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“Because I am always interested in faces. I just want you to sit down and look at the human 

face. But if there is too much going on in the background, if the face moves too much, if you 

can’t see the eyes, if the lighting is too artistic, the face is lost.” 

(Ingmar Bergman) 
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1 Introduction 

1.1 Motivations 

Face perception is one of the most important functions of the human visual system. Faces 

convey the majority of socially relevant information, therefore the ability to process faces is 

essential for normal social functioning. Extensive experimental and modelling research has 

made significant progress in identifying the neural basis of the remarkably efficient and 

seemingly effortless face perception in humans. However, the majority of these results might 

have limited interpretability since they are based on research involving faces that were clear 

and isolated. On the contrary, in the natural environment, faces occur often under low 

visibility conditions and/or in rapid succession, thus well-functioning, optimized processing 

system is needed to enable successful face perception. Uncovering the neural mechanisms 

underlying face perception in a more realistic context is not only invaluable for a better insight 

into how visual system works but also could facilitate the development of more efficient 

training programs on face perception. Furthermore, it could form the basis of more reliable 

machine-based face recognition algorithms which is a key issue in computer vision. 

1.2 How faces are special 

The very rich information that is crucial for intact social interaction such as a person’s 

identity, age, gender, expression is conveyed by the face rendering it as a stimulus of exquisite 

importance. Converging behavioral, neuropsychological, and neuroimaging evidence suggests 

that faces constitute a special class of visual stimuli with dedicated processing mechanisms 

that differ from that of other non-face objects (for reviews, see [16, 17]). The most reliable 

cognitive marker of face-specific processing is the behavioral face inversion effect (FIE, [18]), 

i.e. the larger drop in performance for faces than for non-face objects due to stimulus inversion 

(turning the stimulus upside down). Also, accuracy at discriminating individual face parts is 

higher when they are presented in the context of a face than when presented in isolation, 

whereas the same holistic advantage is not found for parts of other kinds of stimuli [19]. The 

double dissociation between face and object processing is known from the neuropsychological 

literature: patients with prosopagnosia are unable to recognize previously familiar faces, 

despite a largely preserved ability to recognize objects [20], whereas patients with object-

agnosia are seriously impaired in recognizing non-face objects with the spared ability to 

recognize faces [21]. These results suggest that face perception depends on different neural 
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2 Introduction 

processes than those underlying other types of object stimuli. Face-selective areas that were 

found in the human extrastriate cortex (for reviews, see [16, 22]) might provide the neural 

substrate for such processes (Fig. 1.1). 

 

Figure 1.1. Revised framework for the roles and connections between face-selective areas. The ventral 

face-processing pathway consists of the occipital face area (OFA), the fusiform face area (FFA), and the 

anterior temporal lobe face area (ATL-FA), whereas the dorsal face-processing pathway comprises the 

posterior superior temporal sulcus face area (pSTS-FA), the anterior superior temporal sulcus face area 

(aSTS-FA), and the inferior frontal gyrus face area (IFG-FA). (Taken from [16].) 

1.3 The fusiform face area (FFA) and its role in face perception 

Neuroimaging studies demonstrated that faces elicit robust and selective responses in regions 

of the human occipital and temporal cortex [23–30] with considerably high reproducibility and 

reliability in the fusiform gyrus [31]. The region in the mid-fusiform gyrus that consistently 

shows significantly greater response to faces than to non-face objects has become known as 

fusiform face area (FFA) [24]. As a central part of the ventral face-processing pathway it has 

been shown to represent structural, especially temporally invariant properties of faces largely 

contributing to identity computations [22, 32–36]. The FFA is thought to subserve face 

perception, since its activity measured with BOLD fMRI was found to be strongly correlated 

with detection and identification of face images [37–39], and also with the behavioral face 

inversion effect [40]. However, in these studies face perception was investigated using intact 

face images, presented without any contextual information. On the contrary, faces that we 

encounter in real life are often poorly visible due to suboptimal viewing conditions such as 

insufficient illumination, odd poses etc., and thus their recognition becomes more effortful. In 

addition, in the majority of social interactions more than two people are engaged and thus it 
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Re-entrant mechanisms in the visual system 3 

can dynamically change whose face is in the focus of our attention. To provide efficient 

communication flow through reacting rapidly and accurately, the visual system must optimize 

its processing mechanisms under these challenging conditions. An unresolved question is 

whether FFA maintains its pivotal role in face perception even when face images are noisy or 

embedded in a temporal context where faces occur in rapid succession. 

1.4 Re-entrant mechanisms in the visual system 

From a brief glance at a face, we are able to effortlessly assess a person’s identity, gender, age, 

emotional state, and several other characteristics despite the tremendous variation in viewing 

parameters. This impressive ability of the visual system is mediated by the coordinated 

computational function of cortical areas involved in face perception [41–44]. Experimental 

and modeling results suggest that face perception entails an initial, fast categorization of the 

visual stimulus as a face via rapid feedforward computations along the ventral visual 

processing stream [45–53] that culminate in a powerful neural face representation in the FFA 

[30, 54–57]. This early global and coarse face representation is subsequently refined through a 

re-entrant neural processing loop between the FFA and lower-level visual cortical areas of the 

inferior and lateral occipital cortex depending on stimulus and task properties [54, 55, 58–61]. 

It has been suggested [62, 63] that under low visibility conditions the visual system must 

recruit additional resources to handle the noisy and deteriorated visual image via re-entrant 

processing mechanisms involving the shape-sensitive lateral occipital cortex (LOC, [64]). 

Furthermore, when the visual system is put into a continuously changing environment where 

faces occur in a temporal context, based on short-term prior experience, iterative recurrent 

mechanisms might help re-estimate and update predictions about sensory input (the same or a 

different face will be seen), maximizing the efficiency of neural processing, which is 

supported by the predictive coding model of perception [65–68] (Fig. 1.2). Such processes 

were suggested to be involved within the core face-processing network composed of the FFA 

and the occipital face area (OFA, [69]) of the inferior occipital cortex in a DCM study by 

Ewbank et al. [70]. In sum, the visual system is able to adapt to the challenging conditions of 

the current environment and provide an accurate perception by optimizing its function, 

presumably engaging a re-entrant processing loop between higher- and lower-level visual 

cortical areas. However, the exact neural mechanisms and their relationship to behavior are 

not yet understood. 
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Figure 1.2. One specific example of a recurrent neural network model is the predictive coding model 

developed by Friston [67]. According to this theory, the brain entails a hierarchical generative model 

that is used to predict sensory or lower level input. The predictions of the generative model are adjusted 

at each hierarchical level until the prediction errors between sensory inputs and predictions are 

minimized. This prediction error minimization process is mediated by forward driving connections, 

delivering prediction errors (light arrows) from an earlier area to a higher area, and (modulatory) 

backward connections (dark arrows) that build context-sensitive predictions. (Taken from [71].) 

1.5 Predictive coding model of sensory information processing 

Predictive coding (PC) theories [65–68] (see [72] for a recent review) consider the brain as an 

inference engine that actively generates and optimizes probabilistic representations of what 

caused its sensory input, which results in efficient neuronal information processing. In this 

framework, one can understand the process of perception as the resolution of sensory 

prediction errors, by changing top-down predictions about the causes of sensory input (Fig. 

1.2). Intuitively, the predictions descending along the cortical processing hierarchy via strong 

feedback connections are compared against sampled sensory inputs in each hierarchical level 

of the sensory cortex. The ensuing prediction errors are then passed up the hierarchy to 

optimize expectations and subsequent predictions identifying the most likely causes of sensory 

inputs. When the incoming sensory input is noisy, the ascending prediction error will be very 

imprecise leading to an inaccurate representation and uncertain perceptual decisions [73, 74]. 

In this case the sensory system must engage additional prediction error minimization processes 

involving lower-level sensory regions implicated in the processing of low-level high-

resolution stimulus features to “explain away” sensory evidence in higher-level regions. 

However, the direct empirical evidence for such processes is still scarce. 
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Goals of the dissertation 5 

Based on the fact that in real life, the perceptual context tends to be highly stable across short 

time-scales, prediction is considered to be a fundamental feature of sensory processing in the 

sense that the initial presentation of the stimulus induces an expectation of that same stimulus 

reappearing in the near future (for experimental evidence see [75]), maximizing the efficacy of 

neuronal coding. As a consequence, when a sensory stimulus is repeated, the prediction error 

is reduced more rapidly as the whole hierarchy settles into a representation of that stimulus, 

leading to the repetition suppression (RS) of the evoked neural activity [67]. Thus, RS reflects 

the flexibility of the sensory system and its ability to adjust to continuously changing 

requirements, optimizing the performance of the individual. Despite the intense effort that has 

been made to investigate the behavioral advantage of this phenomenon [76–82], the direct link 

between RS and perceptual ability is not known as of today. 

1.6 Goals of the dissertation 

The dissertation focuses on how visual cortical processing of faces is affected by the 

deterioration of image quality and prior perceptual experience. In particular, the research was 

aimed at: 

 uncovering the re-entrant neural processes that enable the extraction of identity 

information under challenging conditions when face images are deteriorated and 

noisy. 

 revealing the contribution of short-term face adaptation processes mediating the effect 

of prior experience to face perception. 

1.7 Methods 

To investigate the above questions, we used traditional task-based and resting-state functional 

connectivity functional magnetic resonance imaging (fMRI) methods combined with 

psychophysics. The fMRI is based on the blood oxygenation level-dependent (BOLD) method 

[83] reflecting signal intensity variations due to blood oxygenation, blood flow, and blood 

volume changes concomitant with an increase in brain activation. The BOLD fMRI signal, 

therefore, is a relative and indirect measure of neural activity, which has been shown to 

strongly correlate with the local field potential (LFP), i.e. a mass neural signal reflecting a 

multitude of neural processes, including synaptic potentials, afterpotentials of somatodendritic 

spikes and voltage-gated membrane oscillations [84]. Thus, the BOLD signal in a given brain 

region is affected by the input of a given cortical area, its local intracortical processing, 
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including the activity of excitatory and inhibitory interneurons as well as by the activity of 

neuromodulatory pathways. Over the past decades, fMRI has emerged as the most popular 

neuroimaging technique used in cognitive neuroscience to study human brain functions. The 

major advantages of fMRI as compared to other neuroimaging techniques are: non-

invasiveness, relatively high spatiotemporal resolution (spatial resolution: 2-3 mm; temporal 

resolution: 1-3 s) and its capacity to investigate the entire network of brain areas essentially at 

once either during a particular task or during rest. 

1.7.1 Task-based fMRI method 

In a standard task-related fMRI analysis experimental factors are manipulated and a general 

linear model (GLM) is used to identify areas where the activation level associated with one 

task condition is significantly different from the activation level associated with the other. The 

contrast between task conditions is carried out separately on the time series for each voxel, 

which yields a map of contiguous clusters of activated voxels (i.e. statistical parametric maps) 

forming a set of regions of interest (ROIs) that are assumed to play an important role in 

generating behavior. A clear dissociation in the foci of activation observed under different task 

conditions provides strong support for dissociable neural and cognitive mechanisms. In 

addition, this analysis helps to identify regions that can be used as seeds for more sophisticated 

subsequent analyses such as for a task-related ROI analysis or an ROI-based intrinsic 

functional connectivity analysis. 

ROI analysis is commonly used to examine activity within a set of functionally coherent 

voxels, in order to investigate their sensitivity to some other manipulation [85]. This approach 

is most prevalent in fMRI studies of visual processing, where separate localizers are used to 

identify functionally specific regions (e.g. voxels in the fusiform gyrus that are more 

responsive to faces than other objects) for each individual given the large interindividual 

variability observed in their location in the ventral occipitotemporal cortex [30]. The ROI-

based analysis is restricted to voxels of prior interest and, in most cases it involves a univariate 

amplitude estimation procedure using the GLM approach to examine their response to 

different task conditions. 

