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Abstract

In this thesis, I propose new results in audio speech based visual speech synthesis,
which can be used as help for hard of hearing people or in computer aided animation.
I will describe a synthesis tool which is based on direct conversion between audio and
video modalities. I will discuss the properties of this system, measuring the speech
quality and give solutions for occurrent drawbacks. I will show that using adequate
training strategy is critical for direct conversion. At the end I conclude that direct
converison can be used as well as other popular audio to visual speech conversions, and
it is currently ignored undeservedly because of the lack of efficient training.
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Chapter 1

Introduction

Audio to visual speech conversion is an increasingly popular applicable research field
today. Main conferences such as Interspeech or Eurasip started new sections concerning
multimodal speech processing, Interspeech 2008 held a special session only for audio to
visual speech conversion.

Possible applications of the field are communication aiding tools for deaf and hard
of hearing people[l] by taking advantage of the sophisticated lip-reading capabilities
of these people, or lip-sync applications in the animation industry, in computer aided
animations as well as in real-time telepresence based video games. In this thesis I will
describe solutions for both of these applications.

In this chapter I will show the actual status of the topic, motivations and state
of the art techniques. To understand this chapter basic speech and signal processing
knowledge is needed.

1.1 Definitions

Speech is a multimodal process. The modalities can be classified as audio speech and
visual speech. I will use the following terms:

Visual speech is a representation of the view of a face talking.

Visual speech data is the motion information of visible speech organs in any repre-
sentation.

Phoneme is the basic meaning distinctive segmental unit of the audio speech. It is
language dependent.

Viseme is the basic meaning distinctive segmental unit of the visual speech. Also
language dependent. There are visemes belonging to phonemes, and there are phonemes
which do not have viseme in particular, because the phoneme can be pronounced with
more than one ways of articulation.

Automatic speech recognition (ASR) is a system or a method which can extract
phonetic information from audio speech signal. Usually a phoneme string is produced.

Audio to visual speech (ATVS) conversion systems are to create an animation of a
face according to a given audio speech.
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Figure 1.1: Task of audio to visual speech (ATVS) conversion.

Direct ATVS is an ATVS which maps audio representation to video representation
by approximation.

Discrete ATVS is an ATVS which uses classification into discrete categories in order
to connect the modalities. Usually phonemes and visemes are used.

Modular ATVS is an ATVS which contains ASR subsystem, and phoneme-viseme
mapping subsystem. Modular ATVS systems are usually discrete.

AV mapping is an input-output method where the input is audio data in any rep-
resentation and the output is visual data in any representation. In a discrete ATVS,
AV mapping is a phoneme-viseme mapping, in a direct ATVS this is an approximator.

1.1.1 Components

Each ATVS consist of the audio preprocessor, the AV (audio to video) mapping, and
the face synthesizer. The most straightforward method is the jaw-opening driven by
speech energy, this system is widely used in on-line games, so the audio preprocessor is a
frame-by-frame energy calculation expressed in dB, the AV mapping is a linear function,
which maps the one dimensional audio data to the one dimensional video parameter,
the jaw opening. The face model is usually a vertexarray of the face, and by modifying
the vertices of the jaw the face synthesis is done. In below more sophisticated cases
will be detailed where naturalness and intelligibility are issues.

Recent research activities are on speech signal processing methods specially for
lip-readable face animation [2], face representation and controller method[3], and con-
vincingly natural facial animation systems [4].


th_mi/direct_conv_task.eps

DOI:10.15774/PPKE.ITK.2010.007

1.1.2 Quality issues 5

Audio preprocessing

These systems use feature extraction methods to get useful and compact information
from the speech signal. The most important aspects of quality here are the extracted
representation dimensionality and covering error. For example the spectrum can be
approximated by a few channels of mel bands replacing the speech spectrum with a
certain error. In this case the dimensionality is reduced greatly by allowing certain noise
in the represented data. Databases for neural networks have to consider dimensionality
as a primary aspect.

Audio preprocessing methods can be clustered in many aspects as time domain or
frequency domain feature extractors, approximation or classification, etc. A deeper
analysis of audio preprocessing methods concerning audiovisual speech is published
by [5] resulting the main approaches are approximately equally well. These traditional
approaches are the Mel Frequency Cepstral Coefficients (MFCC) and Linear Prediction
Coding (LPC) based methods. A quite convenient property of LPC based vocal tract
estimation is the direct connection to the speech organs via the pipe excitation model.
It seems to be a good idea to use vocal tract for ATVS as well but according to [5] it
has not significantly more usable data.

AV mapping

In this step the modalities are connected, visual speech data is produced from audio
data.

There are different strategies for performing this audio to visual conversion. One ap-
proach is to exploit automatic speech recognition (ASR) to extract phonetic information
from the acoustic signal. This is then used in conjunction with a set of coarticulation
rules to interpolate a visemic representation of the phonemes [6, 7]. Alternatively, a
second approach is to extract features from the acoustic signal and convert directly
from these features to visual speech [8, 9].

Face synthesis

In this step the visual speech representation is applied to a face model. Usually sepa-
rated to two independent parts as facial animation representation and model rendering.
The face representation maps the quantitative data on face descriptors. An example of
this is the MPEG-4 standard. Face rendering is a method to produce picture or anima-
tion from face descriptions. These are usually computer graphics related techniques.

1.1.2 Quality issues

An ATVS can be evaluated on different aspects.

- naturalness: how much is the similarity of the result of the ATVS and a
real persons visual speech
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- intelligibility: how the result helps the lip-reader to understand the content
of the speech

- complexity: the systems overall time and space complexity

- trainability: how easy is to enhance the system’s other qualities by exam-
ples, is this process fast or slow, is it adaptable or fixed

- speaker dependency: how the system performance varies between different
speakers

- context dependency: how the system performance varies between speech
contents (eg. a system, which trained on medical content, may perform
poorer on financial content)

- language dependency: how complex is to port the system to a different
language. The replacement of the database can be enough, or may rules
have to be changed, even the possibility can be questionable.

- acoustical robustness: how the system performance varies in different acous-
tic environments, like higher noise.

1.2 Applications

In this section I describe some of the recent systems, and give a short description of
them in the quality aspects detailed above.

1.2.1 Synface

An example of ATVS systems is the Synface[l] of KTH, Sweden. This system is de-
signed for hearing impaired but not deaf people to handle voice calls on phone. The sys-
tem connects the phone line to a computer, where a speech recognition software trans-
lates the incoming speech signal to a time aligned phoneme sequence. This phoneme
sequence is the basis of the animation control. Each phoneme is assigned to a viseme,
and the recognized sequence makes a string of visemes to animate. The speech recog-
nition subsystem not just recognizes the phoneme but makes the segmentation also.
The viseme sequence timed by this segmentation information gives the final result of
the AV mapping, using a rule-based strategy. The rule set is created by examples of
Swedish multimodal speech.

This system is definitely language dependent, it uses the Swedish phoneme set,
a Swedish ASR, and a rule set built on Swedish examples. On the other hand the
system performs very well in aspects of intelligibility, acoustical robustness, speaker
and context dependency.
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1.2.2 Synthesis of nonverbal components of visual speech

An example of audio to visual non-verbal speech estimation is the system of Gregor
Hofer and Hiroshi Shimodaira[9]. Their system targets to extract the correct time of
blink in speech. The audio preprocessing in this system concentrates on non-verbal
components, such as rhythm, and intonation. Compared to actual videos, the original
audio signal was used to test the precision of the estimation, which was above 80% with
a decent time toleration of 100 ms. It is important that there are two kinds of blink,
one of the regular eye care, fast blink, and the other is the non-verbal visual speech
component emphasized blink. Of course this work was focused the second variant.

1.2.3 Expressive visual speech

This field changed the name from “Emotional speech” to “Expressive speech” because
of psychological reasons. Expressive speech targets to synthesize or recognize emotional
expressions in speech. Expressing emotions is very relevant in visual speech.

I show two approaches to the field. Pietro Cosi el al work on the virtual head “Lucia”
[10] to connect an expressive audio speech synthesizer with a visual speech synthesizer.
This text based system can be used as an audiovisual agent on any interactive media
where text can be used. For expressive visual speech it uses visemes for textual content
and four basic emotional states of the face as expressive speech basis. They work on a
natural blending function of these states.

Sasha Fagel works on expressive speech in a broad sense[11]. He created a method to
help creating expressive audiovisual databases by leading the subject through emotional
stages to reach the desired level of expression gradually. This way it is possible to record
emotionally neutral content (eg. “It was on Friday”) articulated with joy or anger. The
trick is to record the sentence multiple times and inserting emotionally relevant content
between the occurrences. One example could be the sequence “Trouble happen always
with me! It was on Friday. What do you think you are?! It was on Friday. I hate youl!
It was on Friday.” This method gives the speaker the guide to express anger which
gradually increases in expressiveness. The database will contain only the occurrences
of emotionally neutral content.

1.2.4 Speech recognition today
As of 2010, after a decade, the hegemony of Hidden Markov Model (HMM) based ASR

systems[12] is still standing. This approach uses a language model formulated with
consecutiveness-functions, and a pronouncation model with confusion functions.

The main reason of the popularity of HMM based ASR systems is the efficiency of
handling more thousands of words in a formal grammar. This grammar can be used to
focus the vocabulary around a specific topic to increase the correctness and reducing
the time complexity. HMM can be trained to a specific speaker but also can be trained
on large databases to work speaker independent.
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Figure 1.2: Mouth focused subset of feature points of MPEG-4.

1.2.5 MPEG-4

MPEG-4 is a standard for face description for communication. It uses Feature Points
(FP) and Facial Animation Parameters (FAP) to describe the state of the face. The
constant properties of a face also can be expressed in MPEG-4, for example the sizes

in FAPU.

The usage of MPEG-4 is typical in multimedia applications where an interactive or
highly compressed pre-recorded behavior of a face is needed, such as video games or
news agents. One of the most popular MPEG-4 systems is Facegen|[13].

For visual speech synthesis MPEG-4 is a fair choice since there are plenty of im-
plementations and resources. The degree of freedom around the mouth is close to the
actual needs, but there are features which can not be modeled with MPEG-4, such as
inflation. Gerard Bailly et al showed that using more feature points around the mouth
can increase naturalness significantly[14].

1.2.6 Face rendering

The task of the synthesis of the picture from face descriptors is face rendering. Usually
3D engines are used, but 2D systems are also can be found. The spectrum of the
approaches and image qualities is very wide from efficient simple implementations to
muscle based simulations[4].

Most of the face renderers use 3D acceleration and vertex arrays to interpolate,
which is a fairly accelerated operation in today’s video cards. In this case a few given
vertex array represent given phases of the face, and using interpolation techniques, the
status of the face can be expressed as a weighted sum of the proper vertex arrays. The
resulting state can be textured and lighted just as one of the original designed facial
phases.
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1.3 Open questions

It is clear that face modeling and facial animation — subtasks of audio to visual speech
conversion — are still evolving but mainly a development fields, but there are exam-
ples of research areas, such as approximation of the human skin’s physical properties,
connection of the modalities, evaluation of AV mapping, what is speaker dependent in
the articulation, what is the minimal necessary degrees of freedom for perfect facial
modeling.

My motivations cover the applicable research on the connection between the modal-
ities. This is also an open question. There are convenient arguments for the physical
relation between the modalities: the speech organs are used both for audio and visual
speech, although some of them are not visible. There must are physical effects of the
visible speech organs to the audio speech.

On the other hand, there are phenomena where the connection between the modal-
ities are minimal. Speech disorders can effect the audio speech without a visible trace.
Ventriloquism (the art of speaking without lip movement, usually performed with pup-
pets creating the illusion of a speaking puppet) is also an interesting exception.

