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1 Introduction

Quantitative measurement and analysis of human motion is a key
concept in understanding processes of our movement system. Evolved,
high precision measurement devices have advanced research activity in
movement rehabilitation [1], performance analysis of athletes [2] and gen-
eral understanding of the motor system [3] during the last decades by
making objective movement pattern comparison possible. This advance-
ment was further accelerated by model-based analysis approaches that
enabled explicit characterization of the studied movement patterns [4].

From behavioral aspects, manual and visual target tracking repre-
sents an important part of human movements and shows strong pre-
dictive behavior. This becomes most obvious when comparing tracking
onset delay with phase delays during pursuit of periodic movements [5]
or when the movement continues after disappearance of the target [6].
Oculomotor and manual tracking responses affect each other and seem
to share predictive mechanisms [7]. Studies investigating predictive man-
ual tracking so far focused on the explanation of finger acceleration as
a function of the 2D-tracking error [8] and on the relation between the
3D-tracking error and path curvature and spatial depth [9] but did not
consider the control of shoulder, elbow and wrist joints.

By utilizing quantitative measurements, the analysis of joint angle
variability, especially its structural decomposition into task-relevant and
task-irrelevant components with respect to hypothesized task variables,
is used to address redundancy in movement control mechanisms and is
known as the Uncontrolled Manifold Method (UCM ) [10]. In this context
the term task variable does not imply that it was explicitly addressed
in the instructions to the subject, but that the covariation in the effec-
tor space is optimized to stabilize this variable. The main concept of
the UCM is to divide the total variance of the joint angles into two or-
thogonal sub-components that do and do not affect the proposed task
variable. The variance in the component which does not influence the
task variable is called the “uncontrolled variance” (VUCM) and can be
used as an indicator of flexibility of the control system, while variance in
its orthogonal component is called the “controlled” or “orthogonal vari-
ance” (VORT). The relative size of VUCM with respect to VORT, quantified
by the so-called synergy index, can be used to characterize the stability
of the task variable [11]. A large synergy index of the joint angle vari-
ance with respect to the task variable indicates that the bad variance
(affecting the task variable) is relatively small compared to good vari-
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ance (not affecting the task variable). It is important to note that this
synergy index is specific for the chosen task variable and is not a general
measure of covariation. The UCM method has been used to show the
synergistic properties of the motor control system involving reaching,
finger coordination and bimanual pointing tasks.

In quantitative movement analysis, the most widely used measure-
ment systems apply line-of-sight (LoS) methods (optical or ultrasound-
based) that require a fixed marker-sensor structure and a controlled
laboratory environment. This means that even the spatial positions of
the markers can be determined with good accuracy - especially with
optical systems - the possible range of motion is constrained by the ac-
tual measurement volume covered by the sensors of the system. Although
this property is not an issue for many movement analysis scenarios, there
are cases when a measurement method allowing unconstrained free space
movement is more beneficial (e.g. various outdoor activities or ergonomic
assessment of work environments).

Advancements in the field of inertial sensor technology have given
rise to new development directions in laboratory-free movement analy-
sis methods. The main difference between LoS and inertial systems is
the recorded modality: while LoS methods determine the spatial loca-
tions of markers based on planar position (optical) or timing (ultra-
sound) information, inertial sensors give their orientation in space by
measuring physical quantities (linear acceleration, angular velocity and
magnetic fields) acting on them directly. To obtain orientation from raw
inertial measurements, various sensor fusion algorithms have been de-
veloped utilizing Kalman-filters [12], gradient descent methods [13] and
complementary filters [14] among other techniques, most of them be-
ing capable for real-time operation in embedded systems. In addition,
recent evolution of chip-scale inertial sensors based on MEMS (Micro-
Electro-Mechanical-System) technology further widened the possibilities
of wearable measurement device development by making the core sensing
elements available for better integration.