1.7.2 Intrinsic functional connectivity fMRI method 

The intrinsic functional connectivity fMRI technique has emerged as a powerful non-invasive 

tool for studying large-scale, spatially distributed networks of the human brain. This method 

relies on the observation that in the absence of any task, spatially distant regions of cortex 

exhibit highly correlated spontaneous low-frequency (< 0.1 Hz) fluctuations in their BOLD 
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signal [86] (see [87] for a review). Resting-state networks are posited to reflect intrinsic 

representations of functional systems commonly implicated in cognitive function: it has been 

demonstrated that functional connectivity patterns observed at rest closely correspond to those 

elicited by more traditional task-based paradigms or derived directly from task data [86, 88–

92]. Moreover, growing evidence shows that intrinsic functional connectivity is highly related 

to task-induced activity [93, 94] and also cognitive ability [95–103] providing support that 

measuring resting-state connectivity (rsFC) is a useful tool for investigating functionally 

relevant interactions between cortical areas. One of the most widely adopted method for 

computing statistical interdependence between brain regions is the univariate seed- or ROI-

based functional connectivity analysis where rsFC is represented as a single linear correlation 

coefficient calculated between 5-15 min time series of a priori ROIs. 

1.7.3 Combined fMRI and psychophysics methods 

Results of the fMRI experiments demonstrate that a multitude of regions and networks are 

active during a particular task or rest and show modulation in their activation in a task- or 

state-dependent manner. Combining fMRI methods with psychophysics, i.e. investigating the 

relationship between the different fMRI measures (such as task-dependent activity or rsFC) 

and task performance e.g. by using correlation methods, might provide a more direct and 

sensitive approach to elucidate the neural mechanisms underlying specific cognitive functions. 

Furthermore, using this method we can understand how brain function varies across subjects 

and how these differences relate to the subjects’ differences in (separately measured) 

behavioral performance.  
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2 Neural basis of identity information extraction 

from noisy face images 

2.1 Introduction 

Experimental and modeling results suggest that face perception involves an initial, fast 

categorization of the visual stimulus as a face (e.g. [45–51, 53]) and it is based primarily on 

the neural processes in a face-sensitive region in the fusiform gyrus, the fusiform face area 

(FFA, [24]) [30, 54–57]. This coarse face representation subsequently evolves through re-

entrant interactions between the FFA and lower-level visual cortical areas of the inferior and 

lateral occipital cortex [54, 55, 58–61]. Specifically, in the case of phase-randomized face 

images, it has been suggested [62, 63] that the increased processing demand due to the 

distorted spatial localization of the facial features might lead to the engagement of a re-entrant 

processing loop involving the FFA and a region of the lateral occipital cortex (LOC), which 

represents shape information within a spatial coordinate system [64, 104] and shows increased 

fMRI responses to noisy face images [62]. However, an important question that remains to be 

explored is whether it is the FFA or the LOC on whose neural representations the perception 

of deteriorated and noisy face images is based. Even though combined behavioral and 

neuroimaging results provided strong evidence for a close link between face perception and 

the neural processes in the FFA in the case of intact face images [37–40], it has not been 

investigated whether this holds true also for faces that are noisy and poorly visible. 

To address this question, we measured face identity discrimination performance as well as 

fMRI responses in the FFA and LOC in the cases of both intact and phase-randomized face 

stimuli. To examine whether the individual differences in the discrimination of the identity of 

noisy face stimuli are associated with the noise-induced modulation of fMRI responses in the 

FFA or in the LOC, we computed correlations between these behavioral and neural measures. 

Furthermore, based on the suggested role of the re-entrant neural mechanisms in the 

processing of noisy faces, we predicted that the individual ability to handle stimulus noise 

might depend on the strength of functional interactions between FFA and LOC. To test this 

prediction, we estimated the strength of intrinsic functional connectivity between bilateral 

FFA and LOC using resting-state fMRI [86, 105] (for review, see [87]) and computed 

correlations between these measures and the face identity discrimination performance for 

noisy faces. 
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10 Neural basis of identity information extraction from noisy face images 

2.2 Materials and Methods 

2.2.1 Subjects 

Altogether 26 Caucasian subjects (15 male, 1 left-handed, mean ± SD age: 27 ± 6 years) 

participated in the experiment and gave informed written consent in accordance with the 

protocols approved by the ethics committee of Semmelweis University, Budapest, Hungary. 

None of them had any history of neurological or psychiatric diseases, and all had normal or 

corrected-to-normal visual acuity. 

2.2.2 Psychophysics experiment 

Stimuli. In the psychophysics experiment, trials consisted of triplets of morphed male face 

images. Front-view grayscale images of male faces with neutral expression were cropped to 

eliminate external features (hair, etc.) and were equated for luminance and contrast. Triplets 

were obtained by first pairing two individuals and creating a linear morph continuum using a 

warping algorithm (JPsychoMorph, [106]). Altogether 78 continua were created from 13 

individuals. Triplet members were selected from these continua as follows: face A and C were 

chosen to be the 20/80% and 80/20% points, respectively, while face B was taken from in 

between, such that the morph distance between the oddball image (e.g. A) and its neighbor (B) 

was larger than the distance between the other two images (e.g. B and C). These distances 

were based on pilot measurements to keep performance within the 65-75% range and they 

differed between face conditions. The following 2 × 2 conditions were used. Faces with 100% 

phase coherence were presented in the intact face condition, and for the noisy face condition 

the phase coherence was decreased to 45% (55% noise) (see Fig. 2.1). Phase coherence was 

manipulated using custom-made scripts based on the weighted mean phase technique [107]. 

Both intact and noisy faces were presented upright and upside-down.  

 

Figure 2.1. Stimuli of the psychophysics experiment. Exemplar face triplet for the intact (left) and the 

55% phase noise (right) stimulus condition presented in the 3AFC identity-discrimination task. 
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Triplets were displayed at the center of the screen on a uniform gray background in a regular 

triangular arrangement with 4° eccentricity. Triplets measured ~11° × 12°, faces subtending 

4.5° × 6.0° each, and were presented on a 26” LG IPS LCD monitor at a refresh rate of 60 Hz 

viewed from 50 cm. Stimulus presentation was controlled by MATLAB R2010a (The 

MathWorks Inc., Natick, MA, USA) using the Psychophysics Toolbox Version 3 (PTB-3) 

[108, 109] (http://psychtoolbox.org/). 

Experimental procedure. In the psychophysics experiment, participants performed a three-

alternative forced-choice (3AFC) identity fine-discrimination task. Subjects were required to 

select the face that differed the most from the other two (i.e. oddball face, either A or C). 

Before the experiment, each subject was given a practice session to get familiar with the task. 

Each trial began with a cue (1°) appearing just above fixation for 100 ms, indicating the 

orientation of the upcoming stimuli (upright or inverted). Triplets were presented without a 

fixation dot under free-viewing conditions until subjects responded, but they were terminated 

at 5000 ms if no response was made. Trials were separated by an inter-trial interval, which 

varied randomly between 900 and 1100 ms, with only the fixation dot present. Oddball faces 

appeared with equal probability in each of the three possible spatial positions. Each unique 

face triplet was presented only once per condition, randomly assigned to one of the five runs 

for each participant. Within a single run, the 2 × 2 conditions (intact/noise and 

upright/inverted) were intermixed and presented in random order. Each participant completed 

five runs, yielding 65 trials altogether for each condition. 

2.3 fMRI experiment 

Stimuli. During the block-design fMRI scanning session, images of human faces and common 

objects were presented. Face stimuli consisted of front-view grayscale photographs of four 

male faces with neutral, happy, and fearful expressions preprocessed similarly to the images 

used in the psychophysics experiment. They were presented either with 100% phase coherence 

(intact face condition) or manipulated by decreasing their phase coherence to 45% (55% noise; 

noisy face condition) using the weighted mean phase technique [107]. Object stimuli consisted 

of grayscale images of three different objects from four categories (cars, mugs, jugs, and 

fruits) chosen from the Amsterdam Library of Objects Images (ALOI) database [110]. All 

images were equated for luminance and contrast and presented centrally, subtending 4.5° × 

6.0°, on a uniform gray background. Stimuli were projected onto a translucent screen located 

at the back of the scanner bore using a Panasonic PT-D3500E DLP projector (Matsushita 

Electric Industrial Co., Ltd., Kadoma, Japan) at a refresh rate of 60 Hz, and they were viewed 

through a mirror attached to the head coil at a viewing distance of 57 cm. Head motion was 
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minimized using foam padding. Stimulus presentation was controlled by MATLAB R2010a 

(The MathWorks Inc., Natick, MA, USA) using the Psychophysics Toolbox Version 3 (PTB-

3) [108, 109] (http://psychtoolbox.org/). 

Experimental procedure. The fMRI session included two block-design runs. In each run, 16 s 

long blocks of intact faces (IF), noisy faces (NF), and objects (O) were interleaved with 

baseline blocks which contained only a fixation dot. Stimuli were presented for 500 ms with 

0.5 Hz frequency. A run consisted of 6 blocks of each stimulus type (IF, NF, and O) and 19 

baseline blocks, making a total number of 37 blocks per run, lasting 10 min each. Subjects 

performed a one-back memory task and reported the total number of one-back repetitions at 

the end of the run. In addition to the block-design scans, participants performed an 8 min long 

resting-state run before the experimental runs. They were instructed to lie still, with their eyes 

closed. 

2.3.1 fMRI scanning 

Data were collected at the MR Research Center of Szentágothai Knowledge Center 

(Semmelweis University, Budapest, Hungary) on a 3 Tesla Philips Achieva scanner (Philips 

Healthcare, Best, the Netherlands) equipped with an 8-channel SENSE head coil. High-

resolution anatomical images were acquired for each subject using a T1-weighted 3D TFE 

sequence (TR = 9.77 ms, TE = 4.6 ms, FOV = 256 mm) yielding images with 1 × 1 × 1 mm 

resolution. Functional images were collected with a non-interleaved acquisition order covering 

the whole brain with a BOLD-sensitive T2*-weighted GRE-EPI sequence. For the 

experimental fMRI, a total of 301 volumes were acquired using 31 transversal slices (4 mm 

slice thickness with 3.4 mm × 3.4 mm in-plane resolution, TR = 2 s, TE = 30 ms, FOV = 220 

mm, acceleration factor = 2), while for the resting-state fMRI, a total of 240 volumes were 

recorded using 36 transversal slices (4 mm slice thickness with 3 mm × 3 mm in-plane 

resolution, TR = 2 s, TE = 30 ms, FOV = 240 mm, acceleration factor = 2). 

2.3.2 fMRI data analysis 

Preprocessing and analysis of the imaging data were performed using the SPM8 toolbox 

(Wellcome Trust Centre for Neuroimaging, London, UK) and custom MATLAB codes. The 

functional images were realigned to the first image within a session for motion correction and 

then spatially smoothed using an 8 mm full width at half maximum (FWHM) Gaussian filter. 

The anatomical images were coregistered to the mean functional T2*-weighted images 

followed by segmentation and normalization to the MNI-152 space using SPM's segmentation 
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toolbox. The gray matter mask was used to restrict statistical analysis on the functional files. 

To define the regressors for the general linear model analysis of the data, a canonical 

hemodynamic response function (HRF) was convolved with boxcar functions, representing the 

onsets of the experimental conditions. Movement-related variance was accounted for by the 

spatial parameters resulting from the motion correction procedure. A high-pass filter with a 

cycle-cutoff of 128 s was also implemented in the design to remove low-frequency signals. 

The prepared regressors were then fitted to the observed functional time series within the 

cortical areas defined by the gray matter mask. The resulting individual statistical maps were 

then transformed to the MNI-152 space using the transformation matrices generated during the 

normalization of the anatomical images. The estimated beta weights of each regressor served 

as input for the second-level whole-brain random-effects analysis, treating subjects as random 

factors. For visualization purposes, the IF > NF and NF > IF contrasts were projected with 

pFDR < 0.05 threshold onto the smoothed ICBM152 brain [111–113] using BrainNet Viewer 

[114] (http://www.nitrc.org/projects/bnv/). Stereotaxic coordinates are reported in Montreal 

Neurological Institute (MNI) space and regional labels were derived using the AAL atlas 

[115] provided with XjView 8 (http://www.alivelearn.net/xjview8/). 

For the resting-state analysis, several other preprocessing steps were applied in addition to the 

aforementioned standard preprocessing to reduce spurious variance that is unlikely to reflect 

neural activity in resting-state data. These steps included voxelwise regression of the time 

course obtained from rigid-body head motion correction, voxelwise regression of the mean 

time course of whole-brain, ventricle, and white matter blood oxygen level-dependent 

(BOLD) fluctuations [116]. To retain low-frequency signals only (0.009–0.08 Hz) [117], we 

used a combination of temporal high-pass (based on the regression of 9th-order discrete cosine 

transform (DCT) basis set) and low-pass (bi-directional 12th-order Butterworth IIR) filters. 

