
A MODEL OF COMPUTATIONAL MORPHOLOGY

AND ITS APPLICATION TO URALIC LANGUAGES

Thesis for the Degree of Doctor of Philosophy

Attila Novák

Roska Tamás Doctoral School of Sciences and Technology

Pázmány Péter Catholic University, Faculty of Information Technology and Bionics

Academic advisor:
Dr. Gábor Prószéky

2015

DOI:10.15774/PPKE.ITK.2015.013

DOI:10.15774/PPKE.ITK.2015.013

A model of computational morphology and its application to
Uralic languages

Can computers learn human languages? Can a computer program translate from one
language to another adequately? Although we cannot answer with a definite ‘Yes’ to these
questions, one thing is certain. The better the database of a linguistic program models
the language, the better results it can produce. A key module in a linguistic model is the
morphological component, which is responsible for the analysis and generation of words in
the given language. In the past years, I have explored various ways of creating linguistically
adequate computational morphologies for morphologically complex languages.

DOI:10.15774/PPKE.ITK.2015.013

DOI:10.15774/PPKE.ITK.2015.013

Acknowledgements

You can skip this part. No names here. But if you want to check whether you are included,
just go on.
First of all, I would like to thank those who managed to convince me that a PhD thesis need
not to be a very sophisticated piece of art, and writing it is not a big deal after all. It is
frustrating, but I accepted it as a fact in the end. This group of people includes, among
others, my supervisor and reviewers of the PhD theses of some people I know. In addition, I
would like to thank those who helped, hindered or bothered me, those who did not bother to
interfere, those who sought and/or accepted my help, those who tolerated that I hindered or
bothered them or did not bother to interfere, and those who needed me but waited for me
patiently when I was absent.
And thanks to the hedgehogs. They are nice creatures.

DOI:10.15774/PPKE.ITK.2015.013

DOI:10.15774/PPKE.ITK.2015.013

Contents
1 Introduction 1

2 Background 7
2.1 Computational morphology . 8
2.2 Affix-stripping models . 11
2.3 Finite-state models . 12

3 Humor 15
3.1 The lexical database . 17
3.2 Morphological analysis . 18

3.2.1 Local compatibility check . 18
3.2.2 Word grammar automaton . 18

4 A morphological grammar development framework 21
4.1 Creating grammar-based morphological models with minimal redundancy . . 22

4.1.1 Creating a morphological description 23
4.1.2 Conversion of the morphological database 25

4.2 Components of the framework . 26
4.2.1 Lexicon files . 26
4.2.2 Rules . 32
4.2.3 The encoding definition file . 36
4.2.4 The word grammar . 43

4.3 Lemmatization and word-form generation . 45
4.3.1 The lemmatizer . 48
4.3.2 Word form generation . 50

5 Applications of the model to various languages 53
5.1 The Hungarian analyzer . 54

5.1.1 Stem lexicon . 55
5.1.2 Suffix lexicon . 62
5.1.3 Rule files . 62

5.2 Adaptation of the Hungarian morphology to special domains 63
5.2.1 Morphological annotation of Old and Middle Hungarian corpora . . . 64
5.2.2 Extending the lexicon of the morphological analyzer with clinical

terminology . 70
5.3 Examples from other Uralic languages . 73

5.3.1 The Komi alanyzer . 77
5.4 Finite-state implementation of Samoyedic morphologies 78

5.4.1 Nganasan . 79

6 Generating a finite-state implementation of morph-adjacency-constraint-based
models 89
6.1 Difficulties for the morph-adjacency-constraint-based model 90
6.2 The Xerox tools . 90

DOI:10.15774/PPKE.ITK.2015.013

vi Contents

6.3 Transforming Humor descriptions to a finite-state representation 91
6.4 Comparison of Humor and xfst . 92

6.4.1 Speed and memory requirement . 92
6.4.2 The grammar formalisms . 94
6.4.3 Lemmatization and generation . 94

7 Extending morphological dictionary databases without developing a morphological
grammar 97
7.1 Features affecting the paradigmatic behavior of Russian words 99
7.2 Creation of the suffix model . 100
7.3 Ranking . 100
7.4 Evaluation . 102
7.5 Error analysis . 104

8 Applications 107
8.1 Integration into commercial products . 108
8.2 Machine translation systems . 108
8.3 Part-of-speech tagging . 109
8.4 Corpus annotation . 110
8.5 Information retrieval systems . 112
8.6 Other tools . 113

9 Conclusion – New scientific results 117
9.1 A morphological grammar development framework 118
9.2 Application of the model to various languages 119
9.3 Adaptation of the Hungarian morphology to special domains 120
9.4 Finite-state implementation of constraint-based morphologies 120
9.5 Extending morphological dictionary-based models without writing a grammar 121
9.6 A flexible model of word form generation and lemmatization 122
9.7 A tool for annotating and searching text corpora 123

10 List of Papers 125

List of Figures 133

List of Tables 135

Bibliography 137

A Appendix 143
A.1 Format of the rule files . 143

A.1.1 Variable declaration and manipulation 143
A.1.2 Attribute manipulation instructions 145
A.1.3 Blocks of statements . 148

A.2 A sample analysis trace . 154

DOI:10.15774/PPKE.ITK.2015.013

1
Introduction

The first chapter introduces the concepts of morphology, morphological analysis and the
motivation of this thesis.

DOI:10.15774/PPKE.ITK.2015.013

2 1. Introduction

Science primarily aims at describing and explaining various aspects of the world as we
experience it. But since the second half of the 19th century, science has also grown to be
a major contributor to technological knowledge. Nevertheless, language technology (i.e.
computer technology applied to everyday language-related tasks) has coped in the past with
a number of language-related problems without making much use of linguists’ models. Doing
morphology (i.e. handling word forms), for example, was not much of a technological problem
for some of the commercially most interesting languages, especially for English, because it
could be handled either by simple pattern matching techniques or by the enumeration of
possible word forms.

Although there have been attempts to handle language technology tasks, such as spell
checking, for languages that feature complex morphological structures and phonological
alternations avoiding the use of a formal morphological description, these word-list-based
attempts failed to produce acceptable results even recently, when corpora of sizes in an
order of hundreds of millions of running words are available for languages such as Hungarian.
However big the corpus is, even very common forms of not-extremely-frequent words are
inevitably missing from it. Moreover, when I analyzed the word forms of the 150-million-word
Hungarian National Corpus, I found that 60 percent of the theoretically possible Hungarian
inflectional suffix morpheme sequences never occurs in the corpus. This figure does not
include any of the numerous productive derivational suffixes. There is nothing odd about
these suffix combinations. They are just rare. For a bigger 500-million-word Web corpus, I
found the ratio to be 50 percent.

The creation of a formal morphological description is therefore unavoidable for this type
of languages. The central theme of my thesis concerns computational models of mor-
phology that are applicable to such morphologically complex languages. Some
of these languages have also been commercially interesting to some extent: e.g. Turkish,
Finnish or Hungarian, just to mention some from Europe. But as soon as there are tools
which are readily applicable, what could stop us from applying these to languages that are
spoken by less populous or rich speaker communities? So I also explored the task of creating
computational morphologies for Uralic minority languages.

Beside the complexity of the morphology of these languages, another factor that makes a
data-oriented approach unfeasible in some cases is the lack of electronically available linguistic
resources.When working on Uralic minority languages, the corpora I had to do with did not
exceed the size of a hundred thousand running words in the case of any of the languages
involved, in some cases the size of the corpus did not even reach ten thousand words. In
addition to a general lack of such resources concerning these languages, in the case of the most
endangered ones, Nganasan and Mansi, there seems even to be a lack of really competent
native speakers. The available linguistic data and their linguistic descriptions proved to be
incomplete and contradictory for all of these languages, which also made numerous revisions
to the computational models necessary.

The most successful and comprehensive analyzer for Hungarian (called Humor and devel-
oped by a Hungarian language technology firm, MorphoLogic) was based on an item-and-
arrangement model analyzing words as sequences of allomorphs of morphemes and using
allomorph adjacency constraints (Prószéky and Kis, 1999). Although the Humor analyzer
itself proved to be an efficient tool, the format of the original database turned out to be

DOI:10.15774/PPKE.ITK.2015.013

3

problematic. A morphological database for Humor is difficult to create and maintain directly
in the format used by the analyzer, because it contains redundant and hard-to-read low-level
data structures. To avoid these problems, I created a higher-level morphological description
formalism and a development environment that facilitate the creation and maintenance of
the morphological databases.

I have created a number of complete computational morphologies using this morphological
grammar development framework. The most important and most comprehensive of these is
an implementation of Hungarian morphology. Its rule component was created relying mainly
on my competence and on research I performed during the preparation of my theoretical
linguistics Master’s Thesis (Novák, 1999) and later refined during corpus testing and the
actual use of the morphology in an English-to-Hungarian and a Hungarian-to-English machine
translation system and various corpus annotation projects.

The first version of the analyzer’s stem database was based on the original Humor database,
from which all redundant (predictable) features were removed and unpredictable properties
of words (e.g. category tag) were all manually checked and corrected, and missing properties
were added (e.g. morpheme boundaries in morphologically complex entries). Currently, the
size of the stem database is several times bigger than that of the original Humor analyzer and
also contains specialized (e.g. medical, financial) vocabulary. The underlying grammatical
model is much more accurate than that of the original morphology it replaced.

I have also created complete computational morphologies of Spanish and French using the
morphological grammar development framework, and also adapted ones for Dutch, Italian and
Romaniani. In addition, I co-authored morphologies for a number of endangered Finno-Ugric
languages (Komi, Udmurt, Mari and Mansi)ii. In the same project, I created morphologies
for two seriously endangered Northern Samoyedic languages: Nganasan and Tundra Nenets.
The Uralic project was an attempt at using language technology to assist linguistic research,
applying it to languages that can not otherwise be expected to be targets of the application
of such technology due to the lack of commercial interest. The Uralic morphologies were
further refined in a series follow-up projects, and two Khanty dialects (Synya and Kazym
Khanty) were also described.

One aspect of morphological processing not covered by the original Humor implementation is
that it does not support a suffix-based analysis of word forms whose stem is not in the stem
database of the morphological analyzer, and the system cannot be easily modified to add this
feature. Moreover, integration and appropriate usage of frequency information, as would be
needed by data-driven statistical approaches to text normalization (e.g. automatic spelling
error correction or speech recognition), is not possible within the original Humor system. A
third factor that can be mentioned as a drawback of Humor is its closed-source licensing
scheme that has been an obstacle to making resources built for morphological analyses widely
available. The problems above could be solved by converting the morphological databases to
a representation that can be compiled and used by finite-state morphological tools.

iThese morphologies were used only in commercial products: in MorphoLogic’s MoBiMouse/MorphoMouse
pop-up dictionary program (see Section 8.1), in on-line dictionaries based on MorphoLogic technology and
as on-line spell checkers.

iiThis was done in a project called ‘Complex Uralic Linguistic Database’ (NKFP 5/135/2001), in which I
worked together with László Fejes

DOI:10.15774/PPKE.ITK.2015.013

4 1. Introduction

The Xerox tools implement a powerful formalism to describe complex types of morphological
structures. This suggested that mapping of the morphologies implemented in the Humor
formalism to a finite-state representation should have no impediment. However, the Xerox
tools (called xfst), although made freely available for academic and research use in 2003
with the publication of Beesley and Karttunen (2003), do not differ from Humor in two
significant respects: a) they are closed-source and b) cannot handle weighted models. Luckily,
a few years later quite a few open-source alternatives to xfst were developed. One of these
open-source tools, Foma (Huldén, 2009), can be used to compile and use morphologies written
using the same formalism. Another tool, OpenFST (Allauzen et al., 2007), is capable of
handling weighted transducers, and a third tool, HFST (Lindén et al., 2011), can convert
transducers from one format to the other and act as a common interface above the Foma
and OpenFST backends.

Creating high-quality computational morphologies is an undertaking that requires a consid-
erable amount of effort, and requires threefold competence: familiarity with the formalism,
knowledge of the morphology, phonology and orthography of the language, and extensive lexi-
cal knowledge. Thus another interesting subject is the learnability of (aspects of) morphology
from corpora or existing lexical databases using automatic methods. Many morphological
resources contain no explicit rule component. Such resources are created by converting the
information included in some morphological dictionary to simple data structures representing
the inflectional behavior of the lexical items included in the lexicon. The representation often
contains only base forms and some sort of information (often just a paradigm ID) identifying
the inflectional paradigm of the word, possibly augmented with a few other morphosyntactic
features. With no rules, the extension of such resources with new lexical items is not such a
straightforward task, as it is in the case of rule-based grammars. However, the application of
machine learning methods may be able to make up for the lack of a rule component. Thus, I
solved the problem of predicting the appropriate inflectional paradigm of out-of-vocabulary
words, which are not included in the morphological lexicon. The method is based on a longest
suffix matching model for paradigm identification, and it is showcased with and evaluated
against an open-source Russian morphological lexicon.

Since the detailed presentation of each of the morphologies that I developed could itself be
the subject of a separate research report, I cannot undertake to present them in full depth
within the scope of this thesis. However, fragments of the grammars and lexicons are used in
the corresponding chapters to illustrate features of the formalisms. Phenomena from the
above-mentioned languages relevant to the subject of my work and the way they are handled
in the models are presented and discussed. Emphasis is laid primarily on Hungarian, the
language of which the most comprehensive description was created, but I also present some
details about the morphologies created for other Uralic languages.

Another group of ‘languages’ for which I describe the method of adaptation of the general
morphological analyzer, are some variants of Hungarian. First, the Humor morphological
analyzer was extended to be capable of analyzing words containing morphological con-
structions, suffix allomorphs, suffix morphemes, paradigms or stems that were used in Old
and Middle Hungarian but no longer exist in present-day Hungarian. A disambiguation
system was also developed that can be used for automatic and manual disambiguation of
the morphosyntactic annotation of texts and a corpus manager is described with the help

DOI:10.15774/PPKE.ITK.2015.013

5

of which the annotated corpora can be searched and maintained. Another ‘language’ for
which the analyzer was adapted was the language of Hungarian clinical documents created
in clinical settings. This language variant differs from general Hungarian in several respects.
In order to process such texts written in a so called notational language, the morphological
analyzer had to be adapted to the requirements of the domain by extending its lexicon
applying a semi-automated algorithm.

DOI:10.15774/PPKE.ITK.2015.013

DOI:10.15774/PPKE.ITK.2015.013

2
Background

Some background is needed in order to avoid reinventing the wheel. Some basic concepts and
approaches from ancient Greeks to modern finite-state technology are introduced briefly in
order to place my work on the map of computational morphologies.

Contents
2.1 Computational morphology . 8
2.2 Affix-stripping models . 11
2.3 Finite-state models . 12

DOI:10.15774/PPKE.ITK.2015.013

8 2. Background

2.1 Computational morphology

Even though the formal representation of human language understanding as a whole might
still be a fiction, there are some subtasks of natural language processing for which the
achieved results are significant. Moreover, these solutions are already available for everyone
using any kind of digital text processing tools and are part of many text processing algorithms.
Such a field is that of computational morphology.

The morphology of agglutinating languages (such as Hungarian or other Uralic languages
described in this Thesis) is rather complex. Words are often composed of long sequences
of morphemes (atomic meaning or function bearing elements). Thus, agglutination and
compounding yield a huge number of different word forms. For example while the number
of different word tokens in a 20-million-word English corpus is generally below 100,000, in
Finnish, it is well above 1,000,000, and the number is above 800,000 in the case of Hungarian.
However, the 1:8 ratio does not correspond to the ratio of the number of possible word forms
between the two languages: while there are about at most 4–5 different inflected forms for
an English word, there are about a 1000 for Hungariani, which indicates that a corpus of
the same size is much less representative for Hungarian than it is for English (Oravecz and
Dienes, 2002). Figure 2.1 shows the number of different word forms in a 44-million-word
corpus for English, Hungarian, Estonian, Finnish and Turkish (Creutz et al., 2007)ii. Finnish
and Estonian both have a larger number of different word forms than Hungarian, since
in these languages adjectives agree with the head of the noun phrase in case and number.
Inflected adjectives are also correct forms in Hungarian, however they are used only if the
noun is missing (i.e. in the case of ellipsis), and thus these forms are much rarer in Hungarian.
This means that data sparseness is greater for Hungarian than it is for Finnish or Estonian:
there are much more correct word forms not appearing in a corpus of any size.

The task of computational morphology is to handle the different word forms, generally
applied to written language, while spoken or dialectal language raises special problems due
to the lack of a standard orthography. This is the base of any further processing. The two
most important tasks a computational morphology must be capable of are analysis and
generation.

Morphological analysis is the task of recognizing words of the given language by finding
its lemma and part-of-speech, the morphosyntactic features (i.e. coordinates that define the
place of the actual word form in the paradigm of the lemma) and identifying derivations and
compound structures. These are determined without considering the possible disambiguating
effect of the lexical context the word occurs in. Word form generation is the task of
producing the surface form corresponding to a given lemma and the morphological features.

The representation of the resulting analysis of a word depends on the morphological model
used in the implementation. There are several such models describing the structure of words.

iNote that this number does not include theoretically possible but hardly ever occurring forms mentioned in
the Introduction. Anyway, what I would like to emphasize here is the difference in the magnitudes. Note
that the frequency of forms, on the other hand, is indeed relevant, and the lack of frequency information in
“rule-based” systems may be an important source of problems when it comes e.g. to suggesting corrections
for an erroneous word in a spell checker application.

iiThe data in the chart for Hungarian is based on the Hungarian Webcorpus (Halácsy et al., 2004)

DOI:10.15774/PPKE.ITK.2015.013

2.1. Computational morphology 9

corpus size (million words)

u
n
iq
u
e
w
or
d
s
(m

ill
io
n
w
or
d
s)

0 4 8 12 16 20 24 28 32 36 40 44
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Finnish

Estonian

Turkish

English

Hungarian

Figure 2.1: Different word forms in a corpus representative of the given language.

The classical morphological model following the traditions of Ancient Greek linguistics is
the word-and-paradigm approach (Matthews, 1991). In this model, words are atomic
elements of the language, lacking any internal structure (apart from letters/sounds). Thus,
structures composed of smaller units are not considered as different inflected forms of the
same lemma, but as different members of the inflectional paradigm of the word. At the
beginning of the 20th century, structuralists introduced morphemes as the smallest unit
of a language to which a meaning or function may be assigned. The goal of linguistics
according to this model is to find the morpheme set of a given language, the different
realizations of each morpheme (allomorphs) and their distribution. This approach is called
item-and-arrangement morphology (Hockett, 1954). Yet another theoretical approach to
morphology is that of item-and-process models (Hockett, 1954), in which words are built
through processes, not by a simple concatenation of allomorphs of morphemes. Thus, a word
is viewed as the result of an operation (word formation rule) that applies to a root paired
with a set of morphosyntactic features, and yields its final form.

Morphology, moreover, is closely related to phonology. The actual form of morphemes
building up an actual word form depends on phonological processes or constraints both
in a local (e.g. assimilation) or long-distance manner (e.g. vowel harmony). Generative
phonology (Chomsky and Halle, 1968) introduced a system of a sequence of context-sensitive
rewriting rules applied in a predefined order. In that model, there are several intermediate
layers between the surface and the lexical layer. Even though this approach was suitable
for phonological generation, it could not be applied to word form recognition or analysis,
since due to the inherently non-deterministic manner in which rules are applied makes the
search space explode in an exponential manner, which cannot be avoided by the prefiltering
effect of rules applied earlier or by the use of a lexicon. However, the context-sensitive
rules of phonology can be transformed to regular relations (Johnson, 1972; Kaplan and Kay,
1994). Their composition is also regular, which means that the whole system of rules can be
represented by a single regular transformation, which can even be composed with the lexicon.

DOI:10.15774/PPKE.ITK.2015.013

10 2. Background

Due to the limited memory available in contemporary computers, which was not enough for
the implementation of such composite systems, Kimmo Koskenniemi introduced two-level
morhpology (Koskenniemi, 1983), which solved the problem of intermediate levels, and
could be implemented using little memory. In this approach, parallel transducers are applied,
where each symbol pair of the lexical and surface layers must be accepted by each automaton.
This approach led to the first viable finite-state representation of morphology.

By the beginning of the 1990’s, computational morphologies were developed for morphologi-
cally complex languages using formal models that were adaptations of real linguistic models.
The technology and the linguistic models that were used in the leading Finnish/Turkish
and Hungarian morphological analyzers differed from each other. The Finnish model (also
applied to Turkish) used finite-state transducer technology and was based on two-level
phonological rules using the formalism defined by Koskenniemi (Koskenniemi, 1983). The
most successful and comprehensive analyzer for Hungarian (called Humor and developed
by a Hungarian language technology firm, MorphoLogic), on the other hand, was based on
an item-and-arrangement model analyzing words as sequences of allomorphs of mor-
phemes and using allomorph adjacency constraints (Prószéky and Kis, 1999). Although
the two approaches differed from each other in the algorithms and data structures used,
a common feature was that the linguistic database used by the morphological analyzer
itself was optimized for computational efficiency and not for human readability and manual
maintenance.

For other languages, different methods were applied to perform morphological analysis.
An in-depth historical overview of all computational approaches to morphology and their
applications to various languages would not fit into the scope of this Thesis, nevertheless, I
will highlight a few points here. One branch of the approaches to computational morphology
is based on the assumption that the language has a finite vocabulary, and all word forms can
be enumerated. This finite list can then be compiled into an acyclic automaton, attaching
information needed to return lemmas and morphosyntactic tags using pointers at certain
(typically terminal) nodes. Another general assumption is that morphological paradigms are
also simply enumerable, and each lexical item can be simply assigned a paradigm id from a
finite set of such id’s, and each of these paradigm id’s corresponds to a simple operation that
maps the lemma to a small finite set of word forms with analyses. Note, however, that the
assumptions that all word forms and paradigms are simply enumerable does not hold for
languages like Hungarian.

One system based on acyclic finite-state automata developed at the end of the 1990’s, is Jan
Daciuk’s fsa package (Daciuk et al., 2000), and further similar implementations inspired by
that tool (e.g. the majka system Šmerk (2009)) were used to create morphological analyzers
for many European languages ranging from English, Dutch and Spanish to Bulgarian and
Russian by compiling analyzed word lists created by various ad-hoc methods. Also for Czech,
and some other Slavic languages, other finite-state tools were used (Hajič, 2001) with a finite
vocabulary.

Another extensive stock of morphological resources were created with the INTEX/UNITEX
tools using a similar enumerate-and-compile methodology (Silberztein, 1994; Paumier et al.,
2009). Some morphologies (French, Arabic, etc.) were built using another linguistic de-
velopment platform derived from INTEX, NooJ (Silberztein, 2005), which includes tools

DOI:10.15774/PPKE.ITK.2015.013

2.2. Affix-stripping models 11

to construct, test and maintain wide-coverage finite-state lexical resources. An attempt
at creating even a NooJ-based Hungarian morphology was made at the Research Institute
for Linguistics if the Hungarian Academy of Sciences, converting a Hungarian inflectional
dictionary (Elekfi, 1994). However, due to limitations of the approach, lack of coverage of
derivation in the dictionary, and because the morphological description did not include a
grammar that could be used to add new lexical items, the performance and coverage of
this tool never approached that of either of the Hungarian computational morphologies
mentioned in this Thesis (Gábor, 2010), and its further development was abandoned.

The mmorph tool (Petitpierre and Russell, 1994) developed at IISCO, Geneva represents
another line of tools that do not make the finiteness assumption. This tool included a
unification-based context-free word grammar, and orthographic alternations in allomorphs
were handled by Kimmo-style two-level rules. Although the context-free word grammar rules
implemented in this tool provide a simple solution to the problem of handling non-local
dependencies between morphemes, finite-state automata can handle the same problem in
a more efficient manner using an extended state space, as we will show in Sections 4.2.4
and 6.2. The English morphology implemented using mmorph was described in a detailed
monograph (Ritchie et al., 1992), and further morphologies for German, French, Spanish
and Italian were created using this formalism. These resources do not seem to be available
any more, however.

A pair of tools that are often used for English morphological analysis and generation, morpha
and morphg (Minnen et al., 2001) do not even contain an extensive stem lexicon, but
instead comprise a set of morphological generalizations together with a list of exceptions for
specific wordforms. The implementation of these tools is also based on finite-state techniques.
The morpha analyzer depends on Penn-Treebank-style PoS-tags in its input and performs
lemmatization only. It can also be used to analyze untagged input, but its performance is
rather poor in that case due to lack of a lexical component.