In addition to accurate measurement, proper evaluation of the
recorded motion is an other key building block of human movement
analysis. Although various geometric approaches have been developed to
describe movement kinematics, the need for standardization of kinematic
(and kinetic) analysis of human movements have led to the development
of model based tools like SIMM [15] and OpenSim [16]. These software
packages provide biomechanical models and analysis pipelines to per-
form various processing steps like model editing, scaling, kinematic and
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dynamic calculations. For anatomical joint angle reconstruction they use
the “standard” offline measurement-scaling-inverse kinematics pipeline
where the actual biomechanical model (single limb to full body) is fitted
to measurement data. During this process, positions of virtual markers
placed on specific model segments are fitted to experimentally recorded
marker positions of the subject with the same arrangement. Scaling
is important to generate subject-specific model instances while inverse
kinematics (IK) is performed to extract model-defined anatomical joint
angles that produced the movement. Using these tools obtaining use-
ful movement properties have became a standard process that produces
outputs directly comparable across movement tasks and studies.

Complex measurement and analysis of upper limb movements includ-
ing kinematics and muscle activities is an exciting and growing subfield
of human movement analysis that promises better understanding of con-
trol patterns during specific movements, and as an example benefit may -
on the longer term - advance control techniques currently applied to arm
and hand prostheses. This process however needs tighter integration of
kinematic measurement and reconstruction (from raw data to anatom-
ical joint angles) as the time and computational overhead of the offline
measurement-scaling-inverse kinematics scheme gives a bottleneck in ap-
plications where real-time analysis of the control patterns with respect
to the actual kinematics would be beneficial.

The aim of this thesis work is to make contributions to the following
fields of human movement science:
Evaluation of prediction effects on the synergistic control of
arm movements during manual target tracking. An experimental
setup and procedure was designed to investigate how motor synergies
differ between predictive and non-predictive movements. Motor syner-
gies were evaluated by applying the UCM method to the joint angle
variance during 2D tracking of a target on a graphics tablet, where the
2D pen position was used as the hypothetical task variable. It was in-
vestigated whether the synergy index drops during predictive, internally
driven tracking movements compared to visually, externally driven track-
ing movements. To address this question, tracking movements between
periodic (and pre-trained) and non-periodic presentation modes were
compared, which are known to challenge predictive and visually driven
tracking modes respectively.
Measurement and kinematic reconstruction of arm movements.
Based on my experiences with the Zebris ultrasound based movement
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analyzer system, I started to develop the engineering prototype of a cus-
tom wearable measurement device. The prototype incorporates inertial
sensors for movement recording to overcome issues accompanying mea-
surements with the Zebris system (i.e. bulky setup, highly constrained
measurement volume or low sampling rate) and enables evaluation and
analysis of various sensor calibration, filtering and sensor fusion algo-
rithms in a fully customizable manner. An additional goal was to extend
the measurement and analysis workflow of human arm movements with
a method that allows accurate and real-time calculation of anatomical
joint angles for a widely used SIMM/OpenSim upper limb model when
measurements are performed with the developed prototype. For this pur-
pose a custom kinematic algorithm was proposed that utilizes orientation
information of arm segments (directly measurable with inertial sensors)
to perform joint angle reconstruction in real-time.

2 Applied tools and methods

2.1 Experimental setup and procedure to analyze
predictive tracking arm movements

Subjects Seven healthy subjects participated in the study (6 males,
1 female, age: 33.4 ± 12.4 years, M ± SD). All subjects had normal or
corrected-to-normal vision. Five subjects had right hand dominance and
2 subjects had left hand dominance according to their preferential hand
use during writing. All subjects performed the movements with their
dominant hand.

Experimental setup The subjects sat in front of a table which was
mounted with a graphic tablet that featured an integrated display (WA-
COM Cintiq 21UX, 43.2 × 32.4 cm, frame rate: 60 Hz) used for pre-
sentation of the target (Figure 1). The target was a white colored disk
(diameter 1 cm) and moved in front of a gray background. The sitting
position of each subject was adjusted to minimize trunk and head move-
ments during the experiment. The viewing distance of the display was
40 cm.

