
SELF-ORGANIZED CRITICALITY OF THE BRAIN: 
FRACTAL ANALYSIS OF THE HUMAN SLEEP EEG 

Theses of the Ph.D. dissertation 

Béla Weiss  
 

 

Supervisor: 

Tamás Roska, D.Sc. 

ordinary member of the Hungarian Academy of Sciences 

 

Scientific advisers: 

György Karmos, M.D., Ph.D. 

emeritus professor 

and 

Zsuzsanna Vágó, Ph.D. 

associate professor 

 

 
 

Pázmány Péter Catholic University 

Faculty of Information Technology 

Interdisciplinary Technical Sciences Doctoral School 

 

 

Budapest, 2010 



To the memory of my Parents and Grandparents. 

 



SELF-ORGANIZED CRITICALITY OF THE BRAIN: FRACTAL ANALYSIS OF 

THE HUMAN SLEEP EEG – 1 

 

 1 

1. Introduction and aims 

Despite of the broad spectrum of electrophysiological and imaging 

methods available in the field of neurobiology still little is known 

about how exactly complex neural dynamics emerge. Hopefully, 

application of novel theoretical approaches and computational 

methods aimed for analysis and modeling of complex systems might 

provide a deeper insight into physiological and pathological 

mechanisms of the brain. Such a framework could be the theory of 

self-organized criticality (SOC) that allows for describing the high-

dimensional character of the dynamics and the presence of stochastic 

effects in complex systems [15]. SOC is a phenomenon 

characterizing systems that might arrive at a critical state (phase 

transition) without any tuning of a specific parameter [16]. SOC is 

indicated by a spatio-temporal scale-free (also called self-similar or 

fractal) property of a system [17]. Scale-free behavior means that no 

characteristic scales dominate the dynamics of the underlying 

processes. It also reflects a tendency of complex systems to develop 

correlations that decay more slowly and extend over larger distances 

in time and space than the mechanisms of the underlying processes 

would suggest [17-19]. The long-range correlations build up through 

local interactions until they extend throughout the entire system and 

then the dynamics of the system exhibit power-law scaling behavior 

and the underlying process operates in a critical state [16, 20]. 

Several features of neural networks are consistent with SOC, such as 

a large number of elements (neurons) interacting with each other in a 
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nonlinear way (e.g. presence of threshold for spiking), a possibility 

to change and save connectivity between the elements (e.g. via 

synaptic plasticity), absence of any special parameter tuning, and 

spatio-temporal dynamics obeying power-law statistics [15, 21]. A 

critical state is a regime of a system where opposing forces are 

balanced. In the nervous system such a balance might be represented 

by the relationship between excitation and inhibition, which is 

known to be important for the transfer of information [22] and for 

the sustained neuronal activity [23]. Neural network simulations 

demonstrated that the presence of long-range spatio-temporal 

correlations is beneficial for the optimal transfer of information since 

these correlations represent an optimal compromise between high 

susceptibility to perturbations and stability in the system [24, 25]. All 

these properties of the brain suggest that the SOC paradigm might be 

an appropriate tool to investigate and model neural activities. 

Generally, the motivation of my research is two-fold. From the 

theoretical point of view I am interested in how complex neural 

dynamics emerge across different scales and how are these dynamics 

related to different physiological and pathological mechanisms that 

thoroughly affect the information sensation, processing, storage and 

retrieval of the brain. On the other hand, I am interested in practical 

aspects of brain research as well. Namely, as an engineer I am also 

motivated to reveal how biologically-inspired information processing 

models can be transferred into technical applications, including the 

control of the brain itself. At the confluence of my general research 

interests I found the investigation of vigilance level and epilepsy to 
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be of a crucial importance given the well-known influence of these 

basic mechanisms on the information processing properties of the 

brain. Thus, I devoted my PhD student years to explore the 

capability of the SOC paradigm to describe the information 

processing properties of the brain by fractal analyses of 

physiological sleep and epileptic neural activities. However, due to 

the size limitations of the dissertation and the difficulties related to 

the analyses of epileptic activities I will here concentrate on 

presentation of my results related to fractal analysis of the human 

sleep EEG only. 

