H(Q) = −
∑
C′∈Q

|C|
n

log
|C ′|
n
, (2.13)
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and I is the mutual information between two segmentations:

I(Q,Q′) =
∑
C∈Q

∑
C′∈Q′

|C ∩ C ′|
n

log

[
n
|C ∩ C ′|
|C||C ′|

]
. (2.14)

The definition implies that the domain of V I is [0,∞), and lower values represent

segmentations closer to the ground truth. The perceptual meaning and applicability

of this measure is unknown when more than one ground truth images are given [16].

The metric is supplied for the BSDS500 framework.

4. F-Measure

The F-measure (F ) is a boundary-based metric used for boundary evaluation. It is

given by the harmonic mean of precision and recall:

F =
2PR

P + R
(2.15)

where P = tp/(tp+fp) denotes the precision and R = tp/(tp+fn) denotes the recall

with tp, fp and fn standing for true positive, false positive and false negative hits

respectively. The definition implies that the domain of F is [0, 1], and higher values

represent segmentations closer to the ground truth(s). The metric is supplied for both

the BSDS300, BSDS500 and WIDB frameworks.

5. Average Precision

The Average Precision (AP ) is a boundary-based metric used for boundary evalua-

tion. It is calculated as AP =
∫ 1
0 P(R)dR, i.e. by plotting the precision as a function of

the recall, the average precision is the average value of P(R) in the interval of R ∈ [0, 1].

In a discrete system, this integral is written as the following sum:

AP =

|tp+fp|∑
k=1

P(k)(R(k)− R(k − 1)), (2.16)

where R(k) values are in increasing order and R(0) = 0. The definition implies that

the domain of AP is [0, 1], and higher values represent segmentations closer to the

ground truth(s). The metric is supplied for the BSDS500 framework.

6. Fragmentation
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The Fragmentation (ξ) is a region-based metric proposed by [69] that displays the

number of segments used to cover a single foreground object. The definition implies

that the domain of ξ is [0,∞), and lower values represent segmentations closer to the

ground truth. The metric is supplied for the WIDB framework.

The values of the metrics are documented along different dimensions in the BSDS500

and in the WIDB (the BSDS300 discusses F-measure in an optimal dataset scale basis

that is discussed in the following). The presented values are:

1. Optimal Dataset Scale (ODS) (only for metrics C, F, PRI and V I): the best

output quality of the metric obtained on the training set using fixed parametriza-

tion/scale for the entire set;

2. Optimal Image Scale (OIS) (only for metrics C, F, PRI and V I): the best

output quality of the metric obtained on the training set using fixed parametriza-

tion/scale for individual images;

3. Best Covering (Best) (only for metric C): the best output quality of the metric

obtained on the training set using any possible cross-parametrizations.

2.5.5 Comparison

Giving an extensive comparison of the proposed algorithm with other segmentation

methods (see Subsection 2.2.2 and Section 2.4) is very difficult. The main problem is

that the majority of these systems was assessed in different environments. That is, not

only the input images were often hand picked, but the metrics, the parametrization (if

documented), and the hardware used show a huge diversity as well. As a consequence,

the results published for these methods are not directly comparable. Such results

could only be obtained by reimplementing and reassessing each method using identical,

standardized evaluation characteristics and constraints, which exceeds the bounds of

this dissertation due to the massive amount of work required. The published properties

of the evaluation environments and the best running times and/or acceleration results

reported are summarized in Table 2.1.

However, as more and more algorithms are assessed using the unified methodolo-

gies introduced by the formerly discussed evaluation databases, the published results
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recently started to become directly comparable. Such results are collected and displayed

in Subsection 4.5.1.

For these reasons, the assessment of the proposed algorithm presented in Section

2.4 does not contain results for all the discussed variants of the mean shift, but only

for the methods that have been evaluated along the scheme proposed by the authors

of the public datasets.

For measuring properties and metrics exceeding the capabilities offered by frame-

works provided along with public datasets, comparison with respect to the analytical

aspects discussed above is possible using a publicly available reference system, such as

EDISON.
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Chapter 3

Parallel Framework

This chapter describes the design of the generic building blocks of the

parallel segmentation framework that consists of two phases. With the

focus put on parallelism, first phase decomposes the input by nonpara-

metric clustering. In the second phase, similar classes are joined by a

merging algorithm that uses color and adjacency information to obtain

consistent image content. The core of the segmentation phase is the

mean shift algorithm that was fit into the parallel scheme. In addition,

feature space sampling is used as well to reduce computational complex-

ity, and to reach additional speedup. The system was implemented on a

many-core GPGPU platform in order to observe the performance gain

of the data-parallel construction. The chapter discusses the evaluation

made on a public benchmark and the numerical results proving that the

system performs well among other data-driven algorithms. Additionally,

detailed assessment was done using real-life, high resolution images to

confirm that the segmentation speed of the parallel algorithm improves

as the number of utilized processors is increased, which indicates the

scalability of the scheme.
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3.1 Introduction

Thanks to the mass production of fast memory devices, state of the art semiconduc-

tor manufacturing processes, and vast user demand, most present-day photo sensors

built into mainstream consumer cameras or even smartphones are capable of recording

images of up to a dozen megapixels or more. In terms of computer vision tasks such

as segmentation, image size is in most cases highly related to the running time of the

algorithm. To maintain the same speed on increasingly large images, the image pro-

cessing algorithms have to run on increasingly powerful processing units. However, the

traditional method of raising core frequency to gain more speed—and computational

throughput—has recently become limited due to high thermal dissipation, and the fact

that semiconductor manufacturers are attacking atomic barriers in transistor design.

For this reason, future development trends of different types of processing elements—

such as digital signal processors, field programmable gate arrays or general-purpose

computing on graphics processing units (GPGPUs)—point towards the development

of multi-core and many-core processors that can face the challenge of computational

hunger by utilizing multiple processing units simultaneously [74].

The interest of this chapter is centered around the task of fast image segmentation in

the range of quad-extended, and hyper-extended graphics arrays. The following sections

describe the steps of design, implementation and numerical evaluation of the proposed

segmentation framework that works in a data-parallel way, and can therefore efficiently

utilize many-core mass processing environments. The structure of the system follows

the bottom-up paradigm and can be divided into two main phases. During the first,

clustering step, the image is decomposed into sub-clusters. Deriving the consequences

from the analysis of data-driven algorithms (see Subsection 2.3.1), the core of this step

is based on the mean shift segmentation algorithm that was embedded into the parallel

environment, allowing it to run multiple kernels simultaneously. The second step is a

cluster merging procedure that joins sub-clusters that are adequately similar in terms

of color and neighborhood consistency.

At this point of research, my main aim was not to exceed the quality of the original

mean shift procedure. Rather, to show that by a giving parallel extension of the mean

shift algorithm good segmentation accuracy can be achieved with considerably lower

running time than the serial implementation that operates with a single kernel at a time.
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To be able to evaluate its segmentation potential, the framework has been implemented

on a GPGPU platform and numerical evaluation was run on miscellaneous GPGPUs

with different numbers of stream processors to demonstrate algorithmic scaling of the

clustering step and speedup in segmentation performance.

3.2 Computational Method

As it was discussed in 2.4, the weakness of the mean shift is that its running time is

quadratically proportional to the number of image pixels. This property makes it slow,

especially when working with large images. Three main acceleration strategies were

used to speed up the procedure:

1. Reduce the computational complexity by sampling the feature space (see

Subsection 3.2.1);

2. Gain speedup through the parallelizing the inner structure of the segmentation

(see Subsection 3.2.4);

3. Reduce the number of mean shift iterations by decreasing the number of saturated

kernels required for termination (referred to as abridging) (see Subsection 3.2.5).

Figure 3.1 reveals the sematic flowchart of the segmentation framework.

3.2.1 Sampling Scheme

The motivation behind sampling is straightforward: it reduces the computational de-

mand, which is a cardinal aspect in the million-element feature space domain. The basic

idea is that instead of using all n feature points, the segmentation is run on m � n

initial elements. The mean shift iteration is then started from these seed points, and

the other elements of the feature space are assigned to the so-obtained modes by using

certain local rules [37, 46, 53, 55, 58, 75].

There are however two major factors one has to take into account in the case of

sampling: undersampling the feature space can highly decrease segmentation quality,

while oversampling leads to computational and memory-related overheads.

To address the above concerns, a recursive sampling scheme was designed that works

as follows.

43

DOI:10.15774/PPKE.ITK.2013.005



3. PARALLEL FRAMEWORK

1. Initialize a mean shift kernel in a yet unclustered element i of the feature space

and repeat the mode seeking iteration until termination that is denoted by tsat.

2. At this point, FSE χj is assigned to a ψi = χtsati = (xtsatr,i ; xtsats,i ) mode that is

obtained from χi sampled initial mean shift centroid if, and only if

‖xs,j − xts,i‖ < hs, (3.1)

Figure 3.1: Flowchart of the segmentation framework. The result of the recursive mode

seeking procedure is a clustered output that is an over-segmented version of the input image.

The step of mode seeking is therefore succeeded by the merging step that concatenates

similar clusters such that a merged output is obtained. The term FSE refers to feature

space element.

44

DOI:10.15774/PPKE.ITK.2013.005



3.2 Computational Method

and

‖xr,j − xtr,i‖ < hr, (3.2)

where t ∈ [0, tsat]. In case a pixel is covered by more than one kernel, it is

associated to the one with the most similar color.

3. If unclustered FSEs remain after the pixel-cluster assignment, resampling is done

in the joint feature space, and new mean shift kernels are initialized in those

regions, in which most unclustered elements reside.

3.2.2 Dynamic Kernel Initialization

Since resampling is driven by the progress of the clustering of the feature space, both

the number and the position of mean shift kernels is selected in proportion to the

content of the image. Note that in the case of real-life images, the image usually

contains high frequency shading and gleams due to inconsistent lighting conditions.

These phenomena appear in the feature space as outliers. For this reason a solution

similar to the smallest significant feature size proposed by Meer and Comaniciu (see

Subsection 2.3.3) was applied. But instead of removing small classes from the fully

clustered image in a post-processing step, resampling is terminated when the number

of clustered elements in the feature space reaches 99%, at which point all unclustered

elements are assigned to the closest mode.

3.2.3 Cluster Merging

After the iterative clustering procedure finished, cluster merging is performed. Two

simple rules were used for concatenation: cluster i and j are joined if they satisfy the

following two criteria:

C1. The two clusters have a common border in terms of eight-neighbor connectivity.

C2.

‖xr,i − xr,j‖ < hr, (3.3)

where xr,i and xr,j are the range components of the modes of the corresponding

clusters.

If both criteria hold for a pair of observed classes, the position of the mode in the

feature space is recalculated as described by Equation 4.17 in Subsection 4.3.3.
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3.2.4 Parallel Extension

The recursive serial framework described in Subsection 3.2.2 was extended to work in

a parallel way:

Step 1. Initialize a given number of mean shift kernels on the joint feature space.

Step 2.a Perform the iterative mode seeking procedure (Equation 2.3) of the concur-

rent kernels simultaneously until termination.

Step 2.b Perform pixel-cluster assignment according to Equation 3.1 and Equation

3.2 respectively and save the position of the obtained modes. In case an FSE

is within the support of multiple kernels, assign it to the mode with the smaller

distance (color, i.e. Equation 3.2 is prioritized).

Step 3. Observe the topology of unclustered elements:

• If the feature space requires additional clustering, go to step 1.

• If the feature does not require additional clustering, proceed to cluster merg-

ing.

Merging is performed after the clustering is finished, and it is also a recursive

procedure:

Step 1. Compute pairwise neighboring information of the clusters (i.e. isolate clusters

for which C1 is true).

Step 2. Observe criterion C2 for adjacent clusters:

• If C2 does not hold for any cluster pair, terminate the merging procedure.

• Otherwise, continue with step 3.

Step 3.a Unify clusters for which both C1 and C2 hold by recalculating the feature

space position of the class-defining mode using Equation 4.17.

Step 3.b Return to step 1.
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While the theoretical advantages of parallel systems are widely known, the parallel

implementation of the mean shift algorithm results in a few drawbacks that do not

occur in the serial version.

The most important aspect of the parallel implementation is the memory inten-

sive behavior. The position of a given mean is calculated using Equation 2.3 on the

elements residing within the support/region of interest (ROI) window3 of the kernel.

However, the feature space elements grouped by the different ROI windows are stored

in non-consecutive places in the device memory. This pattern does not favor coalescent

memory access directly, which slows down the simultaneous mode seeking procedure.

To accelerate these ROI operations, the ROI windows of a given mode seeking step are

“cut” from the feature space and stored in a continuous structure.

The implementation induces another important change in the mean shift scheme.

When running the mode seeking process given by Equation 2.3 on multiple autonomous

kernels at once, it is not feasible to isolate saturated modes and replace them with new

kernels in a “hot swap” way, due to the characteristics of block processing. Although

such a switching solution is theoretically possible, it involves a lot of additional memory

operations, which have a negative influence on the speed of the segmentation procedure.

For this reason, a new mean position is calculated for each of the kernels utilized by

the current sampling operation, until Equation 2.5 is met by every single one of them.

Since this property is not present in the sequential mean shift, two important remarks

should be made here.

1. This property does not result in corruption concerning the retrieval of image

content. Kernels for which the shift of the mean value is below the threshold

(Equation 2.5) will continue stepping towards the steepest ascent [40].

2. This property results in an overhead in terms of computational complexity.

3.2.5 Abridging Method

In order to suppress the number of redundant iterations (in other words, the number of

additional steps of the kernels that are beyond saturation), a so-called abridging method

was introduced.

3Note: the Gaussian kernel was used (see Subsection 3.3.3). Since it comes with an infinite support,

a ROI window was selected—see Subsection 4.2
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The method uses a single constant called the abridging parameter A ∈ [0, 1] that

specifies the minimum proportion of kernels that is required to saturate. At the time

instant this value is met, the ongoing mode seeking procedure is terminated and the

next resampling iteration is initialized.