ROI selection for correlation analysis. We conducted correlation analyses for which we 

determined the individual locations of three regions of interest (ROIs) (FFA, occipital face 

area (OFA), and LOC) to take the interindividual variability in their locations into account, 

which is crucial for intersubject correlations. To define them in each hemisphere and in each 

participant, we located the peak voxel within a region exhibiting a selective response to face 

(FFA and OFA) and object images (LOC). The locations of FFA and OFA were determined as 

the areas in the middle fusiform gyrus and inferior occipital gyrus, respectively, responding 

more strongly to intact faces than to objects. LOC was identified as the area on the lateral 

surface of the middle occipital cortex showing significantly stronger activation to objects than 

to intact faces. Peak voxel activity of all ROIs was required to meet a minimum threshold of 

puncorrected = 0.005. With each ROI, we took the contiguous cluster of significantly activated 
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voxels (t(560) > 2) within a 10 mm radius sphere centered at the peak voxel and selected a 

single voxel showing the highest absolute beta difference in the intact versus noisy faces 

contrast. We used the beta difference (signed to reflect the direction of the contrast) obtained 

from this voxel to characterize the magnitude of the noise effect in each region for our 

correlation analysis. The defined voxel coordinates were then transformed to each subject’s 

native space. We only included subjects in the analysis for whom we could individually define 

these ROIs (for details, see Table 2.1). 

ROI x y z 

No. of voxels 

in the cluster D N 

rFFA 42 ± 0.6 −49 ± 1.0 −21 ± 0.6 253 ± 30 5.2 ± 0.6 23 

lFFA −40 ± 0.7 −49 ± 1.3 −21 ± 0.9 145 ± 34 3.5 ± 0.6 21 

rOFA 41 ± 0.7 −76 ± 1.6 −15 ± 0.6 188 ± 31 5.9 ± 0.7 16 

rLOC 43 ± 1.0 −78 ± 0.8 9 ± 0.9 167 ± 24 6.6 ± 0.7 18 

lLOC −41 ± 1.0 −80 ± 0.8 7 ± 0.9 229 ± 24 5.8 ± 0.8 19 

Table 2.1. Peak voxel coordinates for the regions of interest (ROIs). The MNI coordinates (x, y, z in 

millimeters) of the peak voxels from the IF > O and O < IF contrasts in the case of FFA, OFA, and 

LOC, respectively. ROIs were defined as the contiguous cluster of significantly activated voxels (t(560) > 

2) within a 10 mm radius sphere centered at the given peaks. Please note, that for the correlation 

analysis the activity of a single voxel showing the largest beta difference in the IF versus NF contrast 

was chosen. The distance (D) of this voxel from the peak coordinate of each ROI is also shown in 

millimeters. Provided data are mean ± SEM across participants (N) for whom these regions were 

individually identifiable. Note that the OFA was reliably definable only in the right hemisphere in the 

majority of subjects. 

For visualization purposes, we generated a probability density map illustrating the spatial 

distribution of the highest noise effect voxels across participants in the FFA and in the LOC. 

The individual normalized binary masks for each ROI were first averaged across subjects to 

create a voxelwise probability map and then convolved it with a 9 mm Gaussian kernel. The 

kernel size was chosen based on the average distance between the selected voxels of the 

participants. The resulting voxel density map was superimposed onto the smoothed ICBM152 

brain [111–113] using BrainNet Viewer [114] (http://www.nitrc.org/projects/bnv/). 

Functional connectivity analysis. To examine functional connectivity at rest, pairwise linear 

correlations were calculated using the extracted BOLD time course of the predefined ROIs 

(i.e. the voxel showing the highest noise-related modulation within the ROI) for each 
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participant. One-sample t tests were performed to determine which regions show reliable 

resting-state connectivity. 

2.3.3 Correlation analysis 

To test the behavioral relevance of the noise effect on the fMRI responses, we correlated the 

individual beta differences in the FFA, OFA, and LOC regions with subjects’ discrimination 

performance on noisy faces. We conducted a semipartial correlation analysis to partial out the 

influence of the intact face performance on the noisy face accuracy in order to minimize the 

confounding effect of individual differences in the efficacy of overall face perception of the 

participants. Skipped Pearson’s correlation coefficients were calculated with the Robust 

Correlation Toolbox [118] in MATLAB. Bivariate outliers were detected using an adjusted 

box-plot rule and removed in the computation of skipped correlations. For correlation 

coefficients (r), 95% confidence intervals (CI) were calculated based on 10,000 samples with 

the percentile bootstrap method implemented in the toolbox. 

The relationship between individual resting-state functional connectivity coefficients (rsFC 

strength) and behavioral performance on noisy faces was studied by computing between-

subject partial correlations using skipped Pearson’s correlation, eliminating the variance 

related to efficacy of overall face perception both from the rsFC strength and from the noisy 

face perception performance. This again served to control for the individual differences in face 

identity discrimination. 

2.4 Results 

2.4.1 Behavioral results 

The behavioral measures were compared using a two-way repeated-measures ANOVA with 

within-subject factors of noise (intact vs. noisy face) and inversion (upright vs. inverted face). 

Face identity discrimination performance was significantly better for intact as compared with 

noisy faces (main effect of noise: F(1,25) = 40.95, p < 0.001). Importantly, however, we found 

robust face inversion effects (i.e. decreased accuracy for inverted faces) for both the intact and 

noisy face conditions, which did not differ significantly in magnitude (Fig. 2.2; main effect of 

inversion: F(1,25) = 72.67, p < 0.001, noise x inversion: F(1,25) = 0.93, p = 0.344). Thus, noisy 

face discrimination was based on face-specific processes as opposed to discrimination based 
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on low-level stimulus features. These behavioral findings suggest that the neural mechanisms 

involved in the processing of noisy faces might be similar to those of faces without noise. 

 

Figure 2.2. Behavioral results. Identity discrimination performance was significantly higher for intact 

as compared to noisy faces, however face inversion equally impaired accuracy in both cases. Provided 

data are mean correct response ratio ± SEM across participants (N = 26). Black bars represent data for 

upright faces; gray bars represent data for inverted faces. IF, intact faces; NF, noisy faces (***p < 

0.001). 

2.4.2 Results of the whole-brain analysis 

The whole-brain random-effects analysis of fMRI data using a pFDR < 0.05 threshold revealed 

that the presence of phase noise strongly affected bilateral occipitotemporal cortical 

processing of face images (Fig. 2.3). To specifically address the questions that we aimed to 

investigate in the current study, our analysis will be focused on two visual cortical areas: the 

fusiform gyrus (i.e. FFA) and the middle occipital gyrus (i.e. LOC). Noisy faces relative to 

intact faces led to decreased activation in the fusiform gyrus bilaterally (Fig. 2.3A; t(25) = 3.83; 

x, y, z = 42, −44, −22 and t(25) = 4.14; x, y, z = −40, −42, −20 for the right and left hemisphere, 

respectively), which is in agreement with studies observing noise-induced attenuation in the 

FFA responses [119–121]. The MNI coordinates of this noise-induced modulation closely 

corresponds to the mid-fusiform face-selective region referred to as mFus-faces, also known 

as FFA-2 [29, 122] (for review, see [123]). In contrast, the results also revealed that there was 

an increased bilateral activation in the middle occipital gyrus in the noisy compared with the 

intact face condition (Fig. 2.3B; t(25) = 5.18; x, y, z = 36, −82, 8 and t(25) = 5.71; x, y, z = −34, 

−86, 4 for the right and left hemisphere, respectively), which is in accordance with our 

previous findings [62]. Based on its coordinates, this region appears to be in close 

correspondence with the shape-selective, retinotopically organized LO2 area introduced by 

Larsson and Heeger [64], which is part of the LOC. 
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Figure 2.3. Results of the whole-brain random-effects analysis. Bilateral areas of the fusiform gyrus 

showed significantly lower activation for noisy relative to intact faces (A), while larger responses to 

noisy than intact faces were found bilaterally in the middle occipital gyrus (B). Statistical maps are 

displayed with pFDR < 0.05 on the smoothed ICBM152 brain [111–113]. IF, intact faces; NF, noisy 

faces; lFG, left fusiform gyrus; rFG, right fusiform gyrus; lMOG, left middle occipital gyrus; rMOG, 

right middle occipital gyrus. 

2.4.3 Relationship between behavior and fMRI responses to noisy faces 

Participants’ performance in the three-alternative forced-choice identity discrimination task 

was 73.8 ± 1.7% and 61.9 ± 1.7% (mean ± SEM) in the case of intact and phase-randomized 

face stimuli, respectively. To investigate the relationship between the noise-induced 

modulation found in the fMRI responses and individual performance to noisy faces, we 

conducted a semipartial correlation analysis using the intact face performance as a covariate 

for the noisy face performance to control for the confounding effect of the overall face 

perception ability of the participants. Within the individually defined face-selective FFA, 

OFA, and object-selective LOC we selected a single voxel with the largest absolute beta 

difference in the intact versus noisy faces contrasts and used the signed difference to 

characterize the magnitude of the noise effect in these regions for each participant (for ROI 

definition, see Materials and Methods, Fig. 2.4A, and Table 2.1). This ROI-based semipartial 

correlation analysis revealed that the magnitude of noise effect measured in the right FFA—as 

expressed by fMRI response reduction in the noisy relative to the control condition—

negatively correlated with the behavioral accuracy in the case of noisy faces (Fig. 2.4B): the 

larger the effect of noise in the right FFA, the lower the identity discrimination performance 

for noisy faces (r(20) = −0.57, p = 0.005, CI = [−0.83 −0.14], number of outliers (NO) = 0). On 

the other hand, we found no such correlations in the left FFA and bilateral LOC (Fig. 2.4B; 

r(18) = −0.30, p = 0.183, CI = [−0.67 0.23], NO = 0; r(15) = 0.39, p = 0.106, CI = [−0.03 0.71], 

NO = 0; and r(12) = 0.04, p = 0.897, CI = [−0.49 0.42], NO = 4 for left FFA, right and left 

LOC, respectively).  
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Figure 2.4. Results of the ROI-based correlation analysis. A, Probability density map illustrating the 

spatial distribution of the highest noise-effect voxels across participants in bilateral FFA and LOC. 

Color scales reflect probability density estimates (cool colors, FFA; warm colors, LOC). B, 

Relationship between the noise-induced modulation of the fMRI responses and the behavioral accuracy 

in discriminating noisy faces: smaller decrease of the fMRI responses in the right FFA indicated better 

identity discrimination. Due to the semipartial correlation procedure (see Materials and Methods, 

Correlation analysis), correlation scatter plots depict residual values on the y-axis. The y-axis values 

denote behavioral accuracy for noisy faces indexed by the residual correct response ratio. The x-axis 

values denote noise effect on the fMRI responses indexed by the beta difference in the IF versus NF 

contrast. Circles represent individual participants and bivariate outliers are marked with open circles. 

Diagonal line indicates linear least-squares fit. IF, intact faces; NF, noisy faces. 

Note, we also failed to find significant correlation between the identity discrimination 

performance for noisy faces and the noise-induced fMRI response modulation in the OFA 
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(r(13) = −0.36, p = 0.176, CI = [−0.77 0.23], NO = 0), a region in the inferior occipital gyrus, 

that was shown to be involved in an earlier feature-level processing stage of facial identity 

computations (for reviews, see [22, 124]). This appears to be in agreement with the results of 

our whole-brain random-effects analysis showing that fMRI responses in this region are not 

significantly different from each other for intact and noisy face stimuli. These results indicate 

that identity discrimination in the case of noisy faces could be associated primarily with right 

FFA processes. 