To avoid inconsistency I turned to the clarified topic of audio to visual speech
conversion.

1.4 The proposed approach of the thesis

The physical connection between the modalities can give guideline to reach basic con-
version from audio to video, but this goal is not clear without specified aspects of
qualities. The next chapter will detail how our research group met the field through
the aid of deaf and hard of hearing people. Their main quality aspects of the resulting
visual speech are the lip-readability, and the naturalness. This way the problem can
be redefined to search the most appropriate visual speech for the given audio speech
signal, not to restore the original visual articulation.

The physical connection can be utilized easily through direct conversion. Direct
ATYVS systems are not speech recognition systems, the target is to produce an animation
without recognizing any of the language layers as phonemes or words, as this part of
the process is left to the lip-reader. Because of this, our ATVS uses no phoneme
recognition, furthermore there is no classification part in the process. This is the direct
ATVS, avoiding any discrete type of data in the process. Discrete ATVS systems are
using visemes as the visual match of phonemes to describe a given state of the animation
of a phoneme, and using interpolation between them to produce coarticulation.

One of the most important benefits of the direct conversion is the chance to conserve

nonverbal content of the speech such as prosody, dynamics and rhythm. Modular ATVS
systems have to synthesize these features to maintain the naturalness of the result.
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1.5 Related disciplines

1.5.1 Speech inversion

Qur task is similar to speech inversion which tends to extract information from speech
signal about the state sequence of the speech organs. However, speech inversion aims
to reproduce every speech organ to exactly the same state as the speaker used his
organs, with every speaker dependent property[15, 16]. ATVS is different, the target is
to produce a lip-readable animation which depends only on the visible speech organs
and does not depend on the speaker dependent features of the speech signal.

Speech inversion aims to recover the state sequence of the speech organs from speech.
A very simple model and solution of this problem is the vocal tract. Recent research
on this field concerns tongue motion and models in particular.

1.5.2 Computer graphics

Synthesis of human face is a challenging field of computer graphics. The main reason
of the high difficulty is the very sensitive human observer. The humankind developed
a highly sophisticated communication system with facial expressions, it is a basic hu-
man skill to identify emotional and contextual content from a face. An example of
cutting edge face synthesis systems is the rendering system of the movie Avatar (2009)
where the system parameters were extracted from actors[17]. There are recent scien-
tific results of efficient volume conserving deformations of facial skin based on muscular
modeling[4]. These modern rendering methods can reproduce creasing of the face,
which is perceptionally important.

1.5.3 Phonetics

The science of phonetics is related to ATVS systems by the ASR based approaches.
Phonetically interesting areas are the ASR component, the phoneme string processing,
the rules applied on phoneme strings to synthesize visual speech, such as interpolation
rules, or dominance rules.

The details of articulation, and the relation of the phonetic content and the fa-
cial muscle controls is the topic of articulatory phonetics[18, 19]. This field classifies
phonemes by their places of articulation: labial-dental, coronal, dorsal, glottal. ATVS
systems are aware of visible speech organs, so labial-dental consonants are important,
along vowels and articulations with open mouth. For example the phoneme “I” is
identifiable of it’s alveolar articulation since it is done with opened mouth.

Articulatory phonetics have important results for ATVS systems, as we will see the
details of visual speech synthesis from phoneme strings.

10
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Chapter 2

Motivation and the base system

In this chapter I will describe the main tasks I had to deal with, showing the motivation
of my thesis. I will describe a base system as well. The base system itself is not part
of the contribution of my thesis, although understanding the base system is important
to understanding my motivations.

2.1 SINOSZ project

The original project with SINOSZ (National Association of Deaf and Hearing Impaired)
aimed a mobile system to help dealing with audio only information sources for hard
of hearing people. The first idea was to visualize the audio data in some learnable
representation, but the association rejected any visualization technique which must be
learned by the deaf community, so the visualization method had to be some already
known representation of the speech. We had basically two choices, to implement an
ASR to get text, or translate to facial motion. We expected more efficient and robust
quality of facial motion conversion with the capabilities of a mobile device in 2004.

The development of the mobile application was initiated with the project. The
mobile branch of the project is out of the scope of my thesis, although the requirement
of efficiency is important.

2.1.1 A practical view

When I started to work on audio to visual speech conversion, after examining some of
the systems in aspects of requirements and qualities detailed in the previous chapter, 1
decided to use direct conversion. The main reason in this time was to get a functional
and efficient test system as soon as possible to have results and first hand experience
with the hope of sufficially efficient implementation later.

Direct conversion can be deployed on mobile platforms easier than database de-
pendent classifier systems. Not only the computational time is moderated, but the
memory requirements are also lower. Choosing direct conversion was the option of the
guaranteed possibility of the test implementation on the target platform.

11
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2.2 Lucia

In the beginning of the project I convinced the team to use direct mapping between
modalities. My two important reasons were the efficiency and the lack of the require-
ment of a labeled database unlike an ASR. Since we did not have any audiovisual
databases (and even in 2009 there are quite few publicly available) we had to think on
not only the system but the database also. Direct conversion does not need labeled
data so manual work can be minimized, which shortens the production time.

So the planned system contained a simple audio preprocessing (LPC or MFCC), a
direct mapping to video from audio feature vectors via code-book or neural network,
and visualization of the result on an artificial head. We did not have any face models,
neither wanted to create one, so we were looking for an available head model.

The first test system used the talking head of Cosi et al[10] called Lucia. The head
model was originally used for expressive speech synthesis. The system used MPEG-4
FAP as input, and generated a run-time video in an OpenGL window, and exporting
in video files was also available.

2.3 The base system

The base system is an implementation of direct conversion2.1.

2.3.1 Database building from video data

The direct conversion needs pairs of audio and video data, so the database should be
a (maybe labeled) audiovisual speech recording where the visual information is enough
to synthesize a head model. Therefore we recorded a face with markers on the subset
of MPEG-4 FP positions, mostly around the mouth and jaw and also some reference
points. Basically this is a preprocessed multimedia material specially to use it as a
training set for neural networks. For this purpose the data should not contain strong
redundancy for proactically acceptable learning speed, so the pre-processing includes
the choice of an appropriate representation also. With inadequate representation the
learning may take months, or may not even converges.

2.3.2 Audio

The voice signal is processed by 25 frame/s rate to be in synchrony with the processed
video signal. One analysis window is 20-40 ms, the maximum number of samples in the
40 ms window to be 2™ samples. The input speech can be pre-emphasis filtered with
H(z)=1-0.983z-1. Hamming window and FFT with Radix-2 algorithm are applied. The
FFT spectra is converted to 16 mel-scale bands, and logarithm and DCT is applied.
Such Mel Frequency Cepstrum Coefficients (MFCC) feature vectors are commonly used
in general speech recognition tasks. The MFCC feature vectors provide the input to
the neural networks after scaling to [-0.9 .. 0.9].
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Figure 2.1: Workflow used in Lucia.
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2.3.3 Video

For video processing we used two methods. Both methods are based on video recording
of a speaker and feature tracker applications. The first method is based on markers
only which are placed around the mouth. The markers were selected as a subset of
the MPEG-4 face description standard. Tracking the markers is a computer aided
process; a 98% precise marker tracker algorithm was developed for this phase. The
mistakes were corrected manually. The marker positions as a function of time were
the raw data, which was normalized by control points such as the nose to eliminate
the motion of the whole head. This gives a 30-36 dimensional space depending on
marker count. This data is very redundant and high dimensional, it is not suitable
for neural network training, so PCA was applied to reduce the dimensionality and
eliminate the redundancy. PCA can be treated as a lossy compression because only
the first 6 parameters were used for training. Using only 6 coefficients can cause about
1 pixel error on PAL screen which is the precision of the marker tracking. The first 4
coefficient can be seen on Fig 2.2.

The base systems’s video database is a set of video records of professional lip-
speakers. Their moving faces are described by the 15 element subset of the standard
MPEG-4 feature points (FP) set (84). These feature points were marked by colored
dots on the face of the speakers. The coordinates of feature points were calculated by
a marker tracking algorithm.

The marker tracking algorithm used the number of markers (nm) as input, and on
each frame it looked for the nm most marker-like areas of the picture. The marker-
likeliness was given as high energy fixed sized blob after yellow filtering. The tracking
contained a self-check by looking for additional markers, and by comparing the marker-
likelinesses of the marker [..,nm — 1,nm,nm + 1,..] the good tracking show strong
decrease after the nm marker. If the decrease is before nm there are missing markers,
if the decrease if after nm there are misleading blobs in the frame. Using the self-check
of the tracking, manual corrections was made.

The FP coordinates means 30 dimensional vectors which are compressed by PCA.
We have realized that the first few PCA basis vectors have close relations to the basic
movement components of lips. Such components can differentiate visemes. The marker
coordinates are transformed into this basis, and we can use the transformation weights
as data (FacePCA). The FacePCA vectors are the target output values of the neural
net during the training phase [8].

2.3.4 Training

The synchrony of the audio and video data is checked by word ”papapa” in the be-
ginning and the end of the recording. The first opening of the mouth by this bilabial
can be synchronized with the burst in the audio data. This synchronization guarantees
that the pairs of audio and video data were recorded in the same time. For the best
result the neural network has to be trained on multiple windows of audio feature vectors
where the window count has to be chosen based on the optimal temporal scope.
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Figure 2.2: Principal components of MPEG-4 feature points in the database of a pro-
fessional lip-speaker.
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The neural network is a back-propagation implementation by Davide Anguita called
Matrix BackPropagation[20]. This is a very efficient software, we use a slightly modified
version of the system to able to continue a training session.

2.3.5 First results

The described modules were implemented and trained. The system was measured with
a recognition test with deaf people. To simulate a measurable communication situation,
the test covered numbers, names of days of the week and months. As the measurement
aimed to tell the difference between the ATVS and a real person’s video, the situation
had to be in consideration of average lip-reading cases. As we found [8] deaf persons
recline upon context more than hearing people. In the cases of numbers or names of
months the context defines clearly the class of the word but leave the actual value
uncertain. During the test the test subjects had to recognize 70 words from video clips.
One third of the clips were original video clip from the recording of the database, other
one third were output of the ATVS from audio signals and the remaining one third
were synthesized video clips from the extracted video data. The difference between
the recognition of real recording and the face animation from the extracted video data
gives the recognition error from the face model and the database, as the difference
between animations from video data and audio data gives the quality of the audio to
video conversion. Table 2.1 shows the results.

Table 2.1: Recognition rates of different video clips.

Material | Recognition rate
original video 97%
face model on video data 55%
face model on audio data 48%

2.3.6 Discussion

In this case the 45% should be compared to the 55%. The face models, which is driven
by recorded visual speech data is the best possible behavior of the direct ATVS system.
The ratio of the results is 87%. It means that the base system can make deaf people to
understand 87% of the best possible system. This was very encouraging exprerience.

The 55% is a weak result compared to the 97% of original video. This falloff is
because of the artifical head. This ratio could be enhanced by using more sophisticated
head models and facial parameters, but this direction of research and development is
out of scope of this thesis.
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2.4 Johnnie Talker

Johnnie Talker is a real-time system with very low time complexity, pure AV mapping
application with a simple face model and facial animation. Johnnie was implemented
to demonstrate the low time complexity of direct ATVS approach. The application is a
development of our research group, it uses my implementation of AV mapping, Tamas
Bardi’s audio preprocessing and Balint Srancsik’s OpenGL based head model.

Johnnie is freely downloadable from the webpage of the author of this dissertation[21].
It is a Windows application using OpenGL.