Subjects were asked to track the target as accurately as possible with
the pen of the graphic tablet using their dominant hand. Tracking perfor-
mance was analyzed based on the pen data, recorded as 2D coordinates
in the tablet’s reference frame. Arm movements were recorded by an
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Figure 1: Experimental setup. Numbers 1-6 indicate ultrasound markers
of the motion analysis system. Subjects sat on a chair with its back
adjusted to fixate the trunk. The target is depicted on the screen as a
white disk. The dashed line was never presented on the screen; it is only
used in the figure to imply target movement.

ultrasound-based movement analyzer system (Zebris Medical, Isny, Ger-
many) running at 33 Hz using markers attached to anatomically relevant
locations on the arm. From these marker positions a geometrical model
of the arm with 7 degrees of freedom (DoF) was reconstructed in the
tablet’s reference frame using a method described in [J3]. The origin of
this reference frame was the center of the tablet’s screen, its x and y axes
coincided with the screen’s horizontal and vertical axes, while the z-axis
was perpendicular to the screen pointing towards the subject (forming a
right-hand system).

Trajectories Various 2D target trajectories with a pseudo-random
shape were generated. One of these trajectories (TR1) was only pre-
sented in periodic repetitions, whereas the other trajectories (TR2, TR3,
TR4) were presented in a random order without repetitions. The trajec-
tories were generated by integrating independent x and y velocities that
were constructed as sums of 5 harmonics with random phase and a base
frequency corresponding to a period of 4 s. Movements along the trajec-
tories that obeyed the two-thirds power law were derived by nonlinear
re-sampling of the whole trajectories to adjust the sampling distance
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(sd) according to the relation showed in Eq. (1), where V denotes the
tangential velocity, r is the radius of curvature, and K and α are the two
free parameters of the two-thirds power law [17].

sd

∆t = V = K

(
r

1 + α · r

) 1
3

(1)

In this way 14 different random trajectories were generated indepen-
dently from each other. Figure 2 shows the 4 trajectories (TR1 to TR4)
used for repeated presentation while the remaining 10 trajectories (not
shown) were used to introduce "unpredictable" sections, as described be-
low.
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Figure 2: Presented target trajectories. Closed traces were generated by
integrating sums of 5 harmonics with a random phase and a base fre-
quency corresponding to a period of 4 s. Labels (TR1-TR4) were assigned
randomly to the generated trajectories.

6



Measurement blocks The smallest unit of the design was one pre-
sentation of a generated trajectory, which is referred to as a "trial". Trials
were grouped into so-called "sub-blocks", followed by a pause of 4 s. The
initial trials of these sub-blocks were not included in the analysis because
they differed from the other continuation trials in the movement initia-
tion required after the 4 s pause. The main experiment was composed
of 6 blocks, each consisting of several sub-blocks. Blocks were separated
by a break of about 5 minutes:

(1) In the first block, only the trajectory TR1 was presented in the
so-called periodic training presentation mode with the purpose to make
the subject familiar with the selected trajectory without introducing
unwanted fatigue effects.

(2) The periodic training block was followed by 5 test blocks, each
presenting 12 sub-blocks. Six of these sub-blocks showed the non-periodic
test presentation mode and contained the three trajectories TR2, TR3
and TR4 in a pseudo-random order led by one of the unpredictable sec-
tions. Alternating with the non-periodic test sub-blocks, 6 sub-blocks
were inserted with TR1 in the so-called periodic test presentation mode.
This presentation mode was - apart from the vicinity to the non-periodic
test sub-blocks - identical to the periodic training mode. The specific
structure of the non-periodic sub-blocks kept the subjects under the
illusion of path randomness despite repetitive presentations of TR2-
TR4. These repetitions were necessary to calculate joint angle variance-
covariance which is the basis for the Uncontrolled Manifold Method.

To test whether effects of periodic or non-periodic presentations were
related to differences between the trajectories rather than to the presen-
tation modes a control experiment was performed on a different day, at
least five weeks after the main experiment. This control consisted of a
single "non-periodic" block with 10 sub-blocks, each starting with one of
the "unpredictable" sections followed by TR1, TR2, TR3 and TR4 in a
random order.

Analysis of tracking delay Tracking delay was assessed by the time
lag (ms) of pen position, evaluated by an algorithm described in [9].
In this algorithm, the hand-target distance is computed between the
current hand position and the target position at any sampling point
between 500 ms before and 100 ms after the current time. The lag is
defined as the time point at which the hand-target distance is minimal.
The average tracking delay was computed separately for each subject,
block, presentation mode, and was averaged across all respective sampling
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points.

