
STRUCTURAL ANALYSIS OF KINETIC
SYSTEMS WITH APPLICATION TO CELL-FREE

EXPRESSION SYSTEMS

Zoltán András Tuza
Theses of the Ph.D. Dissertation

Pázmány Péter Catholic University
Faculty of Information Technology

Thesis Advisor:
Dr. Gábor Szederkényi, D.Sc.

Budapest, 2015





1. Introduction

Dynamical models play an important role in many fields of science
and engineering. The aim of applying these models is to solve real-life
problems, using that they are able to reproduce the important obser-
ved phenomena as accurately as required. Nonnegative systems form a
special class of dynamical systems where all the state variables remain
in the nonnegative orthant if the coordinates of the initial condition are
nonnegative [11]. Kinetic dynamical models originate from chemistry as
descriptors of chemical processes, but their range of applicability rea-
ches far beyond (bio)chemical models as they are suitable to describe all
important dynamical phenomena [7].

It is possible to associate a directed graph structure to a kinetic sys-
tem which enables us to investigate not only the graph theoretic proper-
ties, but the dynamical properties of the kinetic system as well. It has
been known that the associated sparse directed graph structure is not
necessarily unique that is in contrast with the unique dense structure of
a kinetic system. This non-uniqueness may hamper the successful identi-
fication of a kinetic system—especially a (bio)chemical system—because
a unique sparse structure is often implicitly assumed. On the other hand
dynamical equivalence enables us to compute directed graph structures
with prescribed properties such as maximum or minimum number of
edges in the graph, deficiency, weak reversibility or complex balance.

The theory to investigate these properties has been developed for de-
cades [10] but a set of optimization based approaches—exploiting that
the graph structure corresponding to a given kinetic dynamics is non-
unique—have been developed relatively recently [16]. Building upon the-
se, this thesis presents two new algorithms utilizing mathematical opti-
mization.

Dynamical modeling in the field of systems biology and synthetic bio-
logy are good examples where nonnegative, especially, kinetic systems
are typically applied [17]. In systems biology the aim is to understand
and eventually control biomolecular processes such as signal transducti-
on or metabolism. Thus, dynamical models can support this process by
accurately describing the observed phenomena and the inherent proper-
ties of the biological system [1]. On the other hand, in synthetic biology
rational designing and creating novel interaction networks, e.g. gene re-
gulatory networks is the main aim [14]. If these interaction networks or
so called biocircuits are successfully designed and tested they may be
capable to sense external or internal signals, compute the necessary res-
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ponse and actuate the molecular system accordingly. Meanwhile, all of
these steps are based on molecular computation [13].

Therefore, in both fields, but especially in synthetic biology dyna-
mical models are becoming essential tools to carefully investigate and
understand the biological processes, to predict the possible dynamical
properties and to support the rational design process with appropriate
feedback. Moreover, recent advances in measurement technology provi-
des us with a rich source of data for revealing the structure and be-
havior of biochemical processes. Using real time measurements of both
transcriptional and translational stages of gene expression provide us the
necessary insight to build a kinetic model for a cell-free system.

2. Applied Tools and Methods

2.1. Mathematical Optimization

Linear Programming Linear programing (LP) is a constrained con-
vex optimization technique, where a linear objective function of the real-
valued optimization variables is minimized (or maximized) with respect
to linear equality and inequality constraints.

The linear programming framework is very versatile, thus the practi-
cal applications are ranging from engineering to social sciences, e.g. pro-
duction optimization, transportation and assignment problems, etc [2].
Moreover, many efficient solvers are available to solve linear program-
ming problems even with millions of decision variables and hundreds of
thousands constraints. These solvers are based on the simplex method
or lately the interior point method, reviewed in e.g. [5].

Mixed Integer Linear Programming Some problems require deci-
sion variables with integer values. This constraint makes the optimizati-
on problem NP-hard, although thanks to efficient solvers many practical
problems can be solved [6]. Linear programs with integrality constraints
arise in many fields, e.g. in transportation, scheduling, etc.

A connection between linear integer programming and propositional
calculus can be made. A propositional logic problem can be solved by
means of a linear program with integrality constraints, by translating the
original compound statements into linear inequalities involving logical
variables [19].
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2.2. Kinetic Systems

A widely used class within nonnegative systems is the class of kinetic
systems, where the exponent of the monomials are nonnegative integers
and there are additional relations between the monomial coefficients and
exponents.

Kinetic dynamical models are suitable to describe all important dy-
namical phenomena such as stability/instability and multiplicity of equi-
libria, bifurcation, oscillatory and even chaotic behavior. Many of these
phenomena have actually been observed in real chemical experiments
where the practical constraints are much more severe than in the case of
pure mathematical models [7].

Furthermore, kinetic models can effectively be used in the descript-
ion of numerous natural processes such as disease dynamics, population
dynamics, compartmental models, or certain transportation phenomena.
On the top of that, kinetic systems can be used to describe pure chemical
reactions or the complex dynamics of intracellular processes, metabolic
or cell signaling pathways. Kinetic models have also been useful in per-
forming complex non-conventional computation tasks. Moreover, their
simple algebraic structure make these models attractive both for rigo-
rous mathematical analysis and for efficient computational techniques [8,
12], as well as certain strong statements of the structural and dynamical
properties of the model can be made about kinetic systems using Che-
mical Reaction Network Theory, even without knowing the parameters
of the kinetic model [9].