The Xerox tools (Beesley and Karttunen, 2003), described in more details in the forthcoming
sections, were used to implement two-level morphologies for Turkish (Oflazer, 1993) Finnish
(http://www2.lingsoft.fi/doc/fintwol/) and many other languages including Hungarian. The
state-of-the-art morphological systems for most languages are based on the Xerox finite-state
formalism and its open-source alternatives, hfst (Lindén et al., 2011) and Foma (Huldén and
Francom, 2012) that I will also cover in more detail.

2.2 Affix-stripping models

One branch of morphological grammar description tools is based on affix stripping. An
earlier implementation is that of Packard (1973) from the 70s, parsing ancient Greek by
iteratively stripping prefixes and suffixes of the word to be analyzed and then matching the
remaining part against a lexicon (Jurafsky and Martin, 2000). The Porter stemmer (Porter,
1980), used for a long time in many English information retrieval applications, is also based
on affix-stripping operations.

DOI:10.15774/PPKE.ITK.2015.013

12 2. Background

Another implementation of affix-stripping methods are the descendants of the Ispell and spell
tools (Peterson, 1980). These methods require a set of affix rules, where each rule contains a
condition, a strip string and an append string. Lexical entries or base forms are also stored
together with a set of features which identify the compatible affixes. When analyzing an
input word, the algorithm strips off possible strip strings (i.e. possible affixes) according to
the affix rules and appends the corresponding strings the rule prescribes. In each step, the
resulting word is considered as a hypothesized lemma that is checked against the lexicon.
The analysis is complete if a base form is found validating the actual affix as possible after
the base form and all the other affixes fulfill the requirements of the conditions.

However, such a simple model of morphology was not applicable to complex languages. As
an extension of the original Ispell line of models, hunspell and hunmorph were introduced
(Trón et al., 2005, 2006), where the stripping and checking is performed iteratively, i.e. after
stripping some affixes, the remaining part is checked again for possibilities of stripping and
in each step the compatibility of affixes is also checked. Thus, it is also possible to handle
circumfixes and this model is also capable of handling productive compounding. This set
of generic tools, called HunTools, for morphological analysis and morphology development
were created during a project called ‘Szószablya’ (Halácsy et al., 2003; Németh et al., 2004)
and were designed to be able to handle complex morphologies like that of Hungarian. A
resource manager tool, HunLex, was also developed for these tools, which is able to create
optimized, language-specific resources for each module of HunTools. HunLex (Trón, 2004)
uses a morphological database from which it is able to create the necessary output depending
on its parameters. The morphological analyzer and spell tools use .dic and .aff files, the
format of which is a modified (extended) version of the ones used by the myspell tools.
HunLex implements a nice declarative morphological grammar resource description formalism,
which was implemented a few years after the formalism and system described in Chapter 4
of this thesis. Unfortunately, the only working language resource I know about that was
created using this formalism is the morphdb.hu morphology for Hungarian (Trón et al.,
2006). Later, as the project financing the development of HunLex and morphdb.hu ended,
further development and maintenance of these tools and resources was abandoned, but their
revitalization and merging them with the Hungarian resources described in this Thesis is
currently under way.

2.3 Finite-state models

As it was shown by Johnson (1972) and Kaplan and Kay (1994), rewrite rules are equivalent
to finite-state transducers. As opposed to finite-state automata, transducers not only accept
or reject an input string, but accept or reject two strings whose letters are pair-matched
(Young and Chan, 2009), or, in practice, when a transducer accepts a string, it also generates
all of the strings to which the regular relation implemented by the transducer maps the input
string. However, handcrafting or manually checking a finite-state transducer for correctness
even for a single phonological rule is a rather difficult task. Doing that for a single transducer
representing a complete morphology with a lexicon and phonological/orthographic rules is
more than difficult: it is impossible simply due to the sheer size of the model: the transducer
for the Nganasan morphology described in Section 5.4 consists of 70,307 states and 209,346

DOI:10.15774/PPKE.ITK.2015.013

2.3. Finite-state models 13

arcs, while the Hungarian morphology described in Chapter 6 consists of more than 1.3
million states and 3.1 million arcs. However, using a single transducer for the task instead of
a set of simpler transducers is much more efficient in terms of speed. Thus, while finite-state
transducers are simple and easy to implement, it were the algorithms implemented by Kaplan
and Kay for compiling an ordered cascade of rewrite rules into a single transducer that made
the finite-state implementation of morphology and phonology feasible and more efficient
than the two-level implementation of Koskenniemi overcoming the limitations of the former
approaches. This, however, could only be used in practice when 32-bit operating systems
and computers with hundreds of megabytes of memory became available in the nineties.

The most elaborate toolkit developed for linguists to model morphology within this theoretical
framework is the xfst-lookup combo of Xerox (Beesley and Karttunen, 2003), a program
for compiling and executing rules. Xfst is an integrated tool that can be used to build
computational morphologies implemented as finite-state transducers. The other tool, lookup
consists of optimized run-time algorithms to implement morphological analysis and generation
using the lexical transducers compiled by xfst.

The formalism for describing morphological lexicons in xfst is called lexc. It is used to describe
morphemes, organize them into sublexicons and describe word grammar using continuation
classes. A lexc sublexicon consists of morphemes having an abstract lexical representation
that contains the morphological tags and lemmas and usually a phonologically abstract
underlying representation of the morpheme, which is in turn mapped to genuine surface
representations by a system of phonological/orthographic rules. The details of describing a
morphology using this formalism is described in Sections 6.2 and 5.4, where it is shown how
this approach can be used to describe morphologically complex languages.

DOI:10.15774/PPKE.ITK.2015.013

DOI:10.15774/PPKE.ITK.2015.013

3
Humor

An introduction to Humor, which is the cornerstone of the research described in the following
chapters. It is shown how Humor represents morphology and the constraints required to
properly analyze complex word forms. Includes the binary representation of ‘bush’ and ‘dog’.
But not that of ‘hedgehog’.

Contents
3.1 The lexical database . 17
3.2 Morphological analysis . 18

3.2.1 Local compatibility check . 18
3.2.2 Word grammar automaton . 18

DOI:10.15774/PPKE.ITK.2015.013

16 3. Humor

Although morphological analysis is the basis for many natural language processing (NLP)
applications, especially for languages with a complex morphology, descriptions of many
morphological analyzers as separate NLP tools appeared with a significant delay in the
literature and in a rather sketchy manner, since for a long time most of these tools were
commercial products. The morphological analyzer called Humor (‘High speed Unification
MORphology’), which was used for tagging most publicly available annotated Hungarian
corpora was also commercial product developed by a Hungarian language technology company,
MorphoLogic (Prószéky and Kis, 1999). This commercial ownership prevented a detailed
description of methods used in the Humor analyzer to be published for a long time.

The Humor analyzer performs a classical ’item-and-arrangement’ (IA)-style analysis (Hockett,
1954), where the input word is analyzed as a sequence of morphs. Each morph is a specific
realization (an allomorph) of a morpheme. Although the ’item-and-arrangement’ approach to
morphology has been criticized, mainly on theoretical grounds, by a number of authors (c.f.
e.g. Hockett (1954); Hoeksema and Janda (1988); Matthews (1991)), the Humor formalism
was in practice successfully applied to languages like Hungarian, Polish (Wo losz, 2005),
German, Romanian, Spanish and Croatian (Aleksa, 2006).

The Humor analyzer segments the word into parts which have (i) a surface form (that
appears as part of the input string, the morph), (ii) a lexical form (the ’quotation form’ of
the morpheme) and (iii) a (possibly structured) category label.

The analyzer produces flat morph lists as possible analyses, i.e. it does not assign any
internal constituent structure to the words it analyzes, because it contains a regular word
grammar, which is represented as a finite-state automaton. This is more efficient than having
a context-free (CF) parser, and it also avoids most of the irrelevant ambiguities a CF parser
would produce. In a Humor analysis, morphs are separated by + signs from each other. The
representation of morphs is lexical form[category label]=surface form. The surface
form is appended only if it differs from the lexical form. To facilitate lemmatization, a prefix
in category labels identifies the morphological category of the morpheme (S_: stem, D_:
derivational suffix, I_: inflectional suffix). In the case of derivational affixes, the syntactic
category of the derived word is also given.

The following analyses of the Hungarian word form Várnának contain two morphs each, a
stem and an inflectional suffix, delimited by a plus sign.

analyzer>Várnának
Várna[S_N]=Várná+nak[I_Dat]
vár[S_V]=Vár+nának[I_Cond.P3]

The lexical form of the stem differs from the surface form (following an equal sign) in both
analyses: the final vowel of the noun stem (having a category label [S_N]) is lengthened
from a to á, while the verbal stem (having a category label [S_V]) differs in capitalization.
In this example, the labels of stem morphemes have the prefix S_, while inflectional suffixes
have the prefix I_.

The category label of stems is their part of speech, while that of prefixes and suffixes is a
mnemonic tag expressing their morphosyntactic function. In the case of homonymous lexemes
where the category label alone is not sufficient for disambiguation, an easily identifiable

DOI:10.15774/PPKE.ITK.2015.013

3.1. The lexical database 17

bokor, G,101..... .0.00010, ‘,........,bokor, FN
bokorbab, B,10111111 11000011, ‘,........,bokorbab, FN
bokorrózsa, C,100..... ...00011, ‘,........,bokorrózsa, FN
bokorrózsá, D,10000100 11100011, ‘,........,bokorrózsa, FN
bokorugró, A,10100100 11101011, ‘,........,bokorugró, MN
bokr, H,10111010 01000010, ‘,........,bokor, FN
bokros, B,10010010 10011010, ‘,........,bokros, MN
bokros, B,10110010 10010010, ‘,........,bokros, FN
bokrosod, A,00011010 10000000, ‘,........,bokrosodik, IGE
bokrosodás, B,10110010 11000010, ‘,........,bokrosodás, FN
bokréta, C,100..... ...00010, ‘,........,bokréta, FN
bokrétaünnep,B,11011010 11000011, ‘,........,bokrétaünnep,FN
bokrétá, D,10000100 11100010, ‘,........,bokréta, FN
bokrétás, B,10010010 10001010, ‘,........,bokrétás, MN
...
kutya, C,10...... ...00010, ‘,........,kutya, FN
kutyá, D,10000100 01100010, ‘,........,kutya, FN
...
at, A,00000000 00000000, l,100.1...,at, ACC
et, A,00000000 00000000, l,110.1...,et, ACC
ot, A,00000000 00000000, l,101.1...,ot, ACC
t, A,00000000 00000000, l,1...0...,t, ACC
öt, A,00000000 00000000, l,111.1...,öt, ACC

Figure 3.1: Humor representation of the allomorphs of the Hungarian stem morpheme bokor ‘bush’
(and some other stems starting with ‘bok’), kutya ‘dog’ and those of the accusative suffix. The fields
separated by commas are the following: surface form, right-hand-side continuation class, right-hand-
side binary properties vector, left-hand-side continuation class, left-hand-side binary requirements
vector, lexical form, morphosyntactic tag

indexing tag is often added to the lexical form to distinguish the two morphemes in the
Humor databases. The disambiguating tag is a synonymous word identifying the morpheme
at hand. Using this disambiguating tag is important in the case of homonymous stems where
there is also a difference in the paradigms of the distinct morphemes, especially when using
the morphology to perform word form generation. E.g. in the Hungarian database, the word
daru ‘crane’ is represented as two distinct morphemes: daru_gép[N] ‘crane_machine[N]’
and daru_madár[N] ‘crane_bird[N]’, since a number of their inflected forms differ, e.g.
plural of the machine is daruk, while that of the bird is darvak.

3.1 The lexical database

The lexical database of the Humor analyzer consists of an inventory of morpheme allomorphs,
the word grammar automaton and two types of data structures used for the local compatibility
check of adjacent morphs. One of these are continuation classes and binary continuation
matrices describing the compatibility of those continuation classes (see Figure 3.2). The
other are binary vectors of properties and requirements. Each morph has a continuation
class identifier on both its left and right hand sides, in addition to a right-hand-side binary
properties vector and a left-hand-side binary requirements vector. The latter may contain
don’t care positions represented by dots. A sample of Humor representation of morphs can
be seen in Figure 3.1.

DOI:10.15774/PPKE.ITK.2015.013

18 3. Humor

3.2 Morphological analysis

When doing morphological analysis, the program performs a depth-first search on the input
word form for possible analyses. It looks up morphs in the lexicon the surface form of which
matches the beginning of the yet unanalyzed part of the input word. The lexicon may contain
morph sequences, i.e. ready-made analyses for irregular forms of stems or suffix sequences,
which can thus be identified by the analyzer in a single step.

Two kinds of checks are performed at each morph lookup step: a local compatibility
check of the next morph with the previous one and a global word structure check on
each locally compatible candidate morph by traversing a deterministic extended finite-state
automaton (EFSA) that describes possible word structures.

The data structures used and the steps taken by the analyzer during lookup are explained
below. However, to better understand how the Humor lookup algorithm works, you might
find it helpful also to take a look at the lookup trace of the morphological analyzer for the
Hungarian input word tör ‘breaks sg.’ in Appendix A.2.

3.2.1 Local compatibility check

Local compatibility check is performed as follows: a morph (typically a suffix) may be
attached to another morph (typically a stem) if the right-hand-side properties of the stem
match the left-hand-side requirements of the suffix by checking both compatibility of the
continuation matrix codes and matching of the corresponding binary vectors. Multiple binary
continuation matrices can be defined; e.g. a different matrix for verbs and other stems. The
gross size of matrices can thus be reduced by eliminating empty regions that would necessarily
be there if a single matrix were used. The matrix to be used for compatibility check is selected
using a subset of the binary properties of the left-hand-side (stem) morph e.g. a single binary
feature bit differentiates verbal stems from other morphs in the Hungarian grammar, and the
continuation matrix is selected using this single bit. Figure 3.2 shows a compatibility matrix
for non-verbal categories in the original Hungarian Humor database. This data structure
is indeed rather difficult to read. The corresponding matrix generated from the Hungarian
description presented in Section 5.1, which is a more accurate representation of adjacency
constraints of Hungarian nominal morphemes, has 1019 columns and 219 rows. That matrix
is completely impossible to read for humans.

3.2.2 Word grammar automaton

The word grammar automaton used in the Humor analyzer to check overall word structure
may have, in addition to its main state variable, extra binary state variables, which can be
used to handle non-local constraints within the word without an explosion of the size of the
automaton. An example of such a non-local constraint is related to the way superlatives are
marked in Hungarian. Superlative is expressed by a combination of two morphemes: the
superlative prefix leg- and the comparative suffix -bb. In general, a word form that contains a

DOI:10.15774/PPKE.ITK.2015.013

3.2. Morphological analysis 19

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ˆ _ ‘ a b c d e f g
‘ *
a * * * - * - * - * - - - * - - * - - - * * * - * * * - * * * * * * - * - - - -
b * * - * - * - * * - - * - * * - - * - * * - - - * * * * * * * * - * * - * - -
c * * - * - * - * - * * - - * * - * - - * * - * - * * * * * * * * * * * * - - -
d * * - * - * - * * - - * - * * - - * - * * - - - * * * * * * * * - * * - * - -
e * * - * - * - * * * * * - * * - * - - * * - * - - - - * * * * * * * * - * - -
f * * - * - * - * * - - * - * * * * - - * * - - - - - - * * * * * - * * - * - -
g * * - * * * * * * - - * - * - * * - - * * * - * - - * * * * * * * * * - - - *
h * * * * * - * - * - - - - * - * - - - * * * - * - - - - * * * * * - * - - * *
i * * - * * - * * * * - * - * - * * - - * * * - * - - - * * * * * * - * - - * *
j * * - * * - * - * - - * - * - * - - - * * * - * - - - * * * * * * - * - - * *
k * * - * * - - * * - - * - * - * - - - * * * - - - - - * * * * * * * * - - * *
l * * - * - * - * * - - * - * * * - - - * * - - - - - - * * * * * - * * - * * *
m * - - * - - - - * - - * - * - - - -
n - * - - - - * - - - - - - - - - * - - - - * - - - - - - - - - - * - - - - * *
o * * - * - * - * - * * * - * - - * - - * * - * - - - - * * * * * - * * - - - -
p - - - - - - - - - - - - - - - - - - * - * - - - - - - * * * * * - - - - - - -
q * * * - * - * * - - - - - * - - * - - * * * * * - * * * * * * * * - * - - - -

Figure 3.2: Compatibility matrix for non-verbal categories in the original Hungarian Humor database.

superlative prefix without the comparative suffix licensing it later within the word is ill-formedi.
However, quite a few morphemes may intervene, e.g. leg[Sup]+isten+tagad+ó+bb[Cmp]
SUP+God+deny+V>Adj+CMP, ‘the most atheist’. Similarly, verbal prefixes can either
stand on their own or they must be followed by a verbal stem or a verb-forming suffix
somewhere within the word, e.g. be[VPfx]+zebra+cśık+oz[N>V] in+zebra+stripe+N>V ‘to
make sg. zebra striped’.

An example of the word grammar automaton formalism is presented in Figure 3.3. This
fragment of the Hungarian word grammar shows the non-final state N2 of the automaton
reached when the final member of a nominal compound has been encountered. In this
state, inflections (the arc labeled inf) may follow in addition to various derivational suffixes
(represented by the rest of the outgoing arcs). When the inflection arc is traversed, the
cleared state of two flags is checked: there must not have been either a dangling verbal
prefix or a dangling superlative prefix in the word (both the sup ‘superlative prefix present’
and the vpfx ‘verb prefix present’ flag must be in the cleared state). When encountering
a comparative ndercmpii or a verbalizer suffix vder, the respective flag (sup or vpfx) is
clearediii. The lcase flag, which is also set in these cases, licenses lower-casing of proper
nouns when certain derivational suffixes are attached to them.

As part of the word grammar implementation, the morphological database of the Humor
analyzer contains a mapping (see Figure 3.4) from right-hand-side property vectors to sets
of possible morphological category labels, which are used as arc labels in the word grammar
automaton, such as inf, ndercmp or vder in Figure 3.3. The lookup and local compatibility
check of each morph in the word form is followed by a move in the word grammar automaton.
The move is possible if, at the current state of the automaton, there is an outgoing arc
labeled by one of the morphological category labels to which the right-hand-side property

iThere are a few stems (most of them containing the -só/ső suffix)that license the superlative prefix
themselves, such as utolsó ‘last’: leg+utolsó ‘the very last’ is a well-formed Hungarian word.

iiA comparative suffix may also be attached to nouns in Hungarian.
iiiNote that the binary vector of features is right-aligned in this representation.

DOI:10.15774/PPKE.ITK.2015.013

20 3. Humor

#right compound member encountered
N2:
inf -> END ?{0.0} #?{!sup !vpfx}
119sfx -> ADJ ={1...} #={lcase}
nder-119 -> N2 ={1...} #={lcase}
ndercmp -> ADJ ={10..} #={lcase !sup}
nder2_adj ->ADJ
nder2 -> N2
vder -> V ={1..0} #={lcase !vpfx}

Figure 3.3: Fragment of the Hungarian word grammar automaton – non-final state N2.

vector of the morph currently looked up is mapped. At the end of the word, the automaton
must be in final state for the current analysis to be acceptable.

#mapping used by the Humor morphological analyzer
inf: R, 0x200, 0.1.....0..0........0..0........
ndercmp: L, 0x100, 101...............0....1........
vder: L, 0x100, 111.................0...........

converted from the following description fragment:
inflectional suffix
’inf’ => [’r’,’sfx&!inflable&!punct&!qtag&!sup&!119sfx’],
the comparative sfx (a nominal case-lowering derivational suffix)
’ndercmp’ => [’l’,’sfx&inflable&!cat_vrb&!cmp2&sup’],
verbal derivational suffix
’vder’ => [’l’,’sfx&inflable&cat_vrb&!HAT’],

Figure 3.4: Fragment of the mapping of right-hand-side properties to word grammar automaton arc
label categories in the Hungarian morphological description.

DOI:10.15774/PPKE.ITK.2015.013

4
A morphological grammar

development framework
A formalism is described here which facilitates writing Humor-based morphologies. It is a
computational model of morphology that is able to handle morphologically complex aggluti-
nating languages, is easy to extend, maintain and debug, and does not require much memory
to compile and run.
More dogs and bushes. Quite an amount of technical details. But still no hedgehog.

Contents
4.1 Creating grammar-based morphological models with minimal re-

dundancy . 22
4.1.1 Creating a morphological description . 23
4.1.2 Conversion of the morphological database 25

4.2 Components of the framework . 26
4.2.1 Lexicon files . 26
4.2.2 Rules . 32
4.2.3 The encoding definition file . 36
4.2.4 The word grammar . 43

4.3 Lemmatization and word-form generation 45
4.3.1 The lemmatizer . 48
4.3.2 Word form generation . 50

DOI:10.15774/PPKE.ITK.2015.013

22 4. A morphological grammar development framework

Although the Humor analyzer itself proved to be an efficient tool, the format of the original
database turned out to be problematic. The Humor system lacked a morphological grammar
development component and the linguistic database format used in Humor was rather hard
to read. The stem lexicon of the original Humor analyzer for Hungarian was converted in
an ad-hoc manner from Papp (1969), a morphological dictionary of Hungarian, while suffix
lexicons were manually created (Prószéky, 2001). Some words were later added to the stock
of words imported from Papp (1969) by copying and editing allomorph entries manually, but
since it was a very tedious and error-prone process, the coverage of the analyzer did not
significantly exceed that of the source dictionary. The lexicons contained many errors and
inconsistencies (both random and systematic ones) that were difficult to find because of the
hard-to-read and very redundant lexicon formalism. In addition, the underlying linguistic
model contained some design flaws (due to lack of distinctions in the source dictionary) that
were never properly corrected. Moreover, the original database contained redundant and
hard-to-read low-level data structures.

To avoid these problems, a higher-level morphological description formalism and a de-
velopment environment were created that facilitate the creation and maintenance of the
morphological databases (Novák, 2008). All Humor morphologies built after the creation of
the development environment were developed using this higher-level formalism.

4.1 Creating grammar-based morphological models
with minimal redundancy

A morphological description created using the higher-level formalism consists of morpheme-
inventories that contain only unpredictable features of morphemes and rules that introduce
all redundant features and generate allomorphs of each morpheme. The morpheme database
may also contain irregular allomorphs. Figure 4.1 shows some entries from the high-level
stem database.

Figure 4.1: Entries in the high-level stem database.

DOI:10.15774/PPKE.ITK.2015.013

4.1. Creating grammar-based morphological models with minimal redundancy 23

The high-level human-readable description is transformed by the system to a redundant but
still human-readable allomorph database by applying the rules to the morpheme descriptions.
This is then transformed to the low-level representations of the analyzer using an encoding
definition description. This defines how each high-level feature should be encoded for the
analyzer. Certain features are mapped to binary properties while the rest determine the
continuation matrices, which are generated by the system dynamically. Figure 4.2 shows the
architecture of the multilevel database.

Figure 4.2: The multilevel database. Shaded blocks: input to the system. Unshaded blocks:
generated by the system.

4.1.1 Creating a morphological description

When using the grammar development environment, the linguist has to create a high
level human readable description which contains no redundant information and the system
transforms it in a consistent way to the redundant representations which the analyzer uses.
The work of the linguist consists of the following tasks:

Identification of the relevant morpheme categories in the language to be described
(parts of speech, affix categories).

Description of stem and suffix alternations An operation must be described which
produces each allomorph from the lexical form of the morpheme for each phonological
allomorphy class. The morphs or phonological or phonotactic properties which condition the
given alternation must be identified.

24 4. A morphological grammar development framework

Identification of features All features playing a role in the morphology of the language
must be identified. These can be of various sorts: they can pertain to the category of the
morpheme, to morphologically relevant properties of the shape of a given allomorph, to the
idiosyncratic allomorphies triggered by the morpheme or to more than one of these at the
same time.

Definition of selectional restrictions between adjacent morphs Selectional restric-
tions are described in terms of requirements that must be satisfied by the set of properties
(features) of any morph adjacent to a morph. Each morph has two sets of properties: one
can be seen by morphs adjacent to the left and the other by morphs adjacent to the right.
Likewise, any morph can constrain its possible neighbors by defining a formula expressing
its requirements on both sides.