The usage of abridging is demonstrated through the following example (see Figure

3.2): consider a parallel mode seeking procedure that is performed on n′ kernels si-

multaneously (where m =
∑
n′, see Subsection 3.2.1), and let us say that it takes tter

mean shift iterations until all kernels saturate. The ratio of kernel saturation follows

an exponential pattern, such that a remarkable fraction of the kernels saturates in the

first few shifting steps, so that in their case, each additional iteration is superfluous.

The abridging parameter gives us a simple tool to terminate the mode seeking pro-

cedure after a reasonable amount of steps, when the number of saturated kernels is

satisfactory.

The practical effect of the abridging parameter was studied by running the seg-

mentation on the “test set” of the then available version of the Berkeley Segmentation

Dataset and Benchmark (BSDS300) [62] consisting of 100 images. Various kernel band-

widths and abridging parameters were used and the running times, the number of mean

shift-, and resampling iterations, and the quality of output among other characteristics

(see Subsection 3.3.4 for a detailed list of the parameter settings used) were measured.

The following list gives an overview of the analytical aspects and the main conclusions,

whereas a more detailed description is given in the subsections where noted.

1. Impact on the number of mean shift iterations.

The main motivation for using the abridging method is its strong effect of reducing

the number of mean shift iterations. Compared to a setting of A = 1, a framework

with A = 0.6 requires 3.1 times less mean shift iterations on average. Applying

A = 0.6, this reduction was at least 2.04 times in 95% of the cases. The measured

standard deviation of 0.79 underlines that the speedup is stable and present at a

broad selection of bandwidths.

2. Impact on the number of resampling iterations.

Abridging increases the number of resampling iterations, but has a small and

strictly monotonically decreasing effect that is inversely proportional to the band-

width parameters. The number of resampling iterations showed an increase of
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Figure 3.2: Demonstration of the tendency of kernel saturation. The upper half of the

figure gives an example for a mode seeking procedure with n′ simultaneously iterated

kernel windows. Consecutive iterations are denoted by t, and the length of the arrows

are proportional to the length of the shift of the centroid of the given kernel. tter is the

iteration in which all kernels have saturated. Saturated kernels are filled, with a thick black

silhouette highlighting the first such iteration. Each consecutive iteration for that kernel is

redundant. The bottom half illustrates the number of mean shift steps vs. the percentage

of saturated kernels.
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1-15% on average in a system with an abridging parameter of 0.6, which corre-

sponds to 0.02-1.77 additional resamplings depending on the selected bandwidth

parameters.

3. Impact on segmentation speed.

The usage of the abridging parameter reduces the time demand of the mode

seeking procedure, because although it may increase the number of resampling

operations, it drastically cuts back the number of required mean shift iterations.

Subsection 3.4.2 gives a complete overview.

4. Impact on output quality.

The position of the mean values of kernels that did not saturate at the instant

the abridging parameter caused termination are not situated at the local maxima

of the underlying probability density map. Due to the proposed pixel-cluster

assignment scheme, this only implies the formulation of clusters that have more

localized color information, and in practice, it appears in the form of a slight

over-segmentation. See Subsection 3.4.1 for a complete numerical evaluation.

5. The actual number of saturated kernels.

The ratio of kernels saturated at termination generally exceeds the prescribed

threshold ratio by 15-28% on average.

3.3 Experimental Design

One of the most important tasks within a data-parallel environment is the control

of the simultaneous data access. In contrast to a simple threaded serial system, in

which processing consists of consecutive—and thus: mutually exclusive—read and write

memory accesses, a parallel environment requires additional buffering steps to properly

handle simultaneous memory operations, and additional memory space to feed the

processors.

Another issue with data-parallel programming is that compared to accesses to local

memory on the device, the host to device memory transfers (and vice versa) are slow.

For this reason, fitting the data representation into device memory is a key task in

terms of speed.
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Lastly, limitations in the size of quickly accessible device memory calls for compact

data representation, which again costs memory operations, and therefore time.

For the reasons listed above, parallelization of a given algorithm can only be consid-

ered effective if the speedup can be achieved in spite of all the enumerated constraints,

and without sacrificing accuracy.

The proposed framework was analyzed concerning three different aspects:

1. the quality of the output (see Subsection 3.4.1),

2. the time demand of the algorithm on images with different size (see Subsection

3.4.2), and

3. the scaling on different devices with various number of processors (see Subsection

3.4.3).

Quality analysis was done with a broad selection of parameters in an exhaustive

search-like scheme that has two notable benefits:

1. A broad overview about the robustness of the framework’s output quality was

obtained.

2. Optimal parametrizations both in terms of speed and quality were obtained that

were used for the two alternative evaluation settings during the running time

measurements.

3.3.1 Hardware Specifications

The parallel hardware architecture for the measurements was the GPGPU platform

offered by NVIDIA. The measurements were performed on five GPGPUs with various

characteristics. As a reference, the framework was also tested on a PC equipped with

4GB RAM and an Intel Core i7-920 processor clocked at 2.66GHz, running Debian

Linux. The technical specifications of the hardware are summarized in Table 3.1. Note

that in the case of the NVIDIA S1070, only a single GPU was utilized (for this reason

it is referred later on as S1070SG).

Compute capability numbers consist of two values: a major revision number that

is indicating fundamental changes in chip design and capabilities, and a minor revision

number referring to incremental changes in the device core architecture.
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Table 3.1: Parameters of the used GPGPU devices.

Device

name

No. of stream

processors

Clock

frequency

Device

memory

Compute

capability

8800GT 112 1500 MHz 1024 MB 1.1

GTX280 240 1296 MHz 1024 MB 1.3

S1070SG 240 1440 MHz 4096 MB 1.3

C2050 448 1500 MHz 3072 MB 2.0

GTX580 512 1544 MHz 1536 MB 2.0

3.3.2 Measurement Specifications

In the case of the scaling and timing experiments, the measurements were made on

five different image sizes. The naming conventions and corresponding resolutions are

summarized in Table 3.2.

Table 3.2: Naming convention and resolution data of the images used for the timing and

scaling measurements.

Name of extended

graphics array
Abbreviation Resolution

Resolution in

megapixels (MP)

Wide Quad WQXGA 2560× 1600 4.1 MP

Wide Quad Super WQSXGA 3200× 2048 6.6 MP

Wide Quad Ultra WQUXGA 3840× 2400 9.2 MP

Hexadecatuple HXGA 4096× 3072 12.6 MP

Wide Hexadecatuple WHXGA 5120× 3200 16.4 MP

3.3.3 Environmental Specifications

All measurements were performed in the 5D joint feature space consisting of the Y , Cb

and Cr color coordinates, and (x, y) spatial position of each pixel. Color channels were

normalized into the [0, 1] interval, but the luminance channel was given an additional

multiplier of 0.5 in order to somewhat suppress the influence of gradients that are often

caused by the natural lighting conditions. The same normalization factor was used for

both spatial channels, so that for a non-square image, the longer side is normalized to
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[0, 1], whereas the maximum of the shorter side is the aspect ratio of the two sides.

This way the isotropic property and the central symmetry of the kernel suggested by

Meer and Comaniciu [1] was ensured.

The kernel window was selected to be the Gaussian, with distinct hs and hr param-

eters for the spatial and range domains respectively. To speed up the segmentation, the

spatial weight kernel was calculated only once at the beginning of the segmentation,

and was shifted to the position of the corresponding mode in each iteration. (Note:

since the support of the Gaussian kernel is infinite, it is considered only within a radius

in which its value is above 0.1—see Subsection 3.2.3.)

3.3.4 Quality Measurement Design

Since neither the BSDS500, nor the WIDB was published at the time when the quality

measurements of the parallel system were done, the “test” set of the BSDS300 consisting

of 100 pictures was used to provide quantitative results that are comparable with other

algorithms. This set was segmented multiple times using the same parametrization for

each image in a run. Three parameters were alternated among two consecutive runs:

hr taking values between 0.02 and 0.05, hs with values in the interval of 0.02 and 0.05,

both utilizing a 0.01 step size, and the abridging parameter ranging from 0.4 to 1.0

with a step size of 0.2. In each case, the segmenter was started with 100 initial kernels,

and in every resampling iteration 100 additional kernels were utilized.

Note that since the BSDS300 benchmark evaluates quality based on boundary in-

formation, soft boundary maps were generated in the following way: the luminance

channel of the output of the segmentation framework was subject to morphological

dilation using a 3x3 cross-shaped structuring element. The difference of the original

and the dilated channel resulted in an intensity boundary map.

The quality of the output was assessed using the F-measure values (see Equation

2.15).

3.3.5 Timing Measurement Design

Timing measurements aimed at registering the running time of the algorithm on high

resolution real-life images. An image set consisting of 15 high quality images was formu-

lated and the images were segmented in five different resolutions using the parameter

settings “speed” and “quality” that were obtained during the quality measurements
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(see Subsection 3.4.1). In each case, the segmenter was started with 10 initial kernels,

and 10 additional kernels were utilized in every resampling iteration.

3.3.6 Scaling Measurement Design

The mean shift iteration specified in Equation 2.3 was timed individually on the differ-

ent devices (and as a reference, on the CPU) to observe the scaling of the data-parallel

scheme. To give a complete overview, all linear combinations of spatial bandwidth

parameters ranging from 0.02 to 0.05 with a step size of 0.01, and kernel numbers of

1, 10 and 20 were measured. Each value in the corresponding figure represents a result

that was obtained by averaging 100 measurements (see Figure 3.8).

3.4 Results

3.4.1 Quality Results

As a result of alternating hr, hs and the abridging parameter, the framework was run

with 64 different parametric configurations for each image of the 100 image BSDS300

test corpus.

The obtained average F-measure values for the different bandwidths and abridging

parameters are displayed in Figure 3.3.

The highest F-measure value was 0.5816 for parameters hr = 0.03 and hs = 0.02

without any abridging, which fits in well among purely data-driven solutions [24]. It

can be observed on Figure 3.3 that the output quality remained fairly consistent when

relatively small bandwidths were selected. The system is more robust to changes made

to the spatial bandwidth, while selecting a high range bandwidth parameter decreases

output quality. As one may expect, abridging has a negative effect on quality, but

it can be seen that for certain parameter selections (namely, for hs ∈ [0.02, 0.03] and

hr ∈ [0.03, 0.04]) even an abridge level of 0.6 results in acceptable quality. An interesting

observation is that when both bandwidth parameters are set high, smaller abridging

parameter values increase quality. The explanation for this is the following: as described

in Subsection 3.2.5, abridging induces over-segmentation, and in this context, has an

effect similar to having a smaller bandwidth parameter. This way, additional edges

appear in the soft boundary map, from which many are coincident with the ground

truth references used by the benchmark.
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Figure 3.3: F-measure values obtained for the different parametrizations of the segmen-

tation framework. hs and hr denote the spatial and range kernel bandwidths respectively,

A values stand for different abridging constants.

Table 3.3 displays the F-measure values for the different parametric constellations

given as the percentage of the best result.

The presence of a gray background indicates that quality loss is less than 3% com-

pared to the best result. Based on these results, two parametric settings were selected

for the timing measurements:

• the Quality setting was selected to be (hs, hr, A) = (0.02, 0.03, 1), while

• the Speed setting was selected to be (hs, hr, A) = (0.03, 0.04, 0.6).

In the case of the quality setting the only guideline was to obtain the best quality,

whereas in the case of the speed setting the preferences in order of precedence were

the quality (should be better than 97%), the value of the abridging constant (a smaller

parameter makes segmentation faster), finally the size of the bandwidth parameters

(bigger is faster due to the data-parallel structure and the formulation of the pixel-

cluster assignment scheme—see Equations 3.1 and 3.2).
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Table 3.3: F-measure values obtained with different abridging and bandwidth

parametrization given as the percentage of the best result. The presence of a gray back-

ground indicates that quality loss is less than 3% compared to the best result. The two

settings selected for performance evaluation are denoted by bold letters. Measurements

were made on the test set of the BSDS300.

hr hs A = 0.4 A = 0.6 A = 0.8 A = 1.0

0.02

0.02 95.83% 96.31% 96.76% 98.66%

0.03 95.84% 96.04% 97.04% 98.22%

0.04 95.67% 96.58% 96.75% 98.12%

0.05 95.31% 96.80% 97.00% 98.58%

0.03

0.02 96.97% 97.23% 98.10% 100%

0.03 95.85% 97.10% 97.92% 98.64%

0.04 95.86% 96.24% 96.79% 97.54%

0.05 95.73% 96.01% 95.78% 96.42%

0.04

0.02 96.50% 97.77% 98.30% 99.46%

0.03 95.62% 97.07% 97.18% 97.12%

0.04 94.32% 95.35% 95.75% 95.61%

0.05 94.38% 93.76% 93.76% 92.94%

0.05

0.02 95.81% 96.73% 97.41% 96.83%

0.03 94.61% 94.60% 94.79% 92.35%

0.04 92.93% 92.16% 92.48% 89.41%

0.05 90.20% 90.24% 89.16% 88.06%

Figure 3.4 shows a few example images from the 100 image BSDS300 “test” seg-

mentation corpus among with the segmented output and the obtained F-measure for

both the quality and the speed settings.

3.4.2 Running Time Results

The average running times measured on the 15 image corpus are summarized in Figure

3.5 using the quality and speed settings.