Because of the demand of low latency no theoretical delay was used in this system.
In the next few chapters I will describe how the naturalness and the intelligibility can
be enhanced by using a time window in the future of audio modality. This can be
implemented by delaying the audio dub to maintain audio-video synchrony and using
the future audio in the same time. For example a phone line can be delayed to the the-
oretically optimal time window. But since Johnnie can be used via microphone, which
can not be delayed, any additional buffering would cause noticeable latency which ruins
the subjective sense of quality. As one of the next chapters will describe, subjective
quality evaluation depends heavily on audio-video synchrony, and this phenomena ap-
pears strongly in the perception of a synthesized visual speech of one’s own speech in
real-time.

Johnnie Talker was shown on various international conferences with success. It was
a good opportunity to test language independence in practice.

We were looking for techniques to improve the qualities of the real-time system
without additional run-time overhead. There will be a chapter about a method which
can enhance speaker independence of the system using only database modifications, so
no run-time penalty needed.

2.5 Extending direct conversion

2.5.1 Direct ATVS and co-articulation

The most common form of the language is the personal talk which is an audiovisual
speech process. Our research is focused on the relation of the audio and the visual part
of talking to build a system converting voice signal into face animation.
Co-articulation is the phenomena of transient phases in speech process. In audio
modality, co-articulation is the effect of the neighboring phonemes to the actual state
of speech in a short window of the time, shorter than a phoneme duration. In speech
synthesis, there is a strong demand to create natural transients between the clean states
of speech. In visual speech synthesis this issue is also important. In the visual speech
process there are visemes even if the synthesizer does not explicitly use this concept.
Visual co-articulation can be defined as a system of influences between visemes in
time. Because of biological limitations, visual co-articulation is slower than audio co-
articulation, but similar in other ways: neighboring visemes can have effect on each
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other, there are stronger visemes than others, and most of the cases can be described
or approximated as an interpolation of neighboring visemes.

Let me call a system wvisual speech transient model, if it generates mediate states of
visual speech units, such as visemes. An example of visual speech transient model is the
strictly adopted co-articulation concept on visemes, the visual co-articulation, since the
viseme string processing has to decide how interpolation should take place between the
visemes. Another example of visual speech transient models is the direct conversion'’s
adaptation to longer time windows in order to include more than one phoneme on
the audio modality. In this case the transients depend on acoustical properties. In
modular ATVS systems, the transients are coded in rules depending on viseme string
neighborhoods.

Utilization

Training a direct ATVS needs audio-video data pairs. Since plenty of speech audio
databases exist but only a few audiovisual ones, building a direct ATVS means building
a multimodal database first. A discrete ATVS is a modular system, it is possible to use
existing speech databases to train voice recognition, and separately train the animation
part on phoneme pairs or trigraphs[1]. Therefore direct ATVS needs a special database,
but the system will handle energy and rhythm naturally, meanwhile a discrete ATVS has
to reassemble the phonemes into a fluid coarticulation chain of viseme interpolations.
Let use the term “temportal scope” for the overall time of a coarticulation phenomena,
which means that the state of the mouth is depending on this time interval of the speech
signal. In direct ATVS the calculation of a frame is based on this audio signal interval.
In discrete ATVS the visemes and the phonemes are synchronized and interpolation is
applied between them, as it is popular in text to visual speech systems [22]. Figure 2.3
shows this difference.

Viseme | interpolation [ Viseme Viseme
1 2 3 Frame | Frame | Frame | Frame | Frame
| time > | ’ time ) >
Temporal scope of coarticulation Temporal scope of coarticulation

Figure 2.3: Temporal scope of discrete (interpolating) and direct ATVS

Asymmetry

As mutual information estimation resulted any given state of the video data stream
can be calculated fairly on a definable relative time window of the speech signal. This
model predicts that the transient phase of the visible speech can be calculated in the
same way as in the steady phase as Figure 2.3 shows.

This model gives a prediction about temporal asymmetries in the multimodal speech
process. This asymmetry can be explained with mental predictivity in the motion of
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the facial muscles to fluently form the next phoneme.
Details will follow in chapter “Temporal asymmetry”.

Speaker independence

Since the direct conversion is usually an approximation trained on a given set of audio
and video states, it suffers heavy dependence on the database. As I detailed before, for
a good direct ATVS a good lip-speaker needed to share visual data with the system.
Talented lip-speakers are rare, and most of the experienced lip-speakers are women.
This means that a single recording of one lip-speaker gives not only a speaker dependent
system, but collecting more professional lip-speakers would result a gender dependent
system, since the statistics of the data would heavily biased, or it is very difficult to
collect enough male lip-speaker to the system.

Even if we would have plenty of professional lip-speakers, there is a question about
the mixing the video data. People articulate differently. It is not guaranteed that a
mixture of good articulations result even an acceptable articulation. The most safe
solution is to choose one of the lip-speakers as a guaranteed high quality articulation,
and trying to use his/her performance with multiple voices.

I will give a solution for this problem in chapter “Speaker independence in direct
conversion” .

2.5.2 Evaluation

The base system was published as a standalone system, and was measured with subjec-
tive opinion scores and intelligibility tests with deaf persons. In my chapter about the
comparison of AV mappings, I will position the direct ATVS among the others used in
the world.

Oddly there are quite few publications on direct ATVS. This is strange, because
the system is one of the most simple designs. Let me tell a personal experience from a
conference of EUSIPCO, Florence. A young researcher was interested in our Johnnie
demo. He was from ATR, Japan, and he praised our system. As I explained the
workflow of the system, on each stage he said “We did the same”. Even the number
of PCA coefficients was the same. At the end, he said that their system produce
significantly worse results than ours, it was not even published because it was flawed.
We agreed then that the most important difference is the lip-speaker’s professionality.

His work can be read in japanese [23] in the annual report of the institute, by the
way in the same year we published our results in Hungarian [24, 25, 26]

Another example of direct conversion publicity is a comparison study of an unpub-
lished direct system[27] used as internal baseline.

Because of this underpublicity, it is important to position direct ATVS among the
more popular modular ATVS systems, since most of the visual speech synthesis research
groups also try to implement a direct ATVS, but their efforts fail because of the quality
of the database. At the first glance this may seem as bad news for our research, but
the novelty of our system is still unharmed since the work in ATR was identical only in
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the technical details, and a training system’s technology itself, without the database is
not a whole system. Our base system is new because of the new training data, and the
finding of the need of the professional lip-speaker. Again, I would like to emphasize that
difference between our base system and the one developed in ATR is not “only” the
database but the training strategy, which is one of the most important and fundamental
part of any learning system.

This new and successfull learning strategy makes our base system novel, but in
this thesis I focus the results of my own, not the research group. Johnnie Talker
is a contribution of the group, and the following extensions and measurements are
contribution of the author of this thesis.

In the next chapter I will show how the base system with the essential database of
the professional lip-speaker can be ranked among the widely used ATVS systems.

20
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Chapter 3

Naturalness of direct conversion

In this chapter I discuss the measurement of the naturalness of synthetic visual speech,
and comparison of different AV mapping approaches.

3.1 Method

A comparative study of audio-to-visual speech conversion is described in this chapter.
The direct feature-based conversion approach is compared to various indirect ASR-
based solutions. The already detailed base system was used as direct conversion. The
ASR based solutions are the most sophisticated systems actually available in Hungarian.
The methods are tested in the same environment in terms of audio pre-processing
and facial motion visualization. Subjective opinion scores show that with respect to
naturalness, direct conversion performs well. Conversely, with respect to intelligibility,
ASR-based systems perform better.

The thesis about the results of the comparison is important because no AV map-
ping comparisons were done before with the novel traning database of professional
lip-speaker.

3.1.1 Introduction

A difficulty that arises in comparing the different approaches is that they usually are de-
veloped and tested independently by the respective research groups. Different metrics
are used, e.g. intelligibility tests and/or opinion scores, and different data and view-
ers are applied [28]. In this chapter I describe a comparative evaluation of different
AV mapping approaches within the same workflow, see Figure 3.1. The performance
of each is measured in terms of intelligibility, where lip-readability is measured, and
naturalness, where a comparison with real visual speech is made.

3.1.2 Audio-to-visual Conversion

The performance of five different approaches will be evaluated. These are summarized
as follows:

21
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Figure 3.1: Multiple conversion methods were tested in the same environment
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Figure 3.2: Structure of direct conversion.

- A reference based on natural facial motion.

A direct conversion system.

- An ASR based system that linear interpolates phonemic/visemic targets.

An informed ASR-based approach that has access to the vocabulary of the test

material (IASR).

An uninformed ASR (UASR) that does not have access to the text vocabulary.

These are described in more detail in the following sections.

Direct conversion

We used our base system, with a database of a professional lip-speaker. The length of
the recorded speech was 4250 frames.
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ASR-based conversion

For the ASR based approaches a Weighted Finite State Transducer — Hidden Markov-
Model (WFST-HMM) decoder is used. Specifically, a system known as VOXerver [29]
is used, which can run in one of two modes: informed, this exploits knowledge of
the vocabulary of the test data, and uninformed, which does not. Incoming speech is
converted to MFCCs, after which blind channel equalization is used to reduce linear
distortion in the cepstral domain [30]. Speaker independent cross-word decision-tree
based triphone acoustic models are applied, which previously are trained using the
MRBA Hungarian speech database [31], which is a standardized, phonetically balanced
Hungarian speech database developen on the Budapest University of Technology and
Economics.

The uninformed ASR system uses a phoneme-bigram phonotactic model to con-
strain the decoding process. The phoneme-bigram probabilities were estimated from
the MRBA database. In the informed ASR system a zerogram word language model
is used with a vocabulary size of 120 words. Word pronunciations were determined
automatically as described in [32].

In both types of speech recognition approaches the WEFST-HMM recognition net-
work was constructed offline using the AT&T FSM toolkit [33]. In the case of the
informed system, phoneme labels were projected to the output of the transducer in-
stead of word labels. The precision of the segmentation is 10 ms.

Viseme interpolation

To compare the direct and indirect audio-to-visual conversion systems, a standard
approach for generating visual parameters is to first convert a phoneme to its equivalent
viseme via a look up table, then linear interpolate the viseme targets. This approach to
synthesizing facial motion is oversimplified because coarticulation effects are ignored,
but it does provide a baseline on expected performance (worst-case scenario).

Modular ATVS

To account for coarticulation effects, a more sophisticated interpolation scheme is re-
quired. In particular the relative dominance of neighboring speech segments on the
articulators is required. Speech segments can be classified as dominant, uncertain or
mixed according to the level of influence exerted on the local neighborhood. To learn
the dominance functions an ellipsoid is fitted to the lips of speakers in a video sequence
articulating Hungarian triphones. To aid the fitting, the speakers wear a distinctly
colored lipstick. Dominance functions are estimated by the variance of visual data in
a given phonetic neighborhood set. The learned dominance functions are used to in-
terpolate between the visual targets derived from the ASR output [34]. We use the
implementation of Laszlé Czap and Janos Matyas here which produces Poser script.
FAPs are extracted from this format by the same workflow as from an original recording.



DOI:10.15774/PPKE.ITK.2010.007

3.1.3 Evaluation 25

Speech Dominance

‘ class
database

ASR

!

Phoneme
sequence

—>| TTVS—»{ FAP

Figure 3.3: Modular ATVS consists of an ASR. subsystem and a text to visual speech
subsystem.

Rendering Module

The visualization of the output of the ATVS methods is common to all approaches.
The output from the ATVS modules are facial animation parameters (FAPs), which
are applied to a common head model for all approaches. Note, although better facial
descriptors than MPEG-4 are available, MPEG-4 is used here because our motion
capture system does not provide more detail than this. The rendered video sequences
are created from these FAP sequences using the Avisynth [35] 3D face renderer. As
the main components for the framework are common between the different approaches,
any differences are due to the differences in the AV mapping methods. Actual frames
are shown on Fig 3.5.