Identification of implicational relations between properties of allomorphs and
morphemes These implicational relations must be formulated as rules, which define how
redundant properties and requirements of allomorphs can be inferred from their already
known (lexically given or previously inferred) properties (including their shape). Rules may
also define default properties. A relatively simple special-purpose procedural language, which
I devised for this task, can be used to define the rules and the patterns producing stem and
affix allomorphs.

Creation of stem and affix morpheme lexicons (level-1) In contrast to the lexicon
used by the morphological analyzer, the lexicons created by the linguist contain the descrip-
tions of morphemes instead of allomorphs. Morphemes are defined by listing their lexical
form, category and all unpredictable features and requirements. Irregular affixed forms
and suppletive allomorphs can also be listed in the lexicon instead of using very restricted
rules to produce them. I implemented a simple inheritance mechanism to facilitate the
consistent treatment of complex lexical entries (primarily compounds). Such items inherit
the properties of their final element by default.

Creation of a word grammar Restrictions on the internal morphological structure of
words (including selectional restrictions between nonadjacent morphemes) are described
by the word grammar. The development environment facilitates the creation of the word
grammar automaton by providing a powerful macroing facility. Another option is to use
regular expressions.

Creation of a suffix grammar (optional) An optional suffix grammar can be defined as
a directed graph, and the development environment can produce segmented suffix sequences
using this description and the suffix lexicon. Using such preprocessed segmented sequences
enhances the performance of the analyzer.

As for the methodology to follow by the linguist to draw a borderline between the word
forms or morphological constructions to be considered part of the language and those to be
considered as erroneous, it is difficult to give a recipe. One obviously needs to take different

DOI:10.15774/PPKE.ITK.2015.013

4.1. Creating grammar-based morphological models with minimal redundancy 25

approaches depending both on the own level of proficiency in the language and the intended
application or task to be solved.

When creating a morphological description for Hungarian (see Section 5.1), my initial ap-
proach was rather normative, listening primarily to my own intuition and taking authoritative
dictionaries into account, excluding many forms that I considered substandard or dialectal.
This approach was to a significant extent motivated by the fact that creating a spell checker
was among the primary goals of the development. Nevertheless, as I and my colleagues began
to apply the morphology to solve practical tasks such as analysis and word form generation
in a machine translation system or annotation of corpora, the description had to be adapted
to cover linguistic data that lie outside my own idiolect. The way I did it was an extensive
usage of the notion of markedness. In addition to standard forms, I allowed the system to
recognize marked (rare, substandard, dialectal) word forms. When the analysis database is
converted into a word form generation database to be used for machine translation output,
marked forms are eliminated so that the system would not generate them. Extension of
Hungarian paradigms with marked forms gained momentum especially when I worked on
adapting the morphology to analyze Middle Hungarian texts (see Section 5.2.1). These
texts contained, in addition to archaic morphological constructions, many dialectal forms
that still exist and are even frequent outside the standard. Modern corpora, on the other
hand, contain a significant amount of slang that also needs to be handled with special care.
Attempts at analyzing texts containing domain-spacific terminology resulted in adding many
foreign (especially English and Latin) words to the Hungarian database. These may result
in odd analyses unless one handles them with special care.

When there is a lack of linguistic competence on behalf of the linguist creating the description,
there is always a struggle with the data, because one can never be sure whether word forms
present in the corpora are noise or data. Written grammars one tries to use often tend to be
rather coarse, vague or anecdotal. Statements that seem to be generalizations are sometimes
valid for just a handful of lexical items. Exceptions are hardly mentioned, or if they are, the
lists are hardly ever exhaustive.

4.1.2 Conversion of the morphological database

Using a description that consists of the information described above, the development
environment can produce a lexical representation (consisting of the level-2 lexicons) which
already explicitly contains all the allomorphs of each morpheme along with all the properties
and requirements of each of them. This representation still contains the formulae expressing
properties and selectional restrictions in a human-readable form, and it can thus be easily
checked by a linguist.

The readable redundant representation is then transformed to the format used by the analyzer
using an encoding definition description, which defines how each of the features should be
encoded for the analyzer. In the next section, I describe the formalism used in the source
files for a morphological database in detail.

DOI:10.15774/PPKE.ITK.2015.013

26 4. A morphological grammar development framework

4.2 Components of the framework

In order to describe the morphology of a language and produce a Humor analyzer for it, the
following high level source files must be produced:

• Morpheme lexicon files for stems and suffixes: these describe the lexicon of the
language
• Rule files for generating allomorphs and compute their properties: these describe the

morphology and phonology of the language (as far as orthography reflects it)
• An encoding definition file that defines the translation of properties to the bit

vectors and matrices used in the Humor morphological analyzer

4.2.1 Lexicon files

There are three levels of source files for each entry in the morphological lexicon. Level-1
morpheme lexicon files basically contain only lemmas/lexemes along with some unpredictable
information concerning the entry. These files are where lexical data enters into the system.
Level-2 lexicon files, on the other hand, are generated by the system from the level-1 files
using the rule files. They already explicitly contain all the allomorphs of each lemma along
with all the relevant properties of each allomorph. The third level of source files are Humor
lexicon source files, which are generated from level-2 files using the encoding definition file.

4.2.1.1 Level-1 lexicon files

The format of the level-1 stem files and suffix files differs from each other. The main reason
for this is the fact that there is unavoidably a very large (and not bounded) number of
entries in the stem lexicon, while the suffixes are not too numerous (and form a closed class).
Thus there is a strong motivation for brevity of description in the stem lexicon, while the
entries in the suffix lexicon may contain much more explicit information. For this reason,
the format of the level-1 stem lexicon file and that of the level-1 suffix lexicon file is different
(level-2 and level-3 stem and suffix lexicon files, on the other hand, have a uniform format,
since they contain all relevant information explicitly for each allomorph).

The suffix lexicon file First-level lexicon files have a line-oriented format: each entry
is on a line of its own. The data structure defining each entry is flat: it consists of fields
that contain an attribute name and a value for that attribute. The format of a field is:
attribute:value;. Each field is ended by a semicolon. The following is fragment of the
level-1 suffix lexicon file for Hungarian defining the plural suffix. This line contains 10 fields
and a comment.

#plural
type:infl;lr:cat_Nom;rp:mcat_infl;tag:PL;phon:LVk;sfxalt:VLCL;

lp:FVL,VZA,SVS,vST,UDEL;lp:PL;mcat:PL;humor:PL;#-s

DOI:10.15774/PPKE.ITK.2015.013

4.2. Components of the framework 27

Attribute Value Interpretation
type infl The type of the suffix is inflection.

deriv The suffix is a derivational suffix.
lr The left requirements of the morpheme.
lp The left properties of the morpheme.
rr The right requirements of the morpheme.
rp The right properties of the morpheme.
glr Requirements of the morpheme that must be satisfied by the global

properties (gp) of some (not necessarily adjacent) morpheme to
the left.

gp Global properties of the morpheme.
phon The phonological form of the morpheme.
humor The traditional tag (used in previous versions of the Hungarian

Humor analyzer) for this morpheme that can be output by the
analyzer.

tag Another set of (category) tags that can be output by the analyzer.
sfxalt The suffix alternation the suffix participates in.
mcat Morphological category.

Table 4.1: The fields used in the Hungarian suffix lexicon file

#Nominal inflections
stem -- (number) -- Px -- Cx
#tag phon rp lp lr rr mcat #gloss
DU qe9n Du !Px Num dual
PL E6t Pl !Px Num plural

#tag phon rp lp lr rr mcat #gloss
NOM Cx Nom Cx nominative case
LAT a Cx Lat Cx lative case
LOC N Cx Loc Cx locative case
LOC na Cx Loc na Cx locative case

Figure 4.3: Fragment of the tabular source of the Synya Khanty suffix lexicon

Table 4.1 explains the fields used in the Hungarian suffix lexicon file. However, most of this
information is not specific to the Hungarian description with the exception of the usage of
the humor feature. See also Sections 5.1 and 5.3 for further examples and explanation of the
features and properties used.

Since the level-1 suffix lexicon format is difficult to read, suffix lexicons are defined in a
tabular format, in which feature names are taken from table headers and values are taken
from non-header rows. Comments may intervene. The example fragment in Figure 4.3 is
from the Synya Khanty analyzer.

The stem lexicon file The main difference between the format of the suffix and stem
lexicon files is that in the latter obligatory information (lemma and category of stem) must
be given as the first field in the form lemma[category]; without specifying the attribute
names. When the level-1 stem lexicon file is interpreted by the program that translates it to
a level-2 lexicon file, the lemma is assigned to the attribute seg (”segmented form”) and

DOI:10.15774/PPKE.ITK.2015.013

28 4. A morphological grammar development framework

Ithaca[FN];phon:itaka;
maca[FN];
cica+maca[FN];

paca[FN];
tinta+paca[FN];

Rábca[FN];
cca.[HA|ROV];equ:circa;phon:cirka;
...
veréb[FN]; zarte:e;stemalt:SVS;rp:=A;

fi=a+veréb[FN]; zarte:e;
nád@i+veréb[FN]; zarte:e;

Zala+cséb[FN];isa:település;
Özséb[FN];rp:=jA;isa:ffinév;
egyéb[MN|NM&FN|NM]; zarte:ë;stemalt:SVS;rp:=A;rp:ESS_no;
mi+egyéb[FN|NM]; zarte:ë;stemalt:SVS;rp:=A;
Gotlı́b[FN];isa:ffinév;
lio#fób[MN];rp:=jA;rp:ESS_no;
hidro#fób[MN];rp:=jA;rp:ESS_no;
Jób[FN];isa:ffinév;
gardrób[FN];rp:=jA;
göb[FN];rp:=jA;
köb[FN];rp:=A;
küszöb[FN];rp:=A&=jA;
inger+küszöb[FN]; zarte:ë;
tudat+küszöb[FN];
érz%et+küszöb[FN]; zarte:e;

...
ér[FN];stemalt:SVS;rp:=A;
...
facér[MN];rp:=jA;rp:VHB;rp:ESS_Vn LOW+;
kacér[MN];rp:=jA;rp:VHB;rp:ESS_Vn LOW+;
...
arany+ér[FN];

Figure 4.4: A fragment of the Hungarian level-1 stem lexicon

the category is assigned the attribute humor. Optional fields, on the other hand, must be
given as attribute:value; pairs, like in the suffix lexicon file. The same attribute name
may appear more than once on a line in the stem lexicon file as well, and the values will be
concatenated.

Figure 4.4 above shows a sample from the Hungarian level-1 stem lexicon file. Polymorphemic
entries are segmentedi, and each lemma is followed by its category. The segmentation of
lemmas plays an important role in determining the suffixation and allomorphy properties of
the entries. Compound stems generally behave like the last compound member does (e.g. the
compound arany+ér behaves like its last compound member ér (e.g. its plural is aranyerek),
while facér (which is not a compound) behaves totally differently (regularly) both concerning
allomorphy and vowel harmony (e.g. its plural is facérok or facérak)). Moreover, stems
containing a particular final derivational suffix often behave differently from those ending in
a similar sequence of phonemes but not containing that particular suffix. Examples include
both productive and unproductive suffixes: verbs with a final (unproductive) -Ad suffix take
the past -t suffix without a linking vowel in contrast to all other -d final verbs; nouns ending

i+: compound, @,%: derivational, =: inflectional, #: foreign morpheme boundary

DOI:10.15774/PPKE.ITK.2015.013

4.2. Components of the framework 29

in the productive -sÁg suffix take the 3rd person and plural possessive markers in the j-less
form (-A, -Ai). The rules in the stem allomorph generation rule file must thus rely on the
segmentation given in the level-1 stem lexicon. Compounds inherit their suffixation properties
from their last compound member. This is accomplished by a process that overwrites the
properties of each compound by the properties of its last member before the level-2 stem
lexicon is generated from the level-1 source file. This means that, for example, in spite of the
fact that in the original Humor source ingerküszöb and tudatküszöb were suffixed differently
(because they had a representation equivalent to the one below), they behave identically to
küszöb in the current version.

küszöb[FN];rp:=jA&=A&=Ai&=jAi;
inger+küszöb[FN];rp:=jA&=jAi;
tudat+küszöb[FN];rp:=A&=Ai;

The order of listing of stems is important, because the inheritance mechanism relies on
it: the stems in the level-1 stem lexicon file must be in reverse-alphabetic order (see the
longer sample above). This ensures that the last member of a compound always precedes
the compound itself, which makes the inheritance easy to implement. The algorithm also
relies on the fact that no entries having a different ending may appear between the entry
of the compound and that of its last member. The source files need not contain the stem
morphemes in a sorted manner. The grammar development framework does the sorting
automatically.

The category (i.e. the humor feature), and the following features may have list values:
phon, equ and the property/requirement features rp/lp/rr/lr/gp/glr. The elements of
the list must be separated by &’s. Spaces or commas may not be used here (except in
the property/requirement features). In the case of the latter, this is really a conjunctive
logical formula which is normally inherited by all the allomorphs of the lexeme. In the
case of the humor, phon and equ features, however, the list notation is used differently: it
is really a simple labor-saving and source file consistency enhancement device. If some of
these features have a list value, the lexeme is split into as many independent lexemes as
there are different values in each list, and all the possible combinations (i.e. the Cartesian
product) are generated, so if e.g. humor is a list of length 2 (e.g. FN&MN) and phon is a list of
length 2 (e.g. süket&siket), then 4 entries are generated: ("süket"[FN], "süket"[MN],
"siket"[FN], "siket"[MN]). If this is not what one wants, one can list the combinations
you want as independent entries in the lexicon file (with the rest of the features having
identical values).

4.2.1.2 Level-2 lexicon files

Level-2 lexicons are generated by the system from the level-1 lexicons using the rule files.
They already explicitly contain all the allomorphs of each lemma along with all the relevant
properties of each allomorph. Each entry in the level-2 lexicon takes the form of a perl
hash data structure declaration statement. Perl hash data structures straightforwardly
implement the kind of attribute–value structures we need to properly describe all the
linguistic information the morphological analyzer needs concerning each lemma and its
allomorphs.

DOI:10.15774/PPKE.ITK.2015.013

30 4. A morphological grammar development framework

Each entry in the level-2 lexicon is a variable declaration statement of the form:

\$mrf = { ’attr1’ => ’val1’,
’list_attr’ => [’lval1’, ’lval2’],
’struc_attr’ => {’attr2’ => ’val2’}

};

The effect of this statement is that the variable called $mrf is assigned a pointer to the
structure defined within the braces. The structure contains a comma separated list of
attribute–value pairs. Attribute names appear between quotes and are separated from the
value by an arrow =>.

The value of each attribute may be one of the following three kinds:

• Atomic string value: ’attribute_name’ => ’string_value’,
• List value: ’attribute_name’ => [comma_separated_list_of_values],
• Embedded hash value: ’attribute_name’ =>

{comma_separated_list_of attribute_value_pairs},

In Figure 4.5 (which is the level-2 representation of the verb fut ‘run’ from the level-2 stem
lexicon), the attribute ’cat’ has an atomic string value (’V’), the attribute ’allomfs’ has
a list value, and each member of this list is in turn an embedded hash structure, which
represents an allomorph of the verb stem. Entries are ended by a semicolon.

$mrf = {
’phon’ => ’fut’,
’humor’ => ’IGE’,
’cat’ => ’V’,
’seg’ => ’fut’,
’root’ => ’fut’,
’allomfs’ => [
{
’allomf’ => ’fut’,
’gp’ => ’cat_V’,
’rr’ => undef,
’lr’ => ’!cat_vrb’,
’lp’ => ’comp2 Cini’,
’rp’ => ’=Ott =OttAm =sz =nAk =tOk =lAk =jUk reg -03 =tAt =OgAt cat_V mcat_stem

inflable VHB A=1 B=1’
},
{
’allomf’ => ’fus’,
’gp’ => ’cat_V’,
’rr’ => undef,
’lr’ => ’!cat_vrb’,
’lp’ => ’comp2 Cini’,
’rp’ => ’=d =s cat_V mcat_stem inflable VHB A=1 B=1’

}
],
};

Figure 4.5: The level-2 entry of the verb fut ‘run’

Most of the top-level attributes in the level-2 lexical entries are directly inherited from the
level-1 descriptions. The most important exception is the allomfs (allomorphs) attribute,
the list value of which is generated using the rules given in the rule files that describe stem

DOI:10.15774/PPKE.ITK.2015.013

4.2. Components of the framework 31

and suffix alternations and declare how the properties of each allomorph must be calculated.
Table 4.2 shows the top-level attributes appearing in level-2 lexicon entries.

Attribute Value Interpretation
seg Segmented base form of the stem (inherited from the 1st lemma

field of the level-1 stem source)
humor The traditional tag (used in previous versions of the Hungarian

Humor analyzer) for this morpheme that can be output by the
analyzer (inherited from the 2nd category field of the level-1 stem
lexicon file). This must contain as many +’s as the phon/seg
features.

tag Another set of (category) tags that can be output by the analyzer
(inherited from the level-1 suffix lexicon file)

cat Head category code of the morpheme for stems (including deriva-
tional suffixes). For stems, the value of this attribute is converted
from the humor code, for derivational suffixes, it is calculated
from the mcat value given in the level-1 lexicon. Possible values
are:

N Noun
Adj Adjective
V Verb
Adv Adverb or postpositionii

Num Numeral
X Other (non-inflected)
Vpfx Verbal prefix

stemalt Unproductive stem alternation the stem participates in (inherited
form the level-1 stem source). See the list of stem alternation
codes used in the Hungarian description in Table 5.2.

phon Unpredictable pronunciation (usually of foreign words and names,
inherited form the level-1 stem source, in standard orthography).

equ What an abbreviation stands for (inherited form the level-1 stem
source).

allomfs The list value of this feature contains hash structures that rep-
resent allomorphs of the morpheme (or morpheme sequence)
represented by the whole level-2 entry.

Table 4.2: Top-level attributes used in the level-2 lexicon files

Each hash structure in the allomfs list represents an allomorph of the morpheme (or
morpheme sequence) represented by the whole level-2 entry. The values of the property and
requirement attributes are similar to those of the respective fields in the level-1 suffix files (see
the description of the fields rp, lp, rr, lr, gp and glr in Table 4.1 above). The main
difference between the property and requirement attributes in level-1 and those in level-2
lexicons is that while the former contain mostly unpredictable properties and requirements
only, the latter explicitly contain every relevant property and requirement of the morph that

iiPostpositions, even when they fuse with pronouns using special inflected forms, also have the Adv category
in the morphology. The inflected forms, such as (én+)mögött+em ‘behind me’, (te+)mögött+ed ‘behind
you’, (ő+)mögött+e ‘behind him/her/(it)’, etc., are generated off-line by the rule component.

DOI:10.15774/PPKE.ITK.2015.013

32 4. A morphological grammar development framework

is needed to describe its distribution. Some of these properties and requirements are directly
inherited from the level-1 description, but most of them are generated using the rule files.

Although level-2 lexicons can also be saved in the format shown in Figure 4.5 for easy
readability, they are generally stored in a much more compact format shown in Figure 4.6.

r,-03&=OgAt&=Ott&=OttAm&=jUk&=lAk&=nAk&=sz&=tAt&=tOk&A=1&B=1&VHB&cat_V&inflable&mcat_stem®
l,Cini&comp2,!cat_vrb;fut;fut;fut;IGE;fut;fut;;S_IGE;fut[IGE];fut;fut;;;11‘

r,=d&=s&A=1&B=1&VHB&cat_V&inflable&mcat_stem;
l,Cini&comp2,!cat_vrb;fus;fus;fut;IGE;fut;fus;;S_IGE;fut[IGE];fut;fut;;;11‘

Figure 4.6: The level-2 entry of the verb fut ‘run’ in a compact format

4.2.2 Rules

Rule files govern the translation of level-1 lexicon files to level-2 lexicon files. There are two
such rule files: one of them describes stem allomorphies and contains rules for calculating
stem properties, while the other one describes (stem conditioned) suffix allomorphies. Rule
files are procedurally interpreted programs (they are in fact translated to perl code), and
thus the order of rules is relevant.

Figure 4.7 shows an example of the rule formalism used to infer properties of morphemes and
restrictions they impose on their neighbors and generate allomorphs and set their properties
and restrictions. The rule in this example generates allomorphs of a/e-final Hungarian
nouns, adjectives and numerals. The final vowel of such words is lengthened when one of a
group of suffixes is attached to them. Suffixes that trigger lengthening have the property
FVL (final vowel lengthening). Others do not have this property. The rule checks that the
pronounciation of the word is also a/e-final (otherwise the rule does not apply). Then it
generates an allomorph that is identical to the lemma and another one with the final vowel
lengthened. The lemma-identical allomorph constrains morphs on their right not to have the
FVL property. The lengthened allomorphs, on the other hand, require them to have that
property.

#final vowel lengthening: #o/ö-final lengthening
#kutya -> kutyá, eke ->eké #Oslo -> Osló
root:/[ae]\+*$/&&phon:/[ae]\+*$/ root:/[oö]$/
+;!FVL;; +;(0mrf|comp2);;
+/a(?=\+*$)/á/;FVL;; +/o$/ó/;!0mrf !comp2;;
+/e(?=\+*$)/é/;FVL;; +/ö$/õ/;!0mrf !comp2;;

Figure 4.7: Fragment of the Hungarian rule grammar: a rule generating allomorphs of Hungarian
final vowel lengthening stems and those of the orthographically similarly behaving o/ö-final stems.

4.2.2.1 The format of the rule files

The most important operations that can be done in the rule file (Appendix A.1 contains
some examples for each operation):

DOI:10.15774/PPKE.ITK.2015.013

4.2. Components of the framework 33

• Comments: Anything following a hash mark (#) is a comment, unless the # is part of
a string (i.e. it is between single or double quotes) or a regular expression (i.e. it is
between slashes //).

• Variable declaration and manipulation

– Declaring named scalar variables: named scalar variables can be used as named
constant character class shorthands in regular expressions (e.g. $C for consonant,
$V for short vowel etc.)

– Declaring named list variables: named list variables can be used for generating
inflected forms of closed-class items like e.g. case-marked personal pronouns etc.

– Declaring local attribute names: the attributes rp and rr are always handled by
the program as local variables. Additionally, you can declare other attributes to
be local.

• Attribute manipulation instructions:

– The attribute manipulation instruction is most frequently used to manipulate
properties and requirements of morphemes (if used outside of an allomorph
manipulation block; this affects every allomorph) or individual allomorphs (if used
within an allomorph manipulation block).

– Manipulation of the values of other morpheme-level attributes.
• Blocks of statements: parts of the rule file can be enclosed within blocks. Each block

has a modifier at the beginning. One type of block modifier is a condition that must
be true in order for the block to be executed (conditional blocks). Another type of
modifier indicates that the attribute manipulation instructions within the block are to
be applied to individual allomorphs instead of the morpheme level attributes (allomorph
list manipulation blocks). The third type of block is used to split allomorphs that
have certain properties (allomorph duplication blocks). Allomorph generation blocks,
allomorph list manipulation blocks and allomorph duplication blocks can all be referred
to as allomorph manipulation blocks. In these contexts, the attribute manipulation
instruction affects the properties and requirements of individual allomorphs instead of
those of the whole morpheme.

– Conditional blocks: conditional blocks are used to delimit parts of the rule file
that should only apply if certain conditions are satisfied by the morpheme being
processed.

– Allomorph generation blocks: generating allomorphs and setting their properties.
They are used to create the allomorphs belonging to the morpheme which is being
processed and define their properties and requirements.

– Allomorph list manipulation blocks: manipulating properties and requirements
of individual allomorphs. If an attribute manipulation instruction appears in
an allomorph list manipulation block, then the changes to requirements and
properties affect the individual allomorph.

– Allomorph duplication blocks: it is possible to handle certain properties as “disjunc-
tive” or “underspecified” and split allomorphs containing them into independent
allomorphs having the same form but different properties and requirements. This
duplication of allomorphs is needed in the case of properties which are intended to
be bit encoded in the level-3 (Humor) lexicon representation, since the bit vector

DOI:10.15774/PPKE.ITK.2015.013

34 4. A morphological grammar development framework

representation of properties is inherently conjunctive. This construction can be
used to handle vacillating behavior: e.g. vacillating vowel harmony or the appear-
ance of suffix-initial vowels (especially in the case of verbs). This construct can also
be used to handle generic orthographic alternations such as the context-sensitive
representation of palatal consonants in Russian-style Cyrillic-based orthographies,
e.g. the ones used for Uralic languages spoken in Russia.