During the last decade a series of human studies revealed differences 

in the fractal measures between specific vigilance conditions. For 

example a study by Linkenkaer et al. [15] showed that µ and α 

oscillations scale similarly, but β oscillations have a significantly 

smaller scaling exponent compared to these two latter oscillations 

during eyes-closed state. Another study showed that long-range 

temporal correlations are stronger in the eyes-closed condition as 

compared with the eyes-open condition [26]. In [21] largest exponent 

values for α and β oscillations were found in the occipital and 

parietal areas during the eyes-closed condition. Fractal dimension 

was found to be significantly higher for drowsy EEG compared to 

the wake state [27]. Increased sensory input [28] or high level of 

alertness [29] was shown to disrupt long-range temporal correlations. 

Several studies also addressed self-similarity of the sleep EEG [30-

36]. Generally, most of these studies reported higher scaling 

exponents and thus stronger long-range temporal correlations for 
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deeper sleep stages. However, these studies were limited by a low 

sampling rate (100Hz in [31-33, 36]; 128Hz in [35]) or a low number 

of EEG channels (Fpz-Cz and Pz-Cz in [33, 36]; Cz in [31, 32]; C3 

in [34, 35]; C4 in [30]). Furthermore, in contrast to the general 

opinion that the EEG is more regular and synchronized during 

deeper sleep stages, the only study that assessed multifractality of the 

sleep EEG found that the EEG is most multifractal during NREM3 

and NREM4 [33]. It is to be noted that none of the abovementioned 

studies related to sleep analyses assessed topographic aspects of the 

temporal fractal properties. Moreover, as far as I know, no previous 

study carried out a joint analysis of monofractal and multifractal 

properties, neither the relationship between fractal and power 

spectral measures was assessed yet. Therefore, during my research I 

attempted to address these theoretical controversies and 

shortcomings by estimation of spatial and sleep stage-wise 

distributions of temporal monofractal and multifractal properties of 

the human EEG and by assessing the relation of these measures with 

power spectral features. With a more practical motivation in the 

background and by organizing my analyses around the steps 

presented in Figure 1, I also assessed whether a combination of 

fractal and power spectral EEG features might improve the 

classification of sleep stages. 

 

Figure 1.  A process diagram of a sleep staging method development. 



SELF-ORGANIZED CRITICALITY OF THE BRAIN: FRACTAL ANALYSIS OF 

THE HUMAN SLEEP EEG – 5 

 

 5 

2. Methods of investigation 

I performed all the analyses using whole-night EEG recordings of 

twenty-two healthy subjects with no sleep disturbances, free of drugs 

and medications as assessed by an interview and questionnaires on 

sleeping habits and health (age: 17–55 years, mean±S.D.: 31±9 

years, 11 males and 11 females). I assessed monofractal and 

multifractal properties of the sleep EEG recordings by estimation of 

the Hurst exponent (H) and the range of multifractal spectra (∆D), 

respectively. When 0 0.5H< < , an increase in the process is more 

probably followed by a decrease (anti-persistence) and vice-versa, 

the process is considered to have short-range dependence. If 

0.5H = , observations of the process are uncorrelated. When 

0.5 1H< < , an increase in the process is more probably followed by 

an increase and a decrease is more probably followed by a decrease 

(persistence), the process is considered to have long-range 

dependence. Measure ∆D indicates deviation from monofractal. 

Larger ∆D indicates multifractality, while smaller ∆D indicates that 

the analyzed system tends to possess the monofractal property. For 

multifractal processes monofractal analysis can only give a measure 

of the largest of their fractal dimensions. To estimate H, I applied the 

rescaled adjusted range based approach, while ∆D was approximated 

by estimation of the generalized dimensions spectra. To reveal the 

relationship between fractal and power spectral properties of EEG 

signals I calculated relative band powers (PBr) of SO (0.5-1] Hz, δ 

(1-4] Hz, θ (4-8] Hz, α (8-11] Hz, σ (11-16] Hz, β (16-30] Hz, γ (30-

70] Hz frequency bands and the spectral edge frequency. I assessed 
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sleep stage discrimination capabilities of fractal and power spectral 

EEG features and their combinations both at individual and group 

levels by applying nine different classification paradigms: linear 

discriminant analysis (LD), quadratic discriminant analysis (QD), 

naïve Bayes classifier (NB), feedforward neural network (FF), radial 

basis function neural network (RB), probabilistic neural network 

(PN), adaptive neuro-fuzzy inference system (AN), support vector 

machine with a linear kernel function (LS) and support vector 

machine with a radial basis kernel function (RS). For the 

combination of features I used the sequential forward feature 

selection algorithm in three ways: combining different measures in 

single channels (MS), combining different channels for single 

measures (CS) and combining channel x measure features (CMS). I 

evaluated the performance of particular classifications by Kappa 

analysis of the obtained confusion matrices. 