In the case of the measurements made on the GPGPUs, the displayed values include

all operations and memory accesses that have been performed in order to obtain the

merged output image. The clock was started before the host to device data transfer
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Figure 3.4: Four segmentation examples from the 100 “test” image corpus of the

BSDS300. Results for both the quality and the speed setting are shown. Quality eval-

uation was run using the soft boundary map generated from the merged output. For the

sake of better visibility of the extent of the clusters, they are displayed in the form of

cluster maps as well. The obtained F-measure values are denoted by F .
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WQXGA WQSXGA WQUXGA HXGA WHXGA

I7_920 160.46 224.63 359.60 471.86 565.09

8800GT 53.56 78.67 110.92 122.69

GTX280 23.95 29.96 37.26 39.80

S1070SG 27.27 27.75 30.84 38.16 42.80

C2050 19.32 23.62 28.85 33.73 41.38

GTX580 17.89 19.57 21.76 20.51 33.37
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I7_920 82.95 127.92 163.05 220.17 261.52

8800GT 23.76 38.02 53.65 88.37

GTX280 7.99 11.48 16.55 28.64

S1070SG 8.14 10.97 14.16 19.34 23.39

C2050 7.79 9.24 11.25 15.78 18.46

GTX580 6.04 7.30 9.23 14.45 18.23
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Figure 3.5: Running time values of the algorithm run on images with different sizes using

five different GPGPUs and the CPU as the reference. Displayed are running time results

obtained using the quality setting (top) and the speed setting (bottom). Each measurement

displays an average value obtained from running the algorithm on 15 images. In case when

“N/A” values are displayed, the onboard device memory sometimes became a bottleneck,

which resulted in frequent caching operations that seriously slowed down the segmentation

performance.
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Figure 3.6: Average running time of clustering one megapixel on the different devices

(and on the CPU) as a function of the abridging parameter. Difference in quality between

the two settings is 3%.

carrying the input image started, and was stopped after the device to host data transfer

carrying the merged output was completed, such that the output was retrieved into host

memory. The same rule applies to the CPU measurements, but in this case obviously

neither host to device transfers nor device to host transfers were necessary.

When using either the GTX580 or the C2050, the average time demand for segment-

ing a 16 megapixel image was just above 18 seconds in the case of the speed setting,

and a bit more than 33 seconds on the GTX580 using the quality setting. Compared

to the running times of the CPU using the same 16 megapixel setup (as utilized on the

GTX580), this means an acceleration of 16.93 times in the case of the quality setting,

and an acceleration of 14.34 times in the case of the speed setting. Figure 3.6 displays

the time spent on average to cluster a million pixels on the different platforms. It can

be seen that by sacrificing 3% of the quality, double speed can be achieved in most of

the cases.

Figure 3.7 shows an example of the high quality input images from the 15 image

segmentation corpus and the segmented output before and after the merging procedure.

Two additional examples can be found in Appendix A.
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Figure 3.7: A high resolution segmentation example from the 15 image corpus used for

the evaluation of the parallel framework. For the sake of better visibility, the extent of

the clusters is also displayed in the form of cluster maps before and after the merging

procedure. NK refers to the number of clusters.
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3.4.3 Scaling Results

As a result of the different parametrizations, the mean shift iteration was timed using

60 different constellations on the 5 GPGPU devices (and additionally, the CPU) with

each measurement indicating an average value recorded on 100 iterations (as described

in Subsection 3.3.6).

The first aspect of evaluation was the scaling of performance on the different

GPGPU device generations. Figure 3.8 displays the obtained running time in mil-

liseconds for a single kernel measured using different resolutions with bandwidth pa-

rameters hs = 0.02 and hs = 0.05. The running times show a clear tendency: as a

result of improved characteristics (such as the number of stream processors, memory

handling, caching and in some cases, operating frequency), the performance of newer

device generations is superlinear compared to the older ones.

The second aspect of evaluation was the robustness of the operating time demand

related to the number of kernels. To obtain expectations for a linear running time

demand, the running time results measured when utilizing a single kernel were multi-

plied with 10 and 20 respectively. These expected values were then subtracted from the

measured running time results and the outcome was evaluated for each device and the

CPU. Table 3.4 displays the obtained results. On this table it can be seen that in the

case when using 20 kernels, the maximum difference is negative for all GPGPUs. This

means that the measured running time performance is always better than the expected

one. In this context however there are exceptions, when 10 kernels were used. However

in this cas the average difference is negative for all of the devices, which indicates that

on average, the running time benefit is present. The closer this value to is zero, the

more robust the running time on the used device with respect to the alternation of the

number of kernels is.

Finally, the running time of calculating the mean shift iteration on the different

devices was investigated in proportion to the running time of the same task measured

on the CPU. Figure 3.9 displays an overview of the speedup that is obtained by taking

into account all of the different parametrizations of hs ∈ [0.02, 0.05] and the number of

kernels being 1, 10 and 20.

As one may expect, the fastest performance was observed on the GTX580: compared

to the CPU, the speed increase was greater than 28 for all parameter settings, with
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Figure 3.8: Running time tendencies of one mean shift iteration of a single kernel mea-

sured on the different devices (and the CPU) using different resolutions. Spatial bandwidth

selection was 0.02 in case of the top figure and 0.05 in case of the bottom one. Bandwidths

within this spatial domain follow the same running time pattern.

an average speedup of around 120. One may ask why the speedup of the mean shift

iteration differs from the overall speedup of the framework. The answer to this question

is that in the case of the former, only arithmetic operations are involved, thus these

results represent the speed of the GPGPU processing units more closely. In contrast,
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Table 3.4: The robustness of the scaling on the different devices and the CPU. The statis-

tics display the values obtained by comparing the expected running time values (derived

by a multiplying the running time measured when using a single kernel) and the corre-

sponding measured values. The relative standard deviation is the quotient of the standard

deviation and the average.

No. of

used

kernels

Device

type

Relative

standard

deviation (%)

Minimum

difference

(ms)

Maximum

difference

(ms)

Average

difference

(ms)

10

I7 920 90.57 3.908 476.133 162.733

8800GT 162.39 −12.461 2.402 −2.382

GTX280 70.80 −0.773 1.118 −0.588

S1070SG 60.86 −0.735 0.848 −0.567

C2050 19.24 −1.228 −0.688 −0.815

GTX580 17.05 −0.892 −0.480 −0.704

20

I7 920 77.17 140.130 3,436.867 1,210.004

8800GT 95.69 −62.323 −4.469 −18.438

GTX280 70.48 −14.218 −1.377 −5.745

S1070SG 65.22 −14.070 −2.273 −5.877

C2050 45.28 −7.765 −2.463 −4.282

GTX580 34.21 −5.743 −2.199 −3.357

the overall speedup—with all the data transfers, memory read and write operations

that are involved—represent the integrated performance of the device.

Three factors affect the observed speedup of the mean shift iteration, these are: the

size of the image, the kernel bandwidth and finally the number of kernels. In order

to clarify their individual effect, Figure 3.10 displays the influence of varying these

parameters on the observed speedup.

Figure 3.10 shows a clear trend: the parameter with the most influence on raising

the speedup is the number of kernels. This is resulted by the data-parallel nature of

the task.
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8800GT GTX280 S1070SG C2050 GTX580

Maximum

speedup
20.90 75.71 77.14 176.61 268.59

Minimim

speedup
5.09 16.24 16.46 21.54 28.17

Average

speedup
11.35 38.88 40.00 82.34 120.06
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Figure 3.9: Speedup results obtained for different devices by pairwise comparison to the

CPU. The basis of comparison were the running time values representing the time demand

of calculating new position(s) of mean(s) with all combinations of hs ∈ [0.02, 0.05] with

number of kernels being 1, 10 and 20.

3.5 Conclusion

This chapter discussed the details and parallel design of the proposed segmentation

framework. The core of this system is given by the parallel extension of the mean

shift algorithm, that is accelerated by utilizing an abridging technique that can also

be used in existing parallel mean shift techniques, such as [55, 56, 75], and a recursive

sampling scheme that can narrow the complexity of the feature space, and is applicable

in other solutions [59, 75] as well. The framework was implemented on a many-core

computation platform, and a common segmentation benchmark was used to evaluate

the output quality, and to demonstrate its robustness concerning parameter selection.

Segmentation performance was analyzed on different high resolution real-life images,

using five GPGPUs with miscellaneous specifications. The running time of a parallel

mean shift iteration was measured on the different devices in order to observe the scaling

of the data-parallel scheme. The algorithm has proven to work fast and to provide good
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Figure 3.10: Speedup results of the GTX580 as a pairwise comparison to the CPU

using different parameter settings. The bases of comparison were the running time values

representing the time demands of calculating new mean positions. All combinations of

hs ∈ [0.02, 0.05] with number of kernels (NK) being 1, 10 and 20 were tested.

quality outputs.
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Chapter 4

Adaptive Extension

This chapter discusses the method of how the building blocks of the

parallel algorithm were extended to operate with respect to the content

of the input image. In case of the segmentation phase, the bond confi-

dence concept is introduced, which incorporates an intelligent sampling

scheme and a nonlinear pixel-cluster assignment method. The proposed

sampling can adaptively determine the amount and spatial position of

the samples based on the local properties of the image and the progress

of the segmentation. Sampling is driven by a single bond confidence

value that is calculated without overhead during the mean shift itera-

tions. The same parameter guides the pixel-cluster mapping that can

ensure that each picture element is associated with a class having the

most similar characteristics. The method of determining similarity in

the merging phase has been extended to tolerate the rapid changes in in-

tensity, hue, and saturation, which occur frequently in real-life images.

The focus during the evaluation of the framework has been put onto out-

put accuracy that is measured on three publicly available datasets using

numerous metrics and a high resolution image set. The detailed results

underline that the output quality of the framework is comparable to the

reference but works an order of magnitude faster.
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4.1 Introduction

The motivation for the adaptive extension of the parallel segmentation framework arose

during its evaluation made on the high resolution images.

It is straightforward that the resolution of an image directly influences the run-

ning time and the output accuracy of a segmentation algorithm. But in case of lossy

algorithms, the change in these two characteristics is not totally explained by the reso-

lution because the distribution of information in real-life images is very heterogeneous

(see Figure 1.1). This property is a lot more emphatic on larger images than any

other characteristic, not to mention that most segmentation datasets still prefer under-

segmentation, and the suppression of details (see Subsection 2.5.3). On one hand some

regions present in these images contain a lot more details than in those images of small

resolution, but even more importantly, often there are many large surfaces that belong

to the same object (or the background) and have the same, homogeneous representation

in the feature space. Since the parallel algorithm explained in Chapter 3 uses feature

sampling, it was straightforward that both computational efficiency and output quality

could be improved, if the sampling scheme would be guided by heuristics that are built

upon this property. However, it was kept in mind that in most cases, the calculation

of an efficient heuristic costs additional arithmetic computation that can slow down

the system, therefore it was cardinal to find a way to minimize the number of extra

calculations required.

As it was discussed in Subsection 2.5.1, if we use higher resolution images not just for

their own sake, the amount of details present in the image grows. In e.g. a classification

task, the appearance of additional details make the description of objects more robust,

but on the other hand, somewhat more complex as well. In case an object is composed

of parts that have completely different characteristics and feature representations (to

give the easiest example: the black and yellow butterfly in Figure 2.3, but one can also

consider the man in the hawaiian shirt in Figure 4.6), proper segmentation could make

use of high-level knowledge.

To handle the problems enumerated above, this chapter presents the following con-

tributions:

1. Multipurpose applicability.

The proposed framework returns a two-level output: the result of the data-driven
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segmentation that has a structure based purely on the characteristics of the image

and the result of a subsequent merging process that utilizes a set of similarity

rules. This scheme offers the possibility to directly inject alternative information

(such as semantic, top-down metadata) or additional, task-dependent rules into

the merging procedure with respect to the characteristics of the given task. Four

algorithmic stages have been identified as potential entry points for knowledge-

driven and/or task-dependent information.

2. Reduced computational demand along with compact representation.

The segmentation algorithm utilizes adaptive sampling such that sampling fre-

quency is based on the local properties of the image. Homogeneous image regions

get clustered fast, initializing only a few large kernels, while spatially non-uniform

regions, containing fine details are processed using more kernels of smaller sizes

that provide extensive information. While preserving the content of the image,

this intelligent scheme reduces both the computational requirement and the mem-

ory demand, enabling the segmentation of large images as well.

3. High segmentation quality utilizing a nonlinear pixel-cluster mapping

system.

Accuracy is pursued using a single-parameter system that registers the strength

of the bond between a pixel and the mode of a cluster, subject to their spatial

distance and color similarity. This way each picture element is associated with

a class having the most similar characteristics. The key element for both the

sampling procedure and the voting algorithm is the bond confidence value, which

is calculated implicitly during the segmentation phase with no overhead.

4. Fast operation due to parallel design.

All algorithmic extensions discussed in this chapter have been fit into the parallel

framework, thus it still exploits the benefits of many-core platforms that can

make the segmentation much faster, especially when dealing with a large amount

of data.

Due to the observations discussed above, segmentation quality assessment became a

major priority besides the segmentation speed measurements. Hence, it was a manda-

tory minimum for me to measure the capabilities of the enhanced system using various
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metrics offered by the public segmentation databases published subsequent to the as-

sessment of the parallel framework. Additionally, this chapter evaluates the proposed

method on a high resolution image set composed of over 100 images. But while in

Chapter 3 the aim of these kind of measurements was to demonstrate algorithmic

scaling, here the main dimension of evaluation is not how the alteration of resolution

influences the running time, but how the varying amount of content does. It is shown

via numerical analysis that the proposed adaptive framework can segment images with

large homogeneous regions faster than a publicly available, non-adaptive variant, but

at the same time the proposed system preserves many more details of complex image

regions.

The following two sections explain the details of how the segmentation and the

merging phases discussed in the previous chapter were enhanced to provide a better

output quality.

4.2 Segmentation Phase

The segmentation phase is based on two major cornerstones: the main equation of the

mean shift method that was already discussed in the previous subsection (Equation

2.3), and the bond confidence concept explained in this chapter.