The format of the level-2 suffix rule file is the same as that of the level-2 stem rule file, so the
description above applies to the suffix rule file as well. There is only one important difference
between the stem and the suffix rule file. Since suffixes have their interface to the world on
their left side, in the suffix rule file, the default attribute to check in conditionals is lp (in
contrast to the case in the suffix rule file, where it is rp), the default attribute to set in field
2 is lr (not rr) and the default attribute to set in field 3 is lp (not rp).

4.2.2.2 Sequences of inflectional suffixes

Possible sequences of inflectional suffixes can be generated off-line during the generation
of the level-2 suffix lexicon file in order to speed up the morphological analyzer. This also
makes the word grammar automaton somewhat simpler.

In the Hungarian morphological description, harmonic variants of suffixes are generated by
a Kimmo-style two-level finite-state transducer which is complemented by some regular-
expression-based substitution expressions that make it able to handle additional regular suffix
alternations such as suffix-initial vowel lowering. It also implements the most productive
stem alternation: final low vowel lengthening, which all low-vowel-final suffixes also undergo
if a lengthening suffix is attached to them. This mechanism for describing lengthening and
lowering is needed to handle suffix sequences.

In addition to the mechanism that generates the surface form of suffix sequences, a description
is also needed of what morpheme sequences are to be generated. The description I use is
a finite-state automaton (in fact an arc-labeled graph) that describes the set of possible
sequences.

The code in Figure 4.8 creates a representation of a finite-state automaton which describes
possible Hungarian nominal inflectional suffix sequences. Although the most common
representation of a finite state automaton (or a transducer) is a state table, here we use
another representation: the (directed) graph of the machine is directly encoded in the data
structure.

In the first statement, we create a tree subgraph of the whole graph. A tree is a connected
graph that does not contain any nodes into which two different arcs run. In this form of
declaration, the representaion of each subtree of the (arc labeled) tree is enclosed by a pair
of braces { }. The braces enclose a list of the labels of all the arcs running from the root of
the subtree.

The tree that the first statement declares is utterly simple: it contains 5 nodes and a
single path from the start node to the only leaf, consisting of 4 arcs labeled: ’’,’’,’’ and

DOI:10.15774/PPKE.ITK.2015.013

4.2. Components of the framework 35

$sfxfsa->{’’}{’’}{’’}{’mcat:CASE’} = {};
$sfxfsa->{’’}{’’}{’mcat:ANAPOSS’} = $sfxfsa->{’’}{’’}{’’};
$sfxfsa->{’’}{’mcat:FAM’} = $sfxfsa->{’’}{’’};
$sfxfsa->{’mcat:PL’} = $sfxfsa->{’’}{’’};
$sfxfsa->{’mcat:POSS’} = $sfxfsa->{’’};
%$

ε

POSS

ε

FAM

PL

ε

ANAPOSS
CASE

PL the plural suffix -Vk
and the plural of possessives with plural possessors -((j)A)i[nk/tOk/k]

POSS possessive suffixes (-Vm, -Vd, -(j)A, -Unk, -VtOk, -(j)Uk)
including the plural of possessives with singular possessors -((j)A)i(m/d)

FAM the familiar plural suffix -ék
ANAPOSS the anaphoric possessive suffix -é and its plural form -éi
CASE case suffixes (not including -képp(en))

Figure 4.8: A sample suffix grammar describing Hungarian nominal inflectional suffix sequences

’mcat:CASE’. The whole graph is referred to by the variable $sfxfsa. Note that the arcs
labeled ’’ are in fact ε transitions.

The next 4 statements add new paths to the graph that will thus not be a tree any longer.
The right side of the assignment in the 2nd statement, for example, $sfxfsa->{’’}{’’}{’’},
refers to the subtree that is reached on the path ’’,’’,’’ from the root of the tree referred
to by the variable $sfxfsa. The effect of whole statement is that the graph will contain
a new path ’’,’’,’mcat:ANAPOSS’ (this actually means that a single new outgoing arc
labeled ’mcat:ANAPOSS’ is added to the (already existing) node ending the path ’’,’’)
and this path will lead to the same node as the (already existing) path ’’,’’,’’ does. The
remaining 3 statements add three more arcs that run into already existing nodes.

Note that since the arcs running from a node are represented as hash keys, it is not possible
to have two identically labeled arcs running from the same node, i.e. one can only represent
deterministic finite-state automata using this notation.

Note also that the given representation does not explicitly differentiate final and non-final
nodes. I simply assume here that leaves are final and all the rest are non-final.

The level-2 suffix lexicon file is produced from the level-1 suffix lexicon by the following
procedure:

• The automaton representing possible sequences is read.
• The language of the automaton (the set of all sequences of category labels

(’mcat:CASE;’ etc.) accepted by the automaton) is generated (it is a finite set,
because there are no loops).

DOI:10.15774/PPKE.ITK.2015.013

36 4. A morphological grammar development framework

• The level-1 suffix lexicon is read and each entry (morpheme) in it is assigned the set of
category labels that match it.
• For each sequence of category labels, every matching morpheme is substituted for each

category label, and thus sequences of morphemes are generated, which inherit their
properties from the morphemes in the sequence:

– left-hand-side properties and requirements of the sequence are inherited from the
leftmost morpheme in the sequence

– right-hand-side properties and requirements of the sequence are inherited from
the rightmost morpheme in the sequence and

– global properties and requirements are inherited from all morphemes in the
sequence (except for requirements satisfied within the sequence)

• The rules in the suffix rule file are applied to each sequence of suffixes (this generates
allomorphs of the first suffix in the sequence), and the vowel harmony transducer is
applied to the result (which again may multiply the allomorphs). The suffix allomorphs
acquired this far are all independent entries.
• The rules in the stem rule file are applied to each sequence of suffixes (this generates

allomorphs of the last suffix in the sequence). The suffix allomorphs generated in this
step become members of the allomfs attribute within the same entry.

4.2.3 The encoding definition file

The encoding definition describes how the level-2 lexicon files should be translated to level-3
lexicon files and matrix definition files. The file also contains information that describes
how the continuation matrix for each morph is selected (the $matrixsel= part) as well as
definition of the category labels used in the word grammar (the $metacteg= part).

4.2.3.1 The representation of properties

Allomorph properties are defined as a set of propositional formulae. Each morpheme
(allomorph) may have a formula encoding its properties visible from the left and right side
along with the requirements that must be satisfied by any morpheme on its left/right. The
formula expressing its right-hand-side properties (rp) must be defined for every morpheme
because that formula contains the categorial information used in the word grammar, as well
as the properties used for continuation matrix selection.

The formulae describing properties are composed of the conjunction of (optionally negated)
properties. An example is the left-hand-side property formula of the Hungarian accusative
suffix allomorph –ot, which is the following:

’lp’ => ’FVL VZA SVS vST UDEL ACC Vini’

The formula states that this suffix triggers final low vowel lengthening (FVL), vowel–zero
alternation (VZA), stem vowel shortening (SVS), v-insertion (vST), Ú-deletion (UDEL), is an
accusative suffix (ACC) and is a vowel-initial morph (Vini). Ampersands (&) can also be used
in place of the spaces to denote conjunction.

DOI:10.15774/PPKE.ITK.2015.013

4.2. Components of the framework 37

Property-denoting formulae (P-expressions) have the following interpretation: the proper-
ties appearing non-negated in the right/left property formula are true for the morpheme
when looked at from the right/left side. The properties not appearing in it are not true
unless entailed by some of the properties that do appear. Explicitly negated properties are
not true.

Formulae expressing requirements (R-expressions) may contain the conjunction and the
disjunction of optionally parenthesized expressions containing possibly negated properties.
An example is the left requirements formula of the Hungarian accusative suffix allomorph
–ot, which is the following:

’lr’ => ’=Vt !LOW VHB cat_Nom’

The formula states that this suffix requires a non-lowering (!LOW), back harmonic (VHB)
nominal stem (cat Nom) that must select a vowel-initial form of the accusative suffix (=Vt).
Ampersands (&) can also be used in place of the spaces to denote conjunction.

A morph may only be followed by another morph if its right-hand-side properties satisfy
the left-hand-side requirements of the following morpheme and the left-hand-side properties
of the latter satisfy the right-hand-side requirements of the former. If an atomic property
appears in the requirements expression of a morph, it must be true for the other morph; if
it appears negated, it must be false; and if it does not appear, then it is irrelevant for the
match.

4.2.3.2 The translation of P- and R-expressions to the representation
used by the analyzer

An atomic property has a different interpretation depending on whether it appears in a
P-expression or an R-expression.

As follows from the interpretation of P- and R-expressions that we have seen above, the
rules for setting bit-encoded properties are the following:

In property list:

property present → use the set operation (the property is true);
property missing → use the neg operation (the property is false);
property negated → use the neg operation (the property is false);

In requirements expression:

property present → use the set operation (the property is checked to be true);
property missing → use the ignore operation (the property is ignored);
property negated → use the neg operation (the property is checked to be false);

In the case of bit-encoded properties, the encoding also depends on whether the property
is a right-hand-side property or a left-hand-side property. The reason for this is that in
Humor, a mask can be defined for left-hand-side bitvectors (using the . character in the
bit positions masked out) while no such mask can be defined for right-hand-side bitvectors

DOI:10.15774/PPKE.ITK.2015.013

38 4. A morphological grammar development framework

(character . is equivalent to 0 on the right-hand-side). This means, in effect, that bit-encoded
left-hand-side requirements are silently encoded using twice as many bits (data bits+mask)
as right-hand-side requirements (data bits only). And from this, it follows that bit-encoded
right-hand-side requirements (=left properties) must be encoded using twice as many data bit
positions as needed for left-hand-side requirements (=right properties) so that the masking
can also be provided for. We can thus use for example the following encoding for the
operations:

for right-hand side (e.g. stem) properties (i.e. left-hand side requirements)

set=1
neg=0
ignore=.

for left-hand side (e.g. suffix) properties (i.e. right-hand side requirements)

set=.1
neg=1.
ignore=11

In practice, the encoding of properties using bit vectors depends on a number of factors, so
the encoding above cannot always be used. These factors are the following:

• Binary vs. non-binary properties: although the simple propositional representation
renders all properties binary in the sense that they are either true or false for every
morpheme, the domain of description (the morphology of the language we are seeking
to describe) is such that the truth of some of the properties implies that some other
properties are not true. E.g. if cat v is true for a morpheme, cat n, cat adj and
cat adv are not true. This is because cat v, cat n, cat adj and cat adv are in fact
different possible values of the same feature: that of catiii. Properties that are mutually
exclusive possible values of the same feature (like the cat xxx properties above) will be
termed non-binary properties, and the rest (i.e. properties which would be the values
of binary features) will be called binary properties.
• x-properties: binary properties can be encoded using the scheme in the previous section

using the set, neg and ignore operations, which are implemented in a property-side
dependent fashion, as we have seen above. In such a case, only the position of the
relevant 1 or 2 (adjacent) bits must be specified in the bit vector when defining the
property, and this is done by placing the symbol x in those positions. For this reason, I
will use the term x-property for binary properties encoded in this fashion. The following
examples show the definition of a right-hand-side and a left-hand-side x-property:

’take_clit’ => [’r’,’.....x’,’at_end’],
’stmalt_E’ => [’l’,’......xx’,1],

There is a shorthand notation for the dots at the beginning: ’5>x’ can be written
instead of ’.....x’:

iiiHomonyms are represented as distinct lexical entries.

DOI:10.15774/PPKE.ITK.2015.013

4.2. Components of the framework 39

’take_clit’ => [’r’,’5>x’,’at_end’],
’stmalt_E’ => [’l’,’6>xx’,1],

The first parameter in the list defines whether it is a right-hand side or a left-hand side
property. The second parameter is a bit mask that defines the position(s) used for the
encoding of the property. (For left-hand-side properties, the positions marked by the xx
must be adjacent.) The third parameter defines the domain of the property: it specifies
a formula that selects the morphemes for which the property is defined. Whenever the
properties and the requirements of a morpheme satisfy the formula that defines the
domain of the property, the bit(s) for the property must be set using the appropriate
operation (set, neg or ignore). In fact, for right-hand-side x-properties (having a
single x), a correct encoding is always produced even if the domain of the property
is not defined. However, this is not the case for left-hand side x-properties (having
xx). For them, the domain must always be given. Note that properties with disjunct
domains (e.g. a property pertaining only to verbs and another that is appropriate only
to nominal stems) may be encoded using the same bit positions.

• Non-binary properties: the bit-encoding of non-binary properties is more complicated
than that of the binary ones since the mutual exclusiveness that characterizes such
properties must be provided for. There are also cases when morphemes having some of
the mutually exclusive possible values of a feature have some properties in common or
share some aspect of behavior. E.g. stems and derivational suffixes have the common
property that they determine the syntactic category of the word; prefixes and stems
have the common property that they may appear at the beginning of a word etc. A
possible and the supported way of encoding non-binary properties is to decompose them
into the conjunction of binary properties. Such decomposed non-binary properties are
called complex properties. They entail their definition and thus the conjunctive formula
that defines them is added to the formulae in which they appear unnegated. Note,
however, that the negation of a complex non-binary property has a disjunctive (or a
De Morgan-equivalent non-atom-negated) entailment that cannot be bit-encoded. For
this reason, complex properties may not appear negated in formulae. Their encoding
differs from that of x-properties also in that they are simply ignored without doing
any bit operations if they do not appear in a formula. Figure 4.9 shows the definition
of some complex properties using atomic ones.

’mcat_deriv’ => [’r’,’’,’’,’sfx’], # derivational suffix
’mcat_stem’ => [’r’,’’,’’,’!sfx’], # stem
’mcat_infl’ => [’r’,’’,’’,’sfx&!inflable’], # inflectional suffix
’mcat_stem+infl’ => [’r’,’’,’’,’!sfx&!inflable&!pfx’], # stem with inflectional suffix
’mcat_pfx’ => [’r’,’’,’’,’!sfx&!inflable&pfx’], # prefix
’cat_Nom’ => [’r’,’’,’’,’inflable&!cat_vrb’],
’cat_N’ => [’r’,’’,’’,’inflable&!cat_vrb&!cat_num&cat_Nom’],
’cat_Adj’ => [’r’,’’,’’,’inflable&!cat_vrb&!cat_num&cat_Nom’],
’cat_Part’ => [’r’,’’,’’,’inflable&!cat_vrb&!cat_num&cat_Nom’],
’cat_Num’ => [’r’,’’,’’,’inflable&!cat_vrb&cat_num&cat_Nom’],
’cat_V’ => [’r’,’’,’’,’inflable&cat_vrb’],
’cat_Adv’ => [’r’,’’,’’,’!inflable’],
’vpfx’ => [’r’,’4>x’,’’,’!sfx&!inflable&pfx’], # verbal prefix
’suppfx’ => [’r’,’5>x’,’’,’!sfx&!inflable&pfx’], # the superlative prefix

Figure 4.9: The definition of some complex properties using atomic ones

• Binary properties with entailments: properties may set their own bits in addition to
having entailments (which may set other bits, see e.g. the vpfx property in Figure 4.9).

DOI:10.15774/PPKE.ITK.2015.013

40 4. A morphological grammar development framework

These properties may appear negated (in requirements or in entailments) and in such
a case only the single bit (or, in the case of left-hand-side properties, only the single
pair of bits) specified in the position field is negated while the entailments are ignored.
Other examples include cases when a feature may have two complementary values both
having a name.
• Manually encoded properties: it is also possible to manually define the binary encoding

of binary and non-binary properties by using a bit mask that contains 1’s, 0’s and
dots (or number and >) instead of using decomposition (entailments) and binary x-
properties. As using this feature may be a potential source of errors and inconsistencies,
the preferred way of handling complex properties is using decomposition. However, this
notation can sometimes be useful, especially when the mutually exclusive properties
cannot be decomposed in a meaningful or economical way.
• Automatic property range: the preferred method to handle cases when the mutually

exclusive properties cannot be decomposed is to use a range of bits to represent the
mutually exclusive possible values and have the system generate a unique pattern for
each possible value, see Figure 4.10.

’wcat_Nom_stem’ => [’r’,’1>$5wcat’,’’],#nominal stem
’wcat_Nom_stem_infl’=>[’r’,’1>$5wcat’,’’],#nominal stem with inflection
’wcat_PP_stem’ => [’r’,’1>$5wcat’,’’],#locative postposition stem
’wcat_PP1_stem’ => [’r’,’1>$5wcat’,’’],#postposition stem
’wcat_V_stem’ => [’r’,’1>$5wcat’,’’],#verb stem
’wcat_V_stem_infl’ => [’r’,’1>$5wcat’,’’],#verb stem with inflection
’wcat_uninfl_stem’ => [’r’,’1>$5wcat’,’’],#not inflectable stem
’wcat_Nom_deriv’ => [’r’,’1>$5wcat’,’’],#nominal deriv suffix
’wcat_V_deriv’ => [’r’,’1>$5wcat’,’’],#verbal deriv suffix
’wcat_infl’ => [’r’,’1>$5wcat’,’’],#inflection
’wcat_Cx’ => [’r’,’1>$5wcat’,’’],#Cx suffix (may follow PP)
’wcat_Px’ => [’r’,’1>$5wcat’,’’],#Px suffix (may follow PP and PP1)
’wcat_clit’ => [’r’,’1>$5wcat’,’’],#clitic
’wcat_dot’ => [’r’,’1>$5wcat’,’’],#is a dot
’wcat_hyph’ => [’r’,’1>$5wcat’,’’],#hyphen
’wcat_VMod’ => [’r’,’1>$5wcat’,’’],#verbal prefix
’wcat_Adv_deriv’ => [’r’,’1>$5wcat’,’’],#adverbial deriv suffix
’wcat_ImpVx’ => [’r’,’1>$5wcat’,’’],#imperative verbal suffix
’wcat_Inf’ => [’r’,’1>$5wcat’,’’],#infinitive suffix
’wcat_Passive’ => [’r’,’1>$5wcat’,’’],#passive verbal suffix
’wcat_Tense’ => [’r’,’1>$5wcat’,’’],#tense suffix
’wcat_Vx’ => [’r’,’1>$5wcat’,’’],#verbal agreement suffix
’wcat_TenseVx’ => [’r’,’1>$5wcat’,’’],#verbal Tense+Vx(sg3) suffix

Figure 4.10: The definition of mutually exclusive properties using a 5-bit automatic range from the
encoding definition of the Synya Khanty analyzer

4.2.3.3 The encoding of matrix properties

The properties not defined as bit-encoded properties and the requirements concerning them
will be represented by the continuation matrices. The matrices directly encode the already
stated matching mechanism according to which a morpheme may only be followed by another
morpheme if its right-hand-side (matrix-encoded) properties satisfy the left-hand-side (matrix-
encoded) requirements of the following morpheme and the left-hand-side (matrix-encoded)
properties of the latter satisfy the right-hand-side (matrix-encoded) requirements of the
former.

DOI:10.15774/PPKE.ITK.2015.013

4.2. Components of the framework 41

The selection of the continuation matrix for a morpheme is determined by a subset of its
right-hand-side bit-encoded properties (i.e. requirements may not be used). The expressions
may not contain disjunction (like any bit-encoded expressions) but they must be disjunct
(neither of them may entail any other) so that a unique matrix can be selected for every
morpheme. The formulae determining matrix selection are defined as given in the following
example from the Spanish Humor morphology:

\$matrixsel={
’cat_v&thm_a’=>’va’,
’cat_v&thm_e’=>’ve’,
’cat_v&thm_i’=>’vi’,
’have_cat&cat_nom’=>’nom’,
’!have_cat’=>’rest’,
’cat_adv’=>’rest’,
};

The matrix selection definition above states that each class of verbal roots with either of the
theme vowels a, e and i have their own matrix, nominal (noun and adjective) stems have
another, and all the rest are poured into the same matrix called rest.

Note that although disjunction may not be used in the expressions, the same matrix (e.g.
the one called rest in the example above) may be selected by more than one expression:
this is the standard way of resolving the ban on disjunction for bit-encoded properties.

The Humor ‘meta-matrix’ file and the part of the layout file that describes the matrices
is generated using the matrix-selection definition above. The number of bits used for
representing matrix codes (8 or 16) in the analyzer is also automatically determined by the
program.

In order to be able to generate the matrices, it is necessary that for each 〈left/right Side,
Properties, Requirements〉 triple (SPR-triple) that occurs in the allomorph-database, the
set of matrices which are affected by the given SPR-triple be identified. This is done by a
procedure that returns the list of matrices from $matrixsel the property-list of which (a)
is satisfied by the right-hand-side properties in the SPR if Side is ’right’; (b) satisfies the
left-hand-side requirements in the SPR if Side is ’left’. In case (a), the list must contain
exactly one matrix (unless the morpheme appears only in final position, so that a unique
continuation matrix can be selected); in case (b), the list must contain at least one (unless the
morpheme appears only at the beginning of words, so that the morpheme be reachable).

Note that the matrix-encoded part of a left-PR may participate in more than one matrix.
For example, the Spanish verbal inflectional suffix –o of indicative present tense first person
singular may follow verbs of either theme vowel, i.e. the left-PR of this morpheme appears
in three different matrices. Such left-PR’s must have the same continuation class identifier
(i.e. they appear in the same row) in all of the matrices in which they participate. This may
in some cases necessitate the insertion of empty rows in some of the matrices.

DOI:10.15774/PPKE.ITK.2015.013

42 4. A morphological grammar development framework

In order to minimize the number of such empty rows, the SPR’s are ranked with regard to
the number and size of matrices they affect (calculating Σ(1−mxtdim/10000)iv summing
over the matrices the expression participates in) and they appear in the matrices in the
order determined by the ranking (higher-ranked score first). Further optimization removes
all identical rows and columns which do not appear in any other matrices including empty
rows and columns.

4.2.3.4 The format of the encoding definition file

In the encoding definition file, the following data must be declared:

• The length of bit vectors: the length of the bit vectors containing the bit-encoded prop-
erties of lexical items can be declared by assigning a value to the variable $bitlength.
The value must be one of 8, 16, 24 or 32.
• Matrix selection: when the morphological analyzer identifies two possible morphs next

to each other, it is checked whether they are compatible (i.e. whether they satisfy each
other’s requirements). One part of the compatibility test involves checking whether the
value indexed by the right-hand-side matrix code of the left-hand-side morph (usually
a stem) and the left-hand-side matrix code of the right-hand-side morph (usually a
suffix) in the continuation matrix selected by the left-hand-side morph (the stem)
indicates compatibility or incompatibility. Different types of stems may select different
continuation matrices for the matrix check, i.e. nominal types of stems may use a
different matrix from verbal stems and other morphs (e.g. non-inflectible stems) may
specify still another matrix. The matrix is always selected by the left-hand-side morph
for each pair of morphs. The selection is made by a subset of the morph’s right-hand-
side bits and it must be unambiguous. Matrix selection is defined by assigning a
structure to the variable $mtxsel. The structure defines a matrix name to use for every
relevant combination of right-hand-side properties. Only bit-encoded right properties
may be used (requirements not). The expressions may not contain disjunction but
they must be disjunct (i.e. more than one of them may not be true at the same time;
this is needed for the unambiguous choice of a continuation matrix).
• The definition of categories: when a possible analysis for a word is being created by the

morphological analyzer, a finite state automaton (the word grammar) is used by the
analyzer to check whether the analysis being generated conforms to the morphosyntax
of the language. The atomic symbols used by the automaton are morpheme category
labels. The category assigned to a morph is determined by a subset of its right bit-
encoded properties (similarly to the case of matrix selection, as described above). In
addition to the formula which must be true for a morph to have a certain category,
it must be declared whether the morphs having that category should be searched for
from the left or the right end of the word (i.e. whether the lexical lookup direction is
left to right or right to left). For stems, the lexical lookup direction is left to right. For
inflections, it is normally right to left.
• The declaration of the encoding of properties: the encoding of properties is defined by

assigning a structure to the variable $Gprops. The structure that defines each property
may contain four fields:

ivmtxdim is the size of the matrix, SPR’s are sorted for both dimensions.

DOI:10.15774/PPKE.ITK.2015.013

4.2. Components of the framework 43

– field 0: right/left-side property, indicated by ’r’ or ’l’
– field 1: bits or empty (’’) for matrix-encoding, ’*’ if to be ignored, prefix dots or

num> to show bit position (’...1’ = ’3>1’) – the representation of bit vectors
is left-aligned here

– field 2: the domain of the property: bits must be set if this expression is true
(this is really only needed for left-hand-side x properties)

– field 3: entailments: use this to define complex properties

Field 0 (side) is mandatory, the other fields do not have to be present. The default
values are then: matrix encoding, no domain and no entailments.