For visualization, pre-processing and estimation of EEG measures I 

used a self-developed toolbox under different versions of Matlab 

(The MathWorks Inc., Natick, MA, USA). The statistical analyses I 

carried out by applying STATISTICA (StatSoft, Inc., Tulsa, OK, 

USA) and Matlab. 
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3. New scientific results 

Thesis I:  Fractal properties of the human sleep EEG and their 

relation to power spectral measures 

(Related publications: [1-3], [5].) 

I.1.  I have revealed that EEG signals tend to be more 

persistent and less multifractal with the deepening of 

sleep. In addition, both monofractal and multifractal EEG 

measures exhibit topographic distributions that are sleep 

stage-specific. 

Topographic distributions of the fractal measures for the analyzed 

sleep stages are shown in Figure 2. Highest values of the 

monofractal measure H emerged frontally during all sleep stages, 

while the overall minimum was found during REM in the central 

zone. A HNREM4 > HNREM2 > HREM trend was present across the 

whole head surface. The multifractal measure ∆D showed an 

opposite trend: ∆DREM > ∆DNREM2 > ∆DNREM4. Minima of ∆D 

could be found in the fronto-central region during all sleep stages, 

while higher values were observed in the posterior circumferential 

channels. Based on the observed spatio-temporal trends I 

speculate that the brain modulates its information processing 

capability and susceptibility to outer and inner stimuli via re-

organization of spatio-temporal correlations. By building up 

longer spatio-temporal correlations and by shrinking the fractal 

spectrum the localized processing elements of the brain (e.g. 
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columns of the neocortex) become less reactive to stimuli and 

their selective information processing capability decreases as the 

sleep deepens because of the activities that spread over longer 

distances. 

I.2.  I have found that the topography of inter-site correlations 

of H is more variable than that of ∆D across sleep stages. 

Furthermore, I have shown that the cross-correlation 

between H and ∆D exhibits sleep stage-specific 

topography. 

As it can be seen in Figure 3 (column ALL) both fractal measures 

exhibited strongest inter-site correlations in the central region 

when all sleep stages were considered together. However, H 

exhibited higher posterior inter-site correlations during NREM4 

and higher anterior correlations during NREM2 and REM. At the 

same time ∆D did not reveal such differences between sleep 

stages. Measure ∆D showed higher inter-site correlations as 

compared to H. 

 

Figure 2.  Topographic distributions of group-level medians of the fractal 

measures. 
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By combining all sleep stages I found a strong negative 

correlation between H and ∆D with a nadir in the posterior 

channels (Figure 4). As revealed by the sleep stage-wise analysis 

NREM2 and NREM4 contributed most to this occipital nadir. As 

compared to NREM4 weaker and less significant correlations 

emerged during NREM2. During REM there was a further 

weakening of correlations with a non-significant positive peak in 

the F3, Fz, F4 channels. 

These results suggest that despite of the general opposite tendency 

of the two fractal properties there might be different mechanisms 

in the brain that control multifractality and monofractality of the 

spatio-temporal dynamics in a more complex way. 

 

Figure 3.  Highest 35 inter-site correlations of the fractal measures

denoted by black lines drawn between the appropriate locations. 

Spearman’s correlation coefficients were calculated considering all sleep 

stages together (column ALL) as well as separately. Only significant 

( 0.05p < ) correlations are depicted. Lowest presented correlation 

values can be found above the topographic maps. 
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I.3.  I have assessed the relationship between fractal and 

power spectral EEG measures as well as the contribution 

of individual frequency band activities to the fractal 

measures. 

Overall, I found stronger correlations between the fractal and the 

power spectral measures during deeper sleep stages than in lighter 

stages. Additionally, I also revealed that the monofractal measure 

H is positively correlated with relative powers of slow activities 

(especially PSOr) and negatively correlated with faster activities 

(above 4 Hz) exhibiting strongest negative correlations with Pθr. 

By contrast, ∆D is negatively correlated with slow activities and 

positively correlated with relative powers of higher frequency 

 

Figure 4.  Spearman cross-correlations between H and ∆D considering 

all sleep stages together as well as separately. Significant values 

( 0.05p < ) are denoted on the left side of the color bars using the 

following notations: no sign (none of the values are significant); only + 

(all values are significant); + with a dash (only values below the dashes

are significant). 
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bands achieving strongest correlations with Pθr, Pαr and Pσr in 

temporal channels during NREM4. However, despite of the strong 

correlations revealed between the fractal and the power spectral 

measures, using a multiple linear regression analysis I found that 

fractal measures (especially ∆D) carry additional information 

about EEG signals compared to the power spectral features. 