The main idea behind this concept exploits that the utilized kernel function is es-

sentially a low-pass filter that nonlinearly assigns a weight to all FSEs in an observed

neighborhood around its center [76], such that the closer the FSE is to the mean subject

to the considered feature space, the higher weight the kernel assigns to it. The bond

confidence concept does not have restrictions for the mean shift theory regarding the

type of the used kernel. A straightforward choice is the Epanechnikov kernel function

due to its finite convergence that implicitly sets the ROI, i.e. the set of FSEs that are

actually taken into account for the calculation of the new mean of the corresponding

kernel. However, the Gaussian kernel was chosen due to its superior smoothing capa-

bilities [77]. On the other hand it does not have a finite support, thus for the sake of

efficiency, the ROI is defined to be a smaller window than the image itself, the radius

of which is determined from Equation 2.4 in the following way:

rROI =

√
−2hs

2ln(λ) (4.1)
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where 0 < λ < 1 is a user parameter, such that inside the ROI, the spatial kernel

window generates values of [λ, 1] depending on the distance from the mean of the

window, and returns 0 outside the ROI4. As it will be discussed in this subsection, the

dot product of the weighted color affinity and the weighted spatial locality is used as

a pairwise similarity metric to determine the level of resemblance between the mean

of the kernel and all the pixels within its support. If this value is sufficiently high in a

mean shift iteration, the pixel is assigned to the kernel (referred to as binding in this

dissertation), thus in the iteration when the mode of the kernel is found, its basin of

attraction is directly given by the bound pixels.

Since numerous FSEs are “covered” by the support of a kernel, and the kernels

are repositioned as the mean shift iterations are evaluated, in the classic mean shift

method the majority of the kernels generally converges to trajectories already visited (as

also noted in [54]), thereby performing calculations repeatedly. Again, if we initialize

only m � n mean shift kernels from adequate positions of the feature space, then a

significant part of the redundant work can be saved (see Subsection 3.2.1). At this

point there are two important questions to answer concerning this scheme:

1. How to select the number of the kernels (value of m)?

2. How to select the initial positions of the kernels in the feature space?

From the aspect of computational complexity, the obvious priority here is to min-

imize the number of samples. Simultaneously, we have to keep in mind that under-

sampling introduces loss of image details, whereas unnecessary over-sampling leads to

computational and memory-related overheads along with a number of superfluous clus-

ters that also raise the computational demand of the merging phase. Selecting the

number of utilized kernels depending only on the resolution of the input image or alter-

natively, on the bandwidth parameter of the mean shift kernels will lead to a suboptimal

segmentation result (additional discussion of this topic was given in Subsection 2.5.1).

If a set of neighboring pixels is homogeneous in color, then only a few kernels are

required in the feature space to bind the FSEs that represent the pixels of this area.

Thus, such regions are quickly processed with relatively low computational demand.

4Note: according to my experiments, the quality of the output of the framework is not sensitive

to the choice of the λ parameter in a wide range. Experiments were performed in the 0.01 ≤ λ ≤ 0.2

interval, and used λ = 0.1 for all measurements shown.
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On the contrary, an inhomogeneous region with many different colors and shades will

require more kernels to be adequately segmented. These regions usually carry more

localized information [64], therefore utilizing an increased number of kernels is also

favorable, because it allows this information to be preserved in the segmented output.

However, prediction of the optimal number of kernels along with their initial position

in the feature space would be way more complex than the segmentation procedure itself.

For this reason an iterative scheme was designed that determines both the number

of kernels and their initial spatial positions dynamically, which can be considered a fair

estimate.

The segmentation phase consists of L consecutive loops that are composed of the

following triplet of steps in the displayed sequence:

Step 1. Adaptive sampling (see Subsection 4.2.1);

Step 2. Mean shift iterations and pixel binding (see Subsection 4.2.2);

Step 3. Pixel-cluster assignment check (see Subsection 4.2.3).

Before going into the details of the loop steps, it is important to observe the key

element of the confidence concept: the bond confidence, denoted by Υj(χi), represents

the strength of the bond between FSE χi and kernel j. The bond confidence is deter-

mined as follows. Let us denote the set of all FSEs that reside within the support of

kernel j with mean value χtj :

Stj = {χi ∈ F : i ∈ PI , ‖xs,i − xts,j‖ ≤ rROI}. (4.2)

The bond confidence Υt
j(χi) in a given iteration 0 < t ≤ tsat for all χi ∈ Stj , is given

by

Υt
j(χi) = g

∥∥∥∥∥xr,i − xtr,j
hr

∥∥∥∥∥
2
 g

∥∥∥∥∥xs,i − xts,j
hs

∥∥∥∥∥
2
 . (4.3)

After the saturation of the kernel, the overall bond confidence value between FSE

i and kernel j can be determined:

Υj(χi) = max
t

(Υt
j(χi)). (4.4)

One might easily recognize that Equation 4.3 is very similar to the denominator

of Equation 2.3, and despite the lack of the final summation, it is being calculated
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during the standard mean shift iterations without introducing overhead. Due to the

normalization term of the Gaussian, the range of the bond confidence is [0, 1]. A higher

confidence value within this interval means a greater similarity to—and therefore a

stronger association with—the mode of a kernel, such that a 0 indicates no affiliation,

and 1 refers to a full match.

Also, prior to the start of the first loop, three data containers are initialized:

1. the global mode vector (GMV): incrementally stores the modes ψj , ∀j ∈ [1,m]

that are obtained throughout the loops;

2. the global bond confidence (GBC) matrix with GBCi = 0, ∀i ∈ PI : registers the

highest bond confidence recorded during the segmentation phase

3. the pixel-cluster mapping (PCM) matrix with Ci = ∅,∀i ∈ PI : for each FSE it

points to the cluster-defining kernel that generated the highest confidence value

for it, which at the same time determines its final cluster assignment.

At the termination of each loop, the modes of new kernels are added to the GMV,

furthermore the GBC and the PCM matrices are refreshed based on the corresponding

in-loop values (defined in detail in steps 2 (Subsection 4.2.2) and 3 (Subsection 4.2.3)).

Using the PCMs of the FSEs and the corresponding modes from the GMV the final

color assignments can be determined after the segmentation phase is finished. As it will

be discussed in the following, the bond confidence not only works as a similarity metric,

but also as a discriminator during the steps of the adaptive sampling and the pixel-

cluster assignment, thus unlike the case of most other algorithms that utilize sampling,

no additional heuristics are required for these steps in the proposed system.

4.2.1 Step 1—Adaptive Sampling

Loop l begins with the initialization of ml kernels, the set of which is denoted by Kl.

The initial seed point of all new kernels have to satisfy a sampling criterion:

GBCi ≤ λ, (4.5)

where λ acts as a sampling threshold, which is a binary separator deciding whether

an FSE can be considered by the sampler as a sample candidate based on its bond

confidence. Here we can find the first possible point for the fusion of top-down and
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l
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m2 = 30, rROI = 63 t2sat = 8 m = 58 Coverage = 74.94%

l
=

3

m3 = 30, rROI = 45 t3sat = 6 m = 88 Coverage = 86.88%

l
=

4

m4 = 41, rROI = 31 t4sat = 8 m = 129 Coverage = 92.76%

l
=

5

m5 = 25, rROI = 31 t5sat = 7 m = 154 Coverage = 95.01%

l
=

6

m6 = 5, rROI = 31 t6sat = 7 m = 159 Coverage = 95.50%

Figure 4.1: Iterations of the segmentation phase on a sample image. Rows represent

consecutive loops. The first column displays bond confidences for the kernels initialized at

iteration tl = 0, where l is the respective loop number. The number of kernels initialized

in the given loop is denoted by ml, rROI indicates the ROI diameter of the spatial kernel.

The second column displays the confidence values of the kernels initialized at iteration tlsat,

which is the iteration where the saturation occurs. The third column depicts the graphical

representation of the global bond confidence matrix with m being the cumulative number

of kernels. In the case of the first three columns, a warmer color refers to a stronger

bond between an FSE and its corresponding mode. Column four displays the information

provided to the sampler through the state of the FSEs at tlsat: red, green and blue refers to

strong, loose and no similarity to a mode, respectively. Coverage displays the percentage

of FSEs already bound to a mode.
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bottom-up information, because the selection of the initial kernel positions from the

candidates can be aided with a priori information if it is available for the task. (Since for

now, the design of the discussed system aims at multipurpose applicability, it does not

incorporate such semantic metadata.) The proposed sampling method was motivated

by the main idea of the agglomerative clustering methods, i.e. that spatially nearby

pixels are more likely to have similar color [76] than distant ones. Thus the sampler

aims to select candidate FSEs that are the most distant in the spatial domain from the

already bound FSEs, furthermore, the candidates should have a minimal distance of α

from one another as well to minimize redundancy. In loop l = 1 sampling is done on

an equidistant mesh (however, saliency-based pre-filtering [64] would also be possible).

Beginning with loop no. 2, the first sample candidate is selected to be the spatially

furthest FSE from non-candidate FSEs, then the following sampling rules are applied

to select additional candidates, if possible:

1. the spatial distance between two sample candidates is at least α =
√

2 · rROI to

reduce the overlap (redundancy) between the mean shift kernels; and

2. the minimum distance between a sample candidate and any FSE with GBCi > λ

is at least β, which is a user-selected distance threshold. (In the proposed system,

β was selected to be 1% of the length of the smaller image axis but never larger

than 5 pixels. A low value of λ causes more details to appear on the output,

however, the computational demand will also be larger.)

In case the number of candidates satisfying these rules is smaller than ml, the

system can adaptively decrease rROI (i.e. not hs), while simultaneously increasing

ml (observe Figure 4.1 for a practical example). According to my experiments, the

FSEs representing pixels that are located on edges in the input image are tendentiously

harder to cluster because their color intensity differs from the neighboring objects.

The eccentricity of these edges is usually close to 1, such that it is computationally

inefficient to apply wide kernels on them, therefore rROI is decreased, whereas the

number of kernels ml can be increased.

In the implementation, adjustment of these parameters is guided by the available

device memory and the measured distance between the first selected sample and the

closest non-candidate FSE. Algorithm 1 displays the sampling mechanism and algo-

rithm 2 describes the adaptive ROI size adjustment.
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Algorithm 1 Adaptive sampling

Require: min. sample candidate distance α, min. distance of a sample candidate and

a non-candidate FSE β, distance matrix DM, radius of kernel ROI rROI, number

of kernels in the current loop ml, kernel number multiplier η (1 by def.)

Ensure: kernel positions KP, rROI, η

1: v ⇐ GetMaxV al(DM)

2: p⇐ GetPos(v)

3: ml ⇐ mlη

4: η ⇐ 1

5: if β < v then

6: i⇐ 0

7: v ⇐ GetMaxV al(DM)

8: p⇐ GetPos(v)

9: α⇐
√

2rROI

10: while i ≤ ml do

11: i⇐ i+ 1

12: DM(SetNeighborhoodToZero(p, rROI))⇐ 0

13: KPi ⇐ p

14: v ⇐ GetMaxV al(DM)

15: p⇐ GetPos(v)

16: if α ≥ v then {0 < i < ml candidates were sampled}
17: break

18: end if

19: end while

20: [rROI, η]⇐ ROISizeAdjuster(v, rROI, hs,DimI)

21: else {No sample candidates were found}
22: break

23: end if

Note: DMi = min(‖xs,bound − xs,i‖)

By applying the sampling criterion we obtain a map containing information not only

about the current segmentation status of the FSEs, but also about the topographical

extent of clustered and yet unclustered FSE regions. From this map, distances between

candidate FSEs and non-candidate FSEs can easily be calculated using a distance

transformation [78], such that sampling is performed adaptively with respect to the
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Algorithm 2 Adaptive ROI size adjustment (ROISizeAdjuster)

Require: maximum value of the DM v, radius of kernel ROI rROI, spatial kernel

bandwidth hs, spatial dimensions of the input image DimI

Ensure: kernel number multiplier η, rROI

1: if min(DimI/30) < v < 3
4rROI then

2: η ⇐ (4rROI
3v )

2

3: rROI ⇐ 4
3v

4: end if

image content in terms of the number of samples, the spatial position of the samples

and the used radius of the applied Gaussian kernels.

4.2.2 Step 2—Mean Shift Iterations and Pixel Binding

As the next step, the mean shift algorithm is simultaneously executed on all ml ker-

nels (see Subsection 3.2.4). As the ROIs of certain kernels may overlap, in a parallel

framework it is crucial to ensure mutual exclusion of the data accesses. For this reason,

in each loop l ∈ [1, L] a local bond confidence matrix is used. This is a temporary

container which is used to register the highest bond confidence occurring for a given

pixel in the current loop using the pixel binding rule:

ΥKl(χi) = max
j∈Kl

(Υj(χi)). (4.6)

After all ml kernels saturated, ψi mode positions are stored in the local mode vector

(LMV).

However, in a parallel framework, kernels are handled in batches and a batch of

kernels have to go through the same number of iterations, which brings a signifi-

cant overhead, since all kernels have to be iterated until the last one saturates. In a

GPGPU-based many-core realization, swapping of saturated kernels is computationally

expensive due to the generated random memory accesses. To avoid this, the abridging

approximation technique described in Subsection 3.2.5 was employed.

4.2.3 Step 3—Pixel-cluster Assignment

The final step of a loop covers four main subtasks.
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First, the GBC values are updated, such that ∀i ∈ PI :

GBCi = max(GBCi,ΥKl(χi)). (4.7)

Second, for all elements in the GBC matrix that were modified by Equation 4.7,

the PCM is set to point to the corresponding kernel. This way if in the current loop a

new mode generated a higher bond confidence value for a given FSE, it is possible to

rebind the corresponding pixel to it.

Third, those elements of the LMV that have FSEs bound to them are added to the

GMV.

A natural termination point for the segmentation phase is when all elements of

the feature space are clustered. However, in the case of real-life images, the input

can contain a huge amount of thin gradients on the boundary of object and shaded

spatial regions with a small extent, such that after a certain level, additional kernel

initializations become highly suboptimal (see the progression of the coverage on the

subfigures displaying image coverage in Figure 4.1).