4.2.4 The word grammar

In the Humor analyzer, non-local constraints on word structure are handled by a finite-state
automaton that has an extended set of binary state variables in addition to the main state
variable. In the grammar development framework, two methods are provided to support the
generation of a word grammar automaton.

$flags=
{
’vpfx’, ’x’, #verbal prefixes encountered
’no_vpfx’,’0’, #no verbal prefixes encountered
’1_vpfx’, ’1’, #one verbal prefix encountered
’sup’, ’x<2’, #superlative prefix encountered
’lcase’, ’x<3’, #case lowering suffix encountered
’ezer’, ’x<4’, #"ezer" (1000) encountered
’hyph’, ’x<5’, #hyphen encountered
...

};

...

NUM+N:
#sok+emelet+es
119sfx -> N2
NKENT_sfx -> END ?{!sup no_vpfx}
nder2 -> ADJ+N
hyphen -> HYPHEN ={hyph}

#Is expanded to
NUM+N:
119sfx -> N2
NKENT_sfx -> END ?{0.0}
nder2 -> ADJ+N
hyphen -> HYPHEN ={1.....}

Figure 4.11: Definition, usage and expansion of extended word grammar category macros

DOI:10.15774/PPKE.ITK.2015.013

44 4. A morphological grammar development framework

4.2.4.1 A macro expansion facility

The first method is based on a macro expansion facility that makes it possible for the creator
of the grammar to use mnemonic feature names instead of binary vectors for the specification
of constraints on extended state variables and the way these extended variables are to be
updated when passing an arc in the automaton. An example from the Hungarian description
is shown in Figure 4.11.

In addition, list macros can be used to specify sets of arcs in a single step after defining a
set of arc labels and the corresponding feature checking and feature setting operations, as
shown in the example in Figure 4.12 which is expanded by the system to the Humor word
grammar fragment in Figure 4.13.

#Definition of word grammar list macros
#inf=inflection
#Advdercmp=adverbial derivational suffix which licenses the superlative prefix
#inf requires sup to be false (no unlicensed superlative prefix is allowed)
@inf=([’inf’,’?{!sup no_vpfx}’],[’NKENT_sfx’,’?{!sup no_vpfx}’],
[’Advdercmp’,’?{no_vpfx} ={lcase lcase2 !sup}’]);

#some numerals and adjectives license the superlative prefix:
#these delete the sup flag, others do not
@sup=([’_sup’,’!sup’],[’_!sup’,’’]);

#compound word members increment the cmpdm flag, others do not
@cmp=([’_cmpd’,’cmpdm’],[’_!cmpd’,’’]);

@nstem2=(’nstem2’,’nstem12’);
@hyphlc=([’!hyph’,’hyph’],[’lcase’,’lcase2’]);

#Usage of word grammar list macros
#possible left compound member found
N1:
@inf[0] -> END @inf[1]
119sfx -> ADJ ?{@hyphlc[0]} ={@hyphlc[1]}
nder-119 -> N1 ?{@hyphlc[0]} ={@hyphlc[1]}
ndercmp -> ADJ ?{@hyphlc[0]} ={@hyphlc[1] !sup}
nder2_adj -> ADJ
nder2 -> N1
vder -> V ?{@hyphlc[0]} ={@hyphlc[1] !vpfx}
pfx_V -> N+P ={vpfx cmpd}
vstem@cmp[0] -> N+V ={@cmp[1] cmpd}
@nstem2@sup[0]@cmp[0] -> N2 LCA{lcase} ={@sup[1] @cmp[1] cmpd}
nstem2+inf@cmp[0] -> END ?{!sup no_vpfx} ={@cmp[1] cmpd}
nstem_uninfl_cmp2+dot -> DOTREQ ?{!sup no_vpfx} ={cmpd}
astem@sup[0]@cmp[0] -> N+ADJ LCA{lcase} ={@sup[1] @cmp[1] cmpd}

Figure 4.12: Definition and usage of word grammar list macros

4.2.4.2 Regular-expression-based word grammar definition

The other method relies on a regular-expression-based definition of the word grammar
automaton. This method was used in most of the more recent morphologies created in the
framework. I used the xfst language to define the word grammar categories and the finite-
state description of the word grammar itself. The automaton generated by xfst from these

DOI:10.15774/PPKE.ITK.2015.013

4.3. Lemmatization and word-form generation 45

N1:
inf -> END ?{0.0}
NKENT_sfx -> END ?{0.0}
Advdercmp -> END ?{0} ={1..........10..}
119sfx -> ADJ ?{0.....} ={1...}
119sfx -> ADJ ?{1.....} ={1..............}
nder-119 -> N1 ?{0.....} ={1...}
nder-119 -> N1 ?{1.....} ={1..............}
ndercmp -> ADJ ?{0.....} ={10..}
ndercmp -> ADJ ?{1.....} ={1...........0..}
nder2_adj -> ADJ
nder2 -> N1
vder -> V ?{0.....} ={1..0}
vder -> V ?{1.....} ={1.............0}
pfx_V -> N+P ={1.......1}
vstem_cmpd -> N+V ={11.......}
vstem_!cmpd ->N+V ={1........}
nstem2_sup_cmpd -> N2 ={11....0..} LCA{1...}
nstem12_sup_cmpd -> N2 ={11....0..} LCA{1...}
nstem2_!sup_cmpd -> N2 ={11.......} LCA{1...}
nstem12_!sup_cmpd -> N2 ={11.......} LCA{1...}
nstem2_sup_!cmpd -> N2 ={1.....0..} LCA{1...}
nstem12_sup_!cmpd -> N2 ={1.....0..} LCA{1...}
nstem2_!sup_!cmpd -> N2 ={1........} LCA{1...}
nstem12_!sup_!cmpd ->N2 ={1........} LCA{1...}
nstem2+inf_cmpd -> END ?{0.0} ={11.......}
nstem2+inf_!cmpd -> END ?{0.0} ={1........}
nstem_uninfl_cmp2+dot -> DOTREQ ?{0.0} ={1........}
astem_sup_cmpd -> N+ADJ ={11....0..} LCA{1...}
astem_!sup_cmpd -> N+ADJ ={11.......} LCA{1...}
astem_sup_!cmpd -> N+ADJ ={1.....0..} LCA{1...}
astem_!sup_!cmpd -> N+ADJ ={1........} LCA{1...}

Figure 4.13: Expansion of a word grammar fragment containing list macros in Figure 4.12

regular expressions is exported using the net xfst command and converted to the Humor word
grammar automaton format. The orthographies of the Uralic minority languages described
using the framework did not require the usage of extended state variables. Although there is
a limitation in the xfst version released with the book (Beesley and Karttunen, 2003) on
the size of the automaton that can be exported using the net command, the word grammar
automata for the languages I described were all far below this complexity limit. In addition
to the ease and flexibility provided by the fact that automata need not to be defined and
edited manually, another advantage of this solution is that the regular expressions can be
automatically filtered to remove edges from the automata that make it cyclic or are labeled
with clitics. The morphology generated using these limited acyclic word grammars can
be used to easily generate specific inflectional paradigms that can be compared to model
paradigms or manually checked by linguists, which is a nice feature facilitating checking and
debugging of the morphological grammar. Figures 4.14 and 4.15 show the xfst source of the
word grammar for the Udmurt morphological description and the Humor word grammar
automaton generated from it.

4.3 Lemmatization and word-form generation

There is an important difference between the way stem allomorphy (conditioned by an
attached suffix) and suffix allomorphy (conditioned by the stem to which the suffix is

DOI:10.15774/PPKE.ITK.2015.013

46 4. A morphological grammar development framework

define Digits [
(1dig [0dig|1dig]*) [1dig|10dig|fdig]
];

define Roman [
[[(roman_1000) (roman_100) (roman_10) (roman_1)] & $[?]]
];

define N_stem [
Nom_stem|
ltr|
[[[ltr abbrdot]* (Surname|[Surname | Nom_stem] SurnameSfx)] & $[?]]
];

define infl_stem [
N_stem|V_stem
];

define deriv [
Nom_deriv|V_deriv
];

define Word [
uninfl_stem|
Nom_stem_infl|
V_stem_infl|
[infl_stem|Digits|Roman] [deriv]* infl|
N_stem CxN infl|
NomPron infl
];

define clWord [
Word (clit)
];

regex [
clWord [hyph clWord]* (dot)
];

Figure 4.14: The xfst regex source of the Udmurt word grammar

attached, e.g. vowel harmony) must be handled by the morphological analyzer. The reason
for this is that the output of the analyzer must be usable for lemmatization purposes.
Lemmatization is the identification of the quotation (“uninflected”) form of a word form.
This means that all inflectional affixes must be removed from the word and the quotation
form of the rest (the lemma) must be produced. In contrast to inflectional affixes, most of
the derivational suffixes are normally considered to be part of the lemma. An example is
shown in Table 4.3.

surface form butá cská bb já tól nadrág ocská tól
lexical form (lemma) buta cska bb ja tól nadrág ocska tól
abstract lexical form buta LVcskA LA0bb LjA LtÓl nadrág LVcskA LtÓl
tag A DIM CMP PSS3 ABL N DIM ABL
lemma 1 butá cská bb
lemma 2 butá cska nadrág ocska
lemma 3 buta nadrág

Table 4.3: Examples of lemmatizing derived and inflected words

In order to produce the lemma correctly (whether or not we consider the comparative
and the diminutive suffixes part of the lemma) the lexical form of the final morph in the

DOI:10.15774/PPKE.ITK.2015.013

4.3. Lemmatization and word-form generation 47

s0:% s5: s10:
NomPron -> s1 FAM CxN -> s1 CxN -> s1
Nom_stem -> s2 FAM Nom_deriv -> s4 Nom_deriv -> s4
Nom_stem_infl -> fs3 FAM V_deriv -> s4 V_deriv -> s4
Surname -> s2 FAM abbrdot -> s13 infl -> fs3
V_stem -> s4 FAM infl -> fs3
V_stem_infl -> fs3 FAM fs11:$
fdig -> s4 s6: dot -> fs12
ltr -> s5 FAM Nom_deriv -> s4 hyph -> s0
roman_1 -> s4 V_deriv -> s4
roman_10 -> s6 infl -> fs3 fs12:$
roman_100 -> s7 roman_1 -> s4
roman_1000 -> s8 s13:
uninfl_stem -> fs3 FAM s7: CxN -> s1
1dig -> s9 Nom_deriv -> s4 Nom_deriv -> s4
10dig -> s4 V_deriv -> s4 Nom_stem -> s15 FAM

infl -> fs3 Surname -> s2 FAM
s1: roman_1 -> s4 V_deriv -> s4
infl -> fs3 roman_10 -> s6 infl -> fs3

ltr -> s16 FAM
s2: s8:
CxN -> s1 Nom_deriv -> s4 s14:
Nom_deriv -> s4 V_deriv -> s4 fdig -> s4
SurnameSfx -> s10 infl -> fs3 0dig -> s14
V_deriv -> s4 roman_1 -> s4 1dig -> s9
infl -> fs3 roman_10 -> s6 10dig -> s4

roman_100 -> s7
fs3:$ s15:
clit -> fs11 s9: SurnameSfx -> s10
dot -> fs12 Nom_deriv -> s4
hyph -> s0 V_deriv -> s4 s16:

fdig -> s4 abbrdot -> s13
s4: infl -> fs3
Nom_deriv -> s4 0dig -> s14
V_deriv -> s4 1dig -> s9
infl -> fs3 10dig -> s4

Figure 4.15: The Humor word grammar automaton for Udmurt

lemma must be concatenated to the surface form of the non-final morphs. Note that the
abstract lexical form does not look at all like the quotation form and thus it cannot be
used for lemmatization purposes. Note also that the lexical form used for lemmatization must
reflect suffix allomorphies triggered by the stem to which a derivational suffix is attached:
the diminutive suffix is consonant-initial (cska) after a vowel final stem (buta), but it assumes
a vowel-initial form (ocska) after a consonant-final stem (nadrág).

For correct lemmatization, the various surface allomorphs of a stem (where allomorphy is
triggered by the presence of a suffix) must refer to the same lexical form, while the surface
allomorphs of a suffix (where allomorphy is triggered by the stem on the left)v must have
different lexical forms. Note that applying the same principle to inflectional suffixes may
cause some aesthetic problems in the output. E.g. one of the returned segmented analyses
of the word form finnek ‘Finnish+dative’, finn[ADJ|nat]+ek[DAT], does not indicate that
the lexical form of the dative suffix is n-initial. Some users might find this annoying. An
analysis of the form finn[ADJ|nat]+nek[DAT]=ek could be preferable.

vincluding cases where the stem-triggered allomorphy manifests itself in vacillating behavior, e.g.
mágnes+nak/nek ‘magnet+dative’, olcsó+k/ak ‘cheap ones’

DOI:10.15774/PPKE.ITK.2015.013

48 4. A morphological grammar development framework

This contrast between the two kinds of allomorphy is also reflected in the representation of
morphemes in the level-2 lexicons. While stem allomorphs are represented as members of the
allomfs list within a single lexical entry (all of them referring to the same lexical form given
in the common seg feature of the entry), allomorphs of a suffix (in the case of stem triggered
allomorphy) are represented as independent entries, each of them having a different lexical
form stored as the value of its seg attribute. The example in Figure 4.16 illustrates this: it
shows the level-2 representation of the dative case marker suffix as four independent lexical
entries. (The -ak/-ek entries are used for stems ending in geminate n, e.g. finn ‘Finnish’.)

\$mrf = {
’humor’ => ’DAT’,
’tag’ => ’DAT’,
’allomfs’ => [
{
’rp’ => ’mcat_infl’,
’allomf’ => ’nak’,
’lp’ => ’FVL n_ini Cini’,
’lr’ => ’ VHB cat_Nom’

}
],
’seg’ => ’=nak’

};

\$mrf = {
’humor’ => ’DAT’,
’tag’ => ’DAT’,
’allomfs’ => [
{
’rp’ => ’mcat_infl’,
’allomf’ => ’nek’,
’lp’ => ’FVL n_ini Cini’,
’lr’ => ’ VHF cat_Nom’

}
],
’seg’ => ’=nek’

};

\$mrf = {
’humor’ => ’DAT’,
’tag’ => ’DAT’,
’allomfs’ => [
{
’rp’ => ’mcat_infl’,
’allomf’ => ’ak’,
’lp’ => ’FVL Vini’,
’lr’ => ’n_fin =Al VHB cat_Nom’

}
],
’seg’ => ’=ak’

};

\$mrf = {
’humor’ => ’DAT’,
’tag’ => ’DAT’,
’allomfs’ => [
{
’rp’ => ’mcat_infl’,
’allomf’ => ’ek’,
’lp’ => ’FVL Vini’,
’lr’ => ’n_fin =Al VHF cat_Nom’

}
],
’seg’ => ’=ek’

};

Figure 4.16: The level-2 entry of the Hungarian dative case marker suffix

4.3.1 The lemmatizer

The Humor ‘lemmatizer’ tool, built around the analyzer core, does more than just identifying
lemmas of word forms: it also identifies the exposed morphosyntactic features. In contrast
to the more verbose analyses produced by the core analyzer, compound members and
derivational suffixes do not appear as independent items in the output of the lemmatizer,
so, in contrast to analyses returned by the morphological analyzer, the internal structure
of words is not revealed, as shown in the example below. The analyses produced by the
lemmatizer are well suited for tasks like corpus tagging, indexing and parsing.

DOI:10.15774/PPKE.ITK.2015.013

4.3. Lemmatization and word-form generation 49

analyzer>fejetlenséget
fej%etlen%ség[S_N]=fejetlenség+et[I_ACC]
fej@etlen[S_A]=fejetlen+ség[D=N_PROP]+et[I_ACC]
fej[S_N]+etlen[D=A_NPRIV]+ség[D=N_PROP]+et[I_ACC]
fej[S_V]+etlen[D=A_VPRIV]+ség[D=N_PROP]+et[I_ACC]

lemmatizer>fejetlenséget
fejetlenség[N][ACC]

There are two implementations of the lemmatizer. One of them, called HumorLem, relies on
the tag format presented in Chapter 3 containing a prefix for morpheme category: S_ for
stems, P_ for prefixes, D=PoS_ for derivational suffixes resulting in a stem of category PoS and
I_ for inflectional suffixes. The other implementation, stem2005, uses a separate configuration
file for morpheme categories and other features. Both implementations merge derivational
affixes into the stem dynamically tagging the resulting stem with the resulting part of speech
category. They can properly handle the task of correctly lemmatizing and filtering special
Hungarian word constructions, such as words containing more than one suffixed stem where
the stem categories and the affixes must match each other e.g. jövök-megyek ‘I come and
go’vi, or words like ablak+mos@ó ‘window+clean@er’ even in cases where the programs are
parametrized not to consider the -Ó suffix to be part of the lemma. They are also capable of
filtering out analyses matching some regular expression, marking or filtering out productive
compounds, and returning full analysis in addition to the lemmatized analysis.

Furthermore, HumorLem has the following additional features:

• adding segmentation marks to the lemma (+: compound, @: derivational);
• optional warnings about stems being already included in the lexicon, equivalent and

different analyses, non-lexical forms, category mismatches w.r.t. the PoS tag given in
the input, no analysis etc.;

• filtering out a.) non-lexical forms if there are lexical forms, b.) any analyses in addition
to lexically given ones;

• treat a set of derivational affixes as if they were inflection;
• doing segmentation only, returning surface form for all segments.

These make HumorLem easily applicable to the task of checking and filtering word lists and
automatically adding segmentation marks to compounds and derived stems to be added to
the lexicon.

The following features of the stem2005 lemmatizer, on the other hand, make it especially
suitable for integration in other applications:

• it is multithread-safe;
• Optional caching of lemmatized analyses makes it fast;
• it can use a text-file-based inflecting dictionary to handle domain-specific words not

included in the Humor lexicon. The inflecting dictionary consists of lines of the following
format: [lemma] [similarly inflected lemma known to the MA] [optional PoS label].

viThis construction is called ikerszó ‘twin word’ in traditional Hungarian grammars.

DOI:10.15774/PPKE.ITK.2015.013

50 4. A morphological grammar development framework

4.3.2 Word form generation

The original Humor system lacked the capability of word form generation and the existing
lemmatizer was unable to correctly lemmatize certain non-trivial word constructions. These
shortcomings of the system had to be overcome so that the morphology could be integrated
in the English–Hungarian machine translation system, MetaMorpho (Novák et al., 2008)
and in several other applications. I solved these problems by extending the system so that
it can also be used as a morphological generator and implementing better lemmatization
algorithms, as described in 4.3.1.

The Humor generator is not a simple inverse of the corresponding morphological analyzer. One
requirement was that in the case of free alternation it should generate only the least marked
form, consequently the Hungarian morphological description was extended with information
expressing markedness. Marked forms are automatically removed during compilation from the
version of the database that is intended for word form generation in the machine translation
system, where the generation of a single preferred word form is required.

Another unique feature of the word form generator is that it can generate the inflected and
derived forms of any multiply derived and/or compound stem without explicitly referring
to compound boundaries or derivational suffixes in the input, even if the whole complex
stem is not in the lexicon of the analyzer. This is a useful feature in the case of languages
where morphologically very complex stems are commonplace. When generating inflected
(or derived) forms of a morphologically complex stem, one does not have to be concerned
whether the stem is included in the stem database. If the corresponding analyzer can analyze
it in any way, the generator will be able to generate its inflected forms correctly.

The generator produces all word forms that could be realizations of a given morpheme
sequence. The input for the generator is a lemma followed by a sequence of category labels
that express the morphosyntactic features the word form should expose.

The following examples show how the generator produces an inflected form of the derived
nominal stem félkarúság, which is not part of the stem lexicon, and the explicit application
of the derivational suffix (and the same inflectional suffix) to the absolute verbal root of the
word.

generator>félkarúság[N][ACC]
félkarúságot
generator>félkarú[A][_PROP][ACC]
félkarúságot

In some languages, there is considerable variation in suffix ordering (see e.g. Section 5.3), thus
I also created a version of the generator that has another useful feature: it does not assume
that the morphosyntactic features are properly ordered in the input, rather it considers them
a set.

DOI:10.15774/PPKE.ITK.2015.013

4.3. Lemmatization and word-form generation 51

4.3.2.1 Creating a morphological generator database

The fact that the morphological database contains both surface and lexical forms at the
same level of representation makes it easy to transform the analysis database to a flexible
generation database. When doing morphological analysis, the analyzer maps input surface
forms to lexical forms and category labels, which are three separate pieces of data for each
allomorph entry in the lexicon. When creating the word form generation database, each
entry of the analysis database is in general mapped to more than one generation entry. The
following mappings are performed:

1. The tag fields are all empty in the generator lexicon.

2. Prefix entries are treated as stem entries.

3. All entries are transferred with a surface form→ surface form mapping, unless the
entry is restricted to the generator. These entries make sure that the generator maps
each surface form that the corresponding analyzer accepts to itself.

4. The mappings from this point on (5.–8.) are only applied to entries not restricted to
the analyzer. This restriction makes sure that the generator does not generate marked
(dispreferred) forms.

5. Inflectional suffixes are transferred with an [inflection tag] → surface form map-
ping.

6. Stem entries are transferred with a lexical form[stem PoS tag] → surface form
mapping.

7. derivational entries are transferred with a lexical form[derivational tag] →
surface form mapping and a lexical form[stem PoS tag] → surface form map-
ping, where [stem PoS tag] is the resulting PoS category the application of the
derivational suffix results in.

8. For segmented polymorphemic entries, the mappings above are done for each morph
in the sequence with the restriction that partial surface forms are only produced for
entries not restricted to the generator.

DOI:10.15774/PPKE.ITK.2015.013

DOI:10.15774/PPKE.ITK.2015.013

5
Applications of the model to

various languages
After diving deep into the abyss of Hungarian morphology, join us on a time-travel adventure
including witch trials and a quick medical training. Finally, a linguistic excursion in the
Nordic area of the World, with a special tour of reindeer hunting.
¿Erizos?
Quoi? �Erizos�? ... Ah, �erizos�! Non.

Contents
5.1 The Hungarian analyzer . 54

5.1.1 Stem lexicon . 55
5.1.2 Suffix lexicon . 62
5.1.3 Rule files . 62

5.2 Adaptation of the Hungarian morphology to special domains 63
5.2.1 Morphological annotation of Old and Middle Hungarian corpora 64
5.2.2 Extending the lexicon of the morphological analyzer with clinical termi-

nology . 70
5.3 Examples from other Uralic languages 73

5.3.1 The Komi alanyzer . 77
5.4 Finite-state implementation of Samoyedic morphologies 78

5.4.1 Nganasan . 79

DOI:10.15774/PPKE.ITK.2015.013

54 5. Applications of the model to various languages

5.1 The Hungarian analyzer

Of the computational morphologies I implemented using the formalism described in this
thesis, the most elaborate and extensive one is the morphological database created for
contemporary Standard Hungarian. I this subchapter, I present the main characteristics of
this morphological description, also illustrating specific constructs of the formalism.

The present state of the morphological database for Standard Hungarian consists of the
parts shown in Table 5.1.

stem lexicons lemmas/lexemes allomorphs
generic vocabulary 95811 141718

original lexicon extended 75132 105473
closed-class stems (pronouns, numerals,
etc.)

744 3675

from dictionaries and corpora 19935 32570
terminological lexicons 110129 178324

Geographical and human names 40262
Nuclear technology 911
Financial/Administration 4736
English 1920
Medical 40813
Defense 21487

all 205940 320042
of that compounds 89415 126728
polymorphemic/suffixed 7720

suffix lexicon lexemes allomorphs
all 283 12041
polymorphemic 10959

rule files operations rules lines
stem rules file

45 declarations 520 rules 2074 lines
596 allmorph generating operations 220 stem allomorphy rules

suffix rules file 50 rules 233 lines
86 allmorph generating operations 34 allomorphy rules

word grm states transitions flags
word grammar automaton

47 states 602 transitions 20 flags

categories properties
encoding definition of features and word grammar categories

102 word grammar categories 102 vector-encoded properties
187 matrix-encoded properties

Table 5.1: Components of the Hungarian morphological description

DOI:10.15774/PPKE.ITK.2015.013

5.1. The Hungarian analyzer 55

5.1.1 Stem lexicon

The core of the stem lexicon is a resource that was the lexicon of the original Humor
morphological analyzer. It contained about 69500 lemmas (with 93345 allomorphs, 110
inflectional + 41 derivational suffix morphemes and 4887+793 suffix sequence allomorphs).
The original lexicon contained morphological information in the format that the Humor
analyzer uses: binary vectors and continuation matrices. The information contained in the
binary vectors was decoded and converted into a human-readable feature representation. The
redundant features were deleted and inconsistencies and errors in the database were manually
corrected including category tags and erroneous features. When doing this task, and during
the whole process of rewriting the morphology as detailed below, I mainly relied on my own
competence and on authoritative dictionaries. Later, however, when the morphology was
used for different tasks by myself and other people, such as machine translation and corpus
annotation, I needed to fine-tune the grammar and revise my initial decisions to match data
encountered in the corpora. This has been an iterative process that spanned over a decade.