3.1.3 Evaluation

Implementation specific noncritical behavior (eg. articulation amplitude) should be
normalized to ensure that the comparison is between the essential qualities of the
methods. To discover these differences, a preliminary test is done.

Preliminary test

To tune the parameters of the systems, 7 videos were generated by each of the five
mapping methods, and some sequences were re-synthesized from the original facial
motion data. All sequences started and ended with a closed mouth, and each contained
between 2-4 words. The speaker participated in all of the tests was not one of those who
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Table 3.1: Results of preliminary tests used to tune the system parameters. Shown are
the average and standard deviation of scores.

Method | Average score | STD
UASR 3.82 0.33

Original 3.79 0.24
Linear 3.17 04
Direct 3.02 0.41
IASR 2.85 0.72

were involved in training of the audio-to-visual-mapping. The videos were presented in
a randomized order to 34 viewers whom were asked to rate the quality of the systems
using an opinion score (1-5). The results are shown in Table 3.1.

The results were unexpected, the IASR, which uses a more sophisticated coarticula-
tion model, was expected to be one of the best performing systems. Closer investigation
of the lower scores showed the reason was rather due to poorer audiovisual synchrony
of TASR than for UASR. The reason of this phenomena is the difference of the mecha-
nism of the informed and the uninformed speech recognition process. During informed
recognition the timing information is produced as a consequence of the alignment of
the correct phonemes to the signal, which presses the segment boundaries by using
the certain phonetic information. The uninformed recognition may miscategories the
phoneme but the acoustical changes are the driver of the segment boundaries, so the
resulting segmentation is closer to the acoustically reasonable than the phonetically
driven segmentation.

A qualitative difference between the direct and indirect approaches is the degree
of mouth opening — the direct approach tended to open the mouth on average 30%
more than the indirect approaches. Consequently, to bring the systems into the same
dynamic range, the mouth opening for the direct mapping was damped by 30%. The
synchrony of the ASR-based approaches was checked for systemic errors (constant or
linearly increasing delays) using cross correlation of locally time shifted windows, but
no systematic patterns of errors were detected.

3.1.4 Results
ASR subsystem

The quality of the ASR-based approach is affected by the recognized phoneme string.
This typically is 100% for the informed system as the test set consists only of a small
number of words (months of the year, days of the week, and numbers under 100), whilst
the uninformed system has a typical error rate of 25.21%. Despite this the ATVS
using this input performs surprisingly well. The likely reason might be the pattern of
confusions — often phonemes that are confused acoustically appear visually similar on
the lips. A second factor that affects the performance of the ASR-based approaches is
precision of the segmentation. Generally the uninformed systems are more precise on



DOI:10.15774/PPKE.ITK.2010.007

3.1.4 Results 27

Trajectories of different methods

T T T T T T T
— Direct
0 ---IASR |l
----- UASR
500F Linear
bl e T
-500f L §
500F _mmt T == m e — L i
< of--—- S e e SR
-500[ - T
500( o i - .
0__._‘1:—_'___"—_' L lhkmeetT L _l'_',; _______________ -
-500[ T
500 T e T -
O 7
-500[ T
| | | | | | |
0 200 400 600 800 1000 1200 1400 1600
ms
Figure 3.4: Trajectory plot of different methods for the word “Hatvanharom”

(hotvonhairom). Jaw opening and lip opening width is shown. Note that the speaker
did not pronounce the utterance perfectly, and the informed system attempts to force
a match with the correctly recognized word. This leads to time alignment problems.

the average than the informed systems. The precision of the segmentation can severely
impact on the subjective opinion scores. We therefore first attempt to quantify these
likely sources of error.

The informed recognition system is similar in nature to forced alignment in standard
ASR tasks. For each utterance the recognizer is run in forced alignment mode for all of
the vocabulary entries. The main difference between the informed and the uninformed
recognition process is the different Markov state graphs for recognition. The informed
system is a zerogram without loopback, while the uninformed graph is a bigram model
graph where the probabilities of the connections depend on language statistics.

While matching the extracted features with the Markovian states, the differences
are cumulated in both scenarios. However, the uninformed system allows for different
phonemes outside of the vocabulary to minimize the cumulated error. For the informed
system only the most likely sequence is allowed, which can distort the segmentation
— see Figure 3.4 for an example where the speaker mispronounces the word “Hat-
vanhdrom” (hotvonha:rrom, “63” in Hungarian). The (mis)segmentation of otvo means
IASR AVTS system opens the mouth after the onset of the vowel. Human perception
is sensitive to this error and so this severely impacts the perceived quality. Without
forcing the vocabulary, a system may ignore one of the consonants but open the mouth
at the correct time.

Note that the generalization of this phenomena is out of the scope of this work. We
have demonstrated that this is a problem with certain implementations of HMM-based
ASR. Alternative, more robust implementations might alleviate these problems.
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Table 3.2: Results of opinion scores, average and standard deviation.

Method Average score | STD
Original facial motion 3.73 1.01
Direct conversion 3.58 0.97
UASR 3.43 1.08

Linear interpolation 2.73 1.12
IASR 2.67 1.29

Subjective opinion scores

The test setup is similar to the preliminary test described previously to tune the system.
However, 58 viewers are used, and only quantative opinion survey was made on the scale
of 1 (bad, very artifical) to 5 (real speech).

The result of the opinion score test is on Table 3.2. The advantage of direct con-
version against UASR is on the edge of significance with p = 0.0512 as well as the
difference between the original speech and the direct conversion with p = 0.06 but
UASR is significantly worse than original speech with p = 0.00029. The results com-
pared to the preliminary test also show that with respect to naturalness, the excessive
articulation is not significant. The advantage of correct timing over correct phoneme
string is also significant.

Note that the linear interpolation system is exploiting better quality ASR results,
but still performs significantly worse than the average of other ASR. based approaches.
This shows the importance of correctly handling viseme dominance and viseme neigh-
borhood sensitivity in ASR based ATVS systems.

Intelligibility

Intelligibility was measured with a test of recognition of video sequences without sound.
This is not the popular Modified Rhyme Test[36] but for our purposes with hearing
impaired viewers it is more relevant, since the keyword spotting is the most common
lip-reading task. The 58 test subjects had to guess which word was said from a given set
of 5 other words of the same category. The categories were numbers, names of months
and the days of the week. All the words were said twice. The sets were intervals to
eliminate the memory test from the task (for example “2” | “3”, “4” “5” “6” can be
a set). This task models the situation of hearing impaired or very noisy environment
where an ATVS system can be used. It is assumed that the context is known, so the
keyword spotting is the closest task to the problem.

The performance of the audio-to-visual speech conversion methods reverse in this
task compared to naturalness. The main result here is the dominance of ASR based
approaches (Table 3.3), and the insignificance of the difference between informed and
uninformed ATVS results (p = 0.43) in this test which may deserve further investi-
gation. Note that as the synchrony is not an issue without voice, the IASR is the
best.
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Table 3.3: Results of recognition tests, average and standard deviation of success rate
in percent. Random pick would give 20%.

Method Precision | STD
TASR 61% 20%
UASR 57% 22%

Original motion 53% 18%

Cartoon 44% 11%

Direct conversion 36% 27%

Table 3.4: Comparison to the results of Ohman and Salvi[27], a HMM and rule based

systems intelligibility test. Intelligibility of corresponding methods are similar.
Methods Prec. | Prec.

TASR / Tdeal | 61% | 64%
UASR / HMM | 57% | 54%
Direct / ANN | 36% | 34%

As a comparison with [27] where intelligibility is tested similarly, manually tuned
optimal rule based facial parameters are close to our IASR since there was no recognition
error, and without voice the time alignment quality is not important, and our TTVS
is rule based. Their HMM test is similar to our UASR, because both are without
vocabulary, both are targeting time aligned phoneme string to be converted to facial
parameters, and our ASR is HMM based. Their ANN system is very close to our direct
conversion except the training set, it is a standard speech database audio, and a rule
based calculated trajectory video data, while our system is trained on actual recording
of a professional lip-speaker. However the results concerning intelligibility are close to
each other, see Table 3.4. This is a validation of the results, since the corresponding
measurement are close to each other. It is important that [27] tests only intelligibility,
and only between three methods of ours, so our measurement is broader.

3.1.5 Conclusion

I presented a comparative study of audio-to-visual speech conversion methods. We
have presented a comparison of our direct conversion system with conceptually different
conversion solutions. A subset of the results correlate with already published results,
validating the approach of the comparison.

We observe higher importance of the synchrony over phoneme precision in an ASR
based ATVS system. There are publications on the high impact of correct timing in
different aspects [34, 37, 38|, but our result show explicitly that more accurate tim-
ing achieves much better subjective evaluation than more accurate phoneme sequence.
Also, we have shown that in the aspect of subjective naturalness evaluation, direct con-
version (trained on professional lip-speaker articulation) is a method which produces
the highest opinion score of 95.9% of an original facial motion recording with lower
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computational complexity than ASR based solutions.

For tasks where intelligibility is important (support for hearing impaired, visual
information in noisy environment) modular ATVS is the best approach among those
presented. Our mission of aiding hearing impaired people call upon us to consider
using ASR based components. For naturalness (animation, entertaining applications)
direct conversion is a good choice. For both aspects UASR gives relatively good but
not outstanding results.

3.1.6 Technical details

Marker tracking was done for MPEG-4 FP 8.8 84 86 8.1 85 8.3 87 82 5.29.29.3
9.1 5.1 2.10 2.1. During synthesis, all FAPs (MPEG-4 Facial Animation Parameter)
connected these FPs were used except depth information:

e open_jaw e raise_r_cornerlip lower_t_midlip_o
e lower_t_midlip e raise_b_midlip_o

e raise_b_midlip e stretch_l_cornerlip_o

e stretch_l_cornerlip e stretch_r_cornerlip_o

e stretch_r_cornerlip e lower_t_lip_.lm_o

e lower_t_lip_lm e lower_t_lip_rm_o

e lower_t_lip_rm e raise_b_lip_lm_o

e raise_b_lip_Im e raise_b_lip_rm_o

e raise_b_lip_rm e raise_l_cornerlip_o

e raise_l_cornerlip e raise_r_cornerlip_o

Inner lip contour is estimated from outer markers.

Yellow paint was used to mark the FP locations on the face of the recorded lip-
speaker. The video recording is 5761 PAL (576x720 pixels, 25 frame/sec, 24 bit/pixel).
The audio recording is mono 48kHz 16 bit in a silent room. Further conversions were
depended on the actual method.

Marker tracking was based on color matching and intensity localization frame to
frame and the location was identified by the region. In overlapping regions the closest
location on the previous frame was used to identify the marker. A frame with neutral
face was selected to use as the reference to FAPU measurement. The marker on the
nose is used as reference to eliminate head motion.

The direct conversion uses a modification of Davide Anguita’s Matrix Backpropaga-
tion which enables real-time work also. The neural network used 11 frame long window
on the input side (5 frames to the past and 5 frames to the future), and 4 principal
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component weights of FAP on the output. Each frame on the input is represented by 16
band MFCC feature vector. The training set of the system contains standalone words
and phonetically balanced sentences.

In the ASR the speech signal was converted to a frequency of 16kHz. MFCC (Mel
Frequency Cepstral Coefficients)-based feature vectors were computed with delta and
delta-delta components (39 dimensions in total). The recognition was performed on a
batch of separated samples. Output annotations and the samples were joined, and the
synchrony between labels and the signal was checked manually.