The uncontrolled manifold method (UCM) The total variance
of the joint angles across trials was calculated followed by a structural
decomposition using the uncontrolled manifold method [10, 11] with re-
spect to the task variable formed by the two components of the pen
position on the screen. In the framework of the uncontrolled manifold,
the total variance is divided into two components, one affecting and one
irrelevant for the proposed task variable. For small deviations of the
joint angles from the average across trials, the task-irrelevant variance
can be approximated by the variance of the projection of joint angles
on the null-space of the Jacobian of the task variable with respect to
joint angles. Accordingly, the relevant variance is approximated by the
variance of the joint angle projection on the orthogonal subspace. The
synergy index is defined as the ratio between the irrelevant and the rele-
vant variance, each being normalized to the dimension of the respective
subspace. Larger values of the synergy index indicate higher flexibility
and adaptability of the system against external perturbations [11].

Like the average tracking delay, the uncontrolled manifold method
was evaluated separately for each combination of the factors subject,
block, and presentation mode, averaged across all respective sampling
points.

Statistical analysis To test whether tracking performance differed
between the trajectories (TR1 - TR4), each of the dependent variables
tracking delay, the total variance and the synergy index of the control ex-
periment was submitted to a repeated measures ANOVA with the factor
trajectory (4 levels). For the main experiment each of these dependent
variables was submitted to two repeated measures ANOVAs, one for the
periodic training block and one for the test blocks. To analyze potential
learning effects during the training consecutive pairs of the 10 sub-blocks
were pooled to form a repeated factor block number with 5 levels. To
analyze the differences between periodic and non-periodic presentation
modes and potential training effects in the test blocks, the two repeated
measures factors presentation mode (2 levels) and block number (5 levels)
were used. Post-hoc tests were performed using Tukey’s HSD test. Ef-
fects were considered significant for α-errors p < 0.05. Normality of the
analyzed variables was checked with the Lilliefors test. Data sphericity
was tested using Mauchly’s sphericity test. Wilks’ lambda multivariate
test was applied if sphericity was not fulfilled. Descriptives of normally
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distributed variables were given as mean ± standard deviation and as
median [interquartile range] otherwise.

2.2 Wearable measurement device prototype
Development platform and device firmware The prototype of
the wearable measurement device is designed around an STM32F407VG
microcontroller unit (MCU) that is a high performance ARM Cortex-
M4F core running at up to 168 MHz. To ease development, an STM32F4
Discovery board was used as the central hardware element of the system
which provides access to all pins of the MCU and a debugger unit in the
same package.

Device firmware was implemented in C using the Eclipse IDE and the
GNU Tools for ARM Embedded Processors package on an Ubuntu 12.04
LTS system. Device programming and debugging was performed with
OpenOCD. The prototype’s firmware was designed and implemented us-
ing the FreeRTOSTM 1 real-time operating system for straightforward
execution scheduling. For low-level device driver implementation, ST’s
Standard Peripheral Library for the STM32F4 Discovery kit (version
1.1.0) was used. The MCU’s DMA controller was utilized in each sce-
nario where it was applicable to further improve execution parallelism.

Inertial Measurement Units (IMUs) To perform measurements
of joint kinematics, single chip 9-axis MEMS inertial sensors were used
(MPU-9250, 3×3×1 mm package). Each sensor integrates an individual
3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer with
properties that are able to provide enough flexibility to measure most
common human movement tasks without saturation. Considering the
target application of the device (measurement of low to moderate speed
arm movements) sensor components were configured as follows:
Accelerometer: ± 2G, 16-bit, 200Hz
Gyroscope: ± 500◦/sec, 16-bit, 200Hz
Magnetometer: ± 4800µT/sec, 16-bit, 100Hz

Sensor fusion for the IMUs A computationally efficient open source
orientation filter [13] was used to provide sensor orientations in soft-
ware using a gradient descent based 9-axis fusion algorithm. The applied
method provides direct quaternion output (avoiding the phenomenon of

1http://www.freertos.org/
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gimbal lock) and is easily capable to provide stable 200 Hz output rate
on the selected development platform.