Allomorphs belonging to the same lemma were clustered and, based on the allomorphy
patterns, a stem alternation feature was assigned to irregular alternating stems. Regular
stem alternations, like stem final vowel lengthening (VZA) or hyphen insertion (-), are
introduced by the stem alternation rules and need not to be included in the lexicon. Table 5.2
shows the lexically determined stem alternation classes that were introduced. (The + at the
end of some codes (VZA, SVS, vshrt) indicates that the base allomorph of the stem has a
full paradigm: i.e. it may also take the suffixes that normally trigger the alternation, e.g.
sárt, sáros or sarat, saras: SVS+.)

In addition to these, stem alternation classes for inflected pronouns and words containing
possessive suffixes in the middle of the word (stemalt:poss1, L indicates lowering here) or
possessive suffixes in agreement at multiple positions (stemalt:poss2) were introduced:

szavL=a+járás=a[FN];stemalt:poss1;
hı́r=e-+hamvL=a[FN]; zarte:e;stemalt:poss2;
kény=e-+kedv=e[FN]; zarte:eee;stemalt:poss2;

E.g. stemalt:poss1 generates the forms szavamjárása ‘my favorite words’, szavadjárása
‘your favorite words’, szavajárása ‘his/her favorite words’ etc.; stemalt:poss2 generates
h́ırem-hamvam ‘no news of me’, h́ıred-hamvad ‘no news of you’, h́ıre-hamva ‘no news of
him/her/it’ etc.

Moreover, polymorphemic lexical entries were segmented. The following segmentation marks
were introduced:

• +: compound boundary,
• @: productive derivational suffix boundary,
• %: unproductive derivational suffix boundary,
• =: inflectional suffix boundary,
• #: morpheme boundary in foreign stems.

DOI:10.15774/PPKE.ITK.2015.013

56 5. Applications of the model to various languages

stemalt interpretation example
- orthographic variation in abbreviations and foreign

words (a hyphen is added when the stem is suffixed)
ABC → ABC-hez
Bretagne → Bretagne-ban

VZA(+) vowel-zero alternation (the last (mid) short vowel
of the stem disappears in certain suffixed forms)

lélek → lelkem,
bokor → bokrot,
fészek → fészken,

SVS(+) stem vowel shortening (the last long vowel of the
stem is shortened in certain suffixed forms)

nyár → nyarat

vins v insertion (in some long-vowel-final stems: a stem-
final v appears in certain suffixed forms)

mű → műve

vshrt(+) v insertion and vowel shortening (in some long-
vowel-final stems: a stem-final v appears and the
stem vowel is shortened in certain suffixed forms;
vins and vshrt is triggered by the same suffixes)

tó → tavon,
ló → lovon

vVST(+) vowel-v alternation (in some short u/ü-final stems:
the stem-final vowel alternates with v in some
suffixed forms: the words in this group do not
exhibit a uniform pattern concerning the suffixes
that trigger the alternation)

falu → falvak

UDEL final ú deletion (in certain suffixed forms, the mag
→ magv alternation is triggered by the same suf-
fixes)

borjú → borjak,
mag → magvak

PVS ”possessive vowel shortening” (the stem-final ó/ő is
shortened to a/e in some suffixed forms: the words
in this group do not exhibit a uniform pattern
concerning the suffixes that trigger the alternation)

ajtó → ajtaja

KST kinship terms (the stem-final short low vowel dis-
appears before the 3sg possessive marker -ja)

apa → apja

SPEC other special alternations e.g. száj → szám
lex all allomorphs are explicitly given in the stem

lexicon
e.g. kend → kendtek

Table 5.2: Stem alternation codes used in the Hungarian description

Since the morphological formalism includes an inheritance mechanism that copies features
of compound stems from the features of their final member by default, redundant features
of compounds were also deleted. The inheritance mechanism is blocked by the presence of
explicit features. This makes it possible for exceptional compounds to have a morphological
behavior that deviates from that of the standalone variant of the final compound member.
An additional mechanism makes it possible to have all compounds ending in a specific word
to behave in an identical manner, which, however, is different from the behavior of the
standalone non-compound stem. In some cases, this has been achieved as part of the rule
system (e.g. for some members of some closed stem alternation classes, e.g. szó ‘word’).
This can also be achieved by defining a stem which only provides features for the inheritance
mechanism, but is not included in the compiled morphology as a standalone stem. This

DOI:10.15774/PPKE.ITK.2015.013

5.1. The Hungarian analyzer 57

mechanism has primarily been used to describe compound adjectives or geographical names,
where the final compound member is often not a standalone word, and the compounding
construction is not fully productive.

Entries of this type are marked by **... as shown in the example below. The presence of
certain features does not block inheritance, e.g. the semantic isa feature in the examples, or
the phonemic zarte ‘mid-e’ feature used to indicate whether the e’s in the stem are mid or
low in the dialects distinguishing the two.

**...forma[MN|NM];rp:ESS_Vn;
mag=a+forma[MN|NM];
olyan+forma[MN|NM];
ilyen+forma[MN|NM]; zarte:e;

**...falv=a[FN];rr:!PL !POSS;++!falv+i[IKEP];cat:Adj;rp:LOW;
Kerka+falv=a[FN];isa:település; zarte:ë;
Duna+falv=a[FN];isa:település;
Klára+falv=a[FN];isa:település;

**...túl[FN];rp:=jA;
Duná=n+túl[FN];
Dél-+(Duná=n+túl[FN];
Tiszá=n+túl[FN];
**...szárny@ú[MN];rp:%ESS_Vn;
fedel@es+szárny@ú[MN&FN]; zarte:ëee;
egyen@es+szárny@ú[MN&FN]; zarte:ëeë;
pikkely@es+szárny@ú[MN&FN]; zarte:ëë;
hártyá@s+szárny@ú[MN&FN];
recé@s+szárny@ú[MN&FN]; zarte:e;

Certain parts or the whole of the lexical representation of a stem may be explicitly excluded
from inheritance or inheritance can be blocked by using the no inh feature. E.g. in the
example below, családapa ‘family man’ does not inherit features of apa ‘father’, and the
comparative form nyugatabbi ‘more to the west’ of nyugati ‘western’ is not inherited by
nyugati-final compound adjectives.

apa[FN];stemalt:KST;
bérma+apa[FN];
család+apa[FN];no_inh:;
déd+apa[FN];
öreg+apa[FN]; zarte:e;
kis+apa[FN];no_inh:;

nyugat@i[MN];rp:ESS_Vn;no_inh:;++!nyugat+abb@i[FOK];cat:Adj;rp:LOW;gp:sup;
vad+nyugat)@i[MN];
nap+nyugat)@i[MN];
közép+nyugat)@i[MN];

5.1.1.1 Types of features

The lexicon includes only unpredictable features of stems. The two properties every stem
has are the lemma and the category tag. In addition, irregular pronunciation can be defined
using the phon feature. Stems belonging to closed alternation classes have the stemalt
feature. E.g. the stems apa ‘father’ and anya ‘mother’ belong to stemalt:KST (kinship
term) . Some semantic properties of words may also be included in the lexicon using the
isa feature, such as the type of entity denoted by a proper name, e.g. isa:település
(settlement). Some orthographical rules and certain suffixes are sensitive to this information,

DOI:10.15774/PPKE.ITK.2015.013

58 5. Applications of the model to various languages

e.g. geminate-final given names are suffixed using a hyphen when a suffix starting with the
same letter is attached. This is not so for other geminate-final words. In addition, the suffix

–né can only be attached to surnames, male given names and names of certain professions. In
addition to the features mentioned above, exceptional lexical items may also contain binary
properties and restrictions. These are defined using the rp, lp, rr, lr and gp features:

*java takes only possessive endings, is a lowering stem,
*and licenses the superlative prefix:
jav=a[FN];no_inh:;rr:POSS;rp:LOW;gp:sup;
*térd has j-less possessive forms, is a lowering stem:
térd[FN];rp:=A;rp:LOW;
*3 sg possessive: j-initial, plural of possessives: j-less:
barát[FN];rp:=jA&=Ai;

Certain properties indicate that a certain suffix morpheme or an identically behaving group
of suffix morphemes can be attached to the given stem allomorph. The name of properties of
this type begins with a hyphen (e.g. -i, -kor, -Om), as shown in the following examples:

vacsora[FN];rp:-kor; *takes the temporal -kor suffix
lejj@ebb[HA];rp:-i; zarte:ëe; *takes the -i adjectivizer suffix
*este does not take the -i adjectivizer suffix
*the corresponding form is esti, which is a lowering adjective.
este[FN];rp:!-i; zarte:ee;++!est+i[IKEP];cat:Adj;rp:LOW; zarte:e;
*1sg subject may be marked by the suffix -Om for many -ik-final verbs:
öreg@ed=ik[IGE]; rp:-Om; zarte:eë;stemalt:szd;

Another group of properties indicates in what form a suffix or a group of suffixes can be
attached to the given stem (or stem allomorph). The name of properties of this type begins
with an =. See the examples below.

*possessive is either j-initial or j-less, optionally lowering,
*accusative is zordon+t, essive modalis is -Ul

zordon[MN];rp:=A&=jA&LOW+ =t;rp:ESS_Ul;
él[IGE];rp:=tAt; *causative is él+tet

The presence of a property of the latter type implies the presence of a corresponding
hyphen-initial property. These implicatures are defined in the encoding definition file, as
follows:

’-jA’ =>[’r’,’’,’’], #the stem takes the 3rd person possessive suffix
’=jA’ =>[’r’,’10>1’,’’,’-jA’], #the form of the 3rd person possessive suffix
’=A’ => [’r’,’’,’’,’-jA&!=jA’],
’-jAi’ =>[’r’,’’,’’], #the stem takes the plural possession suffixes
’=Ai’ =>[’r’,’11>0’,’’,’-jAi&Cfin’], #the form of the plural possession suffixes
’=jAi’ =>[’r’,’’,’’,’-jAi&!=Ai’],
’=i’ =>[’r’,’’,’’,’-jAi&!Cfin&!ifin&!=jAi’],
#possible combinations:
#jA i, jA jAi, A Ai, jA Ai, jA jAi A Ai

DOI:10.15774/PPKE.ITK.2015.013

5.1. The Hungarian analyzer 59

5.1.1.2 Vacillating behavior

Certain stems can be combined with more than one allomorph of a certain suffix morpheme.
One of the most frequent example of this in Hungarian is vacillating vowel harmony. This
harmony type may only apply to front harmonic stems containing at least one back vowel
which is followed by a sequence of neutral (e,é,i,́ı) vowels. Vacillating vowel harmony is
marked in the lexicon using the property VHV (vowel harmony: vacillating). In the case
of a subset of vacillating stems, one of the harmonic variants is preferred. Such items are
marked by the features VHVB (back harmony preferred) and VHVF (front harmony preferred).
Vacillating stems having a preferred harmony variant take vowel-initial suffix allomorphs
only in the preferred harmonic form, while consonant-initial suffixes may alternate (klarinét:
-os/-n[ae]k, mágnes: -es/-n[ae]k). For items marked by VHVB+ or VHVF+, all suffixed forms
can be either front or back, but one of them is marked as preferred.

gálic[FN];rp:VHB;*back harmony
október[FN]; zarte:ë;rp:=A;rp:VHFU;*unrounded front harmony
kupec[FN]; zarte:ë;rp:VHV;*vacillating harmony
Marcell[FN];rp:=jA;rp:VHVF+; zarte:ë;*front harmony preferred, all forms allowed

Another example are stems taking the possessive suffix both in its j-initial and j-less forms.
These can be marked by either including both the property =A and =jA in the rp feature
or by entering the property =*j0A. For entries like that, a preferred stem allomorph having
only the property =A and a dispreferred allomorph having only the property =jA is generated.
The allomorphs are generated by the following generic allomorph duplication block in the
stem rule file based on the =*0 notation.

#split allomorphs having specifications like =A0lAk
#to one having =lAk and another having =AlAk
dup(rp:/=[ˆ &]+0/)
{
#the preferred version
rp:s/=*[ˆ &]+0|=([ˆ &]+)0[ˆ *&]**/=$1/g;;;
#the dispreferred version
!restr:/ˆg/&&rp:s/=*([ˆ &]+)0|=[ˆ &]+0([ˆ *&]*)*/=$1$2/g;;restr:a;
}
#remove =* and -* properties in generator, remove * in analyzer
dup(rp:/[=-][ˆ0\s|()]**[ˆ0\s|()]+(?:\s+|$)/)
{
#remove =* and -* properties in generator
!restr:/ˆa/&&rp:s/[=-][ˆ0\s|()]**[ˆ0\s|()]+(?:\s+|$)//g;;restr:g;
#remove * in analyzer
!restr:/ˆg/&&rp:s/([=-][ˆ0\s|()]*)*([ˆ0\s|()]+(?:\s+|$))/$1$2/g;;restr:a;
}

The dispreferred allomorph is filtered out from the generator lexicon. The same applies
to entries with vacillating harmony, allomorphs of which are generated by the following
allomorph duplication code:

DOI:10.15774/PPKE.ITK.2015.013

60 5. Applications of the model to various languages

###split underspecified allomfs
map(@allomfs)
{
#split vacillating stems
#VHV:balett -[oe]t, n[ae]k
#VHVF:mágnes -es, n[ae]k
#VHVB:klarinét -ot, n[ae]k
#restrict dispreferred form to analyzer

dup(VHV[FB]?\+?)
{
#back preferred
rp:s/VHVB\+?/VHB/;;;
#front unrounded preferred
rp:s/VHVF\+?/VHFU/;;;
#for VHV: the value calculated in $vhrm used as preferred form
$vhrm ne ’VHV’&&rp:s/VHV(?= |$)/$vhrm/;;;
#VHFU if $vhrm also contains VHV
$vhrm eq ’VHV’&&rp:s/VHV(?= |$)/VHFU/;;;
#back harmony is dispreferred unless $vhrm is VHB
$vhrm ne ’VHB’&&rp:s/VHV(?= |$)/VHB/&&!restr:/ˆg/;;restr:a;
#front harmony is dispreferred if $vhrm is VHB
$vhrm eq ’VHB’&&rp:s/VHV(?= |$)/VHFU/&&!restr:/ˆg/;;restr:a;
#front unrounded only for consonant-initial suffixes
rp:s/VHVB(?!\+)/VHFU/&&!restr:/ˆg/;(Cini|comp2);restr:a;
#back only for consonant-initial suffixes
rp:s/VHVF(?!\+)/VHB/&&!restr:/ˆg/;(Cini|comp2);restr:a;
#the dispreferred variants only in the analyzer
rp:s/VHVB\+/VHFU/&&!restr:/ˆg/;;restr:a;
rp:s/VHVF\+/VHB/&&!restr:/ˆg/;;restr:a;
}
...
}

5.1.1.3 Irregular forms

In addition to entries marked as belonging to some closed stem alternation class, some entries have
irregular suffixed forms declared in the stem lexicon. Irregular forms which are to be suffixed further,
e.g. ones containing derivational suffixes are introduced following a ++! mark, while irregular case
suffixed forms generally follow a ++. A form introduced using the ++! mark undergoes all stem
allomorphy rules, while a form introduced using the ++ mark is simply included among the allomorphs
of the given stem. See the examples below.

este[FN];rp:!-i; zarte:ee;++!est+i[IKEP];cat:Adj;rp:LOW; zarte:e;
kicsi[MN];++!kis+ebb[FOK];cat:Adj;gp:sup; zarte:e;
idén[FN];cat:N;rr:CASE !0mrf;++!idén+[TMP_INL];cat:Adv;
jó[MN];rp:!grad ESS_no -kor;++!jo+bb[FOK];cat:Adj;

rp:-kor ESS_Vn VHB LOW;++!jó+l[ESSMOD];rp:cat_Adv;

Vác[FN];isa:település;++Vác+ott[INL];rp:mcat_stem+infl;
szabad[IGE];cat:X;rp:mcat_stem+infl;++szabad+[e3];++szabad+jon[Pe3];

++szabad+na[Fe3];++szabad+ott[Me3];
szomj[FN];rp:LOW;no_inh:;++szomj+ot[ACC];rp:mcat_stem+infl;
gát@ol[IGE];++gátl;rp:-Ó -Ás;

There are 15 irregular verbs which are marked by the property irreg. The allomorphy patterns
of these verbs are defined in the stem allomorphy rule file similarly to those of entries marked as
belonging to a named stem alternation class (see the example paradigms below). Even some stems of
the latter type exhibit idiosyncratic behavior characterizing only a single lexical entry, e.g. szó and tó
in the stem alternation class vshrt (v-insertion and vowel shortening).

DOI:10.15774/PPKE.ITK.2015.013

5.1. The Hungarian analyzer 61

##verbs marked as irregular
if(irreg)
{
#nincs
root:/(ˆ|[${cmpsep}])[ns]incs$/
+L;; -03 =AnAk
+L/$/en/;; -03
#megy
root:/(ˆ|[${cmpsep}])m[ëe]gy$/
+L;; -03 -Ok -Unk =OgAt
#më
+L/gy$//;; -hAt
#mën
+L/gy$/n/;; -vA =j -Ás -Ó =nA =nAk =tOk =tAm =t -tAbAn
+L//$1mé/;; =sz
+L//$1mé+gy[e2]/;restr:a; mcat_stem+infl;#unless($generator)

-ik-final verbs belonging to the sz-d or sz-d-v alternation class have two possible lemmas, an sz or a
d/z-final one. The following fragment of the rule file describes their behavior:

elsif(stemalt:szdv?)
{
#defectives: -Agsz,-Aksz,-Alsz,gyarapsz...
#dsz(v) verbs
;;irreg;
;;gseg:$seg;
seg:s/[aeou]?[dz](?==)/sz/;;;
if(stemalt:szdv)
{
#esküszik,alkuszik
root:/(CC[uü])d$/
+L;;=Ott =*Ol =nA =nAk =tOk =tAm =lAk =d =j =jUk -hAt -vA -*Ás -*Ó -*ik -*Ok -*Unk -AndÓ

-AtlAn =tAt
+L//$1v/;;-Ás -Ó;
#
root:/(CC[uü])z$/
+L;;=Ott =*Ol =nA =nAk =tOk =tAm =lAk =d =j =jUk -hAt -vA -*Ás -*Ó -*ik -*Ok -*Unk -AndÓ

-AtlAn =tAt
+L//$1v/;;-Ás -Ó;
#igyekezik...
root:/${V}z$/
+L;;=Ott =*Ol =nA =nAk =tOk =tAm =lAk =d =j =jUk -hAt -vA -*Ás -*Ó -*ik -*Ok -*Unk -AndÓ

-AtlAn =tAt
+L//v/;;-Ás -Ó;
#növekedik...
root:/${V}d$/&&stemalt:szdv
+L;;=Ott =*Ol =nA =nAk =tOk =tAm =lAk =d =j =jUk -hAt -vA -*Ás -*Ó -*ik -*Ok -*Unk -AndÓ

-AtlAn =tAt
+L//v/;;-Ás -Ó;
}
else
{
#emlékezik...
root:/${V}z$/
+L;;=Ott =*Ol =nA =nAk =tOk =tAm =lAk =d =z =zUk -hAt -vA -Ás -Ó -*ik -*Ok -*Unk -AndÓ

-AtlAn =tAt
#melegedik...
root:/${V}d$/
+L;;=Ott =*sz =nA =nAk =tOk =tAm =lAk =d =j =jUk -hAt -vA -Ás -Ó -*ik -*Ok -*Unk -AndÓ

-AtlAn =tAt
}
{
#the -sz stem of dsz verbs: esküszik,alkuszik
root:/(CC[uü])[dz]$/
+L//$1sz/;;-ik -Ok -Om -Unk =Ol =*nAk =*tOk;
#the -sz stem of all other dsz verbs: verekszik, kisebbszik...
#root:/(${V_}$C)$V[dz]$/
root:/$V[dz]$/
+L//sz/;;-ik -Ok -Om -Unk =Ol =*AnAk =*OtOk;
}
}

These lexical items only have a single dik/zik-final entry in the stem lexicon, however, they are

DOI:10.15774/PPKE.ITK.2015.013

62 5. Applications of the model to various languages

Symbol Interpretaion Symbol Interpretaion
A a/e (bAn) V a/e/(ë)/o/ö/0 (suffix-initial lowerable

linking vowel; Vt, Vk, Vs etc.)
Á á/é (nÁl) Q o/ö (used only for the implementation of

the behavior of V)
O o/e(ë)/ö (hOz) O0, A0,

U0
unstable suffix-initial vowel (O0n, U0nk,
A0cskA etc.)

Ó ó/ő (bÓl) B back harmony (hı́dB, hidBL)
U u/ü (jUk) v0 underspecified consonant slot (v-

assimilation): v0Al, v0Á
Ú ú/ű (jÚ) L+ (L before boundary) suffix vowel lowering

stem (házL)
+L (L after boundary) stem final vowel length-

ening suffix (+LbAn)

Table 5.3: The interpretation of special characters in the value of the phon feature in the Hungarian
description:

marked by either the stemalt:dsz / stemalt:dszv or the stemalt:szd/stemalt:szdv feature
depending on whether the d/z-final or the sz-final form is preferred. For entries having the
feature stemalt:szd/stemalt:szdv a szik-final lemma is generated, while those marked by
stemalt:dsz/stemalt:dszv retain their dik/zik-final lemma.

5.1.2 Suffix lexicon

The Hungarian suffix lexicon has a tabular format. Each item has a tag, a phonemic form, a suffix
alternation class, a morphological category, and additional properties and requirements. Allomorphies
belonging to each suffix alternation class are defined in the suffix alternation rule file.

The phonological form of suffixes may contain archi-phonemes that define harmonic behavior. The
harmonic variants of suffixes and inflectional suffix sequences which appear in the Hungarian level-2
suffix lexicon file are generated using a two-level Kimmo-style transducer augmented with some
regular-expression-based substitution expressions. Table 5.3 explains the special characters that may
appear in the value of the phon feature in the Hungarian description. They are used to represent
harmonic vowels and some special morphophonological properties of morphs that may affect the form
of the following suffix or preceding stem.

Nominal inflectional suffixes belong to one of the morphological categories (the possible values of the
mcat feature) described in Table 5.4. The mcat feature of derivational suffixes marks the category
of stems to which the suffix can be attached and the category of the suffixed form. E.g. -beli is an
N>Adj suffix.

5.1.3 Rule files

The stem allomorphy rule file consists of 2074 lines of code. The declaration of string variables mainly
used in regular expressions is followed by the declaration of list variables, which are used for the
generation of inflected forms of pronouns and postpositions. The file contains about 520 rules, 220
of which are allomorphy rules consisting of 596 individual allomorph generation operations. The

DOI:10.15774/PPKE.ITK.2015.013

5.2. Adaptation of the Hungarian morphology to special domains 63

Value Interpretation
POSS Possessive marker that may be followed by the familiar plural marker -ék
PL Plural or plural possessive marker which may not be followed by –ék
FAM Familiar plural –ék
ANP Anaphoric possessive marker –é and –éi
CASE Case ending
KEPP the suffixes -képp and -képpen
INFL Verbal inflection
Pos1>PoS2 Derivation from PoS1 to PoS2

Table 5.4: Possible values of the mtag feature in the Hungarian suffix lexicon file

rest of the rules add morpheme-level or allomorph-level properties and requirements to morpheme
representations coming from the lexicon or to already generated allomorphs.

The suffix allomorphy rule file is less complex with just 233 lines of code and 50 rules, of which 34
are allomorphy rules (conditioned mainly on the value of the sfxalt feature in the suffix lexicon)
containing 86 allomorph generation operations.