I.4.  I have revealed gender-related differences of monofractal 

and multifractal EEG measures at specific topographic 

locations and during different sleep stages. 

I found that sleep EEG signals are more multifractal during 

NREM4, NREM2 and REM sleep stages at all topographic 

 

Figure 5.  Number of channels in which group-level medians were higher 

in males (case M>F) are presented for both fractal measures and sleep 

stages separately. Number of channels in which group-level measure 

medians are higher in females (case F>M) can be obtained by 

subtracting these values from 18 (total number of channels). The * (+) 

sign denotes measure and sleep stage combinations exhibiting significant 

differences for the case M>F (F>M). 
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locations in males than in females (see Figure 5). Most significant 

differences occurred during sleep stage NREM4 exhibiting a 

minimal 0.0025p =  value in channel F7. By contrast, the 

monofractal measure H was higher in females in most of the 

channels, however, a significant difference ( 0.0464p = ) 

appeared during NREM4 in channel T4 only. 

Given that the F7 recording site lies over or near the Broca’s area 

I hypothesize that differences at this specific region reflect gender 

differences in verbal functions. 

Thesis II:  Classification of sleep stages by combining fractal and 

power spectral EEG features 

(Related publications: [2], [4].) 

II.1.  I have assessed sleep stage discrimination capability of 

fractal and power spectral measures of EEG signals at 

specific topographic locations by applying different 

classification paradigms at both individual and group 

levels. 

Considering both averaged individual- and group-level results, I 

obtained best sleep stage classification performance in most of the 

EEG channels and for most of the classification methods by 

applying the multifractal measure ∆D. Moreover, I found best 

classifications for ∆D in temporal channel T4 for most of the 

classifiers at both levels. Using conditional Kappa analysis I 

revealed that overall high performance of ∆D emerged due to the 
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high classification accuracy of the NREM4 stage. Using the ∆D x 

T4 single feature at the group level highest overall accuracy 

(OA=81.92 %) was achieved by a support vector machine with a 

linear kernel function, while individual-level analysis revealed 

best average classification result (OA=90.02 %) for a naïve Bayes 

classifier. 

II.2.  I have shown that a combination of fractal and power 

spectral measures of EEG signals recorded at different 

topographic locations significantly improves the 

discrimination of sleep stages. 

I found that supplementation of the best single feature with an 

appropriate second one may significantly improve the sleep stage 

classification performance. Addition of a second measure for the 

same channel and addition of another channel x measure feature 

enhances the performance in more classifiers as compared to 

addition of a second channel for the same measure. Using 

conditional Kappa analysis I revealed that the overall 

classification accuracy improves due to the higher classification 

accuracy of NREM2 and REM sleep stages. Addition of a third 

channel considering the same measure does not improve 

significantly the classification. However, a combination of up to 

three measures of single channels and a combination of up to four 

channel x measure features may result in further significant 

improvements. Combinations of measures in single channels 

provide significantly better classifications when compared to 
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combinations of channels using single measures. Furthermore, 

combinations of channel x measure features perform significantly 

better as compared to combinations of measures in single 

channels. Considering feature combinations at the group level I 

obtained the best classification results using feedforward neural 

network and support vector machine classifiers that performed in 

most of the cases significantly better that the traditional methods 

such as the linear discriminant analysis, the quadratic discriminant 

analysis and the naïve Bayes classifier. This tendency was not true 

at the individual level, where due to the lower number of training 

 

Figure 6.  Averages of individual maximal K̂  values and group-level

maximal K̂  values. First bars stand for classifications based on the best

single input features, 2nd-4th bars denote classifications with 2-4 

measures of single channels, 5th-7th bars present results for 

classifications with 2-4 channels of single measures, 8th-10th bars stand 

for classifications using 2-4 channel x measure feature combinations. RB 

and AN classifiers were excluded from group-level analyses due to their 

high computational demand. 



SELF-ORGANIZED CRITICALITY OF THE BRAIN: FRACTAL ANALYSIS OF 

THE HUMAN SLEEP EEG – 15 

 

 15

samples the traditional methods performed even better, especially 

in those cases where the number of features was higher (see 

Figure 6). 

When comparing the maximal classification performances of 

individual and group levels it can be observed that as expected 

better discrimination of sleep stages can be obtained at the 

individual level achieving even 100 % overall accuracy for 

several subjects. 