Device control and data visualization A PC-side software appli-
cation was developed in MATLAB (Mathworks, Natick, MA, USA) for
device control, real-time data visualization and storage, and to perform
custom post-processing tasks. Based on experiences with this sample ap-
plication, a new implementation of the control software has been started
in Python using the Kivy framework2 to make device usage independent
from MATLAB and to include Android and iOS as possible target plat-
forms in addition to the three major desktop operating systems, while
keeping the same code base for all variants.

2.3 Real-time reconstruction of arm kinematics
Model based movement analysis In this thesis work OpenSim was
chosen as the reference model-based movement analysis tool because
it uses a mature multibody dynamics engine (Simbody), it can han-
dle SIMM’s model format, it provides various APIs (MATLAB, Java,
Python) for integration with custom software and it is free and open
source with a growing community behind. OpenSim uses a text based
structured XML model format that contains all information needed for
the biomechanical description of the human body (bodies, kinematic con-
straints and forces (i.e. muscles)) that are accessible through API calls,
too.

To analyze arm kinematics with OpenSim the most complete model
available was chosen known as the Stanford VA Upper Limb Model [18].
It is based on experimental data, includes 15 degrees of freedom and 50
muscle compartments and enables the evaluation of kinematics, muscle-
tendon lengths, moment arms, muscle forces and joint moments in an
anatomically reasonable setup.

Marker locations and compound matrices of consecutive rota-
tions To enable the utilization of the upper limb model with inertial
measurements, a prototype marker set was defined. For this purpose, or-
thonormal bases were formed for each anatomical joint of interest in the
model (shoulder, elbow and wrist) and markers were placed at specific
locations in these bases to reflect the actual compound rotations among
the respective degrees of freedom.

2http://kivy.org/
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Because all prototype markers follow their parent bodies’ orienta-
tion during analyzed movements, the compound rotation matrix in each
anatomical joint can be determined from marker positions in the global
reference frame at any time instant. To utilize this feature it is crucial
that the structure of each joint’s marker subset remains consistent during
measurements. As a consequence, it is recommended to use arm segment
orientations to calculate the actual positions of prototype markers in-
stead of measuring them directly that makes the application of inertial
sensors possible and beneficial for this task.

Spatial rotations about arbitrary axes To determine model de-
fined anatomical joint angles from prototype marker positions, methods
for spatial rotations about arbitrary axes were applied. For rotations
about a specific axis Rodrigues’ formula was used. Reconstruction of
model defined joint angles in the wrist required the application of a
decomposition algorithm [19] that makes the calculation of three Eu-
ler angles about arbitrary axes possible from a rotation matrix if the
rotation axes are known.
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3 New scientific results
Thesis I. I have shown experimentally that during target tracking arm
movements the human movement system optimizes different cost func-
tions based on knowledge about the target trajectory in a way that for
visually driven tracking of unfamiliar trajectories the task error to be
minimized is defined in target coordinates, whereas for familiar trajecto-
ries it is defined in motor coordinates.

Corresponding publication: [J1]

I have designed an experimental study and the corresponding mea-
surement setup to investigate the differences in motor synergies between
predictive and unpredictive tracking arm movements for cases when sub-
jects tracked a target moving in 2D on a graphics tablet with a hand-held
pen, while their arm movements were not restricted. The measurement
setup assured time accurate presentation of the visual stimulus to trig-
ger subject movement while synchronized recording of the pen’s planar
position and 3D kinematics of the subject’s arm were also realized. By
applying the Uncontrolled Manifold Method and techniques from opti-
mal feedback control theory of human arm movements, I have shown that
the movement goal differs between tracking of familiar and unfamiliar
trajectories. The difference can be characterized by a modification of the
task error being minimized for different movement execution modes.

Thesis II. I have developed a wearable measurement device and a cor-
responding model-based kinematic reconstruction algorithm that is able
to determine the arm’s anatomical joint angles in real-time, based on
the spatial orientations of arm segments. The overall performance gain
of the method compared to the approach of a widely used biomechanics
simulation software is 1) up to x14982 on CPU, 2) up to x149 on an
ARM Cortex-M4 MCU and 3) up to x324 on an ARM Cortex-M7 MCU
while it maintains numerical accuracy with the reference solution.