The syntax and semantics of rules are described in detail in the Appendix with examples for each
construction. Some more examples are included in Section 5.1.1.

5.2 Adaptation of the Hungarian morphology to spe-
cial domains

Language use in special domains and language variants may deviate in a significant manner from what
one encounters in the standard written dialect of the language. The morphological model needs to be
adapted when texts from such a special language variant are to be analyzed. In this subchapter, two
such examples are described, demonstrating the adaptibility of the analyzer built using the framework
described earlier. First, an adapted model of Hungarian morphology is introduced that is applicable
to the annotation of Old and Middle Hungarian texts. The adapted analyzer can handle extinct
morphological constructions as well as dialectal variants missing from Modern Standard Hungarian.
The other example is an adaptation of the Hungarian morphology to the clinical domain, where the
domain-specific terminology, which includes a vast amount of word forms of foreign origin, had to be
treated in a robust manner.

Since in general, a disambiguated morphological analysis is needed in practical natural language
processing tasks, the analyzer is seldom applied on its own. Rather, it is used as a component of
a morphological tagging tool, generally built around a part-of-speech tagger. The performance of
the computational morphology can thus be evaluated by measuring the quality of a morphological
tagger tool solving this higher-level task, and specifically to what extent the integrated morphology is
responsible for the quality of the combined morphological tagging tool. So, in order to demonstrate the
utility of the adapted morphologies, we evaluate the tagging performance of a combined morphological
tagging tool with a stand-alone data-driven tagger in these domains.

DOI:10.15774/PPKE.ITK.2015.013

64 5. Applications of the model to various languages

5.2.1 Morphological annotation of Old and Middle Hungarian
corpora

In order to be able to automatically analyze texts in Old and Middle Hungarian, the Humor
morphological analyzer was extended to be capable of analyzing words containing morphological
constructions, suffix allomorphs, suffix morphemes, paradigms or stems that existed in Old and
Middle Hungarian but are no longer used in present-day Hungarian. A disambiguation system was
also developed that can be used for automatic and manual disambiguation of the morphosyntactic
annotation of texts. In addition, I created a corpus manager with the help of which the annotated
corpora can be searched and maintained. The adapted morphology and the automatic and manual
annotation tools were used in two parallel OTKA projectsi of the Research Institute for Linguistics
of the Hungarian Academy of Sciences since one of the major aims of these projects was is to
create morphologically analyzed and searchable corpora of texts from the Old Hungarian and Middle
Hungarian period.

5.2.1.1 Preprocessing

The overwhelming majority of extant texts from the Old Hungarian period are codices, mainly
containing texts translated from Latin. The texts selected for the Corpus of Informal Language Use,
however, are much closer to spoken language: minutes taken at court trials, such as witch trials, and
letters sent by noblemen and serfs. In the case of the latter corpus, metadata belonging to the texts
are also of primary importance, as these make the corpus fit for historical-sociolinguistic research.

All the texts selected for our corpora were originally hand-written. However, the basis for the digitized
version was always a printed edition of the texts published earlier. The printed texts were scanned
and converted to a character stream using OCR. This was not a trivial task, owing to the extensive
use of unusual characters and diacritics. In the lack of an orthographic norm, each text applied a
different set of characters; moreover, the printed publications used different fonts. Thus the only
way to get acceptable results was to retrain the OCR programii for each text from scratch since the
out-of-the-box Hungarian language and glyph models of the software did not fit any of the texts.
Subsequently, all the automatically recognized documents had to be manually checked and corrected,
but even so, this workflow proved to be much faster than attempting to type in the texts.

The next step of preprocessing was normalization, i.e. making the texts uniform regarding their
orthography and phonology. Normalization, which was done manually, meant modernization to
present-day orthography. Note that this also implies differences in tokenization into individual
words between the original and the normalized version. During this process, which also included
segmentation of the texts into clauses, certain phonological dialectal variations were neutralized.

Morphological variation, however, was left untouched: no extinct morphemes were replaced by their
present-day counterparts. Extinct allomorphs were also retained unless the variation was purely
phonological. In the case of potential irresolvable ambiguity, the ambiguity was preserved as well,
even if it was due to the vagueness of the orthography of the era.

An example of this is the non-consistent marking of vowel length. The definite and indefinite 3rd

person singular imperfect of the frequently used word mond ‘say’ was mondá ∼ monda respectively,
but accents are often missing from the texts. Furthermore, in many texts in the corpus, these two
forms were used with a clearly different distribution from their present-day (3rd person singular
past) counterparts mondta ∼ mondott. Therefore, in many cases, neither the orthography, nor the

iHungarian historical generative syntax [OTKA NK78074], and Morphologically analysed corpus of Old and
Middle Hungarian texts representative of informal language use [OTKA 81189]

iiI used FineReader, which makes full customization of glyph models possible, including the total exclusion
of out-of-the-box models.

DOI:10.15774/PPKE.ITK.2015.013

5.2. Adaptation of the Hungarian morphology to special domains 65

usage was consistent enough to decide unambiguously how a certain appearance of monda should be
annotated concerning definiteness.

Another example of inherent ambiguity is a dialectal variant of possessive marking, which is very
frequent in these corpora and often neutralizes singular and plural possessed forms. For example,
cselekedetinek could both mean ‘of his/her deed’ or ‘of his/her deeds’, which in many cases cannot
be disambiguated based on the context even for human annotators. Such ambiguous cases were
annotated as inherently ambiguous regarding number/definiteness etc.

Some of the Old Hungarian codices (Jókai (Jakab, 2002), Guary (Jakab and Kiss, 1994), Apor (Jakab
and Kiss, 1997), and Festetics (Jakab and Kiss, 2001)) were not digitized using the OCR technique
described above, as these were available in the form of historical linguistic databases, created by
Jakab László and his colleagues between 1978 and 2002. However, the re-creation of the original texts
out of these lexical databases was a difficult task. The first problem was that the locus of word token
occurrences only identified codex page, column and line number in the databases, but there was no
information concerning the order of words within a line. The databases also contain morphological
analyses, but they were encoded in a hard-to-read numerical format, which occasionally was incorrect
and often incomplete. Furthermore, the categorization was in many respects incompatible with my
system. However, finally I managed to re-create the original texts. First the order of words was
manually restored, and incomplete and erroneous analyses were fixed. Missing lemmas were added
to the lexicon of the adapted computational morphology, and the normalized version of the texts
was generated using the morphology as a word form generator. Finally, the normalized texts were
reanalyzed to get analyses compatible with the annotation scheme applied to other texts in the
corpora.

5.2.1.2 The morphological analyzer

The lexicon of lemmas and the affix inventory of the program were augmented with items that have
disappeared from the language but are present in the historical corpora. Just the affix inventory had
to be supplemented with 50 new affixes (not counting their allomorphs).

Certain affixes have not disappeared, but their productivity has diminished compared to the Old
Hungarian era. Although words containing these morphemes are still present in the language, they
are generally lexicalized items, often with a changed meaning. An example of such a suffix is –At,
which used to be a fully productive nomen actionis suffix. Today, this function belongs to the suffix
–Ás. The (now lexicalized) words, however, that end in –At mark the (tangible) result of an action (i.e.
nomen acti) in present-day standard Hungarian, as in falazat ‘wall’ vs. falazás ‘building a wall’.

One factor that made adaptation of the morphological model difficult was that there are no reliable
accounts on the changes of paradigms. Data concerning which affix allomorphs could be attached
to which stem allomorphs had to be extracted from the texts themselves. Certain morphological
constructions that had already disappeared by the end of the Old Hungarian era were rather rare
(such as some participle forms) and often some items in these rare subparadigms have alternative
analyses. This made the formal description of these paradigms rather difficult.

However, the most time-consuming task was the enlargement of the stem inventory. Beside the
addition of a number of new lemmas, the entries of several items already listed in the lexicon of
the present-day analyzer had to be modified. The causes were various: some roots now belong to
another part of speech, or in some constructions they had to be analyzed differently from their present
analysis.

Furthermore, the number of pronouns was considerably higher in the examined period than today.
The description of their extensive and rather irregular paradigms was really challenging as some
forms were underrepresented in the corpora.

DOI:10.15774/PPKE.ITK.2015.013

66 5. Applications of the model to various languages

Some enhancements of the morphological analyzer made during the corpus annotation projects
were also applicable to the morphological description of standard modern Hungarian. One such
modification was a new annotation scheme applied to time adverbials that are lexicalized suffixed
(or unsuffixed) forms of nouns, like reggel ‘morning/in the morning’ or nappal ‘daytime/in daytime’,
quite a few of which can be modified by adjectives when used adverbially, such as fényes nappal ‘in
broad daylight’. This latter fact sheds light on a double nature of these words that could be captured
in an annotation of these forms as specially suffixed forms of nouns instead of atomic adverbs, an
analysis that is compatible with X-bar theory (Jackendoff, 1977).

5.2.1.3 Disambiguation

With the exception of already analyzed sources (i.e. the ones recovered from the Jakab databases),
the morphological annotation had to be disambiguated. The ambiguity rate of the output of the
extended morphological analyzer on historical texts is higher than that for the standard Humor
analyzer for present-day corpora (2.21 vs. 1.92iii analyses/word with an identical (high) granularity
of analyses). This is due to several factors: (i) the historical analyzer is less strict, (ii) there are
several formally identical members of the enlarged verbal paradigms including massively ambiguous
subparadigms like that of the passive and the factitive,iv (iii) a lot of inherent ambiguities described
above.

The workflow for disambiguation of morphosyntactic annotation was a semi-automatic process: an
automatically pre-disambiguated version of each text was checked and corrected manually. For a very
short time, I considered using the Jakab databases as a training corpus, but recovering them required
so much development and manual labor and the analyses in them lacked so much distinction I wanted
to make that I opted for creating the training data completely from scratch instead.

5.2.1.4 The manual disambiguation interface

To support the process of manual checking and the initial manual disambiguation of the training corpus,
I created a web-based interface using JavaScript and Ajax where disambiguation and normalization
errors can be corrected very effectively. The system presents the document to the user using an
interlinear annotation format that is easy and natural to read. An alternative analysis can be chosen
from a pop-up menu containing a list of analyses applicable to the word that appears when the mouse
cursor is placed over the problematic word. Note that the list only contains grammatically relevant
tags and lemmas for the word returned by the morphological analyzer. This is very important, since,
due to the agglutinating nature of Hungarian, there are thousands of possible tags (see Figure 5.1).

Figure 5.1: The web-based disambiguation interface

iiimeasured on newswire text
ivThis ambiguity is absent from modern standard Hungarian because the passive is not used any more.

DOI:10.15774/PPKE.ITK.2015.013

5.2. Adaptation of the Hungarian morphology to special domains 67

The original and the normalized word forms as well as the analyses can also be edited by clicking
on them. An immediate reanalysis by the morphological analyzer running on the web server can be
initiated by double clicking the word.

As there is an inherent difference between the original and normalized tokenization, and because,
there may remain tokenization errors in the normalized texts, it is important that tokens and clauses
can also be split and joined using the disambiguation interface.

I designed the automatic annotation system bearing in mind the requirement that it should make
it possible that details of the annotation scheme be modified in the course of work. One such
modification was e.g. the change to the annotation of time adverbs mentioned in Section 5.2.1.2
above. The modified annotation can be applied to texts analyzed and disambiguated prior to the
modification relatively easily, because the program chooses the analysis most similar to the previously
selected analysis (based on a letter trigram similarity measure). Nevertheless, the system highlights
all tokens the reanalysis of which resulted in a change of annotation, so that these spots can be easily
checked manually. For changes in the annotation scheme where the simple similarity-based heuristic
could not be expected to yield an appropriate result (e.g. when I decided to use a more detailed
analysis of derived verb forms as before), a more sophisticated method was devised to update the
annotations: old analyses were replaced using automatically generated regular expressions. These
were created using a manually checked output of the morphological generator.

5.2.1.5 Automatic disambiguation

While the first few documents were disambiguated completely manually using the web-based tool,
I soon started to train and use a tagger for pre-disambiguation applying the tagger incrementally,
trained on an increasing number of disambiguated and checked text. First the HMM-based trigram
tagger HunPos (Halácsy et al., 2007) was used. HunPos is not capable of lemmatization, but I used
a straightforward method to get a full analysis: I applied reanalysis to the text annotated only by
the tags assigned by HunPos using the automatic similarity-based ranking of the analyses. This
approach yielded quite good results, but one problem with it was that the similarity-based ranking
always prefers shorter lemmas. This was not appropriate for handling the case of a frequent lemma
ambiguity for verbs with one of the lemma candidates ending in an –ik suffix and the other lacking a
suffix (such as dolgozik ‘work’ vs. (fel)dolgoz ‘process’). Always selecting the –ik-less variant is not a
good bet in the case of many frequent words in this ambiguity class.

Later, HunPos was replaced with another HMM-based trigram tagger, PurePos (Orosz and Novák,
2013), that has many nice extra features. It can process morphologically analyzed ambiguous input
and/or use an integrated analyzer constraining possible analyses to those proposed by the analyzer
or read from the input. This boosts the precision of the tagger dramatically in the case of languages
like Hungarian and small training corpora. The fact that PurePos can be fed analyzed input makes it
easy to combine with constraint-based tools that can further improve the accuracy of the tagging
by handling long distance agreement phenomena not covered by the trigram model, or by simply
removing impossible tag sequences from the search space of the tool.

PurePos can perform lemmatization, even for words unknown to the morphological analyzer (and not
annotated on the input) learning a suffix-based lemmatization model from the training corpus along
with a similar suffix-based tag guessing model, thus it assigns a full morphological analysis to each
token. It is also capable of generating an n-best list of annotations for the input sentence when using
beam search instead of the default Viterbi decoding algorithm.

DOI:10.15774/PPKE.ITK.2015.013

68 5. Applications of the model to various languages

5.2.1.6 Disambiguation performance

I performed an evaluation of the accuracy of PurePos on an 84000-word manually checked part of the
historical corpus using five-fold cross-validation with a training corpus of about 67000 words and a
test corpus of about 17000 words in each round. The ratio of words unknown to the morphological
analyzer in this corpus is rather low: 0.32%.

The average accuracy of tagging, lemmatization and full annotation for different versions of the tagger
are shown in Table 5.5. In addition to token accuracy, I also present clause accuracy values in the
table. Note that, in contrast to the usual way of evaluating taggers, these values were calculated
excluding the always unambiguous punctuation tokens from the evaluation. The baseline tagger uses
no morphological information at all. Its current lemmatization implementation uses suffix guessing in
all cases (even for words seen in the training corpus) and selects the most frequent lemma, which is
obviously not an ideal solution.

The disambiguator using morphology performs significantly better. Its clause-level accuracy is 81.50%,
which means that only every fifth clause contains a tagging error. The tag set I used in the corpus
differentiates constructions which are not generally differentiated at the tag level in Hungarian corpora,
e.g. deictic pronouns (ebben ‘in this’) vs. deictic pre-determiners (ebben a házban ‘in this house’).
Many of these can only be disambiguated using long-distance dependencies, i.e. information often
not available to the trigram tagger. Combination of the tagger with a constraint-based tool (see e.g.
Huldén and Francom (2012)) would presumably improve accuracy significantly.

The rightmost column contains a theoretical upper limit of the performance of the current trigram
tagger implementation using 5-best output and an ideal oracle that can select the best annotation.

baseline morph 5-best+oracle
token Tag 90.17% 96.44% 98.97%

Lem. 91.52% 98.19% 99.11%
Full 87.29% 95.90% 98.53%

clause Tag 62.48% 83.81% 93.99%
Full 54.68% 81.50% 91.47%

Table 5.5: Disambiguation performance of the tagger

5.2.1.7 Searching the corpus

The web-based tool I created as a corpus query interface does not only make it possible to search for
different grammatical constructions in the texts, but it is also an effective correction tool. Errors
discovered in the annotation or the text appearing in the “results” box can immediately be corrected,
and the corrected text and annotation is recorded in the database. Naturally, this latter functionality
of the corpus manager is only available to expert users having the necessary privileges.

A fast and effective way of correcting errors in the annotation is to search for presumably incorrect
structures and to correct the truly problematic ones at once. The corrected corpus can be exported
after this procedure and the tagger can be retrained on it.

The database used for the corpus manager is based on the Emdros corpus manager (Petersen, 2004).
In addition to queries formulated using MQL, the query language of Emdros, either typed in at the
query box or assembled using controls of the query interface, advanced users can use a custom-made
corpus-specific query language (MEQL), which makes a much more compact formulation of queries
possible than MQL. It is e.g. extremely simple to locate a specific locus in the corpus: one simply needs

DOI:10.15774/PPKE.ITK.2015.013

5.2. Adaptation of the Hungarian morphology to special domains 69

to type in the sequence of words one is looking for. Queries formulated in MEQL are automatically
converted to MQL queries by the query processor.

Figure 5.2: The query interface

The search engine makes it possible to search inside sentences, clauses, or texts containing grammatical
constructions and/or tagged with metadata matching the criteria specified in the query. Units longer
than a sentence can also be searched for. The context displayed by default for each hit is the enclosing
sentence with focus words highlighted. Clauses may be non-continuous. This is often the case for
embedded subordinate clauses. But the corpus also contains many injected parenthetical coordinate
clauses and many examples where the topic of a subordinate clause precedes its main clause with
the net effect of the subordinate clause being interrupted by the main clause. The query example
in Figure 5.2 shows a sentence containing several clauses with gaps: the clauses enclosed in angle
brackets are wedged between the topic and comment part of the clauses which they interrupt. Emdros
is capable of representing these interrupted clauses as single linguistic objects with the interrupting
clause not being considered part of the interrupted one.

5.2.1.8 Availability of the resulting corpus

The extended morphological analyzer is used for the annotation of the constantly growing Old and
Middle Hungarian corpora. Part of these corpora are already searchable by the public. The Old
Hungarian Corpus is available at http://omagyarkorpusz.nytud.hu, while the analyzed part of the
Historical Corpus of Informal Language Use can be searched at http://tmk.nytud.hu.

DOI:10.15774/PPKE.ITK.2015.013

http://omagyarkorpusz.nytud.hu
http://tmk.nytud.hu

70 5. Applications of the model to various languages

5.2.2 Extending the lexicon of the morphological analyzer
with clinical terminology

In this section, I describe the methods by which the database of the contemporary Hungarian
morphological analyzer was extended for better coverage of the medical domain. Methods similar to
the ones described here can also be applied when the coverage of the specific terminology of other
domains need to be improved.

Processing clinical texts is an emerging area of natural language processing. Even though there
are some algorithms used for parsing English clinical notes, these cannot be applied to Hungarian
medical records. Moreover, NLP tools for general Hungarian perform poorly when applied as they
are. This is due to the special characteristics of clinical texts. Such records are created in a special
environment, i.e. in the clinical settings, thus they differ from general Hungarian in several respects.
These attributes are the following (cf. Orosz et al. (2013); Siklósi and Novák (2013); Siklósi et al.
(2012)):

• notes contain a lot of erroneously spelled words,
• sentences generally lack punctuation marks and sentence-initial capitalization,
• punctuation is often erroneous when present,
• measurements are frequent and have plenty of different (erroneous) forms,
• a lot of (non-standard) abbreviations occur in such texts,
• and numerous Latinate medical terms are used.

In order to process such texts, the morphological analyzer had to be adapted to the requirements of
the domain. In order to achieve a performance comparable to that obtained in the case of general
Hungarian texts, the lexicon of the analyzer had to be extended.

The primary source for the extension process was a spelling dictionary of medical terms (Fábián and
Magasi, 1992), which contains about 90,000 entries. This dictionary does not contain any information
about the part-of-speech, language or the pronunciation of these words. However, when adding them
to the morphological database, this information was necessary. In addition, I had to determine the
compound boundaries for compound words. Since the number of words to be manually annotated
was several thousands, the process of categorization and definition of additional information had to
be aided by automated methods.

Assignment of part-of-speech was based first on surface form features (e.g. names and abbreviations
in the dictionary could be separated from other words based on such characteristics). Second, after
having a portion of the words manually categorized, I trained the guesser algorithm used in the TnT
(Brants, 2000) and PurePos (Orosz and Novák, 2012) taggers on this set. Then, this model was
applied iteratively to the rest of the words, which were manually checked in each step.

In the case of Latinate words with certain endings, it was quite difficult to decide whether it was a
noun or an adjective, or could be used in both ways. In order to be able to efficiently categorize these
words, another aspect was considered: in the case of multiword Latinate terms, the last element is
usually an adjective (unless it is a possessive phrase), while the first one is usually a noun. The order
of the elements is thus systematically different from that of Hungarian noun phrases. The difficulties
of annotating Latin adjectives arise from this phenomenon, and such words are quite frequent in
Hungarian clinical texts. The corresponding Hungarian form of these words (which are the phonetic
transliteration of the masculine nominative form in Latin) is definitely an adjective, thus being in the
usual adjective–noun order. In real Latin multiword phrases, the order is noun–adjective and the
two elements are in agreement. Latin adjectives being members of non-masculine or non-nominative
phrases are to be considered nouns from the aspect of Hungarian categorization. In theory, this would
be the case for masculine nominative phrases as well, if the corpus was not full of instances of phrases

DOI:10.15774/PPKE.ITK.2015.013

5.2. Adaptation of the Hungarian morphology to special domains 71

which follow the ordering of Hungarian nominal phrases, but are constructed from words written
according to Latin orthography (at least partially), as shown in Table 5.6.

Latin NP word order Hungarian NP word order
Degeneratio marginalis pellucida corneae marginalis degeneratio
ulcus marginalis alsó szemhéj marginalis részéhez közel
Cataracta progrediens progrediens maghomályok
Membrana epiretinalis epiretinalis membrán, Bal szem epiretinalis membranja
keratitis superficialis punctata egy superficialis basalsejtes carcinoma

Table 5.6: Latinate adjectives used in Hungarian NP’s using Latin orthography – examples from
the ophthalmology corpus

Thus, I decided to assign distinctive tags in the lexicon to nouns and adjectives written according
to Latin orthography, tagging masculine nominative adjectives as adjectives and the rest as nouns.
These lexical items got a special tag in addition, marking their Latinate spelling.

Besides assigning part-of-speech information, elements written according to foreign or Hungarian
orthography had to be differentiated. This was also necessary in order to determine the pronunciation
of foreign words so that they would be affixed properly. The dictionary itself helped this process by
containing several word pairs being spelling variants of the same word. In most cases, one of these
variants is the Hungarian form, the other is the foreign one.

In most cases, the Hungarian variant was marked in the dictionary as the preferred form, however,
there were many exceptions as well. After performing a partial categorization manually, an adapted
version of the TextCat algorithm (Cavnar and Trenkle, 1994) was applied, which is able to decide
about short strings whether these are in Hungarian or not. The situation was quite clear when this
system qualified one member of the word pair as rather Hungarian, while the other as rather foreign.
However, many of the word pairs are such that both members are foreign spelling variants. The
TextCat algorithm was also able to filter these entries. Thus, this language identification method was
integrated into the iterative lexicon extension procedure. The dictionary contained some other words
of foreign origin (mainly Latinate terms, but there were many terms of English and French origin
as well), which did not have their transliterated Hungarian equivalent in the dictionary. These had
to be identified, but in these cases, I could not rely on any implicit extra information, which was
available in the case of word pairs.

After having decided whether an entry is in Hungarian or not, the actual pronunciation had to be
assigned to foreign words. In the case of word pairs, it was partially given, but in most cases, beside
the Hungarian version listed in the dictionary, another transliteration of the Latin term was also
necessary, especially for words ending in s. The reason for this is that for multiword phrases, it is
always the Latin pronunciation that determines affixation (the same often applies to standalone words
as well). The assignment of pronunciation was also done algorithmically and was corrected manually.
This task was not solved by a traditional G2P (grapheme-to-phoneme) machine learning algorithm,
but by a simple regular-expression-based heuristic method. This can be invoked directly from the
editor used for creating the lexicon and the input can be blocks of highlighted words (if, for example,
some are found to be foreign words not categorized as such by the language detection module).