For this reason, the fourth and final subtask of the pixel-cluster assignment is the ex-

amination of the loop termination criterion (LTC). The second possible entry point for

top-down information injection is identified here: the selection of the LTC can be aided

in case there are task-specific assumptions. In general, one of the most straightforward

LTCs to choose is to check whether the number of unbound FSEs is under a certain

threshold (e.g. 1%) and assign the unassigned elements of the PCM matrix to the mode

that is closest to them (as discussed in Subsection 3.2.2). In the proposed framework,

the segmentation phase is terminated in case no sample was retrieved by step 1, i.e.

when the largest distance between a candidate sample and a non-candidate FSE was

less than β. Consequently, objects having a color different from their neighborhood are

detected in case the largest radius of their inscribed circle is at least β pixels, on the

other hand objects with an incircle radius less then β pixels do not necessarily remain

unbound. In case the LTC is not satisfied, a new loop is started, otherwise no more

kernels will be initialized in addition to the existing m =
∑L

l=1ml kernels.

Should the initial kernel positions be given a priori (e.g. by an oracle), then all

kernels could be initialized in a single loop and the result would be exactly the same as

with the method above. More formally, as a result of Equations 4.6 and 4.7, the GBC
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matrix will contain the maximal bond confidences for all FSEs:

Υ(χi) = max
j∈

⋃L
l=1Kl

(Υj(χi)), (4.8)

and accordingly

Ci = arg max
j

(Υj(χi)). (4.9)

At the time instant the LTC is met, the FSEs can have three different states de-

pending on their global bond confidence. An FSEi can show

1. strong similarity to mode Ci, if λ < Υ(χi);

2. loose similarity to mode Ci, if 0 < Υ(χi) ≤ λ;

3. no similarity to any mode, if Υ(χi) = 0.

By definition, strong similarity implies an existing pixel-cluster affiliation. An

FSE χi with 0 < Υ(χi) ≤ λ is bound to the mode to which it is loosely similar to.

Remaining FSEs are bound to the same mode as the FSE with the smallest spatial

distance from them, having a strong similarity.

The result of the sampling phase is an over-segmented output that is well-known

[79, 80] and widely used [6, 81, 82] in the image processing community. The output

cluster assigned to a pixel is defined by its PCM value, based on which the corresponding

color information can be retrieved from the global mode vector.

The termination of the segmentation phase is followed by the merging phase.

4.3 Merging Phase

The second phase of the framework is merging, which finalizes the output of the seg-

mentation by joining similar clusters. Cluster affinity can be a function of measured

properties in some metrics, including the features used in the segmentation phase. Here

is the third possible entry point for semantic information: the selection of these factors

can be aided in case a priori knowledge is available for a segmentation task having

specific priorities. The merging phase consists of recursive iterations, referred to as

rounds, with each of them incorporating the following three steps:
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Step 1. Calculation of adjacency information (see Subsection 4.3.1);

Step 2. Similarity description (see Subsection 4.3.2);

Step 3. Cluster merging (see Subsection 4.3.3).

A new round is initiated as long as there are clusters to be merged subject to the

applied similarity metric, such that the number of rounds (denoted by R) is determined

by the complexity of the input image. The brief description of the steps of merging is

given in the following.

4.3.1 Step 1—Calculation of Adjacency Information

Adjacency information is essentially a pre-filtering step. Clusters Ci and Cj are called

adjacent when ∃{a, b} ∈ PI : a 6= b,Ca = Ci,Cb = Cj , ‖xs,a − xs,b‖ ≤
√

2. This step is

beneficial for two reasons. The first is that in the subsequent steps topographically non-

adjacent clusters representing different objects with a similar color are not considered,

only neighboring clusters are allowed to merge. The second is that since upcoming

calculations of similarity are done for neighboring cluster pairs only, computational

demand is reduced.

4.3.2 Step 2—Similarity Description

This is the key element of the merging phase, because the clusters to be joined will be

selected based on the level of similarity calculated during this step. Due to the usage

of real-life images, the algorithmic detection of perceptual homogeneity is not straight-

forward. Among several other causes, the main sources of the complexity of this task

are luminance gradients caused by natural illumination, reflectance, and blurred color

gradients caused by finite depth of field, because these phenomena alter the perceived

color of pixels belonging to homogeneous regions. When considering a pair of clusters

to be merged, the following properties were taken into account:

1. Color assigned to the cluster modes;

2. Average color of pixel sets of the input image residing on neighborhood stripes.
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A joinder may occur if the clusters are similar enough with respect to either of these

properties. At first the distance of the color of the modes is measured using the linear

combination of the Euclidean and an angular metric, which was motivated by the work

of Wesolkowski [66] who used them for edge detection in color images.

Since the representation of a given color can substantially differ according to the

color space used, the discrimination potential of the utilized metric highly depends on

the space chosen. Consequently, the possible alternatives are discussed after the formal

definition of each metric to justify the setting present in the proposed system.

The Euclidean distance is the metric most often used to measure similarity, while the

vector angle proposed by Dony et al. [83] as a distance metric for colors is less known.

When no further clusters can be merged using this combined metric, the algorithm

tries to join the resulting bigger clusters based on the analysis of their corresponding

neighborhood stripes.

The Euclidean distance of clusters Ci and Cj is calculated in the following way:

dE(Ci, Cj) = ‖ψr,i − ψr,j‖, (4.10)

where ψr-s indicate the range information of modes belonging to adjacent clusters

Ci and Cj respectively. It defines similarity through the magnitude of the vectors.

When applied on the RGB space having three luminance-influenced channels, the metric

describes differences using both intensity, hue, and saturation, but hue separation does

not follow the human perception [66]. In case when chrominance-driven channels are

present besides a luminance-related channel (i.e. when using e.g. the YCbCr or the

Lab spaces), the metric characterizes differences of hue and intensity better.

The angular distance of clusters Ci and Cj with vector angle φ is calculated

dA(Ci, Cj) = 1− sinφ =

√√√√1−

(
ψTr,iψr,j

‖ψr,i‖‖ψr,j‖

)2

, (4.11)

namely, similarity is defined through the direction of the vectors. In the case of using

RGB color space, the value of the metric is sensitive to the differences in hue and

saturation, but can tolerate changes in intensity (illumination) well that is a desirable

characteristic in case real-life images are used. However, it is the value of the luminance-

driven channel that affects the output of the angular metric the most, when it is used

on color spaces with one luminance component and two chrominance channels with
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the hue also being a reliable descriptor. An important remark concerning the angular

metric is that the discriminative power of the vector angle becomes unreliable in case

any coordinate of either vector is small.

Since I am not aware of a work that provides numerical evaluation about the robust-

ness of these distances on real-life images, it is somewhat hard to unambiguously isolate

the strengths of the different metric-color space constellations in terms of saturation

and intensity. For this reason, I build upon my own experience. Table 4.1 summarizes

the favorable characteristics of the metrics used on different types of color spaces from

the aspect of utilizing them on real-life images.

Table 4.1: Favorable characteristics of the different metrics used on real-life images,

subject to the type of color space used. Boldface indicates the most beneficial properties

for the proposed multipurpose system.

RGB
One luminance channel,

two chrominance channels

dE Intensity Intensity, (Hue)

dA

Hue, Saturation,

(Good intensity

tolerance)

Hue

The Euclidean distance is utilized on the Lab color space, because of its good

capability of recognizing similarities especially in hue, which is heavily required for

robust color similarity detection. However, the angular distance is applied in the RGB

space, as this setting handles the merging of the similar-colored regions shaded by

natural illumination well. Since the angular distance utilizes the global mode vector,

color space conversion is done for 3m values, which is of low arithmetic demand.

The combined metric exploits the benefits of both the Euclidean and the angular

distance having robust intensity description and robust hue description capabilities,

respectively. To eliminate the weakness of the angular metric present at low intensities,

it would be straightforward to use an intensity-driven tradeoff parameter that favors

the Euclidean distance in case of such a color vector. Carron and Lambert [84] on
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the other hand suggested that color saturation is a more suitable tradeoff parameter.

They argued, that when the saturation is low, intensity is less sensitive to noise than

hue, thus the Euclidean distance characterizing intensity should be weighted more.

On the contrary, at a high saturation, intensity is more sensitive to noise, therefore

the angular distance—describing hue similarities—should be taken into account with a

higher proportion.

For this reason, the two metrics were combined through a homotopy:

dAE = ρ · dA + (1− ρ)dE , (4.12)

which is driven by the saturation parameter ρ of the observed mode color value, which

is calculated as

ρ =

√
C2
1 + C2

2 (4.13)

where C1 and C2 are chromatic channels that are obtained using the transformation

proposed in [84]:  Y

C1

C2

 =


1
3

1
3

1
3

1 −1
2 −1

2

0 −
√
3
2 −

√
3
2


RG
B

 . (4.14)

Using the mode color in the combined metric is beneficial for two reasons. In

addition to being computationally efficient due its compactness, its color represents a

weighted average of the colors of the pixels belonging to the cluster considered. As

a consequence of the second property, the mode color is especially useful in the case

of surfaces with quasi-homogeneous illumination or with a fine texture. Unfortunately

its descriptive power is limited from the aspect of merging in case of slowly evolving

gradients. Consider Figure 4.2 that contains a sematic example of a soft gradient

frequently present in an image containing natural illumination (e.g. in the sample

images in Figure 4.6 and in B.1).

The effect of segmenting this gradient is similar to quantization in a sense that

pseudo-linear intensity changes are estimated by a given number of discrete levels. Let

us say that due to the color similarity measured by dAE , adjacent clusters C1 and C2

and C3 and C4 got merged into cluster C5 and C6 respectively. As a consequence of the

color assigned to the newly composed clusters being constructed from the mode color

of their ancestors, the mode color of cluster C5 will be brighter than the mode color of

C2, while the mode of cluster C6 will be darker than C3. Depending on the selected
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𝐶5  𝐶6  

𝐶3 𝐶4 𝐶2 𝐶1 

𝐶7  

𝑑𝐴𝐸(            ) <  μ , 𝑑𝐴𝐸(            ) <  μ , 

𝑑𝐴𝐸            >  μ , 

𝑑𝑁      ,     <  μ 

Figure 4.2: A sematic example showing the merging procedure of segmented clusters,

encoding a slowly evolving gradient. The mode color ψr,i of cluster Ci is represented by

the color of the corresponding squares. dAE and dN indicate the color differences between

the clusters subject to the joint angular-Euclidean metric and the neighborhood stripes,

respectively. Despite belonging to the same region, the Euclidean distance of C5 and C6

exceeds the merging threshold µ, still the clusters get merged based on their similarity

subject to dN .

threshold of the applied metric, clusters C5 and C6 might not be considered similar

during a subsequent similarity check, despite the fact that originally they encode parts

of the same object, such that the area remains over-segmented.

The neighborhood stripes-based metric was designed to handle such cases.

Neighborhood stripes of a cluster pair consist of the immediate neighbors in both

clusters of the pixels belonging to the section of the border between the two clusters.

Formally, let Ck and Cl denote two adjacent clusters. Then, for cluster Ck, the subset

of pixels that reside on the neighborhood stripe of cluster Cl is denoted by P δkl and is

defined P δkl = {k : k ∈ Ck, k 6∈ Bδ
kl,∃j ∈ Bδ

kl, ‖xs,k − xs,j‖ < 2}, where Bδ
kl refers to the

boundary stripe of width δ and is defined as Bδ
kl = {k ∈ Ck : ∃l ∈ Cl, ‖xs,k−xs,l‖ < δ }.
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Output of the segmentation
phase(m = 159)

Output of the merge
phase(m = 32)
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Figure 4.3: An example showing the results of the segmentation and merging phases,

along with the most important matrices (in the form of map representations) used for the

procedures. Based on the global bond confidence values (GBC, bottom left), the pixels of

the input image (top left) are assigned to clusters (middle column) with the PCM matrix

pointing to the modes defining their color. Merging (right column) is done based on the

topography and color similarity of these clusters. The segmentation was done using the

OPTIMAL parametrization.

Finally, the distance of the neighborhood stripes is given by

dN (Ck, Cl) =

∥∥∥∥∥
∑

i∈P δkl
xr,i

|P δkl|
−
∑

j∈P δlk
xr,j

|P δlk|

∥∥∥∥∥ . (4.15)

The greater the blur we expect in an image, the higher the δ parameter should be.

All experiments were performed with δ = 2.

4.3.3 Step 3—Cluster Merging

At the end of each merging round, cluster joining is done in the case of clusters that

are adequately similar. Clusters Ci and Cj are adequately similar if they are adjacent,

and

dO(Ci, Cj) ≤ µ, (4.16)

where dO ∈ {dAE , dN} is the metric utilized in the given round, and µ is the merge

distance threshold.

Let us say that clusters Ci and Cj are adequately similar and are merged to form

cluster C(i;j) = {Ci ∪ Cj}. In this case:
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1. the mode color information of cluster C(i;j) is calculated as

ψr,(i;j) =
|Ci|

|Ci ∪ Cj |
ψr,i +

|Cj |
|Ci ∪ Cj |

ψr,j , (4.17)

2. the pixel-cluster mapping is refreshed, such that: ∀a ∈ C(i;j) : Ca = C(i;j).

If no adequately close clusters were found in the current round, the merging proce-

dure terminates and the framework returns the merged output, otherwise a new round

is initiated. It was found that using a lower µ in case of the neighborhood stripes gives

better results, consequently for this metric, the merge threshold was set to µ− 0.01 in

all of the experiments.

Figure 4.4 provides an analytical approach on displaying the influence of merge

distance threshold on the output, while Figure 4.5 gives a systematical approach by

showing an example for the practical effect of alternating the kernel bandwidths with

parameter µ selected proportional to hr. An important remark concerning the merg-

ing procedure is that although it reduces the over-segmentation, it cannot change the

fundamental cluster structure, because it works on clusters resulted by the segmenta-

tion phase. However, if the framework is used for a particular segmentation task, the

knowledge of the merger can easily be extended by task-specific rules, therefore this is

the fourth identified entry point of top-down information.