Corresponding publications: [C1], [J2]

Model based analysis of human upper limb movements has key im-
portance in understanding the motor control processes of our nervous
system. Various simulation software packages have been developed over
the years to perform model based analysis. These packages provide com-
putationally intensive – and therefore off-line – solutions to calculate the
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anatomical joint angles from motion captured raw measurement data
(also referred as inverse kinematics). In addition, recent developments
in inertial motion sensing technology show that it may replace large,
immobile and expensive optical systems with small, mobile and cheaper
solutions in cases when a laboratory-free measurement setup is needed.
The thesis contributes to the workflow of measurement and analysis of
human arm movements with an engineering prototype of a wearable
measurement system and an algorithm that allows accurate and real-
time estimation of anatomical joint angles for a widely used OpenSim
upper limb kinematic model when inertial sensors are used for movement
recording.

By utilizing the inherent kinematic structure of the selected OpenSim
upper limb model (Stanford VA Upper Limb Model [18]), I have created
a numerical algorithm that is able to reconstruct model-defined custom
rotation angles based on marker positions within a virtual marker set
specifically defined for this task. The virtual markers are placed in spe-
cific locations within the local coordinate frames of selected model bodies
in a way that they form separate orthonormal bases in each anatomical
joint of interest (shoulder, elbow and wrist) and represent the corre-
sponding compound rotation matrices of model-defined joint angles in
the global reference frame. Having the markers bound to their parent
bodies, their positions in the global reference frame are determined by
the actual orientation of their corresponding arm segments during any
movement within the valid joint limits defined by the model. As the
orientation of inertial sensors can be reconstructed from their measured
physical quantities with efficient algorithms, by proper placement and
calibration they can be used to update virtual marker positions – and as
a result, the compound rotation matrices of model-defined joint angles
– during measured arm movements. The developed numerical algorithm
utilizes this feature to reconstruct the anatomical joint angles of the
model in real-time by extracting angle values from the corresponding
compound rotation matrices.
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4 Application of the results
Given that the thesis covers both theoretical and technical topics of

human movement science, several fields of application are possible. In the
first part, the behavioral aspects of specific target tracking arm move-
ments were investigated. It was found that available knowledge about
the target trajectory has an impact on the actual execution mode of the
movement. Experimental data showed that subjects tried to minimize the
pen position error when the trajectory of the target was unknown while
this goal was shifted towards the minimization of joint angle variability
in the case when target trajectory was known as a result of preliminary
training. While these findings contribute to the understanding of the
human movement system in general, they may be utilized in practical
rehabilitation applications as well. Considering post-stroke assessment,
the developed experimental setup and procedure may be used to give
deeper insight into the actual state of the patient’s movement system
and reveal higher level effects of the injury (e.g. reduced effectiveness of
motor learning and visuo-motor coordination).

In the second part of the thesis, by developing the prototype of a
wireless and wearable measurement device based on inertial sensors, the
evaluation of laboratory-free measurement of human arm movements
was started. As the prototype enables evaluation and analysis of vari-
ous sensor calibration, filtering and sensor fusion algorithms in a fully
customizable setup, it may be used in various applications where mea-
suring the actual kinematic state of the arm can be utilized (e.g. state
assessment for rehabilitation, human-machine interfaces or better pres-
ence integration in virtual reality environments).

Another contribution to the field of human movement recording was
the development of a real-time reconstruction algorithm that is capable
to determine model based anatomical joint angles from inertial sensor
data directly. As a result, tighter integration of kinematic measurement
and reconstruction can be achieved to resolve the time and computa-
tional overhead of the offline measurement-scaling-inverse kinematics
scheme applied in human movement science that has been giving a bot-
tleneck in applications where real-time analysis of the control patterns
with respect to the actual kinematics would have been beneficial. As
an example, the algorithmic concept of a system for the classification
of forearm muscle activity signals based on the arm’s kinematic state is
presented in [C2], while the design of a practical implementation using
real-time data labeling with the developed prototype is shown in [C3].
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