The visemes to the linear interpolation method were selected manually for each
viseme in Hungarian from the training set of the direct conversion. Visemes and
phonemes were assigned by a table. Each segment is a linear interpolation from the
actual viseme to the next one. Linear interpolation was calculated in the FAP repre-
sentation.

TTVS is a Visual Basic implemented system with a spreadsheet of the timed pho-
netic data. This spreadsheet was changed to the ASR output. Neighborhood dependent
dominance properties were calculated and viseme ratios were extracted. Linear interpo-
lation, restrictions concerning biological boundaries and median filtering were applied
in this order. The output is a Poser data file which is applied to a model. The texture
of the model is modified to black skin and differently colored MPEG-4 FP location
markers. The animation was rendered in draft mode, with the field of view and resolu-
tion of the original recording. Marker tracking was performed as described above with
the exception of the differently colored markers. FAPU values were measured in the
rendered pixel space, and FAP values were calculated from FAPU and tracked marker
positions.

This was done for both ASR runs, uninformed and informed.

The test material was manually segmented to 2-4 word units. The lengths of the
units were around 3 seconds. The segmentation boundaries were listed and the video
cut was automatically done with an Avisynth script. We used an MPEG-4 compatible
head model renderer plugin for Avisynth, with the model “Alice” of XFace project.
The viewpoint and the field of view was adjusted to have only the mouth on the screen
in frontal view.

During the test the subjects watched the videos fullscreen and used headphones.
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3.2 Thesis

I. I showed that direct AV mapping method, which is more ef-
ficient computationally than modular approaches, overperforms
the modular AV mapping in aspect of naturalness with a specific
training set of professional lip-speaker. [39]

3.2.1 Novelty

This is the first direct AV mapping system trained with data of professional lip-speaker.
Comparison to modular methods is interesting because direct AV mappings trained on
low quality articulation can be easily overperformed by modular systems in aspect of
naturalness and intelligibility.

3.2.2 Measurements

Naturalness was measured as subjective similarity to human articulation. The mea-
surement was blind and randomized, the number of test subjects was 58, and our direct
AV mapping was not significantly worse than original visual speech, but the difference
between the modular and the original was significant.

Opinion score averages and deviations shown no significant difference between hu-
man articulation and direct conversion, but significant difference between human and
modular mapping based systems.

The measurement was done on Hungarian database, fluently read speech. The
database contains mixed isolated words and sentences.

3.2.3 Limits of validity

Tests were done on normal speech database, with fully focused perception of the test
subjects on good audio and video quality videos.

3.2.4 Consequences

Using direct conversion for areas where naturalness is most important is encouraged.
Using professional lip-speaker to record audiovisual database increases the quality to
be comparable with the level of human articulation. Other laboratories trained their
systems with non-professionals, and those systems were not publicated due to their
poor performance.

32
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Figure 3.5: An example of the importance of correct timing. Frames of the word “Ok-
tober” show timing differences between methods. Note that direct conversion received
best score even though it does not close the lips on bilabial but closes on velar, and it
has problems with lip rounding.


th_comp/teljes.eps

DOI:10.15774/PPKE.ITK.2010.007



DOI:10.15774/PPKE.ITK.2010.007

Chapter 4

Temporal asymmetry

In this chapter I discuss the measurement of relevant time window for direct AV map-
ping, which is important to build a audio to visual speech conversion system since the
temporal window of interest can be determined.

4.1 Method

The fine temporal structure of relations of acoustic and visual features has been in-
vestigated to improve our speech to facial conversion system. Mutual information of
acoustic and visual features has been calculated with different time shifts. The result
has shown that the movement of feature points on the face of professional lip-speakers
can precede even by 100ms the changes of acoustic parameters of speech signal. Con-
sidering this time variation the quality of speech to face animation conversion can be
improved by using the future speech sound to the conversion.

4.1.1 Introduction

Other research projects on conversion of speech audio signal to facial animation have
concentrated on development of feature extraction methods, database construction and
system training [40, 41]. Evaluation and comparison of different systems have also had
high importance in the literature. In this chapter I discuss the temporal integration of
acoustic features optimal for real-time conversion to facial animation. The critical part
of such systems is the building of an optimal statistical model for the calculation the
video features from the audio features. There in no known exact relation of the audio
feature set and video feature set currently, this is an open question yet.

The speech signal conveys information elements in a very specific way. Some of
speech sounds are related rather to a steady state of the articulatory organs, others
rather to the transition movements [42]. Our target application is for providing a
communication aid to deaf people. Professional lip-speakers have 5-6 phoneme/s speech
rate to adapt the communication to the demand of deaf people so steady state phases
and the transition phases of speech sounds are longer then in everyday speech style.

35
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The signal features to characterize a sound steady state phase or a transition phase
or even to characterize a co-articulation phenomenon when the neighboring sounds are
highly interrelated, need a careful selection of the temporal scope to characterize the
speech and video signal. In our model we selected 5 analysis windows to describe the
actual frame of speech plus two previous and two succeeded windows to cover + /- 80
ms interval. So such 5 element sequence of speech parameters can characterize transient
sounds and the co-articulations.

We have recognized that at the beginning of words the lip movements start earlier
then the sound production. Sometimes 100ms earlier the lips start to move to the
initial position of the sounds. It was the task of the statistical model to handle this
phenomenon.

In the refinement phase of our system we have tried to optimize the model selecting
the optimal temporal scope and fitting of audio and video features. The measure of
the fitting has based on the mutual information of audio and video features [43].

The base system uses an adjustable temporal window of audio speech signal. The
neural network can be trained to respond to an array of MFCC windows, using the
future and/or past audio data. The conversion can be as good as the amount of mutual
information between the audio and video representations.

Using the trained neural net for calculation of control parameters of facial
animation model

The audio processing unit extracts the audio MFCC feature vectors from the input
speech signal. Five frames of MFCC vectors are used as input to the trained neural
net. The NN provide FacePCA weight vectors. These are converted into the control pa-
rameters of a MPEG-4 standard face animation model. The test of fitting of audio and
video features was based on step-by-step temporal shifting of feature vectors. Indicator
of the matching was mutual information. Low level mutual information means that we
have low average chance to estimate the facial parameters from the audio feature set.
The time shift value to produce the highest mutual information means the maximal
average chance to calculate the one kind of known features from the other one.

Estimation of mutual information needs computation intensive algorithm. The
calculation is unrealistic using large database with multidimensional feature vectors.
So single MFCPCA and FacePCA parameters were interrelated. Since the single pa-
rameters are orthogonal but not independent, they are not additive. For example the
FacePCA1 values are not independent from FacePCA2. The mutual information curves
even in such complex cases can indicate the interrelations of parameters.

An alternative method is to calculate cross correlation. We have also tested this
method. It needs less computational power but some of relations are not indicated so
it is a lower estimation of theoretical maximum.
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Mutual information

MIxy = 2}:{ z}; P(z,y)log %}% (4.1)
zeX ye

Mutual information is high if knowing X helps to find out what is Y, and it is low if
X and Y are independent. To use this measurement for temporal scope the audio signal
will be shifted in time compared to the video. If the time shifted signal has still high
mutual information, it means that this time value should be in the temporal scope. If
the time shift is too high, mutual information between the video and the time shifted
audio will be low due to the relative independence of different phonemes.

Using a and v as audio and video frames:

VAt € [—1s,1s] : MI(At) = ZP(@HA;,U;)log

t=1

P(at+A£; ‘Ut}

P(at—f—At)P(Ut) (4.2)

where P(z,y) is estimated by a 2 dimensional histogram convolved with Gauss
window. Gauss window is needed to simulate the continuous space in the histogram
in cases where only a few observations are there. Since audio and video data are
multidimensional and MI works with one dimensional data, all the coefficient vectors
were processed, and the results are summarized. The mutual information values have
been estimated from 200x200 size joint distribution histograms. The histograms have
been smoothed by Gaussian window. The window has 10 cell radius with 2.5 cell
deviation. The marginal density distribution functions have been calculated from the
sum of joint distribution functions.

MFEFCPCA and FacePCA measurements

170 seconds of audio and video speech records was processed. The time shift has been
varied 1 ms steps. Mel frequency coefficients are calculated for each element. Principal
component analysis (PCA) has been applied for even more compact representation
of audio features since PCA components can represent the original speech frames by
minimal average error at given subspace dimensionality. In the following the speech
frames are described by such MFCPCA parameters.

The MFCPCA parameters are more readable representation of frames for human
experts than PCA of MFCC feature vectors.

The MFCPCA parameters have direct relations to the spectrum. The PCA trans-
formation does not consider the sign of the transformed vectors, so the first MECPCA
component shows energy-like representation as can be seen in Fig 4.1. For another
example the second MFCPCA component has positive value in voiced speech frames
and negative in frames of fricative speech elements.

The original video records have 40 ms frame rate so to have the possibility of 1 ms
step size shifting, the intermediate shifted frame parameters have been calculated by
interpolation and low pass filtering.
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Figure 4.1: Principal components of MFC feature vectors.
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Table 4.1: Importance rate (variance) of the MFCPCA.

MFCPCA | alone | first n together
1 ™% 7%
2 10% 87%
3 5% 93%
4 2% 95%

Table 4.2: Importance rate (variance) of the FacePCA.

FacePCA | alone | first n together
1 920% 90%
2 6% 96%
3 2% 98%
4 1% 99%

Audio and video signal are described by 1 ms fine step size synchronous frames.
The signals can be shifted related to each other by fine steps. The audio and video
representation of the speech signal can be interrelated from At= -1000ms to +1000ms.
Such interrelation can be investigated only level that a single voice element how can
estimate based on a shifted video element and vice versa as an average.

Our calculation is not able to explain the value of additional information of shifted
signal compared to the 0 shifting value. If it has any additional information it is not
subtracted. So the curves do not indicate the need of the extension of the time scope
for every non-zero value. Rather the shape of the curve and the shift value of the
maximum have a specific meaning.

In the new coordinate system generated by the principal component analysis the
coordinates can be characterized by the importance rate. The importance rate can
express that in the given direction which portion of the variance has been produced in
the original space. The importance rate values in the case of MFCPCA transformation
are shown in Table 4.1.

The importance rate values in the case of FacePCA transformation are shown in
Table 4.2.

Combining the two tables by multiplication of the two vectors, a common impor-
tance estimation can be calculated. The values express the contribution of parameter
pairs to the whole multidimensional data.

The really important curves are the combinations of the 1-4 principal components.
Their general importance is expressed by the darkness of the curves. Potential system-
atic errors have been carefully checked. The real synchrony of the audio-video records
has been adjusted based on explosive sounds. The noise burst of explosives and the
opening position of lips are real the characteristics. The check have been repeated at
the end of the records also. The possible synchrony error is below one video frame
(40ms).
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Mutual information in first FacePCA and MFCPCAs
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Figure 4.2: Shifted 1. FacePCA and MFCPCA mutual information. Positive At means
future voice. Darkness show importance.

4.1.2 Results and conclusions

The mutual information curves were calculated and plotted for every possible PCA
parameter pair in the range of -1000 to 1000 ms time shift. Only the most important
curves are presented below to show the relation of the components having highest
eigenvalues. The earlier movement of the lips and the mouth have been observed in
cases of coarticulation and at the beginning of words. This delay has been considered
as a specific and negligible effect. The delay value has been estimated only. Our
new experiments produced a general rule with well defined delay values. Some of the
strongest relation of audio and video features is not in the synchronous time frames.
The mouth starts to form the articulation in some cases 100 ms earlier and the audio
parameters follow it with such delay.