As the conclusion of this section, the main steps and the graphical representation

of the most important matrices used for the segmentation and merging phases are

displayed in Figure 4.3.

4.4 Experimental Design

In practice, more than a year passed between the evaluation of the parallel framework

and the adaptive-parallel extension. In the meantime not only the hardware environ-

ment changed, but a new generation of evaluation datasets had been released (these

are the BSDS500 and the WIDB). These datasets (especially the BDSD500) offered a

whole new set of conventional, uniformed metrics that are used as efficient tools for the

assessment of the capabilities of algorithms, and thus for their comparison.

Hence the adaptive system was analyzed using a wider palette of metrics (see

Subsection 2.5.4) and furthermore, a wider palette of analytical aspects (see Subsections
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Figure 4.4: Segmentation outputs for different values of the merge distance threshold

µ. Column 1 and 2 show the input image and the output of the segmentation phase,

respectively. Merged images in columns 3 to 6 are obtained from the segmented image

shown in column 2 by altering µ only.
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Input image Output images
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Figure 4.5: Sample output images for different spatial and range bandwidths, with the

merge distance threshold µ = hr + 0.02.

2.5.1 and 2.5.2) into which the experience gained during the high resolution measure-

ments made on the parallel framework was incorporated.

4.4.1 Hardware Specifications

The evaluation was performed on a PC equipped with 12GB of RAM, an Intel Xeon

E5606 quad-core CPU clocked at 2.13GHz. The parallel framework used an nVidia

580GTX GPGPU containing 1.5GB of device memory and 512 stream processors (see

Table 3.1).

4.4.2 Environmental Specifications

The environmental specifications used for the assessment of the adaptive framework

were essentially the same as discussed in Subsection 3.3.3. A notable difference however
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is that all steps of the adaptive procedure utilized the Lab color space [77] unless it was

indicated differently.

4.4.3 Experiments on Public Datasets

The training set of the BSDS300 was used to find generally eligible values for parameters

hs, hr, µ and A. Output segmentations were generated for all 100 training images

using all parameter combinations of hs = [0.02, 0.05], hr = [0.02, 0.05], µ = [0.05, 0.08]

with step size being 0.01 and A = {0.6, 0.8, 1.0}. The output was evaluated for all

240 parametrizations using the provided metrics, finally, an ordered sequence of the

goodness of a parameter setting was given by assigning the following weights to the

values of the metrics: wC = 0.3, wtime = 0.3, wPRI = 0.175, wF = 0.175, wV I = 0.05,

that is, the main priority of parameter selection was the coverage metric and the running

time demand.

Based on the evaluation the parameters (hs, hr, µ,A) were selected to be

(0.02, 0.05, 0.06, 0.6) respectively5. All results marked with OPTIMAL for the different

assets of the Berkeley and Weizmann datasets were obtained using this parametrization.

These results demonstrate the standard capabilities of the framework. Additionally,

the best results achieved for the different quality metrics are reported under the label

BEST.

By observing the OPTIMAL setting from the aspect of the mean shift calculation,

the kernel bandwidths describe a mean shift kernel window that performs heavily blur-

ring Gaussian low-pass filtering in the color domain within a small spatial area. The

value of µ is very close to hr, so they meet the µ = hr recommendation appearing

in [1]. The chosen abridging parameter ensures an optimal tradeoff between output

quality and running time. The OPTIMAL setting offers advantages and disadvantages

regarding output quality that are briefly summarized in the upcoming three paragraphs.

This setting works effectively in smoothing fine texture patterns such as grass, water,

concrete or sand: such image regions are blurred due to the large color bandwidth, thus

cluster fragmentation is relatively low in these areas. Similarly, most local shadings,

which often appear due to natural lighting, are tolerated well. Due to the relatively

5Note: since the obtained bandwidth parameter values reside on the extrema of the evaluation

intervals, further tests using a parameter domain enhanced with hr = 0.055, hs = 0.015 were carried

out, but did not provide better overall results than the OPTIMAL setting.
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small spatial bandwidth the intra-cluster color difference between segments encoding

slowly evolving gradients (see Subsection 4.3.2) is small, thus they can be concatenated

during the merging phase.

Furthermore, the system can retrieve objects of small spatial dimensions in case

they have a salient photometric representation. Such regions may contain important

information, but in some cases they are not represented in ground truth images. Since

most quality metrics punish over-segmentation at least as much as under-segmentation,

the appearance of these additional details in the segmented image usually leads to

lower output quality scores (see e.g. the third column of Figure 4.6). For this reason,

judgement of the importance of detecting such small but salient segments in the BSDS

is ambiguous.

On the other hand, many images of the BSDS contain foreground objects that have

very similar color to one another and to the background, and are often separated by

hardly visible contours. As the large color bandwidth of the OPTIMAL setting may

eliminate such weak contours, cluster boundaries will not always match the borders

of semantic objects in these cases. Efficient detection of such boundaries is possible

only if additional cues (such as texture, depth information or the result of a multiscale

analysis) are available [16], or high-level knowledge (either a priori or learned) can be

integrated.

4.4.4 Experiments on High Resolution Images

To provide reference to the measurements concerning both the output quality and the

running time, the EDISON system [60] was used to segment the high resolution image

set. Segmentations were generated with all combinations of parameters hs = [20, 40]

with a step size of 5, hr = [7, 13] with a step size of 2 and M = [100, 700] with a step

size of 200 and the high speedup setting with the speedup value parameter left on the

default value, 10.

A group of 15 participants were asked to select those segmentations from the resulted

outputs, which they found to be perceptually the best. Next, for each participant, a list

of the five parametrizations resulting in the highest number of selections in a descending

order was composed. A score was assigned to each position on these lists, such that the

ith position was worth a score of (6− i)/5. Finally the score for each parametrization

was summarized and the parameter constellation with the highest score was selected to
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be the setting for the EDISON system to create the reference segmentation. Due to the

utilized speedup parameter, this setting is referred to as the high setting. For the sake

of a complete runtime analysis, the segmentation was done with the same (hs, hr,M)

parametrization with no speedup applied. This parameter constellation is referred as

the näıve setting.

Next, the framework was run on the high resolution set using the following parame-

ter combinations: hs = 0.026, hr = [0.02, 0.05] using step size 0.015 and µ = [0.05, 0.08]

with step size 0.01. The abridging parameter was set to 0.6 to ensure fast computation.

Again, the help of human participants was used to find the appropriate parametriza-

tion. In this case their task was to select images that were the most similar to the

output of the reference segmentation. The construction of ordered lists and the assign-

ment of scores to list elements were made in the same way as before, such that the

parameter setting generating the most similar segmentation outputs subject to human

perception was obtained.

Based on this evaluation, the best overall score for the proposed framework mea-

sured on the high resolution image set was resulted in using the (hs, hr, µ,A) =

(0.02, 0.035, 0.06, 0.6) setting, thus it is referred to as setting HD-OPTIMAL, which was

used for the subsequent analysis. This parametrization is very similar to the OPTIMAL

setting, but in this case the range bandwidth parameter is smaller. The observation

was that whereas the OPTIMAL parametrization provides a relatively under-segmented

output that is desired by the BSDS, human perception leans towards preserving more

details appearing only using a smaller hr bandwidth.

After determining the settings for both frameworks, the analysis of running time

results was performed on both the high resolution image set, and its three subsets

formed based on the kappa-indices. The aim of the subset analysis is to show that

the framework adaptively accelerates the segmentation procedure with respect to the

amount of content in the image. The three classes created are as follows:

Class A: Images with 1 ≤ κ < 2.5, containing large, homogeneous surfaces and/or

few objects and/or few details.

6The selection of system parameters used for the high resolution measurements was aided by the

experience collected during the exhaustive measurements made on the BSDS300, e.g. it was found to

be superfluous to try larger values for hs, since the resolution is higher.
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Class B: Images with 2.5 ≤ κ < 3.5, containing homogeneous surfaces and/or a con-

siderable number of objects and/or details.

Class C: Images with 3.5 ≤ κ ≤ 5, containing plenty of details and a lot of elaborated

objects.

4.5 Results

The framework was evaluated both for low and high resolution image sets separately

due to the reasons discussed in Section 2.5.

The first batch details the results obtained using the public datasets and the metrics

summarized above. The aim of these results is to provide complete, detailed, and

comparable numerical quality assessment of the adaptive framework.

In the second batch the results obtained on the high resolution image set are ex-

amined. In this case the aim is to demonstrate that the framework provides an output

quality similar to the publicly available reference implementation, but works faster.

Furthermore, the running time demand of the system adapts to the content of the in-

put image, and its relative standard deviation is much lower compared to the reference

system.

An important note is that since the core of the framework remained the same, the

results displayed by Figures 3.9 and 3.10 apply to the adaptive system as well, although

the type of the CPU was different.

4.5.1 Evaluation on Public Datasets

Table 4.2 displays the results of the region measurements on the BSDS300 and on the

BSDS500 datasets along with results of other mean shift-based approaches provided in

the literature.

In [16], [36] and [85] the original Comaniciu and Meer mean shift method [1] was

used for the related measurements. In [16] and [85] the applied parameter setting is

not specified, whereas the authors of [36] run the evaluation using all combinations of

hs = [7, 16], hr = [3, 23] with regular step sizes on the dataset that contained images

with the longer edge reduced equally to 320 pixels. They found the setting giving the

7Note: quality assessment was done using images with the longer edge reduced equally to 320

pixels.

92

DOI:10.15774/PPKE.ITK.2013.005



4.5 Results

T
a
b

le
4
.2

:
R

eg
io

n
b

en
ch

m
ar

k
re

su
lt

s
of

d
iff

er
en

t
m

ea
n

sh
if

t
va

ri
an

ts
on

th
e

B
S

D
S

30
0

an
d

th
e

B
S

D
S

50
0.

T
h

e
d

is
p

la
ye

d
m

et
ri

cs

ar
e

se
gm

en
ta

ti
on

co
ve

ri
n

g
(C

ov
er

in
g
),

p
ro

b
a
b

il
is

ti
c

R
an

d
in

d
ex

(P
R

I)
an

d
va

ri
at

io
n

of
in

fo
rm

at
io

n
(V

I)
.

S
y
st

em
p

ar
am

et
er

s
w

er
e

st
at

ic
p

er
im

a
ge

se
t

fo
r

th
e

O
p

ti
m

al
D

at
as

et
S

ca
le

(O
D

S
),

or
st

at
ic

p
er

im
ag

e
fo

r
th

e
O

p
ti

m
al

Im
ag

e
S

ca
le

(O
IS

),
w

h
er

ea
s

B
es

t

co
ve

ri
n

g
w

as
ob

ta
in

ed
u

si
n

g
an

y
le

ve
l

fr
om

th
e

se
gm

en
ta

ti
on

h
ie

ra
rc

h
y.

B
E

S
T

va
lu

es
re

p
re

se
n
t

th
e

b
es

t
va

lu
es

ob
ta

in
ed

u
si

n
g

th
e

w
h

ol
e

te
st

p
ar

am
et

er
sp

ac
e

o
f
h
s
,h

r
,µ
,A

,
O

P
T

IM
A

L
va

lu
es

ar
e

ob
ta

in
ed

u
si

n
g

fi
x
ed

p
ar

am
et

er
s

op
ti

m
iz

ed
on

th
e

tr
ai

n
in

g
se

t
of

th
e

B
S

D
S

30
0.

M
ea

su
re

m
en

ts
m

a
rk

ed
w

it
h

an
as

te
ri

sk
(*

)
w

er
e

m
ad

e
u

si
n

g
th

e
sy

st
em

d
es

cr
ib

ed
in

[6
0]

w
it

h
d

iff
er

en
t

p
ar

am
et

ri
za

ti
on

s.

B
S

D
S

30
0

B
S

D
S

5
0
0

C
ov

er
in

g
P

R
I

V
I

C
ov

er
in

g
P

R
I

V
I

O
D

S
O

IS
B

es
t

O
D

S
O

IS
O

D
S

O
IS

O
D

S
O

IS
B

es
t

O
D

S
O

IS
O

D
S

O
IS

K
im

*
[8

5]
-

-
-

0.
79

6
-

1.
97

3
-

-
-

-
-

-
-

-

A
rb

el
áe
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4. ADAPTIVE EXTENSION

best output quality to be (hs, hr) = (13, 19). The reason of the lower quality values

compared to the ones in [16] might be the lower resolution used. As it is displayed in

Table 4.2, despite the sampling scheme used, the output quality of the framework is

comparable to the original mean shift in terms of the measured region metrics.

Table 4.3 displays the results of boundary measurements on the BSDS300 and on

the BSDS500 datasets along with results of other mean shift-based approaches provided

in the literature.

Table 4.3: Boundary benchmark results of different mean shift variants on the BSDS300

and the BSDS500. The F-measure values have been measured with two parametrizations,

either static per image set for the Optimal Dataset Scale (ODS), or static per image for

the Optimal Image Scale (OIS). AP denotes Average Precision. BEST values represent

the best values obtained using the whole test parameter space of hr, hs, µ,A, OPTIMAL

values are obtained using fixed parameters gained on the training set of the BSDS300.

Measurements marked with an asterisk (*) were made using the system described in [60]

with different parametrizations.