Directed Graph Structure We can associate a graph representation
to kinetic models. A kinetic system equipped with this graph structure
is called a Chemical Reaction Network (CRN) as it is described in e.g.
[10]. The vertices in the graph represent the complexes of the reaction
network. Whereas the directed edges representing the reactions between
the complexes and the corresponding reaction rate coefficient is assigned
as weight to each edges.

Linear programming based optimization techniques exist to calculate
certain graph structures. Some of these structural properties are directly
connected to the dynamical behavior of the kinetic system. Therefore,
based on the structure of the graph some dynamical properties, e.g.
stability can be determined.
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Dynamical Equivalence It has been known since at least the 1970’s
that multiple different structures (parametrizations) of a CRN can gene-
rate exactly the same dynamics of the concentrations [7, 12]. This phe-
nomenon is called macro-equivalence or dynamical equivalence. However,
the exact geometric conditions of macro-equivalence were not studied
until relatively recently in [4].

From an optimization point of view the dynamical equivalence defines
a polyhedron in the space of reaction rate coefficients where all dynami-
cally equivalent realizations exist. Therefore, we can define such a linear
programming problem where the constraint set contains the definition of
dynamical equivalence, then we can search for realizations with required
properties that can be translated into linear constraints.

2.3. Parameter Estimation
The parameters of a kinetic system is often needed to be determi-

ned from measurement data, but the process of parameter estimation is
often challenging. Generally, these challenges can be classified into two
main categories. First, the selected process model may have structural
identifiability issues, namely the model structure is capable to produce
exactly the same output for different sets of parameters [18]. The second
challenge stems from the poor excitation of the dynamics or from the
poor quality of the available measurements, which is often labeled as
practical identifiability problem.

Before the parameter estimation a type of model has been selected,
typically a nonlinear state space model where we can measure a projec-
tion (usually a subset) of the state variables. In this model the unknown
parameter vector may not only include the dynamical parameters but
also the unknown initial conditions.

Due to this projection, often not all state variables can be measured
directly and observation function greatly influences which parameters
are possible to compute. Generally, the output of the systems can be
measured at certain frequency, thus we have the output of the system at
discrete time instance.

The goal of the parameter estimation is to find a suitable vector
of parameters that generates the minimal distance between the model
output and the measurements. Multiple metrics exist to measure the
distance between the model output and the measurements, for example
quadratic or absolute distance can be used [15]. Once we have a way to
measure the distance between the model output and the measurements at
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each time instance, we can define a function that assigns a nonnegative
real number to any possible parameter vector, this is called the cost
function.

Structural Identifiability Once we have selected a model structure,
the question of parameter identifiability has to be considered, i.e. whet-
her it is theoretically possible to determine the model parameters based
on the model structure and the observables [3].

Structural identifiability depends only on the structure of the model
including the output functions. Because of that structural identifiabi-
lity analysis can be carried out before collecting the data—if the model
structure is known. Unfortunately, this analysis is often neglected and
still not a standard practice of modelers. On the other hand, several
approaches and software tools exist for structural identifiability analysis
and they are suitable for many different model structures [18].

Parameter Estimation of Kinetic Systems Due to the structure
of the kinetic models, if we assume that all the state variables are di-
rectly measured or the parameter of the output function are known, then
the model is linear in the monomial coefficients. Hence many standard
parameter estimation techniques can be used [18].

In case of the Cell-free system, most of the experiments are initial
condition experiments, i.e. the conditions can be changed only at the
on-set of an experiment. Therefore, a typical set of data contains several
different initial scenarios with the same system, e.g. change of the initial
concentration of one or more species. This set of data is considered all at
once in the cost function in order to have enough information about the
parameters of the system. These parameters include the rate coefficients
and the initial conditions as well.
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3. New scientific results

Thesis I. I have developed a mathematical optimi-
zation based efficient algorithm to compute all dy-
namically equivalent sparse realizations of a kinetic
system.

Using combinatorial and mathematical optimization techniques, I ha-
ve developed the first algorithm in the literature to compute all sparse
realizations of dynamically equivalent kinetic systems. This algorithm
uses mixed integer linear programming (MILP) and linear programming
(LP) steps to compute all the sparse realizations.

Corresponding publications: [J2], [C2].

Thesis I.a I have proposed an effective reduction of the combinatori-
ally possible search space by using appropriate constraint-pairs and the
properties of constrained sparse realizations.

The special properties of dense and sparse realizations made it pos-
sible to reduce the original search space which consists of all directed
graphs with fixed set of nodes to a computationally tractable number of
candidate structures.

Thesis I.b By applying state-dependent time-rescaling and X-
factorable transformation, I have computed all sparse CRN structures
for two different kinetic models of the well-known Lorenz system sho-
wing chaotic behavior. I have compared the obtained realizations from
a structural point of view and determined the minimum and maximum
number of linkage classes and deficiencies corresponding to the sparse
realizations. I have shown that the complete search space was reduced to
0.01 and 0.0037 percents in the case of state-dependent time-rescaling
and X-factorable transformation, respectively.