The curves of mutual information values are asymmetric and moved towards positive
time shift (delay in sound). This means the acoustic speech signal is a better prediction
basis to calculate the previous face and lip position than the future position. This
fact is in harmony of the mentioned practical observation that articulation movement
proceeds the speech production at the beginning of words. The excitation signal comes
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Mutual information in second FacePCA and MFCPCAs
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Figure 4.3: Shifted 2. FacePCA and MFCPCA mutual information. Positive At means
future voice. Darkness show importance.
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Mutual information in third FacePCA and MFCPCAs
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Figure 4.4: Shifted 3. FacePCA and MFCPCA mutual information. Positive At means
future voice. Darkness show importance.
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Mutual information of 6. PCAs
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Figure 4.5: n-th principal component (black) does not contain substantive information
compared to the main components (gray)

later The results underline the general synchrony of audio and video database because
the maximum of curves generally fit to At=0. Interesting exception is the mutual
information curve of FacePCA1 and MFCPCA2. Its maximum location is above 0.

On the Fig 4.3 the mutual information of FacePCA 2 and MFCPCA1 has maxi-
mum location at At=100ms with a very characteristic peek. This means that the best
estimation of the FacePCA1 and FacePCA2 have to wait the audio parameters 100 ms
later.

The FacePCA3 curves have less importance because the weight of this parameter
is considerable less in the facial animation process compared to the first two one. The
asymmetry of curves is similar so there is no new message on the figure.

The pronounced word was ”‘September”’. In figure 4.6 the bottom plot shows the
audio waveform. The MFCPCA1 and MFCPCA2 parameter curves can be seen above.
The changes on the MFCPCA curves are in exact synchrony with the waveform chart.
The jump-up phases of FacePCA1 parameter curve start a little bit earlier then the
transient phases on the waveform. But the waveform and the MFCPCA parameters
remain in near steady state phase while the FacePCA parameters fall down towards
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FacePCA and MFCPCA example in the word "September”
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Figure 4.6: The word “September” as an example of time shifted visual components

compared to audio components.

the next phase. Such phenomenon with 100-200 ms time interval can produce the
asymmetry and shoulder like shape on the curves of FacePCA and MFCPCA mutual
information.

Fig 4.6 shows clearly that the FacePCA2 parameter has regular changes during the
the steady state phases of audio features so this parameter is related rather to the
transients. The example shows a possible reason of the shoulder of the MEFPCPA1-
FacePCA1l mutual information curve. At the “ep”, where the bilabial “p” follows the
wovel, the spectral content does not change as fast as the FacePCA. This is because the
tongue keeps the spectrum close to the original wovel, but the lips are closing already.
This lasts until the mouth closes, where the MFC changes rapidly. These results are
valid in the case of a speech and video signal which is slow enough and lip-readable for
deaf persons.

4.1.3 Multichannel Mutual Information estimation

The details above investigated the connection between specific facial motions and spe-
cific spectral content of audio speech. The use of PCA is convenient if we want to
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identify the actual motions and actual phonetic content, but it is not suitable for sum-
ming up the results because of the interchannel mutual information within the same
modality.

In order to have a representation which is free of interchannel mutual information
the data should be transformed by Independent Component Analysis (ICA) which looks
for those multidimensional basis vectors which can make the distribution of the data
to a uniformly filled hyper quadric shape. This way the joint distribution function of
any two dimension will be minimized.

6.5

45 ‘ ‘ ‘
-1000 -500 0 500 1000
At

Figure 4.7: Sum of M I(At) results of all channel audio-video pairs (6 x 6 : 15 pairs).
Positive At means voice in the future was measured to the video frame in At = 0. The
unit of time is millisecond.

The channels were calculated by Independent Component Analysis (ICA) to keep
down the interchannel dependency. The 16 MFCC channel was compressed into 6 in-
dependent component channels. The 6 PCA channels of video information was trans-
formed into a ICA based basis. Interchannel independence is important because the
measurement is the sum of all possible audio channel — video channel pairs, and we
have to prove that each member of mutual information sum is not from the correlation
of different video channels or different audio channels which would cause multiple count
of the same information.

Since mutual information is a commutative, 6 x 6 estimations gives 15 different
pairs.

Figure 4.7 shows the result of the estimation. Certain asymmetry can be observed
in the sum of mutual information curves of all channel pairs of audio and video data.
This result shows that the visible speech organs are preparing for the next phoneme
during the visual coarticulation while the speech audio signal is not changing. If both
modalities would be changing together, there would be no asymmetry in mutual infor-
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mation.

l |

Figure 4.8: Interchannel M I(At) results show independence in audio (left) and video
(right) channels. The scaling of the curves are At = -1..1 in seconds on z axis, and
0..10 range in bits on y axis

In Figure 4.8 the independence of the channels can be seen. A channel with itself
produces high mutual information in At = 0 because of equality. Short rising and
decreasing phases can be observed in both modalities, much shorter than on Figure 4.7,
however video data shows longer window of autocorrelation. This difference between
audio and video data is partly because video information is from a 25fps recording which
is 40ms of window length but the audio information was measured on every milliseconds,
so video data was interpolated to fit to the audio data, and possibly partly because
of the difference between invisible and visible speech organs. The measurement was
repeated later with faster camera.

Network training

In practical way the measurement of the temporal scope is to estimate it with training
efficiency. Efficiency is measured in this case by training error after a given epoch
number. The same data were trained with different window counts, and after 10.000
epochs the training error was compared. Training error means the average difference
of the network’s output and target values in the training set. Using the training error
of single frame training as 100%, we found that training errors are nearly linearly
decreasing to 50% at 200ms and stay around 50% (even higher due to the increased
difficulty and fixed epoch count) if the scope is increased further. See Figure 4.9. This
confirms in practice the mutual information measurement.

4.1.4 Duration of asymmetry

The phenomena was tested with multiple speech tempos. Normal and slow speech
tempo show the effect, but in the case of fast speech, there is no temporal asymmetry
since there are no shoulders on the slopes of the mutual information curve, because
there is no elevation in the value of mutual information. It seems that the existence of
the mutual information is related to the clear phases of the speech.
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Average error
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Figure 4.9: Training errors of different temporal scopes. The error is given in neural
networks training data which is normalized to [-1..1] interval.

4.2 Thesis

II. I showed that the features of visible speech organs within an
average duration of a phoneme are related closer to the following
audio features than previous ones. The intensity of the relation
1s estitmated with mutual information. Visual speech carries pre-
ceding information on audio modality. [38]

4.2.1 Novelty

There are already published results about the temporal asymmetry of the perception
of the modalities. Czap et al experienced difference in the tolerance of audio-video
synchrony between the directions of the time shift: if audio precedes video, the listeners
are more disturbed than in the reverse situation. My results show temporal asymmetry
in the production side of the process, not the perception. This can be one of the reasons
why perception is asymmetric in time (along some other things, like the difference
between the speeds of sound and the light, which makes perceivers to get used to audio
latency while listening to a person in distance)

4.2.2 Measurements

A multichannel mutual information estimation was introduced. I decreased the inter-
channel mutual information of the same modality using ICA. To use only relevant,
content distinctive data, the ICA was used on the first few PCA results. This way
the traditional mutual information estimation method can be used on each pairs of the
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Figure 4.10: Mutual information in multiple speech tempos. The dots show the average
phoneme durations. It seems that the mutual information is high in this duration
between future audio speech and actual visual speech.

channels. If one would just add the results of the estimations of the channels without
ICA or equivalent filter, the sum would contain the same mutual information multiple
times because of the interchannel mutual information in the data. By using ICA this
redundancy is lowered, depending on the quality of the ICA algorithm used.

Mutual information was calculated by two dimensional distribution histogram. The
resolution of the histogram was 200x200. Low resolution give no usable result, high
resolution needs more data than we had, so we convolved the histogram with a two
dimensional gauss window.

Time shifts were tested in +-1000ms interval.

4.2.3 Limits of validity

The phenomena can not be reproduced in fast speech. There must be enough transient
phase between phonemes. The effect is stronger in isolated word database, and weaker
but still present in read database.

4.2.4 Consequences

The main consequence of the phenomena is that the best possible ATVS system should
have 200ms theoretical latency to wait up the future of the audio speech to synthesize
the video data with the most extractable information.
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This phenomena can be useful also in multimodal speech recognition, using the
video data to pre-filter the possibilities in the audio representation.
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Chapter 5

Speaker independence in direct
conversion

This chapter is about handling speaker dependence of direct learning approach.

5.1 Method

In this chapter a speaker independent training method is presented for direct ATVS
systems. An audiovisual database with multiple voices and only one speaker’s video
information was created using dynamic time warping. The video information is aligned
to more speakers’ voice. The fit is measured with subjective and objective tests. Suit-
ability of implementations on mobile devices is discussed.

5.1.1 Introduction

The direct ATVS need an audiovisual database which contains audio and video data
of a speaking face[44|. The system will be trained on this data, so if there is only
one person’s voice and face in the database, the system will be speaker dependent.
For speaker independence the database should contain more persons’ voice, covering
as many voice characteristics as possible (see Fig 5.1). But our task is to calculate
only one, but lip-readable face. Training on multiple speaker’s voices and faces results
changing face on different voices, and poor lip readability because of the lack of the
talent of many people. We made a test with deaf persons, and the lip-readability of
video clips is affected mostly by the training person’s talent, and any of the video quality
measures as picture size, resolution or frame/sec frequency affected less. Therefore we
asked professional lip-speakers to appear in our database. For speaker independence
the system needs more voice recording from different people. To synthesize one lip-
readable face needs only one person’s video data. So to create direct ATVS the main
problem is to match the audio data of many persons with video data of one person.
Because of the use of multiple visual speech data from multiple sources would rise
the problem of inconsistent articulation, we decided to enhance the database by adding
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Figure 5.1: Overtraining: the network learns training set dependent details. The train
and test runs were independent.
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) 50 100 150 200 240
time in frames

Figure 5.2: Iterations of alignment. Note that there are features which need more than
one iteration of alignment.

audio content without video content, and trying to match recorded data if the desired
visual speech state is the same for more audio samples. In other words, we create
training samples as “How a professional lip-speaker would visually articulate this” for
each audio time window.

I will use a method based on Dynamic Time Warping (DTW)[45] to align the
audio modalities of different occurrences of the same sentence. DTW is originally
used for ASR purposes on small vocabulary systems. This is an example of dynamic
programming for speech audio.

Applying DTW for two audio signals will result in a suboptimal alignment sequence,
how the signals should be warped in time to have the maximum coherence with each
other. DTW has some parameters which restricts the possible steps in the time warping,
for example it is forbidden in some systems to omit more than one sample in a row.
These restrictions guarantee the avoidance of ill solutions, like “omit everything and
then insert everything”. On the other hand, the alignment will be suboptimal.

I have used iterative restrictive DT'W application on the samples. In each turn the
alignment was valid, and the process converged to an acceptable alignment. See Fig
5.2.

5.1.2 Speaker independence

The described base system works on well defined pairs of audio and video data. This
is evident if the database is a single person database. If the video data belongs to a
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Subjective scores of naturalness of video clips
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o Original video
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Figure 5.3: Mean value and standard deviation of scores of test videos.

different person, the task is to fit the audio and the video data together. The text
of the database was the same for each person. This allows the aligning of audio data
between speakers.

This above described matching is represented by index arrays which tell that speaker
A in the i moment says the same as speaker B in the j moment. As long as the audio
and video data of the speakers are synchronized, this gives the information of how
speaker B holds his mouth when he says the same as speaker A speaks in the moment
i. With this training data we can have only one person’s video information which is
from a professional lip-speaker and in the same time the voice characteristics can be
covered with multiple speakers’ voices.