BSDS300 BSDS500

F-measure
AP

F-measure
AP

ODS OIS ODS OIS

Luo* [49] 0.673 - - - - -

Arbeláez* [16] 0.63 0.66 0.54 0.64 0.68 0.56

BEST 0.614 0.625 0.525 0.624 0.650 0.541

Paris [37] 0.61 - - - - -

OPTIMAL 0.600 0.612 0.456 0.615 0.637 0.479

Varga [86] 0.582 - - - - -

Kim* [87]8 0.551 - - - - -

The result of [49] in Table 4.3 was obtained using the mean shift explained in

[1] (reported parameters are: hs = max(4,min(height, width)/100), hr = 5,M =

20, speedup = 20) for the segmentation phase, and their own multiscale merging pro-

cedure. [87] also utilized the mean shift algorithm as discussed in [1] with parameters

(hs, hr,M) = (7, 6.5, 384) on images resized to 240 × 160 pixels to provide reference

results to their work focusing on graph cut. Note that instead of the whole test set of

8Note: quality assessment was done using 60 hand-picked images with the longer edge reduced

equally to 240 pixels.
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Table 4.4: F-measure results of different mean shift variants measured on the single-

object Weizmann dataset. The foreground was fitted both with a single best-matching

cluster provided by the segmenter and the union of multiple segments with an area consid-

erably overlapping with it. System parameters were static per image set for the Optimal

Dataset Scale (ODS), or static per image for the Optimal Image Scale (OIS). Results are

displayed with the corresponding ξ values referring to the average number of segments.

BEST refers to results obtained using the whole test parameter space of (hs, hr, µ,A),

OPTIMAL refers to results obtained utilizing fixed parameters derived using the training

set of the BSDS300. Note: both parametrizations used the color version of the images sup-

plied with the database. The measurement marked with an asterisk (*) was made using

the system described in [60].

Single segment Multiple segments

ODS OIS ODS ξ OIS ξ

BEST 0.682 0.781 0.914 25.91 0.944 18.510

OPTIMAL 0.618 - 0.859 10.820 - -

Alpert* [69] 0.57 - 0.88 12.08 - -

the BSDS300, the quality assessments provided in this paper were made using 60 hand

picked images from this set.

Figure 4.6 shows a few examples for the output of the proposed framework. The

displayed images are from the BSDS500, the used setting is the OPTIMAL. Additional

examples can be found in Appendix B.

Table 4.4 displays the results of the boundary measurements on the Weizmann

dataset along with the mean shift scores published in [69].

The results in this paper were obtained using the mean shift as published in [1]

with no parametrization discussed. The proposed framework was not retrained for the

WIDB, such that the parametrization used for quality assessment was the same as in

the case of the Berkeley datasets. However, it is noted that since in this dissertation

the focus is on color segmentation, quality evaluation was performed on the color ver-

sion of the database images that are also a part of the downloadable package. As the

consequence of the presence of the additional chrominance information the discussed

algorithm reached a slightly better ODS value in the single segment case. When ap-

plying the OPTIMAL parametrization in the multi-segment case, the ODS value of the

F-measure is somewhat worse than the result published in [69], but the fragmentation

95

DOI:10.15774/PPKE.ITK.2013.005



4. ADAPTIVE EXTENSION

In
p
u
t

im
a
g
e

S
eg

m
en

te
d

im
a
g
e

m = 287 m = 244 m = 263

M
er

g
in

g
u
si

n
g
d
A
E

m = 67 m = 44 m = 54

O
u
tp

u
t

(u
si

n
g
d
A
E

a
n
d
d
N

)

m = 58, F = 0.75 m = 31, F = 0.65 m = 41, F = 0.34

G
ro

u
n
d

tr
u
th

re
fe

re
n
ce

Figure 4.6: Segmentation examples from the test set of the BSDS500. The first row

contains the input images, rows 2 to 4 show the results obtained at the end of certain

stages of the procedure. The number of clusters is denoted by m, the F-measure of the

segmentation output is denoted by F . Row 5 shows the boundaries of multiple ground

truth segmentations provided as reference, with different colors. Segmentation was done

using the OPTIMAL parametrization.
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in my case is smaller. OIS results are also provided along with the best results obtained

for each measurement (displayed as BEST in Table 4.4). In the case of the multiple-

segment evaluation, the only priority of parameter selection were the ODS and OIS

values of the F-measure, consequently, the fragmentation is large.

4.5.2 Evaluation on High Resolution Images

Figure 4.7 and 4.8 show examples from the high resolution image set along with the

output of the two phases of the proposed framework using the HD-OPTIMAL setting

and the reference output obtained using the high setting. Additional examples can be

found in Appendix C.

The clusters in the segmented images illustrate the behavior of the content-adaptive

scheme: most regions that are quasi-homogeneous (e.g. sky, asphalt, grass, water

surface etc.) are loosely sampled (characterized by large clusters), whereas crowded

areas are clustered using many kernels, thus details are preserved (characterized by

smaller clusters).

As the merged images show, the framework can handle most of the illumination-

caused soft gradients, as such image regions are joined into the same cluster. Boundaries

are accurate even for those objects that have many fine curves or tiny holes in them

(such as foliage, or the details of windows on buildings). Such accurate boundaries

are beneficial in case of e.g. an object detection task, when segmentation is instantly

succeeded by classification, because only minor post-processing steps might be required

to remove pixels not belonging to the object. The downside is that the presence of holes

can lead to over-segmentation. To handle this problem, the algorithm of Comaniciu

and Meer allows the user to select the smallest significant feature size (see Subsec

2.3.3). However, my experiences indicate that the proper selection of this parameter is

very hard in the megapixel domain. The weakness of the proposed algorithm is that

shadows, intensive shadings, and pixels that reside on, or close to object boundaries

and thus are darker than their surround may cause unwanted over-segmentation. This

is a problem commonly appearing in computer vision algorithms that work on natural

images, and whereas it is well-studied in the case of image streams [88], the difficulty

remains for single images, in which the integrated white condition [89] may not hold.

Hue is considered to be a relatively reliable feature for this task, and the angular
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Figure 4.7: Segmentation examples from the high resolution image set. Input images

are found in row 1, row 2 shows the output of the segmentation phase using the HD-

OPTIMAL parametrization. Merged images can be seen in row 3, finally, row 4 contains

the segmentation results of the reference system using the high setting. For the sake of

visibility, cluster boundaries are marked with black or white (depending on which is more

salient). The kappa-index (κ) is indicated for each image, along with the running time (t)

of the algorithms.
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Figure 4.8: Segmentation examples from the high resolution image set. Input images

are found in row 1, row 2 shows the output of the segmentation phase using the HD-

OPTIMAL parametrization. Merged images can be seen in row 3, finally, row 4 contains

the segmentation results of the reference system using the high setting. For the sake of

visibility, cluster boundaries marked with black or white (depending on which is more

salient). The kappa-index (κ) is indicated for each image, along with the running time (t)

of the algorithms.
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Table 4.5: Statistical results on the 103-item set of 10 megapixel images using the HD-

OPTIMAL setting. As a reference the running times of the mean shift algorithm of Meer

and Comaniciu [1, 60] are displayed using the high speedup setting and the no speedup/näıve

setting. The speedup factor compares the running time of the proposed framework to the

high setting of the reference system.

Mean running time (s) Average

speedupThe proposed

system

Reference9

(High setting)

Reference9

(Näıve setting)

Mean 18.01 320.01 23366.06 18.58

Std. dev./

(Relative)

10.73

(59.59%)

277.46

(86.71%)
7385.67 14.26

distance separates differences in hue well. Unfortunately, the robustness of the angular

metric becomes unreliable in the case of dark regions (see Subsection 4.3.2).

Table 4.5 displays the running time results measured on the high resolution image

set consisting of 103 items.

As the table shows, it takes 18.01 seconds on average for the framework to segment

a 10 megapixel image. This means, that the parallel system utilizing the many-core

GPGPU completes the task 18.58 times faster than the publicly available reference

implementation using the high speedup setting9. While the relative standard deviation

of the reference system compared to its average running time is 86.71%, the same

parameter is 59.59% in the case of the discussed framework, meaning that the system

is more robust concerning the running time required for the segmentation task. For the

sake of a complete comparison, Table 4.5 also contains the running time of the mean

shift method with no speedup at all.

Measured on the whole high resolution image set, the correlation between the kappa-

index and the number of kernels utilized per image by the proposed algorithm is 0.694,

which indicates that there is a strong connection between what human image annotators

pointed out, and what the framework indicated as image content.

9 The precompiled version of the reference system (available from

http://coewww.rutgers.edu/riul/research/code/EDISON/) was used that employs two discrete

CPU cores.
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For additional investigation of the content-adaptive property, Table 4.6 displays

the attributes of the three classes and the main numerical results measured using the

proposed framework and the reference system.

Table 4.6: Statistical results on the three subsets containing 10 megapixel images. Subsets

are based on human ratings of the complexity of image content, from images with only a

few details/objects (Class A) to images with lots of objects/details (Class C ). The average

speedup compares the running times of the framework using the HD-OPTIMAL setting

with the reference system using the high setting.

Mean running time (s) Average

speedup

Average

no. of

kernels

No. of

imagesThe proposed

system

Reference9

(High setting)

Reference9

(Näıve setting)

Class A 12.85 204.22 23273.47 15.54 599.43 30

Class B 14.84 344.63 23371.93 22.24 674.38 45

Class C 28.62 404.49 23455.82 15.96 1101.18 28

The system achieves the highest relative speedup in the case of Class B that contains

images with medium amount of information content. The reason for the speedup peak

is that compared to the running times measured on Class A, the reference system

requires 68.75% more time, while the proposed framework slows down by only 15.45%.

The speedup gap gets smaller in the case of Class C that contains images with the most

information, but the adaptive algorithm manages to operate almost 16 times as fast as

the reference system using the high setting.

The correlation between the kappa-indices and the running times per image on the

103-element dataset was calculated. In the case of the reference system a correlation

of 0.281 was measured, which indicates a weak connection, while in the case of the

proposed framework the correlation is 0.676, which is almost as high as the correlation

with the number of kernels. The numbers indicate that as the amount of image content

grows, more and more kernels are used by the proposed framework to retrieve informa-

tion. Paired with the running times, the results show that a more simple and mostly

homogeneous image is segmented relatively quickly using only a few kernels, whereas

the algorithm uses more kernels, and thus can retrieve more information, if the image

contains many objects with fine details.
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4.6 Conclusion

In this chapter the adaptive extension of the parallel segmentation algorithm considered

in Chapter 3 was discussed. The framework utilizes dynamical sampling that can

determine both the number and the topographical position of the considered samples

with respect to the content of the image. The main benefit of this adaptive system is

that inhomogeneous image regions containing many details are densely sampled, thus

such compressed information is kept in the output, while homogeneous regions are

loosely sampled, such that the segmentation of these regions is very fast. Non-sampled

pixels are assigned into clusters subject to a nonlinear similarity metric that considers

both color similarity and spatial distance and is calculated without overhead. This

approach makes the adaptive algorithm especially adequate for high resolution inputs.

In addition to the speedup due to the content-aware sampling, the parallel design

of the proposed framework enables it to exploit the computation potential present in

many-core processing units, thereby allowing for even faster processing.

The capabilities of the framework were assessed on multiple publicly available seg-

mentation databases that use various metrics to measure segmentation quality. It was

found that the output quality of the adaptive system is comparable to the existing

mean shift-based segmenters. As I am aware of no conventional evaluation database in

the high resolution image domain, several human subjects were asked to compare the

output quality of the proposed system to the output of a publicly available reference im-

plementation using a set of high resolution images. Based on this evaluation, the output

quality remained comparable to the reference, but as numerical analysis demonstrated,

the adaptive system provides output an order of magnitude faster. Additionally, hu-

man subjects were asked to rate the amount of the useful content in the high resolution

images. Correlation analysis of the running time of the framework and the rates as-

signed to the images shows that the amount of speedup is proportional to the amount of

details present in the images. My future work includes further investigation of a novel

high resolution dataset that is suitable for the comparison of segmentation algorithms,

moreover I plan to study the possibilities of constructing a metric that can measure

image content.

The proposed system has been evaluated using generic, everyday images, however

the modular design of the framework allows it to be enhanced with a priori information
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or task-specific rules. Highlighted points of knowledge injection include the following:

addition of new heuristics and/or strategies in the sampling step (e.g. depending on

certain properties of a region, such as its color, shape, or size, sampling can be more/less

dense); selection of the loop termination criterion (e.g. loops can be terminated after a

cluster with certain properties—color, shape, size, texture—is formed); rules applied in

the merging phase (e.g. the merge threshold for colors with certain hue/intensity/value

can be adjusted adaptively to be more strict/loose, or other color spaces and/or more

advanced metrics can also be used).
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Chapter 5

Summary

5.1 Methods of Investigation

For the design of the algorithmic background, I relied on the literature available on

kernel density estimation, sampling theory, Gaussian mixture modeling, color space

theory, similarity metrics and parallel algorithmic design.

For the first batch of evaluations, I considered three major analytical aspects that

are most frequently taken into account for an extensive assessment of a segmentation

framework. These are the following: running time demand (the amount of time re-

quired to provide the clustered output from the input image); output accuracy (can be

measured using several different metrics that compare the output of our system to a

ground truth); and physical resolution (equivalent to the number of input image pixels).

As one of my primary aims was to provide results that are comparable to the ones

published in the literature, I used publicly available, well-known datasets [16, 62, 69] for

the analysis of output quality. These databases have the advantage of providing a huge

variety of standardized metrics (including Segmentation Covering [90], Probabilistic

Rand Index [68], Variation of Information [36], F-measure [91], Average Precision [92],

and Fragmentation [69]) in a unified evaluation framework.

However, these benchmarks contain images of relatively low resolution, therefore

their applicability to the other two mentioned aspects is limited. Since the results

measured on the datasets referred to above can not be extended in a straightforward

manner onto images of higher resolution, I compiled two additional high resolution

image sets, both containing real-life images taken in natural environmental conditions
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and depicting objects of various scales. The first set consists of 15 high quality images

in five different resolutions (see Table 3.2 for image specifications).

I used this set and a variety of general-purpose computing on graphics processing

units (GPGPU) (see Table 3.1 for device specifications) to assess the running time and

the algorithmic scaling of my framework. The evaluation made on this dataset con-

firmed my hypothesis that in the case of lossy, sampling-based segmentation algorithms,

for a more complete evaluation a fourth analytical aspect, namely, the image content,

should be taken into account. Consequently, I composed a second image set of 103 im-

ages with each having a resolution of 10 megapixels. In the case of the measurements

made using this set, the main dimension of evaluation was not how the alternation of

resolution influences the running time, but how the varying amount of content does.