2.4.4 Results of the intrinsic functional connectivity analysis 

We investigated the behavioral relevance of the functional interactions between the voxels of 

the FFA and LOC exhibiting the highest noise effect by examining interindividual differences 

in resting-state functional connectivity in relation to the observed differences in identity 

discrimination accuracy for noisy faces. We first tested the extent to which BOLD responses 

in these regions were functionally correlated at rest. Reliable connectivity strengths were 

found between all ROI pairs using one-sample t tests (t > 2.86, p < 0.01 for all possible ROI 

pairs) (see Fig. 2.5A). The partial correlation analysis, used to control for the influence of the 

overall face perception ability of the participants on rsFC strength and noisy face performance, 

revealed that the functional connectivity strength between bilateral FFA and bilateral LOC 

correlated positively with the behavioral accuracy for noisy faces (Fig. 2.5B): the stronger the 

functional connectivity between these regions during rest, the better the face identity 

discrimination performance in the noisy condition (rFFA–rLOC: r(12) = 0.59, p = 0.020, CI = 

[0.21 0.88], NO = 2; rFFA–lLOC: r(13) = 0.65, p = 0.007, CI = [0.35 0.86], NO = 2; lFFA– 

rLOC: r(11) = 0.69, p = 0.006, CI = [0.51 0.91], NO = 2; and lFFA–lLOC: r(13) = 0.68, p = 

0.004, CI = [0.42 0.87], NO = 1). Performance for noisy faces also correlated positively with 

the connectivity strength between the right and left FFA (r(17) = 0.59, p = 0.006, CI = [0.17 

0.92], NO = 1). On the other hand, similar relationship was not detectable in the case of the 

right and left LOC (r(14) = −0.05, p = 0.841, CI = [−0.53 0.48], NO = 0). 
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Figure 2.5. Results of the intrinsic functional connectivity analysis. A, Connections between the pairs 

of ROIs displayed as edges and overlaid on the probability density map from Figure 2.4A. The thickness 

of an edge represents the strength of the connection (correlation coefficients (r) averaged across 

subjects); significant correlations were found between all ROI pairs investigated. B, Scatter plots 

indicating the relationship between the intrinsic functional connectivity and the behavioral accuracy for 

noisy faces. The strength of the functional connectivity between bilateral FFA and LOC, as well as 

between the right and left FFA, correlated positively with the identity discrimination performance in the 

case of noisy faces. Due to the partial correlation procedure (see Materials and Methods, Correlation 

analysis), correlation scatter plots depict residual values on both axes. The y-axis values denote the 

behavioral accuracy for noisy faces indexed by the residual correct response ratio. The x-axis values 

denote the connection strength between a ROI pair indexed by the residual correlation coefficient. 

Circles represent individual participants and bivariate outliers are marked with open circles. Diagonal 

line indicates linear least-squares fit. NF, noisy faces; FC, functional connectivity (**p < 0.01, ***p < 

0.001). 

Since previous research has shown that resting-state functional connectivity between the FFA 

and OFA is associated with identity perception in the case of intact faces [99], we also tested 

the relation between the strength of the FFA–OFA intrinsic functional connectivity and 

identity discrimination performance for noisy faces. Although in accordance with previous 

results [42, 99, 103] we found a pronounced resting-state connectivity between the FFA and 

OFA (t(15) = 6.27, p < 0.001 and t(13) = 4.57, p < 0.001 for rFFA–rOFA and lFFA–rOFA, 

respectively), its strength was not correlated with the noisy face identification performance 

(r(13) = −0.16, p = 0.566, CI = [−0.63 0.59], NO = 0 and r(10) = 0.28, p = 0.350, CI = [−0.24 

0.70], NO = 1 for rFFA–rOFA and lFFA–rOFA, respectively). In sum, these results suggest 

that face identity perception in the case of noisy faces is based on functional interactions 

between bilateral FFA and LOC. 
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2.5 Discussion 

We have found that adding phase noise to face images leads to reduced and increased fMRI 

responses to faces in bilateral mid-fusiform gyrus and bilateral lateral occipital cortex, 

respectively, which is in agreement with previous results [62, 120]. Importantly, our results 

provide the first evidence that only in the right face-selective FFA did noise-induced 

modulation of the fMRI responses show a close association with the individual differences in 

face identity discrimination performance of noisy faces: smaller decrease of the fMRI 

responses was associated with better identity discrimination. This implies that the perception 

of noisy face images is based on the neural representations extracted from the right FFA. The 

robust behavioral face inversion effect also in the case of noisy images provides further 

support for the role of FFA in noisy face perception. Furthermore, our results also revealed 

that the strength of intrinsic functional connectivity within the visual cortical network 

composed of bilateral FFA and bilateral object-selective LOC predicts the participants’ ability 

to discriminate the identity of noisy face images.  

Right FFA subserves noisy face perception. Our results are in agreement with previous 

findings showing that representations extracted by the FFA embody the primary neural 

substrate of facial identity perception in the case of intact faces. It was found that fMRI 

responses in the FFA are closely associated with successful identification of faces but not non-

face objects [37], as well as with the well-known marker of face-specific processing, the 

behavioral face inversion effect [40]. Based on its coordinates, the FFA subregion whose 

fMRI responses were associated with noisy face identity discrimination in our study appears to 

be in close correspondence with the face-selective region related to intact face perception in 

the mid-fusiform gyrus [37, 39, 40]. This anterior part of the FFA, referred to as mFus-faces 

[29] (for review, see [123]), shows greater fMRI adaptation to repeated face images than the 

more posterior pFus-faces [125], suggesting its pivotal role in identity perception. Given the 

suggested role of FFA in the behavioral inversion effect for intact faces (FIE, [18]) [40] we 

reasoned that if FFA also subserves noisy face perception, face inversion will impair 

behavioral responses in the case of noisy face stimuli as well. The robust FIE also in the case 

of noisy images indicates that similarly to intact faces, noisy ones are discriminated based on 

face-specific processes linked to FFA. 

It is important to note that previous results concerning the role of FFA in identity perception in 

the case of faces with deteriorated facial information were ambiguous. On the one hand, it has 

been shown that scrambling or adding noise to face images leads to reduced fMRI responses 

in the FFA [119–121, 126], which is in accord with a large body of neuroimaging results 
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showing that the presence of noise in images strongly attenuates feature/object-selective visual 

cortical responses in the downstream, higher-level object-processing areas [126–130]. Based 

on these findings, facial feature processing in the FFA was expected to be impaired in the 

presence of noise. On the other hand, involvement of the FFA in the processing of noisy faces 

is implicated by the results of a recent study, in which no response reduction was found in the 

FFA as a result of adding phase noise to the face images [62]. Furthermore, it has also been 

shown that face-sensitive responses emerge first in the FFA when participants perform a face 

detection task in a paradigm where scenes containing faces are revealed gradually from visual 

noise [57]. Considering the difference in task conditions between these studies might help to 

reconcile the apparent discrepancies in the obtained results. In studies where fMRI responses 

in the FFA were found to decrease as a result of noise, data were acquired during either 

passive viewing or under task conditions where fine facial information was irrelevant [119–

121]. Whereas, in the Bankó et al. study [62], where noise effects were absent in the FFA, 

participants performed a highly demanding face gender categorization task. As visual attention 

and task demands strongly affect fMRI responses in the FFA [121, 131–134], it is reasonable 

to assume that the enhancing effects of top-down attention in the Bankó et al. study [62] could 

have masked the noise-induced reduction of the FFA responses. This interpretation is in 

accordance with the results of a previous study [135] showing that decreasing motion 

coherence (i.e. making the stimulus noisier) leads to decreased MT+ responses only when the 

motion stimulus is task-irrelevant/unattended. In contrast, when motion is attended the effect 

of decreasing motion coherence disappeared or even reversed, leading to larger MT+ 

responses. Our present results are also in line with this account as using noisy face stimuli we 

obtained noise-induced reduction of the fMRI responses in the FFA under moderately 

demanding task conditions. 

Occipitotemporal network underlies noisy face perception. Our findings also shed light on 

the visual cortical network that enables the extraction of identity information when stimuli are 

noisy, i.e. with deteriorated facial information. Previous research has shown that adding phase 

noise to the stimuli leads to increased fMRI responses in a region of bilateral LOC [62], whose 

coordinates closely correspond to the shape-selective, retinotopically organized LO2 area, 

which represents shape information within a spatial coordinate system [64, 104]. Based on 

these findings, we hypothesized that increased processing demands due to the distorted spatial 

localization of the facial features in the case of phase-randomized face images might trigger 

re-entrant processing mechanisms involving the LOC. Our intrinsic functional connectivity 

analysis provides the first direct evidence that this might indeed be the case, showing that the 

strength of the functional connectivity between bilateral LOC and FFA predicts the 

participants’ ability to discriminate the identity of noisy face images. Although LOC is 
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considered primarily as an object-selective area [136–138], it shows elevated activation for 

faces as well, especially for inverted ones [40, 79, 139]. There is also evidence showing that 

the LOC is essentially involved in the feature-based processing of face images [126, 140–143] 

and its activation might contribute to better behavioral performance in face perception [143]. 

These findings provide support for our results showing that LOC processes are engaged in the 

extraction of face identity information for stimuli with deteriorated facial information. 

Our resting-state connectivity analysis also revealed that functional connectivity between the 

left and right FFA was also closely associated with the identity discrimination performance for 

faces embedded in noise. This is in agreement with the results of numerous previous studies 

showing that despite the right hemisphere dominance for face perception [24, 30, 144, 145], 

interhemispheric interactions appear to be necessary for successful face recognition. The 

strong task-related [44, 146], background [43], and resting-state [42] functional connectivity 

between corresponding face regions in the two hemispheres (including the right and left FFA) 

suggests that face processing involves a bilateral network. Furthermore, it was also shown that 

bilateral presentation of face stimuli leads to improved performance compared with unilateral 

presentation [147–150]. Thus, there is converging evidence that left FFA mechanisms, mainly 

associated with featural processing [151–154], could facilitate face recognition in the right 

FFA through reciprocal connections especially when faces are disrupted in their structural 

content, as was the case in our study. 

More generally, the results of our functional connectivity analysis provide further support that 

measuring resting-state connectivity is a useful tool for investigating behaviorally relevant 

functional interaction between visual cortical areas [99, 102, 103]. It has recently been shown 

that the strength of the intrinsic functional connectivity within the occipitotemporal face 

network predicts perceptual ability to process faces depending on stimulus/task properties. For 

example, it was demonstrated that the connectivity of the FFA with the OFA [99] and with the 

perirhinal cortex [103] is closely related to the behavioral face inversion effect. Together with 

the present results, these findings suggest that processing of facial features takes place via 

coordinated interaction within the visual cortical face network, relying on synchronized 

spontaneous neural activity between face-processing regions. 

To conclude, these results imply that perception of facial identity in the case of noisy face 

images is subserved by neural computations within the right FFA as well as a re-entrant 

processing loop involving bilateral FFA and LOC. 
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A question that remains to be explored concerns whether the neural mechanisms implicated in 

processing of face images degraded by phase noise are those that also deal with other types of 

visual noise. Reducing phase coherence using the weighted mean phase technique [107] 

disrupts the spatial locations of features, while it leaves lower-level statistics of the images 

such as global spatial frequency amplitude spectrum, luminance, and contrast unaffected. 

Thereby, phase noise primarily affects higher-level object-processing mechanisms for coding 

and integrating the structural information of the images, which is supported by our results. On 

the contrary, previous research suggests that white noise [155] or scrambling [129] affects the 

processing of visual stimuli already in the early visual cortical areas, including the primary 

visual cortex. Thus, to clarify the validity of our results for other types of visual noise, further 

studies using different types of noise within one experimental framework are needed. 
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3 The relationship between repetition suppression 

and face perception 

3.1 Introduction 

It has been shown that sensory information processing is highly affected by short-term prior 

perceptual experience. When a sensory stimulus is repeated, the evoked neural signal is 

invariably smaller than the one observed for its first presentation. This phenomenon is 

observed for many sensory modalities and for various stimuli using different methods. For 

example, the response of the visually sensitive neurons of the inferior temporal cortex (IT) of 

the macaque brain decreases when a stimulus is repeated [156–163], an effect termed 

repetition suppression (RS). Similarly, in functional magnetic resonance imaging (fMRI) 

experiments stimulus repetitions lead to the reduction of the blood oxygenation level-

dependent (BOLD) signal when compared with non-repeating stimuli (for a review see [164]), 

a phenomenon called fMRI adaptation (fMRIa). Although a large number of studies tested the 

neural mechanisms of RS in the last decades, there are still several open questions regarding 

this phenomenon. While prior studies typically connected RS to local or entirely bottom-up 

mechanisms, such as fatigue, sharpening, or response facilitation (for a review see [165]), 

recent studies emphasized the role of top-down factors, such as predictions and expectations 

[75]. Although current single-cell recording results suggest that a simple fatigue-related 

adaptation of the firing rate is, indeed, unable to explain RS related phenomena [166], the role 

of top-down effects is currently under heavy debate (for reviews see [74, 167, 168]). The few 

available human neurochemical studies suggest the role of gamma-aminobutyric-acid and 

acetylcholine in modulating neural responses during stimulus repetitions (for a review see 

[169]). 