Subjective validation

The DTW given indices were used to create test videos. For audio signals of speaker
A, B and C we created video clips from the FP coordinates of speaker A. The videos
of A-A cases were the original frames of the recording, and in the case of B and C the
MPEG-4 FP coordinates of speaker A were mapped by DTW on the voice. Since the
DTW mapped video clips contains frame doubling which feels erratic, all of the clips
was smoothed with a window of the neighboring 1-1 frames. We asked 21 people to tell
whether the clips are original recordings or dubbed. They had to give scores, 5 for the
original, 1 for the dubbed, 3 in the case of uncertainty.

As it can be seen on Fig. 5.3. the deviations are overlapping each other, there
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5.1.3 Conclusion
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Figure 5.4: Training with speaker A, A and B, and so on, and always test by speaker
E which is not involved in the training set.

are even better scored modified clips than some of the originals. The average score
of original videos is 4.2, the modified is 3.2. We treat this as a good result since the
average score of the modified videos are above the ”‘uncertain”’ score.

Objective validation

A measurement of speaker independence is testing the system with data which is not
in the training set of the neural network. The unit of the measurement error is in
pixel. The reason of this is the video analysis, where the error of the contour detection
is about 1 pixel. This is the upper limit of the practical precision. 40 sentences of 5
speakers were used for this experiment. We used the video information of speaker A as
output for each speaker, so in the case of speaker B, C, D and E the video information
is warped onto the voice. We used speaker E as test reference.

First, we tested the original voice and video combination, where the difference of
the training was moderate, the average error was 1.5 pixels. When we involved more
speakers’s data in the training set, the testing error decreased to about 1 pixel, which
is our precision limit in the database. See Fig. 5.4

5.1.3 Conclusion

A speaker independent ATVS is presented. Subjective and objective tests confirm the
sufficient suitability of the DT'W on training data preparing. It is possible to train
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the system with only voice to broaden the cover of voice characteristics. Most of the
calculations of direct ATVS are cheap enough to implement the system on mobile
devices. The speaker independence induces no plus expense on the client side.

5.2 Thesis

IIl. I developed a time warping based AV synchronizing method
to create training samples for direct AV mapping. I showed that
the precision of the trained direct AV mapping system increases
with each added training sample set on test material which is not
included in the training database.[46)

5.2.1 Novelty

Speaker independence in ATVS is usually handled as an ASR issue, since most of the
ATYVS systems are modular ATVS, and ASR systems are well prepared for speaker inde-
pendence challenges. In this work a speaker independence enhancement was described
which can be used in direct conversion.

5.2.2 Measurements

Subjective and objective measurements were done. The system was driven by an un-
known speaker, and the response was tested. In the objective test a neural network was
trained on more and more data which were produced by the described method, and test
error was measured with the unknown speaker. In the subjective test the training data
itself was tested. Listeners were instructed to tell if the video is dubbed or original.

5.2.3 Limits of validity

The method is vulnerable to pronouncation mistakes, the audio only speakers have to
say everything just like the original lip-speaker, because if the dynamic programming
algorithm lose the synchrony between the samples, serious errors will be included in
the resulting training database.

5.2.4 Consequences

This is a method which greatly enhance a quality without any run-time penalties.
Direct ATVS systems should use the method always.
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Chapter 6

Visual speech in audio
transmitting telepresence
applications

Supporting an ATVS system with head models requires information on the representa-
tion of the ATVS system. In earlier results we used PCA parameters. Face rendering
parameters are based on measurements. If the system has to use head models by
graphical designers, the main component states of the head should be clearly formu-
lated. Graphical designers can not draw principal components since these abstractions
can not be examined in themselves in nature. Designers can draw viseme states.

For audio preprocessing we used MFCC. In some applications there are other audio
preprocessing included, in the case of audio transmission mostly Speex[47].

I will describe a method of easy enhancement of audio transmitting telepresence ap-
plications using it’s internal Speex preprocessor and producing results which is capable
to render visual speech from viseme states.

6.1 Method

In on-line cyber spaces there are artificial bodies which imitate realistic behavior con-
trolled by remote users. An important aspect is the realistic facial motion of human
like characters according to the actual speech sounds. This chapter describes a mem-
ory and CPU efficient method for visual speech synthesis for on-line applications using
voice connection over network. The method is real-time, can be activated on the re-
ceiver client without server support. It is needed only to send coded speech signal and
the visual speech synthesis is the task of the receiving client. The animation render-
ing is supported by graphical accelerator devices, so CPU load of the conversion is
insignificant.
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6.1.1 Introduction

Voice driven visual speech synthesis has a growing popularity in cyber telepresence
applications. As of 2009 there are more video games on the market with the benefits
of this technology.

The most popular use of visual speech synthesis is the real-time rendered pre-
calculated facial animation. This meets all the requirements in an artificial world
where the content of the voices is given by the designers, it is recorded with voice
actors, and there is time to do all the calculations during production time. An example
of this technology is in the title Oblivion or Fallout 3 from Bethesda Softworks[48]
which uses the MPEG-4 based FaceGen[13]. However this approach is extendable to
real-time applications as well by concatenative synthesis, we will see that it is not a
really suitable solution.

In a real-time telepresence application the player activates the transmission, the
client side records the voice in small chunks, and send it to the server which forwards it
to the given subset of the players, teammates or any characters nearby. During active
voice transmission the visual feedback on the receiver client side is some visual effect of
the character, like an icon, a light effect, a basic or random facial motion. An example
of basic facial motion is in the Counter-Strike Source[49], where the momentary voice
energy is visualized by the movement of the jaw. We will use this approach as baseline.
Qur solution is a replacement of this with improved quality, allowing even lipreading.

6.1.2 Overview
Real-time or pre-calculated motion control

In case of production time methods all of the audio content is available in advance. A
typical example of this starts from screenplay, and the voice records are based on the
given text. There are solutions to extract phoneme string from text, and to synchronize
this phoneme string to the records like Magpie[50] for example. Voice synchronized
phoneme strings can be used to create viseme string with visual co-articulation. The
viseme is the basic unit of visual speech (Fig 6.2), practically the visual consequence
of pronouncation of a phoneme. The viseme string with timing includes the visual
information, and co-articulation methods has to form it into a natural visual flow.
Viseme combinations were mapped for interactions as domination or modifying, and
with this knowledge, viseme pairs or longer subsequences are used for the synthesis.
Also, during production time the speech signal is available as a whole sentence.
This makes those methods usable which uses data for a given frame from the voice
of next frames. This information definitely important for precise facial motion|[38, 6].
Real-time methods are not allowed to use long buffers because of the disturbing delay.
One of the real-time approaches uses automatic speech recognition (ASR) system to
extract phoneme string from the voice[6]. The benefit of this approach is the compati-
bility with viseme string concatenator methods by simply use ASR instead of manually
extracted annotated phoneme string information. The ASR system can be trained on
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Figure 6.1: Our real-time method: the visual speech animation parameters are calcu-
lated from the Speex coding parameters with neural network.

usual speech databases without visual data. The drawback is the time and space com-
plexity of the recognition, and the propagation of the recognition errors, because of the
falsely categorized phonemes or words.

Other way is the direct conversion which is simpler and faster but usually less
accurate because of the lack of language dependent information.

6.1.3 Face model

For a speaking head model there are two requirements: the artists should design the
model easily, and it should have enough degree of freedom. For example in the game
Counter-Strike Source the mouth motion has one degree of freedom, the position of
the jaw, and it is directly linked to the energy of the signal. Although this behaves
obviously artificial, this is numerically a fair approximation since visual speech PCA
(Principal Component Analysis) factorization shows that the 90% of the deviation is in
the first principal component which mainly shows the motion of the jaws[8]. In order to
have a more sophisticated head model there should be more degree of freedom, which
includes the horizontal motion of the mouth boundary or more.

In our works we used PCA based facial coordinates to represent a facial state.
This representation have some nice properties as mathematically proven maximum
compression rate along linear basises in dimension count. Each state is expressed in
an optimal basis calculated from visual speech database. In this way a 30 dimensional
facial data can be compressed into 6 dimension with only 2% error. As we visualize the
calculated basis, the coordinates show motion components as jaw motion, liprounding,
and so on. These are not visemes as visemes are not guaranteed to be orthogonals of
each other. We used guided PCA in this case, including the most important visemes
as long as it is possible.

For a designer artist it is easier to build multiple model shapes in different phases
than building one model with the capability of parameter dependent motion by imple-
menting rules in the 3D framework’s script language. The multiple shapes should be
the clear states of typical mouth phases, usually the visemes, since these phases are
easy to capture by example. A designer would hardly create a model which is in a
theoretical state given by factorization methods.
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Therefore we need to give a facial animation control based on face states, and the
designer can work with examples. The control of the facial animation can be the weights
of the drawn shapes. Generally it is not true that every facial state can be expressed
from any set of visemes, but there is an approximation of the states for a given viseme
set, and depending on the size of this set, and so the degree of freedom, any level of
accuracy can be reached (Table 6.1). This approach may use more degrees of freedom
than PCA based approach for the same quality, since the PCA is optimal in this point
of view.

The rendering of the face is efficient. The graphical interfaces usually provide
hardware accelerated vertex blending. There are more sophisticated approaches using
volume conserver transformations [51] with slight increase of time complexity. These
methods can be used to render our approach as well. Support for features like crinkling
skin is out of our interest.

6.1.4 Viseme based decomposition

The video data is from a video recording of a talking person with fixed field of view.
The head of the person was fixed to the chair to eliminate the motion of the whole
head. The face of the person was prepared with marker points which were tracked
automatically and corrected manually[8]. The position of the nose was used as origin,
so every frame was translated to common frame. The automatic tracking was based on
color sensitive highlight tracking with automatic quality feedback to help the manual
corrections. There were 15 markers, placed on a subset of MPEG-4 feature points.
The marker tracker results a vector stream in 2D pixel space. This representation is
good for measurement, because no special equipment is needed for the recording, and
also relatively good for estimation of quality since the generated animation will give
the same data in best scenario. To achieve interchangeable metrics, pixel unit must
be eliminated. This elimination is done by using the distribution of the given marker
position as a reference to the position error. In this case the pixel units are eliminated
from the result by transforming to a relative scale.

N f . -
Yic 251 |G — 5
N fo(S%)

where N is the dimensionality of the visual representation, f is the total number
of frames, G is the generated signal versus S signal and F is the estimated error value.
S can be any linear representation of the facial state, given in pixels or vertices, or
MPEG-4 FAP values.

Every facial state is expressed as a weighted sum of the selected viseme state sets.
The decomposition algorithm is a simple optimization of the weight vectors of viseme

E@G) =

(6.1)

elements resulting minimal errors. The visemes are given in pixel space. Every frame
of the video is processed independently in the optimization. We used partial gradient
method with a constraint of convexness to optimize the weights where the gradient was
based on the distance of the original and the weighted viseme sum (Equation 6.1). The
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Table 6.1: Errors as a function of viseme number used in compositions on important
feature points. Visemes are written in corresponding phoneme codes, except ”closed”
and | which is not a standalone dominant viseme, it is used at the beginning of the
word.

No. Visemes Error
2 closed A 15.25%
3 closed A 1 7.48%
4 closed A 12 4.17%
5 closed A1 ¢ 3.88%
6 | closedaroe[*| 3.48%

constraint is a sufficient but not necessary condition to avoid unnatural results as too
big mouth or head, therefore no negative weights allowed, and the sum of the weights
is one. In this case a step in the partial gradient direction means a larger change in
the direction and a small change in the remaining directions to balance the sum. The
approximation is accelerated and smoothed by choosing the starting weight vector from
the last result.