My framework was implemented in MATLAB [93] and I used the Jacket toolbox

developed by AccelerEyes [94]. This package enables the high level MATLAB code to

run on the GPU, using a CUDA-based [95] back end. The advantage of the toolbox

is that it provides the possibility of rapid prototyping, however, the initialization and

fine adjustment of CUDA kernels remain hidden from the user. The statistical analysis

was done using MATLAB and Microsoft Excel [96].

5.2 New Scientific Results

THESIS I. Parallelization and implementation of a bottom-up image seg-

mentation algorithm on a many-core architecture.

Most present-day photo sensors built into mainstream consumer cameras or even

smartphones are capable of recording images of up to a dozen megapixels or more.

In terms of computer vision tasks such as segmentation, image size is in most cases

highly related to the running time of the algorithm. To maintain the same speed

on increasingly large images, image processing algorithms have to run on increas-

ingly powerful processing units. However, the traditional method of raising the

core frequency to gain more speed—and computational throughput—has recently

become limited due to the effect of high thermal dissipation, and the fact that

semiconductor manufacturers are attacking atomic barriers in transistor design.

For this reason, future trends of different types of processing elements—such as
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digital signal processors, field programmable gate arrays or GPGPUs—point to-

wards the development of multi-core and many-core processors that can face the

challenge of computational hunger by utilizing multiple processing units simulta-

neously. However, these architectures require new algorithms that are not trivial

to bring to effect.

Related publications of the Author: [86, 97, 98].

I.1. I parallelized the mean shift segmentation algorithm, which this way

became capable of exploiting the extra computational power offered by

many-core platforms. I applied the method to several different general-

purpose computing on graphics processing devices and showed that the

acceleration resulting from the parallelized structure is proportional to

the number of stream processors.

I designed an image segmentation framework that performs mean shift iter-

ations on multiple kernels simultaneously. By implementing the system on

a many-core architecture and assessing it on multiple devices having various

number of stream processors I have experimentally proven that the parallel

algorithm works significantly faster than its sequential version, furthermore,

raising the number of processing units results in additional acceleration.

Figure 3.9 displays the speedup of the mean shift core of the system

compared to a CPU (Intel Core i7-920 processor clocked at 2.66GHz).

I.2. Through the analysis of the overhead caused by the parallel scheme

I showed that by the early termination of kernels requiring remarkably

more computations than the average, one can gain significant accel-

eration, while at the same time, segmentation accuracy hardly drops

according to the metrics generally used in the literature.

I found that it is not feasible to isolate saturated modes and replace them with

new kernels in a “hot swap” way, due to the characteristics of block processing.

I proposed a method (named abridging) to reduce the overhead caused by

parallelization. I validated the relevance of the scheme through quality (see

Figure 3.3) and running time evaluations made on the Berkeley Segmentation
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Dataset and Benchmark [62] and on a set of high resolution images (see Figure

3.6).

I.3. I created an efficient, parallel cluster merging algorithm that can

decrease the over-segmentation of segmented images by using color and

topographic information.

The concept of over-segmentation is well-known [79, 80] and widely used

[6, 81, 82] in the image processing community. The main advantage of this

scheme is that it makes the injection of both low and high-level information

easy, thus the final cluster structure can be established using a set of rules

that describe similarity with respect to the actual task. I have designed and

implemented a parallel method for the computation of cluster neighborhood

information and color similarity. Figure 4.6 shows a few examples of the

results of the segmentation and merging procedures.

THESIS II. Adaptive, image content-based sampling method for nonpara-

metric image segmentation.

It is straightforward that the resolution of an image directly influences the running

time and the output accuracy of a segmentation algorithm. But in case of lossy

algorithms, the change in these two characteristics is not totally explained by the

resolution because the distribution and amount of information in real-life images

is very heterogeneous (see Figure 1.1), thus the results may depend on the char-

acteristics of the input rather than the generic capabilities of the algorithm. From

the aspect of computational complexity, the obvious priority here is to minimize

the number of samples, but simultaneously we have to keep in mind that under-

sampling introduces loss in image detail, whereas unnecessary over-sampling leads

to computational overhead. To overcome these problems, I present the following

contributions.

Related publication of the Author: [99].

II.1. I defined an implicitly calculated confidence value that is used as a

heuristic for the adaptive sampling and at the same time is a sufficient

guideline for the classification of image pixels.
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5.2 New Scientific Results

I gave a single-parameter system that registers the strength of the bond

between a pixel and the mode of a cluster, based on their spatial distance

and color similarity. This way each picture element is associated with the

class having the most similar characteristics. The key element for both the

sampling procedure and the voting algorithm is the bond confidence value

that is calculated implicitly during the segmentation without introducing any

overhead.

II.2. I developed a sampling scheme guided by the content of the im-

age that adaptively chooses new samples at the appropriate location

in the course of the segmentation. By evaluating my framework on

both my high resolution dataset and on publicly available segmenta-

tion databases, I verified numerically that the quality indicators of the

adaptive procedure are almost identical to those of the näıve method

(employed on all pixels) subject to all prevalent metrics, but at the

same time the computational demand is remarkably lower.

My segmentation algorithm utilizes adaptive sampling such that the sampling

frequency is based on local properties of the image. Homogeneous image re-

gions get clustered fast, initializing only a few large kernels, while spatially

non-uniform regions, carrying fine details are processed using a larger number

of smaller kernels that provide detailed information on them. While preserving

the content of the image, this intelligent scheme reduces both the computa-

tional requirement and the memory demand, enabling the segmentation of high

resolution images as well.

I showed via extensive output quality evaluation involving various metrics

[36, 68, 69, 90, 91, 92] on multiple datasets [16, 62, 69] that despite the fact that

my algorithm uses sampling, the segmentation quality it provides fits in well

among the publicly available alternatives built on the mean shift segmentation

procedure.

I performed running time measurements on a set of 103 high resolution

images. To cope with the lack of ground truth required for quality assessment,

human subjects were asked to select the parametrization with which the best

output quality of the most popular, publicly available reference segmenter [60]
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5. SUMMARY

was obtained, and the parametrization of my framework that results in the

most similar output to that of the reference. Running time results measured

on the dataset using these settings are shown in Table 4.5.

II.3. I created a measure to characterize the complexity of the content

of images, and through high resolution time assessment and correlation

analysis carried out between the running times and the amount of con-

tent indicated by my metric, I have empirically verified the adaptive

behavior of my method, namely that the segmentation of images having

less content is faster.

I defined a subjective, perception-based degree named the kappa-index. For a

given image, it is calculated as the mean of ratings provided by human subjects,

who are asked to assess the amount of useful content on a scale from 1 to 5,

where 1 means a “sparse image that contains only a few objects and large,

homogenous regions”, and 5 refers to a “packed image having many identifiable

details and rich information content”. For each image in the 103-element high

resolution dataset, the average rating of 15 participants was calculated and

three subsets were formed based on the kappa-indices that represent the average

amount of information in the images. Table 4.6 shows the running time results

measured on the subsets.

Measured on the whole high resolution image set, the correlation between

the kappa-index and the number of kernels utilized per image by my algorithm

is 0.694, which indicates that there is a strong connection between what human

image annotators pointed out, and what my framework indicated as image

content.

5.3 Application of the Results

The methods presented in my dissertation can be applied as an intermediate step in

several different assignments of pattern recognition, object detection, and high-level im-

age understanding. The segmentation algorithm has already been applied successfully

for two real-life scenarios.
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5.3 Application of the Results

The first is the detection of crosswalks [98] that is a key task within the Bionic

Eyeglass Project [100], an initiative that aims at giving personal assistance to the visu-

ally impaired in everyday tasks. The heart of this system is a portable device that, by

analyzing multimodal information (such as visual data, GPS coordinates and environ-

mental noises), is able to identify and recognize several interesting objects and patterns

(e.g. clothes and their colors, pictograms, banknotes or bus numbers) and situations

(e.g. incoming bus at the bus stop, or environments such as home/street/office). The

information provided by this sensorial input can be injected into my algorithm in the

form of merging rules, among others. For example, if the system can localize the po-

sition of the user via GPS coordinates, the rule set of the segmenter can be extended

dynamically to compose objects (such as lamp posts or signs) with particular (color

or shape) properties. Detection robustness can be enhanced this way, as many false

positives are filtered out. As of now, smartphones offer not only a remarkable arsenal

of sensors, but state of the art devices are also equipped with mobile GPUs that can

be utilized by my parallel framework.

In the second case, my system was used in an early prototype of the Digital

Holographic Microscope Project [101] that aims at developing an environment

(hardware-software system) that is capable of autonomous water quality surveillance.

To ensure robust detection, segmentation, and classification of different foreground ob-

jects (such as algae, pollens, or dust) from the background, the final version of the envi-

ronment will use several different data sources including volumetric data (obtained via

digital color holography) and material obtained with color and fluorescent microscopy.

My framework was successfully used to segment the input provided in the form of a

video frame sequence obtained using color light microscopy and fluorescent microscopy

[102]. To ensure fast computation, the planned back-end system will be powered by

specially designed many-core processors that again could be employed by my algorithm.

Since the feature space my system works on is also a matter of selection, additional

channels gained by various sensors is a possible way to further improve segmentation

accuracy.
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Appendix A

Additional High Resolution

Evaluation Examples for the

Parallel System

This chapter contains two additional examples for the output of the parallel segmenta-

tion framework evaluated in Subsection 3.4.2. Figures A.1 and A.2 show the results of

the segmentation and merging phases utilizing the two corresponding system settings

on high resolution input images.
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A. ADDITIONAL HIGH RESOLUTION EVALUATION EXAMPLES
FOR THE PARALLEL SYSTEM
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Figure A.1: A second high resolution segmentation example from the 15 image corpus

used for the evaluation of the parallel framework. For the sake of better visibility, the

extent of the clusters is also displayed in the form of cluster maps before and after the

merging procedure. NK refers to the number of clusters.
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Figure A.2: A third high resolution segmentation example from the 15 image corpus used

for the evaluation of the parallel framework. For the sake of better visibility, the extent

of the clusters is also displayed in the form of cluster maps before and after the merging

procedure. NK refers to the number of clusters.
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A. ADDITIONAL HIGH RESOLUTION EVALUATION EXAMPLES
FOR THE PARALLEL SYSTEM
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Appendix B

Additional BSDS Evaluation

Examples for the Adaptive

System

This chapter contains three additional examples for the output of the adaptive segmen-

tation framework evaluated in Subsection 4.5.1.
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B. ADDITIONAL BSDS EVALUATION EXAMPLES FOR THE
ADAPTIVE SYSTEM
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Figure B.1: Additional segmentation examples from the test set of the BSDS500. The

first row contains the input images, rows 2 to 4 show the results obtained at the end of

certain stages of the procedure. The number of clusters is denoted by m, the F-measure of

the segmentation output is denoted by F . Row 5 shows the boundaries of multiple ground

truth segmentations provided as reference, with different colors. Segmentation was done

using the OPTIMAL parametrization.
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Appendix C

Additional High Resolution

Evaluation Examples for the

Adaptive System

This chapter contains twenty additional examples for the output of the adaptive seg-

mentation framework evaluated in Subsection 4.5.2.
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C. ADDITIONAL HIGH RESOLUTION EVALUATION EXAMPLES
FOR THE ADAPTIVE SYSTEM
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Figure C.1: Additional segmentation examples from the high resolution image set. Input

images are found in row 1, row 2 shows the output of the segmentation phase using the HD-

OPTIMAL parametrization. Merged images can be seen in row 3, finally, row 4 contains

the segmentation results of the reference system using the high setting. For the sake of

visibility, cluster boundaries marked with black or white (depending on which is more

salient). The kappa-index (κ) is indicated for each image, along with the running time (t)

of the algorithms.
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Figure C.2: Additional segmentation examples from the high resolution image set. Input

images are found in row 1, row 2 shows the output of the segmentation phase using the HD-

OPTIMAL parametrization. Merged images can be seen in row 3, finally, row 4 contains

the segmentation results of the reference system using the high setting. For the sake of

visibility, cluster boundaries marked with black or white (depending on which is more

salient). The kappa-index (κ) is indicated for each image, along with the running time (t)

of the algorithms.
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C. ADDITIONAL HIGH RESOLUTION EVALUATION EXAMPLES
FOR THE ADAPTIVE SYSTEM
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Figure C.3: Additional segmentation examples from the high resolution image set. Input

images are found in row 1, row 2 shows the output of the segmentation phase using the HD-

OPTIMAL parametrization. Merged images can be seen in row 3, finally, row 4 contains

the segmentation results of the reference system using the high setting. For the sake of

visibility, cluster boundaries marked with black or white (depending on which is more

salient). The kappa-index (κ) is indicated for each image, along with the running time (t)

of the algorithms.
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Figure C.4: Additional segmentation examples from the high resolution image set. Input

images are found in row 1, row 2 shows the output of the segmentation phase using the HD-

OPTIMAL parametrization. Merged images can be seen in row 3, finally, row 4 contains

the segmentation results of the reference system using the high setting. For the sake of

visibility, cluster boundaries marked with black or white (depending on which is more

salient). The kappa-index (κ) is indicated for each image, along with the running time (t)

of the algorithms.
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C. ADDITIONAL HIGH RESOLUTION EVALUATION EXAMPLES
FOR THE ADAPTIVE SYSTEM
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Figure C.5: Additional segmentation examples from the high resolution image set. Input

images are found in row 1, row 2 shows the output of the segmentation phase using the HD-

OPTIMAL parametrization. Merged images can be seen in row 3, finally, row 4 contains

the segmentation results of the reference system using the high setting. For the sake of

visibility, cluster boundaries marked with black or white (depending on which is more

salient). The kappa-index (κ) is indicated for each image, along with the running time (t)

of the algorithms.
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