The behavioral relevance of the neural RS remains an interesting and open question. RS is 

generally believed to reflect short-term plastic processes of the neurons, as they adapt to the 

temporal context of the current environment. Thereby, RS reflects the flexibility of the neural 

system and its ability to adjust to continuously changing requirements, optimizing the 

performance of the individual [76]. However, so far we have only limited evidence of the 

direct relationship between RS and behavioral performance changes [170]. Previously, a long 

tradition of research connected RS to behavioral priming effects. Priming [171] is a 

phenomenon when the prior presentation of a related or identical stimulus leads to faster and 

more accurate responses for the target. Indeed, recent neuroimaging studies found that trials 
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leading to behavioral priming also lead to fMRIa in the fusiform and occipital face areas (FFA 

and OFA) of the human brain [82]. Similarly, repetition priming has also been related to 

fMRIa in several cortical areas for objects and scenes, including prefrontal, parietal, and 

occipitotemporal ones [80, 81]. However, a clear causal relationship could not been 

determined between behavioral priming and RS as of today. In fact, recent studies have raised 

doubts about the relationship of RS and priming: RS was either not specific to the “primed” 

conditions [172], or the magnitude of RS did not correlate with the amount of behaviorally 

observed priming effects [77]. These results suggest that RS and priming might co-occur but 

they are not necessarily connected to each other functionally. 

A more direct approach for investigating the behavioral relevance of RS would be to test 

whether the individual fMRIa effect is related to the face perception ability of the participants. 

Gilaie-Dotan et al. [79] found that the fMRI responses in the FFA to repeated face 

presentations varying in identity similarity were associated with the perceived face similarity. 

Indeed, in patients of acquired prosopagnosia (an inability to recognize faces) due to the lesion 

of OFA, a lack of RS has been found in the FFA [59, 173], suggesting its functional relevance. 

Furthermore, another study, measuring intracerebral EEG, found strong RS for face identity in 

the right OFA on an electrode, whose stimulation disrupted behavioral face discrimination 

[174]. To test this relationship more directly, in the current study we investigated the 

association of fMRIa with the perceptual sensitivity of the participants for face stimuli in an 

identity discrimination task. We reasoned that if RS (and the consequent fMRIa) indeed 

reflects the better responding capacity of the neural system then this should manifest on the 

perceptual level as well. For this end, we compared the magnitude of fMRIa within areas of 

the core face-network as well as the extrastriate body area (EBA, [175]) as a control area, with 

the behavioral performance of the participants in a face identity discrimination task. 

3.2 Materials and methods 

3.2.1 Subjects 

Altogether 30 Caucasian subjects (8 male; 2 left-handed; mean age (± SD): 22.8 (3.2) years) 

participated in the experiment and gave informed written consent in accordance with the 

protocols approved by the Ethical Committee of the Friedrich Schiller University Jena. One 

subject had to be excluded from the study due to technical difficulties in the data acquisition. 

Therefore, the present results are based on the data of 29 subjects. None of them had any 
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history of neurological or psychiatric diseases, and all had normal or corrected-to-normal 

visual acuity. 

3.2.2 Psychophysics experiment 

To determine the face perception ability of the participants, they performed a three-alternative 

forced choice perceptual face identity discrimination task outside the scanner (Fig. 3.1). 

Stimuli. In the psychophysics experiment, trials consisted of triplets of morphed faces. Front-

view grayscale images of Caucasian male faces with neutral expression were cropped to 

eliminate external features and were equated for luminance and contrast. Triplets (Fig. 3.1) 

were obtained by first pairing two individuals and creating a linear morph continuum using a 

warping algorithm (JPsychoMorph, [106]). Altogether 78 continua were created from 13 

individuals. Triplet members were selected from these continua as follows: face A and C were 

chosen to be the 20/80% and 80/20% points of the morph-space, respectively, while face B 

was taken from in between, such that the morph distance between the oddball image (e.g. C) 

and its neighbor (B) was larger than the distance between the other two images (e.g. A and B). 

This distance was based on pilot measurements to keep performance within the 60-70% range. 

Faces were presented upright and upside-down. 

 

Figure 3.1. Example stimulus of the behavioral task performed outside the MRI scanner. By morphing 

two paired individuals (illustrated on the bottom), we created face triplets (top) including faces at 

20/80% (A), 45/55% (B) and 80/20% (C) points of the morph-space and presented in a regular 

triangular arrangement upright and upside down (inverted). Please note that the letters are only for 

illustration purposes and were not presented in the actual experiments. 
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Triplets were displayed at the center of the screen on a uniform gray background in a regular 

triangular arrangement with 4° of visual angle eccentricity. Triplets measured ~11° × 12°, 

faces subtending 4.5° × 6.0° each, and were presented on a CRT display at a refresh rate of 60 

Hz viewed from 85 cm. Stimulus presentation was controlled by MATLAB R2010a (The 

MathWorks Inc., Natick, MA, USA) using the Psychophysics Toolbox Version 3 (PTB-3) 

[108, 109] (http://psychtoolbox.org/). 

Experimental procedure. Participants performed a three-alternative forced choice identity 

discrimination task. Subjects were required to select the face that differed the most from the 

other two (i.e. the oddball face). Each trial began with a cue (1°) appearing just above fixation 

for 100 ms, indicating the orientation of the upcoming stimuli (upright or inverted). Triplets 

were presented without a fixation dot under free-viewing conditions until subjects responded; 

trials were terminated after 5000 ms if no response had been made. Trials were separated by 

an inter-trial interval, which varied randomly between 900 and 1100 ms, with only the fixation 

dot present. Oddball faces appeared with equal probability in each of the three possible spatial 

positions. Each unique face triplet was presented only once per condition, randomly assigned 

to one of the three runs for each participant. Within a single run, the two conditions 

(upright/inverted) were intermixed and presented in random order. Each participant completed 

three runs, yielding 78 trials altogether for each condition. 

3.2.3 fMRI experiment 

The fMRI data analyzed in the current study was a subset of what we previously used to 

examine the face processing stages at which repetition probability affects fMRI adaptation [6]. 

However, here we aimed at investigating the functional relevance of repetition suppression in 

face processing. Therefore, we only analyzed data from blocks with high stimulus repetition 

probabilities where the repetition suppression effect was clearly evident and the largest. 

Stimulation and Procedure. The experimental design—as also described in Grotheer et al. 

[6]—was similar to that of Summerfield et al. [75] and to that of Kovács et al. [176]. Briefly, 

240 grayscale, digital photos of full-frontal Caucasian faces, similar to the face stimuli of 

Kovács et al. [176] and Kovács et al. [177], were fit behind a circular mask and either 

presented upright or inverted in different runs of fMRI recordings (Fig. 3.2A). No stimulus 

occurred in more than one trial during each run. Stimuli were placed in the center of the screen 

on a uniform gray background. A trial contained two faces presented subsequently for 250 ms 

each, separated by an inter-stimulus interval that varied between 400 and 600 ms and was 

followed randomly by a 1 or 2 s long inter-trial interval. The first stimulus (S1), was either 
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identical to (Repetition Trial, RepT) or different from the second stimulus (S2) (Alternation 

Trial, AltT). Stimuli subtended 2.75° of visual angle. To reduce local feature adaptation, the 

size of either S1 or S2 (chosen randomly) was reduced by 18%. The participants’ task was to 

maintain central fixation throughout the trials and to signal the occurrence of target stimuli, 

which were reduced in size by 54%, via a speeded button push. 

Stimuli were back-projected via an LCD video projector (NEC GT 1150, NEC Deutschland 

GmbH, Ismaning, Germany, with modified lens for short focal point) onto a translucent 

circular screen, placed inside the scanner bore. Presentation was controlled via MATLAB 

R2013a (The MathWorks Inc., Natick, MA, USA), using Psychophysics Toolbox Version 3 

(PTB-3) [108, 109] (http://psychtoolbox.org/). 

The two different trial types (AltT and RepT) were presented in two different types of blocks 

with varying repetition probabilities [6] (Fig. 3.2B; identical to the paradigm of Summerfield 

et al. [75]) in a run. 

 

Figure 3.2. A, Stimulation parameters and arrangements. An upright repetition trial (RepT), an inverted 

alternation (AltT) and an upright target trial are illustrated. Please note that the upright and inverted 

trials were presented in different runs. B, The composition of the repetition and alternation blocks. 

During a run, RepBs and AltBs were each repeated four times. (Taken from [6].) 

In the Repetition Blocks (RepB), 75% of the non-target trials were RepT while 25% were AltT 

(12 RepTs vs. 4 AltTs). In the Alternation Blocks (AltB), 75% of non-target trials were AltT 

and 25% were RepT (12 AltTs vs. 4 RepTs). With the exception of the first four trials, which 

were always drawn from the more frequent trial type of that specific block (RepT in RepB and 

AltT in AltB), RepT and AltT were presented randomly within the blocks. In addition, 20% of 

DOI:10.15774/PPKE.ITK.2016.006

http://psychtoolbox.org/


30 The relationship between repetition suppression and face perception 

all trials were target trials, whereas target trials could be AltT or RepT with the same relative 

probability. As we did not observe reliable fMRIa within the alternating blocks (see Fig. 3B of 

Grotheer et al. [6]), please note that in the current study, we only analyze the blocks where 

stimulus repetitions had high probabilities. 

Both Alternation and Repetition Blocks contained 20 trials and were repeated 4 times during 

each run, so that a run contained 160 trials. The different blocks were separated from each 

other by a 7 s pause during which the phrase “Short Break” was presented centrally together 

with a countdown. Four runs were presented in total, whereas the order of upright and upside-

down runs was counterbalanced across subjects. 

3.2.4 fMRI scanning 

Data were collected at the Friedrich Schiller University Jena (Jena, Germany) on a 3 Tesla 

Siemens Magnetom Trio scanner (Siemens Healthineers, Erlangen, Germany) equipped with a 

20-channel head coil. During the functional blocks we continuously acquired images using a 

T2*-weighted GRE-EPI sequence (34 slices, 10° tilted relative to the subjects’ axial plane 

determined by the AutoAlign protocol, TR =2000 ms; TE = 30 ms; in-plane resolution: 3x3 

mm; slice thickness: 3 mm; 20 % inter-slice interval, FOV = 192 mm, acceleration factor = 2). 

To additionally obtain a 3D structural scan, high-resolution sagittal T1-weighted images were 

acquired using a 3D-MPRAGE sequence (TR = 2300 ms; TE = 3.03 ms; 1 mm isotropic voxel 

size, FOV = 256 mm). 

3.2.5 fMRI data analysis 

The analysis of the imaging data differs considerably from the one performed in our previous 

report [6]. Preprocessing and analysis of the imaging data were performed using the SPM12 

toolbox (Wellcome Trust Centre for Neuroimaging, London, UK) as well as custom-made 

scripts running on MATLAB R2013b (The MathWorks Inc., Natick, MA, USA). The 

functional images were spatially realigned to the first EPI image within a session for motion 

correction. The anatomical T1-weighted image was coregistered to the mean functional T2*-

weighted image generated during the realignment step followed by segmentation and 

normalization to the MNI-152 space using the new unified segmentation-normalization tool of 

SPM12. To spatially normalize functional images to MNI space we applied the deformation 

field parameters that were obtained during the normalization of the anatomical T1-weighted 

image. After the normalization procedure, functional images were spatially smoothed with an 

8 mm full width at half maximum (FWHM) isotropic Gaussian kernel. The gray matter mask 
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derived from the segmentation of the anatomical image was used to restrict statistical analysis 

on the functional files. The 4 experimental conditions (AltB_AltT, AltB_RepT, RepB_AltT, 

RepB_RepT) as well as the target trials from our event-related sessions with upright and 

inverted faces were defined as separate regressors, which were convolved with the canonical 

hemodynamic response function (HRF) of SPM12, for a General Linear Model (GLM) 

analysis of the data. Movement-related variance was accounted for by the spatial parameters 

resulting from the motion correction procedure. A high-pass filter with a cycle-cutoff of 128 s 

was also implemented in the design to remove low-frequency signals. The prepared regressors 

were then fitted to the observed functional time series within the cortical areas defined by the 

gray matter mask. In order to specifically address the questions that we aimed to investigate in 

the current study, we used parameter estimates (i.e. beta weights) only for the RepB_AltT and 

RepB_RepT conditions. To obtain beta weights for AltT and RepT in RepB with equal 

number of trials, we used a bootstrap procedure (resampling without replacement, n = 1000) 

where for RepT 4 non-target trials were randomly chosen from each of the 4 RepBs yielding 

16 RepTs per run, which was treated as a separate regressor in the GLM approach. This 

procedure was repeated 1000 times and the resulting 1000 beta weights were averaged for 

each condition and subject for further analysis (Fig. 3.3). 