At the group level I achieved the best classification performance 

(OA=94.18 %) using the combination of ∆D x T3, Pβr x F3, Pσr x 

Cz and Pαr x O2 features and by applying a support vector 

machine classifier with a radial basis kernel function. As it can be 

seen in Figures 7 and 8, selection of these measures and channels 

was very similar across classification paradigms when feature 

selection was carried out on channel x measure pairs (CMS). 

Selections of the best measures in single channels (MS) and 

selections of channels for specific measures resulted in slightly 

different distributions of selected features as compared to the 

CMS approach. In addition, individual-level results were 

comparable to those found at the group level. Measures ∆D, Pβr, 

Pσr and channels T3-T4, O2, Cz proved to be the most appropriate 

features in all cases. Thus, I conclude that when combining fractal 

and power spectral measures the most appropriate features 

generally are: multifractality in temporal T3 and T4 channels, 

relative band powers of β and σ frequency bands over the fronto-
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centro-parietal region and relative band power of α activity in the 

occipital region. 

 

Figure 7.  Group-level results. Number of cases (paradigms x channels) 

when particular measures were selected within the best four features. MS 

denotes the selection of measures in single channels, while CMS stands 

for the selection of channel x measure features. (A)-(D) denote cases 

when particular measures were found to be within the 1st, 2nd, 3rd and 4th

best features, respectively. Row (E) stands for sums of cases presented in 

rows (A)-(D). The order of the measures is as follows: H, ∆D, PSOr, Pδr, 

Pθr, Pαr, Pσr, Pβr, Pγr, fse. 
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Figure 8.  Group-level results. Number of cases (paradigms x measures) 

when particular channels were selected within the best four features. CS 

denotes the selection of channels considering single measures, while 

CMS stands for the selection of channel x measure features. (A)-(D) 

denote cases when particular channels were found to be within the 1st, 

2nd, 3rd and 4th best features, respectively. Row (E) stands for sums of 

cases presented in rows (A)-(D). The order of the channels is as follows: 

Fp2, F8, T4, T6, O2, Fp1, F7, T3, T5, O1, F4, C4, P4, F3, C3, P3, Fz, 

Cz. 
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4. Possible applications 

The more theoretical results presented in Thesis I might contribute to 

reveal how the brain re-organizes itself across different vigilance 

states to modulate its information processing and reactivity to 

stimuli. However, more refined analyses are needed to assess fractal 

properties of the sleep EEG during cyclic alternating pattern (CAP) 

and non-CAP sequences since CAP translates a condition of 

sustained arousal instability between greater and lesser arousal 

levels, while non-CAP denotes a condition of arousal stability [37-

39]. In addition, to reveal the origin of self-similarity properties of 

macro EEG signals fractal analysis of brain activities at different 

scales is required. Application possibilities of the more practical 

results summarized in Thesis II are straightforward. E.g. automatic 

classification of the vigilance state would be beneficial for clinicians 

when assessing long-term recordings. Other applications might be 

the real-time monitoring of the depth of anesthesia during surgery 

[40] or drowsiness detection [41] for people working under 

monotonic and at the same time dangerous circumstances. Going 

even further, based on the current state of neural engineering it is 

evident that the widespread usage of brain computer interfaces for 

clinical and entertaining purposes will be among future trends. One 

of the clinical applications might be the real-time modulation of the 

brain activity for control of epileptic seizures by local drug delivery 

or electrical stimulation [42]. During recent years several seizure 

detection/prediction methods have been proposed based on different 
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measures of brain activities [43]. However, background of false 

event recognitions, the reason of relatively low performance of 

algorithms remained unclear since generally not even the systematic 

assessment of possible effects of the vigilance state variation was 

carried out. My investigations (not presented in the dissertation) of 

fractal properties of epileptic brain activities [7-14] disclosed that 

both monofractal and multifractal measures exhibit sudden drops 

during the seizures and show slower trends during preictal and 

postictal states. Combining these findings with the results presented 

in the dissertation it becomes evident that the variation of the 

vigilance state might modulate epileptic events and hereby it might 

also affect their detections/predictions by applying these measures. 

Since probably all measures are affected by the vigilance state I 

suggest a novel approach for detection/prediction of seizures that is 

enhanced by the determination of the vigilance state (Figure 9). 

 

Figure 9.  A possible enhancement of seizure detection/prediction 

capabilities by determination of the vigilance state for control of epileptic 

seizures. 
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