N
G=> wV; (6.2)
i=1
where
N
Y wi=1 (6.3)
i=1

The state GG can be expressed as convex sum of viseme states V', which can be any
linear representation, as pixel coordinates or 3D vertex coordinates.

The convexness guarantees that the blending is independent of the coordinate sys-
tem. If the designer use unnormalized vertex coordinates, a weighted sum with more
or less of weight sum of one can result translation and magnification of the head.

The results of this simple approximation are acceptable. The quality is estimated
by pixel errors of the important facial feature points. The selection of important points
is based on deviation, those feature points which are above the average deviation are
chosen.

The head model used in subjective tests is three dimensional and this calculation
is based on two dimensional similarities, so the phase decomposition is based on the
assumption that two dimensional (frontal view) similarity induce three dimensional
similarity. This assumption is numerically reasonable with projection.

Note that the representation quality is scalable by setting the viseme count. This
will make the resulting method scalable on client side.
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Figure 6.2: Visemes are the basic unit of visual speech. These are those visemes we
used for subjective opinion score tests in this (row-major) order.
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6.1.5 Voice representation

Every voice processing method need to extract useful information from the signal.
Those algorithms which use directly the sound pressure signal are called time domain,
which uses Fourier transform or other frequency related filter banks are called frequency
domain, and those which uses some (lossy) compressed input are called compressed
domain methods.

Those applications, where voice driven facial animation can be a matter, use voice
transmission. Voice transmission systems use lossy compression methods to minimize
the network load. Therefore an efficient voice driven visual speech synthesizer should
be a compressed domain method.

A speech coder attends to achieve best voice quality with reasonable sized data
packets. This can be treated as a feature extracting method. The question is, what
distance function can be used on the given representation? Is there an appropriate
metrics what a learning system can approximate?

6.1.6 Speex coding

One of the most popular speech coder for this purpose is the Speex[47]. Speex uses LSP,
a member of the linear prediction coding family. Linear prediction use a vector of scalars
which can predict the next sample from the previous samples by linear combination.

N
z, = Z AiTr_; (6.4)
i=1

Where N is the size of the prediction vector. The optimal predictor coefficient vector
for a given x can be calculated by Levinson-Durbin algorithm. This is short representa-
tion, but it is not suitable for quantization or linear operations as linear interpolation,
consequently it is not directly used for voice transmission or facial animation conver-
sion. Hence Speex uses LSP which is a special representation of the same information
but capable to linear operations, for example the LSP values are linearly interpolated
between the compressed frames of Speex.

For LSP coding, instead of storing the predictor vector a we treat it as a polynomial,
and store the roots. The roots are guaranteed to be inside the unit circle of the complex
plane. To find roots, two dimensional search would be needed, so to avoid this we use
a pair of polynomials which are guaranteed to have all the roots on the unit circle, and
the mean of the pair is the original root, so one dimensional search is enough.

PQ, = {az :I:z_(N+1)az—1} (6.5)

LsP =] {PQ.=0} (6.6)

zeC
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This makes LSP more robust to quantization and interpolation than the predictor
vector. Interestingly, P(Q) values are called vocal tract, with glottis open and closed,
which are connected with the topic of audiovisual speech synthesis.

Lossy compression methods use quantization of values of a carefully chosen represen-
tation. LSP is a compact and robust representation, and Speex use Vector Quantization
to compress these values. We modified the Speex decoding process to export uncom-
pressed LSP values and the energy. This makes only 11 assignments and multiplications
for scaling as an extra computational cost.

6.1.7 Neural network training

The data is from an audiovisual recording of a professional lip-speaker. The record-
ing contains 4250 frames. The content is intended for direct voice to visual speech
conversion testing for deaf people, it contains numbers, months, etc. The language is
Hungarian. The network is a simple straightforward error-backpropagation network
with one hidden layer.

Audio

The audio recording is originally 48kHz, and it is downsampled to 8kHz for Speex.
We used the modified Speex decoder to extract LSP and gain values to train neural
networks as input. There are values for each 20 ms window. LSP has values in [0, 7],
and the neural network use the [—1,1] interval, so scaling was applied.

Video

The target of the neural network is the viseme weight vector representing facial state.
As the original recording is 25 frame per second, and the audio data from Speex uses
20 ms windows, the video data was interpolated from 40 ms to 20 ms frame interval.
We used linear interpolation as it not violates convexness. The decomposition weight
values are in the range of [0, 1] which is in the neural networks [—1, 1] interval, so no
scaling was applied.

Neural network usage

The resulting network is intended to be used directly in the host application. The
trained network weights can be exported as a static function of a programming lan-
guage, for example C++. This source code can be compiled into the client. This
function is called with the values exported from the modified Speex codec. The return-
ing values is applied directly for the renderer. With this approach runtime overhead
is minimal, no file readings or data structures are needed. The generated source code
can be created at speech interested laboratories, the application developers just use the
code.
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6.1.8 Implementation issues

The method can be implemented as a feature on the client, on receiver side. The user
may turn on and off the method since the calculation are performed on the receiver
clients CPU. There is no extra payload on the network traffic.

The CPU cost of the calculation is 200-400 multiplications depending on the hidden
layer size and the degrees of freedom. The space cost of the feature is the multiple
shapes of the head models, which depends on the given application, how sophisticated
head models are used in it. The space cost is scalable by setting the viseme set, the
more head models the better approximation of the real mouth motion.

The head models can be stored on video accelerator device memory and can be
manipulated through graphical interfaces as OpenGL or Direct3D. The vertex blending
(weighted vector sum) can be calculated on the accelerator device, it is highly parallel
since the vertices are independent.

6.1.9 Results

Training and testing set was separated, and during the first 1°‘000‘000 epochs (training
cycles) of training the error of the testing set still decreased (Fig 6.3). Depending on the
degrees of freedom the results are 1-1.5% of average error. Our former measurements
gave sufficient intelligibility results at this level of numeric error. This shows that
usable training error level can be reached before overtraining even with relatively small
databases.

The details of the trained system response can be seen on Fig 6.4. The main
motion flow is reproduced, and there are small glitches bilabial nasals (lips not close
fully) and plosives (visible burst frame). Most of these glitches could be avoided using
longer buffer, but it cause delay in the response.

Subjective opinion score test was done to evaluate the voice based facial animation
with short videos. Half of the test material was face picture controlled by decomposed
data and the other half by facial animation control parameters given by the neural
network based control data from original speech sounds. The opinion score test included
from 1 to 5 degrees of freedom of control parameters. Each control source and degrees of
freedom combination was represented in 8 short video, 2 of them pronounced numbers
0-9, 2 of them numbers 10-99, 2 with names of the months and 2 with the days of the
week. This makes 80 videos.

Test subjects were instructed to evaluate harmony and naturalness of the connection
of visual and audio channels. Score 5 for perfect articulation, score 3 for mistakes
and score 1 for hardly recognizable connection. The results are interesting since after
the second degree of freedom the evaluation is near to constant while numerical error
halves between 2. and 3. degree. The possible explanation of this phenomena can
be the simpleness of our head model used for scoring. The tongue and the teeth was
not independently moved in the videos, the more degree of freedom was used only to
approximate the mouth contour more precisely which may was precise enough already
at lower degrees of freedom.
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Figure 6.3: Training and testing error of the network during training. The error is the
average distance between the weight from the video data and the calculated from Speex
input.


th_speex/trains.eps

DOI:10.15774/PPKE.ITK.2010.007

6.1.9 Results 67

Original

Figure 6.4: Examples with the hungarian word ” Szeptember”, it’s very close to English
”September” except the last e is also open. Each figure is the mouth contour in the
time. The original data is from a video frame sequence. The 2 and 3 DoF' are the result
of decomposition. The last picture is the voice driven synthesis.
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Higher target complexity induce the neural network converge slower, or not at all.
But as we increase the degrees of freedom, the neural network’s error decreases from
the 2. degree.

The results of the opinion score test show that the best score/DoF rate is at the 2
DoF (Fig 6.5), in fact the highest numerical error. These results show that the neural
network may train to details which are not very important to the test subjects. As
the decomposition is based entirely and only on mouth contour, it may be not that
important. Using correct teeth visibility or tongue movement may improve the results,
but in this test we were unable to try this because of the lack of markers on these facial
organs. This problem is in the decomposition phase since in the synthesized face we
have these facial organs and control them actively, but the control is inaccurate. If the
decomposition would be affected by more information, this could be corrected. Active
shape modeling or other advanced techniques may improve the decomposition material.

The main consequence of the subjective test that two degrees of freedom can give
sufficient quality for audiovisual speech, and the proposed method can give the control
parameters in this quality from the voice signal.

6.1.10 Conclusion

The main challenge was the strange representation of the visual speech. We can say
our system was successfully used this representation.

The presented method is efficient as the CPU cost is low, there is no network traffic
overhead, the feature extraction of the voice is already performed by voice compression,
and the space complexity is scalable for the application. The feature is independent
from the other clients, can be turned on without explicit support from the server or
other clients.

The quality of the mouth motion was measured by subjective evaluation, the pro-
posed voice driven facial motion shows sufficient quality for on-line games, significantly
better than the one dimensional jaw motion.

Let us note that the system does not contain any language dependent component,
the only step in the workflow which is connected to the language is the content of the
database.

6.2 Thesis

IV. I developed and measured a method to enhance audio trans-
mitting telepresence applications to support visual speech with low
time complexity and with the ability to handle viseme based head
models. The resulting system owverperforms the baseline of the
widely used energy based interpolation of two visemes. [52]
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Figure 6.5: Subjective scores of the decomposition motion control and the output of
the neural network. There is a significant improvement by introducing a second degree
of freedom. The method’s judgment follows the database’s according to the complexity
of the given degree of freedom.
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6.2.1 Novelty

Facial parameters usually represented with PCA. This new representation is aware of
the demands of the graphical designers. There were no publications before on the us-
ability if this representation concerning ATVS database building or real-time synthesis.

6.2.2 Measurements

Subjective opinion scores were used to measure the resulting quality.

6.2.3 Consequences

Using the Speex and the viseme combination representation the resulting system is
embeddable very easily.
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Summary

In this proposed thesis I collected my contributions to the field of audio speech conver-
sion to visual speech, especially direct conversion between the modalities.

New scientific results

I positioned direct conversion method among widely used ASR based solutions.

I. I showed that direct AV mapping method, which is more ef-
ficient computationally than modular approaches, overperforms
the modular AV mapping in aspect of naturalness with a specific
training set of professional lip-speaker. [39]

I discovered and measured the phenomena of temporal asymmetry on productional
side of the speech process.

II. I showed that the features of visible speech organs within an
average duration of a phoneme are related closer to the following
audio features than previous ones. The intensity of the relation
1s estitmated with mutual information. Visual speech carries pre-
ceding information on audio modality. [38]

I solved the problem of speaker dependency of direct conversion of speech.

IIl. I developed a time warping based AV synchronizing method
to create training samples for direct AV mapping. I showed that
the precision of the trained direct AV mapping system increases
with each added training sample set on test material which is not
included in the training database.[46)

I showed that direct conversion can be used with natural representations instead of
mathematically convenient principal components.

IV. I developed and measured a method to enhance audio trans-
mitting telepresence applications to support visual speech with low
time complexity and with the ability to handle viseme based head
models. The resulting system owverperforms the baseline of the
widely used energy based interpolation of two visemes. [52]
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72 SUMMARY

The conclusion of my work is that the direct conversion is an undeservedly ignored
method in the world because of the initial failures with inadequate training data. My
results clearly show that direct conversion is not only computationally efficient but
contributes speaker independent natural visual speech solution for broad range of ap-
plications, and the key of the good quality visual speech synthesis is the appropriate
database, .
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