 

Figure 3.3. Bootstrap procedure. During the GLM analysis of the fMRI data, we applied a bootstrap 

procedure to estimate beta weights (β) based on equal number of trials for AltT (black) and RepT (gray) 

in RepB. For each bootstrap sample (i), we randomly selected 4 non-target RepTs from each of the 4 

RepBs yielding 16 RepTs per run which constituted a separate regressor in the GLM approach. This 

procedure was repeated 1000 times and the resulting 1000 beta weights were averaged for each 

condition and subject for further analysis. Please note that in this figure only the non-target trials in a 

single RepB are represented. 

ROI definition. A separate functional localizer run (640 s long; 20 s epochs of faces, objects, 

human bodies, and Fourier randomized versions of faces [107], interleaved with 20 s of blank 

periods; 2 Hz stimulus repetition rate; 300 ms exposition time; 200 ms blank) was used to 
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determine regions of interest (ROIs) for each participant. The fusiform face area (FFA) in the 

mid-fusiform gyrus was identified as an area responding more strongly to faces than objects 

and Fourier randomized versions of faces. The occipital face area (OFA) in the inferior 

occipital gyrus was determined as an area showing significantly stronger activation to faces 

than Fourier randomized versions of faces, while the extrastriate body area (EBA) localized in 

the lateral occipital cortex was determined as an area responding more intensely to human 

bodies relative to objects. Peak voxel activity of all ROIs was required to meet a minimum 

threshold of puncorrected = 0.001. We only included subjects in the analysis for whom we could 

individually define these ROIs (for details, see Table 3.1). 

ROI x y z N 

rFFA 40 ± 0.7 −52 ± 1.4 −18 ± 0.6 27 

lFFA −39 ± 0.5 −54 ± 1.3 −20 ± 0.6 22 

rOFA 42 ± 0.7 −77 ± 1.1 −10 ± 0.9 24 

lOFA −38 ± 0.6 −80 ± 1.1 −13 ± 0.7 24 

rEBA 52 ± 0.7 −70 ± 0.9 7 ± 0.8 26 

lEBA −49 ± 0.8 −75 ± 1.1 8 ± 0.9 24 

Table 3.1. Peak voxel coordinates for the regions of interest (ROIs). The MNI coordinates (x, y, z in 

millimeters) of the peak voxels in the case of FFA, OFA, and EBA are reported. Provided data are mean 

± SEM across participants (N) for whom these regions were individually identifiable at the threshold of 

puncorrected < 0.001. 

3.2.6 Statistical analysis 

To determine the magnitude of fMRIa in these regions, mean beta weights for AltT and RepT 

in the Repetition Blocks were extracted from a 6 mm radius sphere around the peak voxel of 

each individually defined ROI, and entered into a two-way ANOVA with hemisphere (L vs. 

R) and trial (AltT vs. RepT) as within-subject factors. To examine whether fMRIa measured in 

the investigated ROIs is related to face-selective perceptual ability, we correlated the 

individual fMRIa magnitudes—calculated by subtracting beta weights of RepT from that of 

AltT—with subjects’ performance on face identity discrimination. To control for the 

individual differences in low-level visual feature processing and overall object perception 

ability, we regressed out the fMRIa and identity discrimination performance for inverted faces 

from those for upright faces, respectively, before calculating correlations between these two 

measures. Subjects with behavioral face inversion effect (N = 4; calculated by subtracting 

performance for inverted faces from that for upright faces) below one standard deviation (SD 
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= 0.105) from the group mean (mean = 0.084) were excluded from this correlation analysis. 

These subjects had higher performance for inverted faces than upright faces, which suggests 

poor face-selective processing or insufficient task engagement. Since the assumption of 

bivariate normality was fulfilled for all correlation pairs investigated (HZ < 0.20, p > 0.372, 

[178]), skipped Pearson’s correlation coefficients were calculated with the Robust Correlation 

Toolbox [118] in MATLAB. Bivariate outliers were detected using an adjusted box-plot rule 

and removed in the computation of skipped correlations. For correlation coefficients (r), 95% 

confidence intervals (CI) were calculated based on 1000 samples with the percentile bootstrap 

method implemented in the toolbox. Correlation strengths were compared with the test 

proposed by Zou [179]. Using this method two-sided 95% CIs were constructed for a 

difference between two dependent overlapping correlations based on their bootstrapped CI-s 

derived from the robust correlation analysis. Participants with missing data from any of the 

variables of interest were excluded for a given analysis. 

3.3 Results 

3.3.1 Behavioral results 

Participants performed the three-alternative forced-choice identity-discrimination task with 

61.5 ± 1.8% (mean percent correct ± SEM) accuracy and showed a robust face inversion effect 

(FIE, [18]), i.e. significantly higher performance for upright as compared to inverted faces 

(t(28) = 4.32, p < 0.001). When testing for the correlation between individual differences in 

face-selective perceptual ability and fMRIa, performance for inverted faces was used as a 

covariate to control for the individual differences in overall visual object perception. 

3.3.2 fMRI adaptation 

Fig. 3.4 presents the average BOLD signal separately for AltT and RepT in the case of upright 

(Fig. 3.4A) and inverted faces (Fig. 3.4B). 

DOI:10.15774/PPKE.ITK.2016.006



34 The relationship between repetition suppression and face perception 

 

Figure 3.4. Average activation (± SEM) profiles for the left and right FFA (left), OFA (middle), and 

EBA (right) when faces were presented upright (A) and inverted (B). We found fMRIa, i.e. reduced 

fMRI responses for repeated (RepT) as compared to alternating faces (AltT) for all ROIs investigated in 

the case of both upright and inverted conditions. Black bars represent AltT; gray bars represent RepT. 

UF, upright faces; IF, inverted faces (*p < 0.05, **p < 0.01, ***p < 0.001). 

In agreement with previous results [70, 75, 176, 180–182], we found significant fMRIa, i.e. 

reduced BOLD signal for repeated (RepT) as compared to alternating faces (AltT) in the FFA 

and a moderate fMRIa in the OFA for upright faces (main effect of trial type for upright faces: 

F(1,21) = 8.25, p = 0.009 and F(1,21) = 3.10, p = 0.093 for the FFA and OFA, respectively) and 

also significant fMRIa in these regions for inverted faces (main effect of trial type for inverted 

faces: F(1,21) = 22.54, p < 0.001 and F(1,21) = 9.89, p = 0.005 for the FFA and OFA, 

respectively), as we reported in our previous work [6]. In addition, fMRI responses in the right 

hemisphere were more pronounced compared to the left hemisphere for each condition in the 

case of both upright (main effect of hemisphere for upright faces: F(1,21) = 15.81, p = 0.001 and 

F(1,21) = 13.35, p = 0.002 for the FFA and OFA, respectively) and inverted faces (main effect 

of hemisphere for inverted faces: F(1,21) = 18.03, p < 0.001 and F(1,21) = 5.35, p = 0.031 for the 

FFA and OFA, respectively) indicating the right hemisphere dominance in face processing 

[24, 30, 145, 183–185]. We also measured fMRIa in a region outside the typical face-

processing network, specifically in the extrastriate body area (EBA) which served as a control 

region. The EBA showed a significant BOLD response reduction in the case of RepT relative 
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to AltT for upright (main effect of trial type for upright faces: F(1,23) = 4.56, p = 0.044) and 

inverted faces (main effect of trial type for inverted faces: F(1,23) = 5.61, p = 0.030) as well. 

The interaction of trial type and hemisphere was not significant for any of the tested areas in 

the case of both upright (F < 1.08, p > 0.310 for all comparisons) and inverted faces (F < 1.88, 

p > 0.190 for all comparisons). When testing for the correlation between individual differences 

in the magnitude of face-specific fMRIa and perceptual ability, fMRIa for inverted faces was 

used as a covariate to control for individual differences in the magnitude of the low-level 

feature adaptation effect. 

3.3.3 Correlation of face discrimination accuracy and fMRIa 

First, we calculated the magnitude of fMRIa by subtracting the BOLD response during RepT 

from that of AltT for each subject and area separately. Since we found a strong positive 

correlation between the fMRIa of the left and right hemisphere homologues of each tested area 

(r(18) = 0.75, p < 0.001, CI = [0.35 0.94], number of outliers (NO) = 2; r(19) = 0.90, p < 0.001, 

CI = [0.80 0.96], NO = 1 and r(21) = 0.51, p = 0.012, CI = [0.30 0.72], NO = 1 for the FFA, 

OFA, and EBA, respectively), we averaged fMRIa across hemispheres to test for its 

correlation with face discrimination accuracy. To control for the individual differences in low-

level visual feature processing and overall object perception ability, we regressed out the 

fMRIa and identity discrimination performance for inverted faces from those for upright faces, 

respectively, before calculating correlations between these two measures. The Skipped 

Pearson correlation analysis revealed a strong positive correlation between fMRIa and identity 

discrimination performance in the FFA (Fig. 3.5A; r(16) = 0.72, p < 0.001, CI = [0.41 0.91], NO 

= 0) and OFA (Fig. 3.5B; r(18) = 0.59, p = 0.006, CI = [0.32 0.83], NO = 0), but not in the EBA 

(Fig. 3.5C; r(18) = 0.17, p = 0.470, CI = [−0.23 0.58], NO = 1). The magnitude of correlation 

for the FFA and OFA with behavior was not different (CI = [−0.30 0.35]) and significantly 

greater than that for the EBA (CI = [0.10 1.08] and CI = [0.09 1.02] for the FFA and OFA, 

respectively). These findings suggest that genuine face-selective perceptual ability is 

associated with the fMRIa only in the core face-processing areas. 
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Figure 3.5. Correlation between behavioral accuracy and fMRIa for the FFA (A), OFA (B), and EBA 

(C). Significant correlation was found in the case of the FFA and OFA, but not for the EBA. Due to the 

regression-based approach (see Methods for details) correlation scatter plots depict residual values on 

both axes. y-axis values denote behavioral accuracy in the face identity discrimination task indexed by 

the residual correct response ratio. x-axis values denote the fMRIa indexed by the residual beta 

difference in the AltT vs. RepT contrast. Circles represent individual participants and bivariate outliers 

are marked with open circles. Diagonal line indicates linear least squares fit. 

3.3.4 Correlation of fMRIa among the FFA, OFA, and EBA 

To test whether fMRIa reflects common or different underlying mechanisms in the tested 

visual cortical areas, we calculated Skipped Pearson pairwise correlations of fMRIa 

magnitudes among the three regions after regressing out fMRIa for inverted faces. The results 

revealed that the magnitude of fMRIa in the FFA correlates positively and strongly with that 

of the OFA (Fig. 3.6A; r(15) = 0.81, p < 0.001, CI = [0.59 0.94], NO = 0), but not with that of 

the EBA (Fig. 3.6B; r(15) = 0.05, p = 0.841, CI = [−0.47 0.64], NO = 2). Furthermore, the 

strength of the correlation between FFA and OFA is significantly larger than between the FFA 

and EBA (CI = [0.18 0.97]). The fMRIa in the OFA showed a moderate, but significant 

correlation with that in the EBA (Fig. 3.6C; r(16) = 0.53, p = 0.025, CI = [0.10 0.83], NO = 2), 

and the magnitude of this correlation did not differ significantly from that of the OFA and 

FFA (CI = [−0.15 0.59]). These findings imply that fMRIa might involve different 

components: one is mediated by neural mechanisms that are specific to the core face-

processing network and another which affects the fMRI responses in the OFA and EBA, but 

not in FFA. 
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Figure 3.6. Correlation between fMRIa observed in the FFA and OFA (A), in the FFA and EBA (B) 

and in the OFA and EBA (C). Significant correlation was found between the magnitude of fMRIa 

measured in the FFA and OFA, as well as in the OFA and EBA, but not in the FFA and EBA. Due to 

the regression-based approach (see Methods for details), correlation scatter plots depict residual values 

on both axes. y- and x-axis values denote the fMRIa indexed by the residual beta difference in the AltT 

vs. RepT contrast. Circles represent individual participants and bivariate outliers are marked with open 

circles. Diagonal line indicates linear least squares fit. 