The Lorenz system was a good candidate to show the application
of the developed algorithm. Two distinct approaches yielded different
number of sparse structures in each case, but with similar structural
properties. It was computationally checked that, the chaotic behavior of
the system was preserved in all representations.
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Thesis II. I have developed structural analysis tools
for kinetic systems with parametric uncertainty.

I have developed optimization based tools for the structural analysis of
uncertain kinetic systems. The uncertainty in these systems are represen-
ted as a multi-dimensional interval in the space of monomial coefficients.

Corresponding publications: [C5], [C1].

Thesis II.a I have proposed a new algorithm for the computation of
dense and sparse reaction network structures for kinetic polynomial mo-
dels, where the uncertainties are represented as parameter intervals. The
problem is traced back to mixed integer linear programming where the
parameter uncertainties are given by linear inequalities.

The current computational framework has been extended to accom-
modate parametric uncertainties while certain structural properties of
the kinetic system—as well as the associated directed graph structure—
can be effectively calculated. This approach opens up the possibility to
extend several previous optimization based results to uncertain kinetic
systems such as weak reversibility or complex balance.

Thesis II.b I have developed an algorithm with polynomial time comp-
lexity to calculate the structurally invariant elements, called core reac-
tions that are present in any reaction network belonging to the model set
defined by the uncertainties. The proposed algorithm is based on linear
programming and incorporates the parametric uncertainty of the system
as element-wise boundary constraints.

The core reactions are one of the most important elements of the re-
action graph, since if the set of core reactions is non-empty, its elements
are present in each dynamically equivalent realization. Thus, the comp-
utation of distinct dynamically equivalent reaction network structures
satisfying a given property can effectively be supported by utilizing the
core reaction set.
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Thesis III. I have built a kinetic model for an in vitro
cell-free gene expression system.

I have built a first principle kinetic model for an in vitro cell-free gene
expression system using a specific experimental setup. I have shown that
with the estimated and validated parameters the kinetic model effectively
captures the dynamical features of the cell-free system.

Corresponding publications: [C4], [J1], [C3].

Thesis III.a I have built combinations of molecular probes containing
RNA aptamer and fluorescent proteins for the investigation of the cell-
free system. I have designed and carried out a comprehensive study of
the cell-free system utilizing concurrent measurement of transcription
and translation.

Concurrent measurement of transcription and translation was im-
portant for the development of a reliable kinetic model. The library of
molecular probes made possible to study the dynamical features of the
cell-free system in detail. As a result of that, this measurement set up
serves as a benchmark for testing different versions of the cell-free sys-
tem.

Thesis III.b Based on the observations from the experiments, I have
built a kinetic model for the studied cell-free system, which is capable of
capturing the transient behavior of the system taking the finite resources
into consideration. I have shown that the model is structurally identifiable
using the applied measurement setup. Finally, I have determined and
validated the parameters of the dynamical models using constrained least
squares based parameter estimation.

Utilizing the library of molecular probes and domain knowledge abo-
ut the process of gene expression, the resulting dynamical model is struc-
turally identifiable. Also, the fact that the developed model structure is
linear in parameters and the quality of the data enabled us to use the
least squares based parameter estimation.
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4. Application of the results
Given the broad topic of this thesis, several fields of application are

possible. We investigated the non-uniqueness of the dynamically equi-
valent sparse structure of a kinetic systems. The result illustrates that
the sparse structure of kinetic systems may be non-unique. Moreover,
the Lorenz example has a large number of sparse realizations. A possible
direction of future work might be the graph theoretical investigation of
these sparse structures. That could include the average incoming and
outgoing connection of a complex in each realizations or the reaction
distribution considering a complex in all the realizations.

As another direction, we could extend the proposed algorithm for
calculation of all sparse realizations to accommodate uncertain kinetic
systems. This would offer an algorithmic way to calculate all dynami-
cally equivalent sparse realizations at a given level of uncertainty. This
algorithm would be a powerful tool for network reconstruction where
usually only noisy time series data and the set of vertices of the directed
graph is known.

We briefly investigated the application of the core-reactions in net-
work reconstruction. As a result of that, we have concluded that the core
reaction set can be at least partially restored from the time series data.
On the other hand, we did not extend the concept of core complexes
to uncertain kinetic systems and did not include it to the computation.
Thus, the application of the core reactions and the core complexes in an
algorithm where they are calculated in an alternating fashion could be
the backbone of an improved method for network reconstruction within
the class of kinetic systems.

The thesis elaborated on the challenges of kinetic system identificati-
on. Among many important open questions, the relevance of optimizati-
on based experiment design for a molecular breadboard was highlighted.
The modeling of the in vitro system laid the foundation of that work
by introducing a dynamical model for the cell-free system on which the
molecular breadboard is built on. Utilizing this kinetic model, an optimi-
zation based framework could be developed where the optimization task
would consider all the physical limitations of the molecular breadboard.
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