3.4 Discussion 

The major results of the current study can be summarized as follows: (1) The magnitude of 

fMRIa measured in the FFA and OFA, but not in the EBA, correlates positively with the 

behavioral performance of participants in a demanding face discrimination task. The higher 

the magnitude of the fMRIa for repeated faces, the better the face identity discrimination 

performance. (2) The observed fMRIa correlates between OFA and FFA, as well as between 

OFA and EBA, but not between FFA and EBA. These findings suggest that there is a face-

selective repetition-induced fMRIa within the core face-processing network composed of the 

FFA and OFA, which reflects adaptive face processing mechanisms that are closely associated 

to face identity perception. 

Network specific fMRIa. The fact that the observed fMRIa correlated between OFA and FFA, 

also between OFA and EBA, but not between FFA and EBA allows for multiple conclusions. 

First, it supports further the close connection between OFA and FFA [55]. Recent studies 

suggest that the OFA and FFA are closely and reciprocally connected to each other [43, 44, 

186, 187] and the current results provide further functional evidence of this connection by 

showing that even the response reduction, signaling the sensitivity of neurons to repetitions, is 

related in the two areas. Our results are in agreement with previous findings from patients with 

acquired prosopagnosia showing that despite the preserved preferential activation for faces, 

adaptation effects for face identity in the right FFA are absent following lesions encompassing 
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the right OFA [59, 173]. This implies that fMRIa in the right FFA is the result of an intact re-

entrant processing loop between these two regions. Furthermore, the close correlation of 

fMRIa in FFA and OFA supports the conclusion of Ewbank et al. [70]. These authors found 

that the repetition of a face having the same or different size affected the forward (OFA-to-

FFA) and backward (FFA-to-OFA) connections specifically. Authors suggested that the 

fMRIa of a given region reflects the change of reciprocal (forward and backward) cross-region 

connectivity rather than merely the neural changes within that region. Second, the different 

correlation patterns we found between fMRIa in the OFA, FFA, and EBA imply that fMRIa 

might involve different components: one is mediated by neural mechanisms specific for the 

core face-processing network composed of the FFA and OFA and another which affects fMRI 

responses in the OFA and EBA, but not in FFA. This, in turn, also confirms previous results 

that suggest that the EBA is not part of the core face-processing cortical network [22]. 

The fact that we found a significant fMRIa in the EBA as well might be surprising for the first 

glance. Indeed, if an area shows adaptation after being exposed to its less- or non-preferred 

stimulus (i.e. a face for the body-part sensitive neurons) is surprising if one only considers 

response fatigue as the neural mechanisms of RS. Firing rate fatigue indeed predicts that the 

magnitude of adaptation essentially depends on the firing rate of that given neuron to the 

adapter stimulus. In other words, the larger the response for the adapter, the larger RS one 

should observe. However, recent single-cell studies disagree with this logic. Liu et al. [188] 

reported that the magnitude of RS does not correlate with the trial-to-trial firing rate of a 

neuron. Moreover, Baene and Vogels [189] showed that the degree of RS can even be 

inversely related to the response magnitude, given for the adapter stimulus. Finally, Sawamura 

et al. [161] showed that RS can be different for two different adapter stimuli that otherwise 

elicit the same response magnitude in the neuron. Altogether, these results question the direct 

relationship between stimulus preference and the magnitude of elicited RS. Therefore, it is 

possible that face stimuli, which elicit a significant response in the EBA as well [190, 191], 

elicit fMRIa as well. 

fMRIa is associated with discrimination performance. The relationship of occipitotemporal 

activity with behavioral performance in visual stimulus processing was extensively addressed 

in the past. The activity of FFA and/or OFA has been related to the detection, recognition, or 

discrimination of faces [1, 37, 192, 193]. Huang et al. [39] measured face recognition in an 

old/new paradigm and found that the participants’ recognition ability correlated with the face 

selectivity of the FFA and OFA, measured by estimating the differential response of the areas 

for face and non-face object stimuli. However, a very recent study which directly addressed 

the relationship between face identity memory and face selectivity in the FFA, failed to find 
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correlation between these two measures, except when correlating performance for the most 

difficult trials including noisy images with the activity in the center region of the FFA [31]. 

This suggests that both the nature of the behavioral task (e.g. perceptual or memory) and task 

difficulty might affect whether an association between behavioral and neural measures will be 

observed. Furthermore, the way FFA face sensitivity is measured appears to be similarly 

important. The findings of Nasr and Tootell [194] support this conclusion. Authors measured 

the activity of FFA and of the anterior face patch at the anterior tip of the collateral sulcus and 

found that only the activity of the more anterior area correlated with response accuracy. 

Previous results indicate that measuring face sensitivity by fMRI adaptation might be more 

suitable to uncover relationship between FFA activity and face perception [195, 196]. 

So far only one study tried to correlate the repetition related signal reduction to behavioral 

performance. Furl et al. [38] tested developmental prosopagnosics and healthy controls and 

correlated their face identification ability with identity and facial expression specific fMRIa. 

Authors found neither clear group differences nor any correlation for fMRIa with face 

identification. Also, Avidan et al. [197] found normal fMRIa in the FFA and OFA in 

developmental prosopagnosics and suggested that the fMRIa in these regions is not sufficient 

for normal face perception ability. These results might seem to contradict those of the current 

study. However, the approach of the two studies is sufficiently different to explain the 

opposing results. While in the current study participants performed a demanding perceptual 

face discrimination task, Furl et al. [38] used an extensive test battery and PCA analysis to 

compute a factor score and used this score as a covariate in the regression analysis of the fMRI 

data. As the test battery contained several perceptual and memory-related tests, it is likely that 

their behavioral measure reflects more complex face encoding processes as compared to the 

task applied in the current study. Therefore, it is possible that the fMRIa of the 

occipitotemporal areas is associated more closely with perceptual than to higher-level, 

associative or memory-related functions. This, in turn, would explain the apparently discrepant 

results of the Furl et al. [38] and the current study. Avidan et al. [197], on the other hand, used 

blocks of 12 different or identical faces to elicit fMRIa. Therefore, it is possible that the 

resulting neural adaptation is less sensitive to interindividual differences than the fMRIa 

elicited by short presentations of pairs of stimuli in the current study. 

We observed significant correlation of behavioral performance with fMRIa in both OFA and 

FFA. Traditional models of face perception [22, 124] assume a hierarchical model where 

information flow from early visual cortices towards the OFA is responsible for face detection 

and categorization and the FFA and the superior temporal sulcus (STS) represents a higher-

level face encoding, where identification and processing of facial expressions occurs. 
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However, the simple feed-forward processing of faces is questioned by recent prosopagnosic 

[59, 173] and transcranial magnetic stimulation [198] studies. Altogether, these recent results 

support a more parallel, non-hierarchical model where OFA and FFA are strongly connected 

(for a recent review see [16]). The similar correlation of FFA and OFA with behavioral 

performance supports this conclusion. 

The neural basis of RS is unclear as of today and this complicates its association to behavioral 

measures. It is nonetheless generally assumed that RS reflects the specific encoding of the 

repeated feature or stimulus. In the current study, we measured the fMRI correlate of neural 

RS for the repetition of the same images with a strong variation in size to reduce low-level 

image feature adaptation. Furthermore, we controlled for the individual differences in low-

level visual feature processing and overall object perception ability by using a regression-

based approach, which provides a more precise and fine-grained picture of the relationship 

between fMRI adaptation within the core face-processing network and genuine face-selective 

perceptual ability. Whether this relationship is merely correlational or causal will require 

further studies, possibly combining neuroimaging and brain-stimulation techniques. The 

causal nature of this relationship, however, is suggested by a recent study. Yang et al. [199] 

tested the same acquired prosopagnosic patient as Schiltz et al. [173] and Steeves et al. [59]. 

Their findings suggested that the right anterior temporal lobe contains image-invariant face 

representations (signaled by normal RS) that can persist despite the absence of RS in the right 

FFA and OFA, but this representation is not sufficient for normal face recognition. 

It should be noted that for the current study we only used the data from the blocks with high 

repetition probabilities of Grotheer et al. [6] as fMRIa was only measurable within these 

blocks. One can argue that the observed RS is more related to the implicit capacity of the 

participants to detect the probability of repetitions than to face perception per se. The fact that 

in spite of this confound we did find a strong and significant relationship between behavioral 

performance and RS suggests that this confound is unable to interact with the strong 

correlation of RS and face discrimination performance. It can be reasoned that within the 

framework of predictive coding models of perception [67], a good generative model of faces 

can produce better predictions of subsequent stimulations, which leads to better performance 

and reduced concomitant prediction error unit activity, i.e. fMRIa. If one accepts this 

argument then the likelihood of finding a relationship between behavior and fMRIa is more 

likely in the repetition blocks, where the expectation of repetition reduces uncertainty and 

enhances predictions and therefore the magnitude of fMRIa [75], compared to blocks where 

such repetitions are surprising. Nonetheless, this should be taken into account in future studies 

which should elicit RS in blocks with different statistics as well. 
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In conclusion, the current study has explored the behavioral relevance of the well-known 

phenomenon of repetition suppression (RS) for face images. We found that the RS as 

measured with BOLD fMRI in the core face-processing areas, namely in the fusiform face 

area (FFA) and occipital face area (OFA) is closely associated and predicts individual 

differences in face perception ability suggesting functionally relevant repetition suppression 

processes involved in face perception. 
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4 Conclusions and possible applications 

The findings of the above experiments provide the first evidence that the fusiform face area 

(FFA) plays an important role in identity perception even in the case of noisy faces or faces 

embedded in a temporal context. Information processing in the FFA seems to highly depend 

on the context in which faces occur and its efficiency predicts individual face perception 

ability. Our results also shed light on the visual cortical network underlying the adaptive 

recurrent neural processes that are recruited to support successful face processing even under 

these challenging conditions. 

We found that adding phase noise to face images led to reduced and increased fMRI responses 

in the mid-fusiform gyrus and the lateral occipital cortex (LOC), respectively, which is in 

agreement with previous findings [62, 120]. Importantly, our results showed, for the first time, 

that the noise-induced modulation of the fMRI responses in the right face-selective FFA was 

closely associated with individual differences in the identity discrimination performance of 

noisy faces: smaller decrease of the fMRI responses was accompanied by better identity 

discrimination. This implies that the perception of noisy face images is based on the neural 

representations extracted from the right FFA. The robust behavioral face inversion effect 

previously associated with FFA processes [40] was also found in the case of noisy face images 

providing further support for this finding. Our results also shed light on the visual cortical 

network that enables the extraction of identity information when stimuli are noisy, i.e. with 

deteriorated facial information. Our intrinsic functional connectivity analysis provides the first 

direct evidence that the strength of the functional connectivity between the bilateral shape-

selective LOC and FFA predicts the participants’ ability to discriminate the identity of noisy 

face images. These results imply that perception of facial identity in the case of noisy face 

images is subserved by neural computations within the right FFA as well as a re-entrant 

processing loop involving bilateral FFA and LOC. 

Our results also revealed the contribution of occipitotemporal short-term adaptation 

processes—mediating the effect of prior perceptual experience—to face identity perception. In 

agreement with previous results [70, 75, 176], we have found that repeating identical face 

images elicits a robust decline in fMRI responses (fMRI adaptation, i.e. fMRIa) of the core 

face-processing areas, namely the FFA and OFA. Furthermore, we have also found fMRIa in 

the extrastriate body area (EBA). Importantly, we extend these findings by providing the first 

evidence that the face-selective fMRIa within the core face-processing network composed of 
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the FFA and OFA is closely associated with individual differences in face identity perception 

ability: the higher the magnitude of the fMRIa for repeated faces, the better the face identity 

discrimination performance. Moreover, we found a strong correlation of the fMRIa between 

OFA and FFA and also between OFA and EBA, but not between FFA and EBA. These 

findings suggest that there is a face-selective component of the repetition-induced reduction of 

fMRI responses within the core face-processing network, which reflects functionally relevant 

adaptation processes involved in face identity perception. Our results corroborate previous 

experimental and modeling findings implying that fMRIa to faces is a consequence of 

interactions between occipitotemporal regions [70, 200] rather than being a localized effect 

such as neuronal fatigue per se, and also provide support for the behaviorally relevant 

predictive coding [65–68] in the visual system. 

Taken together, our results provide important new insights into the adaptive information 

coding processes within the extensive visual cortical face-processing network, especially 

regarding the recurrent neural mechanisms that enable efficient and robust human face 

perception even under suboptimal viewing conditions. 

Understanding the strategies that the visual system employs in natural unconstrained settings 

could be the first step translating them into machine-based face recognition algorithms (see 

[201] for a review). Recognizing faces embedded in environmental and/or sensor noise is one 

of the most important longstanding challenges in machine vision systems. The knowledge of 

the neural mechanisms behind the recognition of noisy faces can facilitate the development of 

more robust face recognition algorithms. An iterative feedback neural network structure could 

be proposed containing two base modules, one that is trained on images of clear faces, and one 

that is responsible for image denoising. The dynamic interaction between these modules could 

contribute to improved accuracy and efficiency as compared to current face recognition 

systems. 

More generally, our results provide further support that using task-based and resting-state 

functional connectivity fMRI methods is a useful tool for exploring precise and fine-grained 

relationship between brain and behavior by showing that the massive interindividual 

variability observed in face perception and also in its neural correlates measured during task 

and rest conditions is closely and selectively associated. Thus, advancing the knowledge of 

neural mechanisms underlying face perception at both regional and network level is a key 

issue to develop training programs including fMRI-based neurofeedback techniques (fMRI-

NF) (see [202, 203] for reviews). Recent advances in fMRI-NF techniques reveal that 

participants can modulate the neural properties of both their individual brain regions and 
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functional brain networks through real-time neurofeedback [204–208]. Using this method, 

participants could self-regulate the interactions between their face-processing regions, which 

could help to improve the efficacy of visual cortical processing of facial information, 

especially in prosopagnosia where these interactions seem to be impaired [209–211]. 

 

DOI:10.15774/PPKE.ITK.2016.006



DOI:10.15774/PPKE.ITK.2016.006



5 Summary 

5.1 New scientific results 

1. Thesis: I have shown that perception of facial identity in the case of noisy face images 

is subserved by neural computations within the right FFA as well as a re-entrant 

processing loop involving bilateral FFA and LOC. 

Published in [1], [3]. 

Previous research has made significant progress in identifying the neural basis of the 

remarkably efficient and seemingly effortless face perception in humans. However, the neural 

processes that enable the extraction of facial information under challenging conditions when 

face images are noisy and deteriorated remains poorly understood. Here we investigated the 

neural processes underlying the extraction of identity information from noisy face images 

using fMRI. For each participant, we measured (1) face identity discrimination performance 

outside the scanner, (2) visual cortical fMRI responses for intact and phase-randomized face 

stimuli, and (3) intrinsic functional connectivity using resting-state fMRI. 

1.1. I have shown that noisy face discrimination is also based on face-specific processes 

as opposed to discrimination based on low-level stimulus features. 

Combined behavioral and neuroimaging results provided strong evidence for specialized face 

processing (for reviews see [16, 17]) linked to FFA mechanisms [37–39]. Yovel and 

Kanwisher [40] has revealed that the most reliable marker of face-specific processing, namely 

the behavioral face inversion effect (FIE, [18])—i.e. the significant drop in discrimination of 

upside-down (inverted) relative to upright faces—is closely associated with the fMRI response 

in the FFA. Therefore, we reasoned that if FFA is the primary neural substrate also for noisy 

face perception, face inversion would impair behavioral responses in the case of noisy face 

stimuli as well. We found robust face inversion effects (i.e. decreased accuracy for inverted 

faces) in the case of both intact and noisy face conditions, which did not differ significantly in 

magnitude (Fig. 2.2). These behavioral findings suggest that the neural mechanisms involved 

in the processing of noisy faces might be similar to those of faces without noise, presumably 

mediated by the FFA. 
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1.2. Based on whole-brain analysis, I found that the presence of noise led to reduced and 

increased fMRI responses in the mid-fusiform gyrus and the lateral occipital cortex, 

respectively. Furthermore, the noise-induced modulation of the fMRI responses in the 

right face-selective fusiform face area (FFA) was closely associated with individual 

differences in the identity discrimination performance of noisy faces: smaller 

decrease of the fMRI responses was accompanied by better identity discrimination. 

It has been suggested [62, 63] that in the case of phase-randomized face images the increased 

processing demand due to the distorted spatial localization of the facial features might lead to 

the engagement of a re-entrant processing loop involving the FFA and a region of the lateral 

occipital cortex (LOC), which represents shape information within a spatial coordinate system 

[64, 104] and shows increased fMRI responses to noisy face images [62]. However, an 

important question that remains to be explored is whether it is the FFA or the LOC on whose 

neural representations the perception of deteriorated and noisy face images is based. Even 

though combined behavioral and neuroimaging results provided strong evidence for a close 

link between face perception and the neural processes in the FFA in the case of intact face 

images [37–40], it has not been investigated whether this holds true also for faces that are 

noisy and poorly visible. 

We have found that adding phase noise to face images leads to reduced and increased fMRI 

responses to faces in bilateral mid-fusiform gyrus (Fig. 2.3A) and bilateral LOC (Fig. 2.3B), 

respectively, which is in agreement with previous results [62, 120]. Importantly, our results 

provide the first evidence that only in the right face-selective FFA did noise-induced 

modulation of the fMRI responses show a close association with the individual differences in 

face identity discrimination performance of noisy faces (Fig. 2.4B): smaller decrease of the 

fMRI responses was associated with better identity discrimination. This relationship was not 

driven by the overall face perception ability of the participants, because performance for intact 

faces was regressed out from that for noisy faces. Our results imply that the perception of 

noisy face images is based on the neural representations extracted from the right FFA. 

1.3. I found that the strength of the intrinsic functional connectivity within the visual 

cortical network composed of bilateral FFA and bilateral object-selective lateral 

occipital cortex (LOC) predicted the participants’ ability to discriminate the identity 

of noisy face images. 

Based on the suggested role of the re-entrant neural mechanisms in the processing of noisy 

faces, we predicted that the individual ability to handle stimulus noise might depend on the 

strength of functional interactions between FFA and LOC. To test this prediction, we 
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estimated the strength of intrinsic functional connectivity between bilateral FFA and LOC 

(Fig. 2.5A) using resting-state fMRI [86] (for review see [87]) and computed correlations 

between these measures and the face identity discrimination performance for noisy faces. In 

the correlation analysis the intact face performance was used as a covariate to control for the 

confounding effect of the overall face perception ability of the participants. Our correlation 

analysis revealed that the functional connectivity strength between bilateral FFA and bilateral 

LOC correlated positively with the behavioral accuracy for noisy faces (Fig. 2.5B): the 

stronger the functional connectivity between these regions during rest, the better the face- 

identity discrimination performance in the noisy condition. These results suggest that face- 

identity perception in the case of noisy faces is based on functional interactions between 

bilateral FFA and LOC. 

2. Thesis: I have shown that there is a face-selective repetition-induced fMRIa within 

the core face-processing network composed of the FFA and OFA which reflects 

functionally relevant adaptation processes involved in face identity perception. 

Published in [2], [4]. 

It has been shown that sensory information processing is highly affected by short-term prior 

perceptual experience. When a sensory stimulus is repeated, the evoked neural signal is 

invariably smaller than the one observed for its first presentation, an effect termed as 

repetition suppression (RS) [212]. Similarly, in functional magnetic resonance imaging (fMRI) 

experiments stimulus repetitions elicit the reduction of the blood oxygenation level-dependent 

(BOLD) signal when compared to non-repeating stimuli (for a review see [164]), a 

phenomenon called fMRI adaptation (fMRIa). It has been shown that repetition of identical 

face stimuli leads to fMRIa in the core face-selective occipitotemporal visual cortical network, 

involving the bilateral fusiform face area (FFA) and the occipital face area (OFA) [70, 75, 

176]. Extensive previous experimental and modeling research has made significant progress in 

revealing the neural processes involved in RS (for reviews see [165, 169]). However, 

surprisingly little is known about its behavioral relevance. Therefore, here we aimed at 

investigating the relationship between fMRIa and face perception ability by measuring in the 

same human participants both the repetition-induced reduction of fMRI responses in these 

regions and identity discrimination performance outside the scanner for upright and inverted 

face stimuli. 
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2.1. I found a significant fMRIa, i.e. reduced BOLD signal for repeated as compared to 

alternating faces in the fusiform face area (FFA) and a moderate fMRIa in the 

occipital face area (OFA). Furthermore, the magnitudes of the face-selective fMRIa 

measured in these face-processing areas were closely associated. 

In agreement with previous results [70, 75, 176], the repetition of identical face stimuli led to 

significant fMRIa, i.e. reduced BOLD signal in the FFA, and a moderate fMRIa in the OFA, 

and we also found fMRIa in the extrastriate body area (EBA) for both upright (Fig. 3.4A) and 

inverted (Fig. 3.4B) face stimuli. However, it is not known whether fMRIa reflects common or 

different underlying mechanisms in the tested visual cortical areas. To test this, we calculated 

pairwise correlations of fMRIa magnitudes among the three regions. In the correlation 

analysis, the fMRIa for the inverted faces was used as a covariate to control for the individual 

differences in low-level visual feature adaptation processes. We found a strong correlation of 

the face-selective fMRIa between OFA and FFA (Fig. 3.6A) and also between OFA and EBA 

(Fig. 3.6C), but not between FFA and EBA (Fig. 3.6B). These findings imply that fMRIa 

might involve different components: one is mediated by neural mechanisms that are specific to 

the core face-processing network and another which affects the fMRI responses in the OFA 

and EBA, but not in FFA. 

2.2. I have shown that the face-selective fMRIa in the two regions of the core face- 

processing network, namely in the fusiform face area (FFA) and occipital face area 

(OFA) predicts individual differences in face-selective perceptual ability. 

The visual system as an inference machine actively generates and optimizes predictions about 

the incoming sensory input to make the information processing more efficient as suggested by 

the predictive coding model of perception [65–68]. From this perspective, RS is a 

manifestation of minimising prediction error through adaptive changes in predictions. At the 

neuronal level, RS is generally believed to reflect short-term plastic processes of the neurons, 

as they adapt to the temporal context of the current environment, presumably as a consequence 

of dynamic synaptic change within recurrent neural networks (for reviews see [74, 76, 164, 

200]). Thereby, RS reflects the flexibility of the neural system and its ability to adjust to 

continuously changing requirements, optimizing the performance of the individual. We 

reasoned that if RS (and the consequent fMRIa) indeed reflects the better predictive ability of 

the neural system then this should manifest on the perceptual level as well: a good generative 

model of faces can produce better predictions of subsequent stimulation, which leads to better 

performance and reduced concomitant prediction error unit activity, i.e. fMRIa. To test this 

prediction, we correlated the individual fMRIa magnitudes measured in the core face- 
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processing areas, namely the FFA and OFA, as well as in the body-selective EBA with the 

participants’ face identity discrimination perfomance. In the correlation analysis the 

behavioral and fMRI results for the inverted faces were used as covariates to control for the 

individual differences in overall object perception ability and basic visual feature adaptation 

processes, respectively. Our correlation analysis revealed that the magnitude of the fMRIa 

measured in the FFA (Fig. 3.5A) and OFA (Fig. 3.5B), but not in the EBA (Fig. 3.5C) 

correlated positively with the behavioral accuracy: the higher the magnitude of the fMRIa for 

repeated faces, the better the face identity discrimination performance. These results suggest 

that RS in the core face-processing areas predicts face-selective perceptual ability and thus 

reflects functionally relevant adaptation processes involved in face identity perception. 
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