Another task was the identification of compound boundaries with a special emphasis on identifying
elements frequently being members of compounds. These were prioritized when processing the
dictionary, thus compounds including such words could already be analyzed by the morphology,
decreasing the amount of entries to be processed and the chance of inconsistency when entering data
manually. The procedure for finding compound members was the following. Words from the general

DOI:10.15774/PPKE.ITK.2015.013

72 5. Applications of the model to various languages

Hungarian spelling dictionary and the medical spelling dictionary that were at least two character
long and contained at least one vowel were stored in a trie data structure. Then, the implemented
algorithm searched for these as postfixes in the words of the dictionary and built statistics from
the elements of these words. The prefixes found were marked by several features: whether having
a length less than 4 characters, being included as a word in the dictionary, containing a hyphen,
and being postfixes of other words. Using the result of this classification and the manually checked
suspicious compounds, the most frequent pre- and postfixes were added to the lexicon first. Then
the real compounds produced by these elements were also added, thus adding all compounds with a
representation indicating compound boundaries.

Surprisingly, the dictionary contained a great amount of words derived from verbs (mainly participles
and nomen actionis), of which the base verb (mainly derived from Latinate stems) was not included.
Instead of including these derived words, the base form was added to the lexicon. Thus, the analyzer
can generate a proper analysis for the derived forms. Moreover, there were many adjectives with the
derivational suffix -s, of which the base form was also in the dictionary. These were also skipped,
because adding the base form to the dictionary resulted in adding the derived word automatically.

Another aspect of processing the dictionary was that it included a number of typographical errors,
thus the data found in this resource could not be considered as totally reliable.

Beside the spelling dictionary, another important set of words was taken from the database of
medications and active ingredients downloaded from the webpage of OGYI v. Here, the part-of-speech
categorization of words was not a problem. However, assigning the proper pronunciation was rather
important. The algorithm producing these had to be adapted, because even though the names of
the active ingredients are composed of Latinate elements, but their written form corresponds to the
English spelling of Latinate terms of the original Latin spelling. These often end in an unpronounced
-e, e.g. hydroxycarbamide, ifosfamide, cyclophosphamide.

The third resource was of course the corpus itself. Words occurring in the corpus were prioritized
when processing the spelling dictionary. But, after including the two external resources into the
lexicon of the analyzer, there were still some frequent words in the corpus that could not be analyzed,
thus these had to be added, too. Most of these words were abbreviations. The resolution of the
abbreviations, that was necessary for defining the correct part-of-speech, was done based on corpus
concordances.

From the medical dictionary and the corpus 36,000 entries were added to the stem lexicon of the
analyzer (another 25,000 have not been processed yet). From the database of names of medicines and
active ingredients, 4860 entries were added.

The morphological analyzer was then integrated into the part-of-speech tagger. The precision of the
latter system with the extended version of the morphology was 93.25%. The difference between using
the original and the extended morphological analyzer was significant, i.e. 6.4%.

Investigating the errors still present, I found that the most frequent ones are not relevant from the
aspect of further processing these texts syntactically or semantically, e.g. cases when the morphology
makes a distinction between nouns and adjectives of Latin or Hungarian origin, or the distinction of
participles and the corresponding lexicalized adjectives. Not considering these errors, the precision of
the part-of-speech tagger was 93.77% with the extended morphology.

For the application of the morphology to clinical texts, see also Section 8.5.

vhttp://www.ogyi.hu/listak/

DOI:10.15774/PPKE.ITK.2015.013

http://www.ogyi.hu/listak/

5.3. Examples from other Uralic languages 73

5.3 Examples from other Uralic languages

Beside the national languages spoken by several million speakers: Hungarian, Finnish and Estonian,
the Uralic language family includes a number of minority languages with significantly smaller speaker
communities, the majority of which are spoken on the territory of the Russian Federation. The goal
of various projects I participated in was to create computational morphologies and annotated corpora
for several of these languages: Udmurt, Komi, Eastern Mari, Northern Mansi, Synya and Kazym
Khanty, Tundra Nenets and Nganasan. Table 5.7 presents information concerning the alternative
names of the languages, their geographical distribution, the estimated number of speakersvi and the
branch to which they belong within the language family.

Language A.k.a. Geographical distribution Speakers Language branch
Komi Zyrian Komi Republic, west of the Urals 156,000 Permic (Finnic)
Udmurt Votyak Udmurtia, west of the Urals 460,000 Permic (Finnic)
Eastern
(Low) Mari

Cheremis Mari El Republic, by the Volga 480,000 Volgaic (Finnic)

Northern
Mansi

Vogul west of the Urals, between the Urals
and the Ob River

<1,000 Ugric

Synya
Khanty

Ostyak at the Synya tributary of the Ob
River

<9,600 Ugric

Kazym
Khanty

Ostyak at the Kazym tributary of the Ob
River

<9,600 Ugric

Nganasan Tavgi Taymyr Peninsula, North Siberia 200 Northern Samoyedic
Tundra
Nenets

Yurak Northwest Siberia 22,000 Northern Samoyedic

Table 5.7: The languages and dialects covered by the Uralic projects

As is evident even from the number of speakers, Mansi, Khanty and Nganasan are on the verge of
extinction. In their case, the documentation of the language and any remnants of the oral cultural
heritage of these peoples is an urgent scientific task.

One aim of this research was to make linguistic data concerning these languages available for research
to a broader community of linguists, not only the Uralist specialists, and to make corpus-based
investigation of these languages possible. Many of these languages exhibit phenomena that would
be exciting to explore for a variety of linguists, such as theoreticians specializing in any module of
grammar or those interested in language typology. Annotated corpora make it possible to carry
out research on various aspects of the language without a long preliminary study of the language
itself. Since many details of the description which often remain vague in written grammars must
unavoidably be made explicit in a computationally implemented grammar, the process of creating
the implementations as well as the resulting programs themselves shed light on inconsistencies and
gaps in the available descriptions of the phonology and morphology of the language, and often
help correcting them. Moreover, while examining linguistic models with regard to exactness and
completeness by hand is an impossible task, the computational implementation makes an exhaustive
testing of the adequacy of our grammatical models possible against a great amount of real linguistic
data. Systematic comparison of word forms generated against model paradigms has pinpointed errors
not only in the computational implementation (which were then eliminated) but also in the model
paradigms or the grammars the computational implementation was based on.

viThe number of all Khanty speakers is about 9,600 according to 2010 census data.

DOI:10.15774/PPKE.ITK.2015.013

74 5. Applications of the model to various languages

Another fact makes a more thorough documentation of these languages urgent. Due to the nature of
Russian minority policy, the school system, the great degree of dispersion, the low esteem of the ethnic
language and culture and the general lack of an urban culture of their own, all these languages are
endangered. On the other hand, there are significant differences among these languages concerning
the number of speakers and the exact sociolinguistic situation they are in.

Some of the languages can be categorized as moribund, with virtually no chance of the language still
being spoken in another 50 years. This is not only due to the low number of speakers (some of these
languages have existed and developed as the communication medium of small nomadic communities
of about a thousand people for thousands of years without an immediate risk of disappearance), but
because one generation of speakers has already failed to pass on the language to the next and thus
hardly any children speak it. In the case of these languages, the most we can do is trying to document
as much of the language as possible. Documenting these languages is not a trivial task though, not
only because of the extreme complexity of some of them (e.g. in terms of their morpho-phonology),
but also because the speaker communities are disintegrating into a small assembly of individuals with
more and more uncertain language skills. A heavy influence from their parallel knowledge of the
majority language, Russian, seems to impact not only the syntactic structures they use, but even the
morpho-phonology.

But these languages are not only very difficult to learn for anybody but babies, but they are not
considered very useful to know, either. They have lost much of their function when these nomadic
peoples were forced to settle as a minority in settlements inhabited by people speaking another
language and to give up their traditional way of life, their rituals and practices. Their tame reindeer
herds were collectivized (which subsequently fell victim to epidemics), and they were practically
prohibited from reindeer hunting. But the fatal blow on these languages was the schooling of minority
children in boarding schools hundreds of kilometers away from their home where the language of
education was exclusively Russian. The children had no contact at all with their parents and their
home community during the school year, and both their knowledge and their esteem of their mother
tongue deteriorated significantly. This was the generation that growing up failed to pass on the
language to their children.

There is another factor that makes the documentation of some of these languages difficult. During
the Soviet era, making field trips to areas where many of these small minority languages are spoken
was only possible for linguists from within the Soviet Union. In the nineties, during the Yeltsin era,
an unprecedented freedom of movement made it possible also for foreign linguists to travel freely
to the areas previously inaccessible to them and to do research there. Fortunately, this is still true
for many areas (such as the region of the River Ob, where the Mansi and Khanty live). Certain
areas of the northern Arctic regions where some of these minority languages are spoken, however,
(the Taymyr Peninsula in particular, where the Nganasans live) have unfortunately been declared
divisions of restricted access again. Foreign linguists intending to do field work in the region must
apply for an entrance permit at the local security authorities, which they may fail to issue. This
might make it necessary to find alternatives to field trips such as carrying native speakers to places
accessible for the researchers as well.

Another group of the languages mentioned do not seem to be threatened by an immediate language
death, but even within this group there are significant differences. Although Udmurt and Mari have a
similar number of speakers according to the census data, Mari seems to have a different sociolinguistic
status than Udmurt due to the native speakers’ different attitude toward their mother tongue. While
the Mari are proud of their language and their cultural heritage, Udmurts have a rather low esteem
of their mother tongue, which they consider inferior to Russian. On the other hand, Maris tend to
have more conflicts with the Russian majority than Udmurts for the same reason.

In the case of these languages, the computational tools I created can also be adapted for practical
purposes, such as providing the speaker communities with spell checkers and electronic dictionaries in

DOI:10.15774/PPKE.ITK.2015.013

5.3. Examples from other Uralic languages 75

their native language in the hope that the existence of such applications can help to raise the prestige
of these languages.

These languages, being members of the Uralic language family, are of the agglutinating type, thus
their morphology is characterized by the relatively high frequency of words containing long suffix
sequences.

The following example is from Udmurt.

jaratonoosynyz ‘with the sweethearts (ones in love)’
jarat on o os yny z
to love nomen acti = love having love plural instr. def.

The high number of productive suffixes and possible suffix positions results in a combinatorial
explosion of the number of possible word forms (yielding several thousands) for each stem in the open
word classes. In some of the languages (e.g. Mari and Nganasan) certain suffixes (clitics) can assume
a wide variety of positions within the suffix sequence.

The following corpus examples are from Mari. Both the form (wlak vs. šam@č) and the position of
the plural suffix relative to other suffixes (whether it precedes or follows other inflectional endings)
exhibit variation:

jeN[N]+že[Def]+[NOM]+-wlak[Pl] ‘the people’
artist[N]+k@[COM]+že[Def]+-wlak[Pl] ‘with the artists’
šyd@r[N]+-wlak[Pl]+še[Def]+[NOM] ‘the stars’
jeN[N]+-wlak[Pl]+lan[DAT] ‘for people’
pašajeN[N]+-̌sam@č[Pl]+@n[GEN] ‘of workers’

Table 5.8 summarizes properties of the morphologies created in this research. The size of the affix
lexicons is indicated as a number of stem morphemes and lexicalized morpheme sequences in the
source lexicon. Some lexicons also contain glosses, in that case, the number of different senses in the
lexicon is also given in parentheses. There are three versions of the Northern Mansi analyzer, using
three different transcriptions and based on three different lexical resources: Mansi (Chr. Vog.) is
based on Kálmán (1963), Mansi (WT) on Kálmán (1976), and Mansi (VNGY) on Munkácsi (1892)
and Munkácsi (1986). See further details in Section 8.4.

Language Stem lexicon Affix lexicon
lemmas (senses) (UR entries)

Komi1 2,100 156
Komi2 37,000 193
Udmurt 14,100 (18,500) 286
Mari 2,200 189
Mansi (Chr. Vog.) 1,400 (1,600) 271
Mansi (WT) 3,778 (4,230) 376
Mansi (VNGY) 11,240 (16,600) 300
Kazym Khanty 1,800 (2,100) 150
Synya Khanty 3,100 (3,540) 150
Nganasan 4,150 334
Tundra Nenets 19,500 254

Table 5.8: Properties of the morphologies

76 5. Applications of the model to various languages

The rather complex morphological makeup of words is a manifestation of the agglutinating nature
of all languages belonging to the Uralic language family. If it were just simple concatenation that
happens to morphemes making up a word, creating a formal grammar describing the morphology of
these languages would not be a difficult task even in spite of all the variation of suffix ordering that
occurs e.g. in the Permic languages or Mari. The following examples from Udmurt show that the
order of possessive and case suffixes is different depending on the case.

kyšno[N]+je[PSS1]+ly[DAT] ‘to my wife’
ares[N]+a[INE]+m[PSS1] ‘in my age’

In Komi, there are even cases where there is free variation, or the order depends on both the case
and the possessive suffix:

along my man (transitive case)
mortöjti mort[N]+öj[PSS1]+ti[TRA]
morttiym mort[N]+ti[TRA]+ym[PSS1]
without my/your man (caritive case)
mortöjtög mort[N]+öj[PSS1]+tög[CAR]
morttögyd mort[N]+tög[CAR]+yd[PSS2]
towards my/your/etc. man (approximative case)
mortöjlań mort[N]+öj[PSS1]+lań[APP]
mortlańyd mort[N]+lań[APP]+yd[PSS2]
mortlańys mort[N]+lań[APP]+ys[PSS3]
mortlańnym mort[N]+lań[APP]+nym[PSP1]
mortnydlań mort[N]+nyd[PSP2]+lań[APP]
mortlańnys mort[N]+lań[APP]+nys[PSP3]

Linguists dealing with Finno-Ugric and in general with Uralic languages outside Russia tend to
use Latin based phonological transcriptions instead of the eventual Cyrillic orthographies of the
languages. Since the tools we created were intended for linguists, we decided to use a Latin-based
phonological notation in the morphologies instead of the standard Cyrillic orthographies of the
languages. As a result, the tools cannot be applied to orthographic input directly, only with an
intermediate converter, which makes the operation of the analyzer less efficient in terms of speed.
With the exception of the Tundra Nenets analyzer, the mapping between the orthographic forms and
our representation is rather straightforward. In the case of Tundra Nenets, I used Tapani Salminen’s
phonological notation (Salminen, 1997), which is less phonetic than the standard orthography.

Although it might not have been anticipated by the initiators of the project, an immediate result
was that the process of the creation of these inevitably completely formalized language descriptions
itself shed light on many gaps, uncertainties and errors in the textbook grammars on which the
computational grammars were based on. Furthermore, the fact that the implemented morphologies
could be tested against real language data in the form of corpora made it possible that we could
improve the linguistic descriptions of these endangered languages. There is also hope that the
uncertainties discovered during the development and validation process of these computational
grammars will induce further field research. In addition to that, the morphological analyzers can be
utilized in the process of semiautomatic annotation of corpora that can be effectively used in the
research of other aspects of these languages, among others their syntax.

In the following sections two morphologies are described in detail. The Komi analyzer was implemented
using the Humor models, while that for the Samoyedic language, Nganasan, was implemented using
finite-state models.

DOI:10.15774/PPKE.ITK.2015.013

5.3. Examples from other Uralic languages 77

5.3.1 The Komi alanyzer

Komi (or Zyryan, Komi-Zyryan) is a Finno-Ugric language spoken in the northeastern part of Europe,
West of the Ural Mountains. The number of speakers is about 156,000. Komi has a very closely
related language, Komi-Permyak (or Permyak, about 63,000 speakers), which is often called a dialect,
but with a standard of its own. As a minority language spoken in Russia, Komi is an endangered
language. Although it has an official status in the Komi Republic (Komi Respublika), this means
hardly anything in practice. The education is in Russian, children attend only a few classes in their
mother tongue. A hundred years ago, 93% of the inhabitants of the region were of Komi nationality.
Thanks to the artificially generated immigration (industrialization, deportation) their proportion is
under 25% today.

Komi is a relatively well documented language. The first texts are from the 14th century, and there is
a great collection of dialect texts from the 19th and 20th centuries. There are linguistic descriptions
of Komi from the 19th century, but hardly anything is described in any of the modern linguistic
frameworks.

5.3.1.1 Creating a Komi Morphological Description

The first piece of description created was a lexicon of suffix morphemes along with a suffix grammar,
which describes possible nominal inflectional suffix sequences. One of the most complicated aspect of
Komi morphology is the very intricate interaction between nominal case and possessive suffixes.

Another problem was that none of the linguistic descriptions we had access to describes in detail
the distribution of certain morphemes or allomorphs. In some of these cases I managed to get
some information by producing the forms in question (along with their intended meaning) with the
generator and having a native speaker judge them. In other cases I tried to find out the relevant
generalizations from the corpus.

Then, the stem lexicon was created along with the formal description of stem alternations triggered
by an attached suffix. Fortunately, all of the stem alternations are triggered by a simple phonological
feature of the following suffix: that it is vowel initial. The alternations themselves are also very simple
(there is an l∼v alternation class and a number of epenthetic classes).

töv[N];stemalt:LV; *töl+ös[ACC]
kyv[N];stemalt:Jep; *kyvj+ön[INS]
oš[N];stemalt:Kep; *ošk+ös[ACC]
un[N];stemalt:Mep; *unm+ön[INS]
göp[N];stemalt:Tep; *göpt+yn[INE]
kov[V];stemalt:LV; *kol+ö[PrsSg3]
lok[V];stemalt:Tep; *lokt+as[FutSg3]
jul[V];stemalt:Yep; *july+ny[Inf]

Figure 5.3: A list of all nominal and verbal alternation classes in Komi

On the other hand, it does not seem to be predictable from the (quotation) form of a stem whether
it belongs to any of the alternation classes. This information must therefore be entered into the
stem lexicon. Figure 5.3 contains a list of all nominal and verbal alternation classes with an example
for each of them from the stem lexicon with a comment containing an example of a suffixed form
where the stem undergoes the alternation. These are the actual entries representing these stems in
the stem lexicon. The quotation form is followed by a label indicating its syntactic category and

DOI:10.15774/PPKE.ITK.2015.013

78 5. Applications of the model to various languages

its unpredictable idiosyncratic properties (in this case the stem alternation class it belongs to). For
regular stems only the lexical form and the category label has to be entered.

Irregular suffixed forms and suppletive or unusual allomorphs can be entered into the lexicon by
listing them within the entry for the lemma to which they belong. The following example shows the
entry representing a noun which has an irregular plural form.

pi[N];rr:!Pl; ++!pi+jan[PL];rr:(Cx|Px);

The entry defines the noun pi ‘boy, son’, which requires that the morph following it should not be
the regular plural suffix (which is -jas) and introduces the irregular plural form pijan, which in turn
must be followed by either a case marker or a possessive suffix.

In Komi, personal pronouns are inflected for case, while reflexive pronouns are inflected for case,
number and person. Locative case suffixes can be attached to postpositions and adverbs. Certain parts
of these paradigms are identical to that of regular nominal stems, but there are also idiosyncrasies.
Especially among the forms of reflexive pronouns there are very many idiosyncratic ones. We
handled regular subparadigms by introducing lexical features and having the analyzer process the
corresponding word forms like any regular suffixed word. Idiosyncratic forms, on the other hand,
were listed in the lexicon along with their analysis.

The first version of the Komi morphology contained only the vocabulary of the small corpus we
managed to acquire, but later we got the dictionary of Beznosikova (2000) from the author in a digital
form, which I parsed and converted into a stem database. The second version of the analyzer, which
can directly analyze Cyrillic input, is primarily based on the vocabulary of this dictionary.

5.4 Finite-state implementation of Samoyedic mor-
phologies

The morphology of some languages turned out to be particularly hard to model using the formalism
presented in earliear chapters. The two Samoyedic languages: Tundra Nenets and Nganasan have a
particularly complex phonology with a great abundance of very productive and quite complex phono-
logical and surface phonetical processes. This makes not only the implementation of a computational
model of the morphology of these languages very difficult, but poses a serious problem even for the
linguists trying to do field work and gather linguistic data concerning these languages in a consistent
notation, and for the linguists trying to create any acceptable grammar of them. Morphemes in
Nganasan and Nenets tend to have numerous surface forms (allomorphs), which hardly resemble each
other. Thus what is common in all of the surface forms of a morpheme (its ‘underlying form’) is
necessarily something very abstract, which in turn hardly resembles any of the allomorphs.

Due to their high complexity, it is very difficult to construct an adequate description of the phonology
and morphology of the Samoyedic languages, and the first such descriptions appeared only quite
recently (Salminen, 1997; Helimski, 1998; Wagner-Nagy, 2002).

In order to be able to model the morphology of these languages, I used the finite-state formalism
of the Xerox programs described in Chapter 6, after a failed attempt to implement it using the
adjacency-based formalism presented in Chapters 3 and 4.

DOI:10.15774/PPKE.ITK.2015.013

5.4. Finite-state implementation of Samoyedic morphologies 79

5.4.1 Nganasan

A formal description of Nganasan was written by fellow linguists, Beáta Wagner-Nagy, Zsuzsa Várnai
and Sándor Szeverényi (Wagner-Nagy, 2002). In this study, Nganasan phonology is described as a
set of context dependent re-write rules of the form widely used by generative phonologists (Várnai,
2002). They also digitized a Russian-Nganasan dictionary (Kost’erkina et al., 2001) and converted it
to the phonemic transcription based on Latin script used by their team. The dictionary contains
approximately 3650 non-derived roots. The Nganasan team also provided category labels for each
item, which was missing from the original source. This dictionary was to serve as a basis for the stem
database of the analyzer. The description (Wagner-Nagy, 2002) also contains some short texts which
could be used as a corpus along with a collection of text from other sources. Later another 500 roots
were added encountered when testing the analyzer on this corpus.

The dictionary was converted to the stem database format of the morphological grammar development
environment. I transformed the text which was originally printed using special accented and phonetic
characters from various fonts to the transcription used by the analyzer where digraphs are used
for the palatal segments (t1, d1, s1, n1, l1) and the velar nasal (ng). In addition, the schwa
phoneme is denoted by e, the full e vowel, which only occurs in initial syllables of words, by @, the
glottal stop by ’, and the voiced dental fricative by q.

During the preparation of this stem dictionary, we also started to describe the suffixes of Nganasan
in a formal manner. The first step of this was the creation of a list of the suffixes that contained
the underlying phonological form of each suffix together with its category label, plus a feature that
indicates which morphological root form the suffix can attach to. We used the following model to
describe Nganasan morphology: following Helimski (1998), we hypothesized that each root morpheme
has three morphological stem variants (out of which two or all three might have the same form),
and suffixes are sorted into three groups depending on which root allomorph they attach to. Some
suffixes (such as the Lative case marker) exhibit vacillating behavior: they can attach to two of the
root allomorphs.

The underlying phonological representation contains a number of abstract archiphonemes: harmonic
vowels (in the case of suffixes the quality of these vowels depends on the harmonic features of the
root they are attached to) and ‘quasi-consonants’ which never appear on the surface but condition
gradation, one of the key processes in Nganasan phonology. Of these abstract segments, harmonic
vowels appear only in suffixes, the other abstract segments turn up both in the suffix and the root
lexicon, most notably in stems which are irregular and in inflectional (word final) suffixes. The first
suffix list compiled contained additional information for derivational suffixes: the category label was
given for the root it attaches to and for the derived form as well.

The next step was to convert the suffix list into a format that was compatible with the development
environment: I refined the description and added data required by the formalism.

The selectional restrictions between the root and the suffix (i.e. 1st, 2nd or 3rd root) were described
as left-hand side requirements of the suffix. Other left-hand side constraints on roots were used
primarily in the case of verbal suffixes: suffixes attaching to perfective or imperfective verbal roots,
suffixes of verbs requiring an Agent, suffixes attaching to transitive verbs etc.

I also described the morphotactic restrictions governing the linear order of suffixes by defining a suffix
grammar. I set up morphotactic classes for suffixes: e.g. Possessive suffixes in Nominative/Accusative
(NomPx), Possessive suffixes used in other cases (Px), Oblique case endings (OblCx), Nominal Predicative
suffixes (NVx) etc. I defined a finite-state automaton whose edges are labeled by the names of the
morphotactic classes and which describes the possible linear order of the morphemes belonging to
these classes. In the present model, the possible order of derivational morphemes is only constrained
by the syntactic category of the base morpheme and that of the derived form.

DOI:10.15774/PPKE.ITK.2015.013

80 5. Applications of the model to various languages

5.4.1.1 The complexity of Nganasan morpho-phonology

Having written the suffix inventory, the rules governing root allomorphy were to be defined. The
Humor development environment prepares the allomorph database using these rules and the morpheme
inventories.

In Nganasan, nominal and verbal roots follow different alternation patterns. Additionally, vowel-final
and consonant-final roots also exhibit different behavior. Some root-final changes are restricted to
lexically marked root classes. Each of these roots must have a relevant lexical mark in the root
inventory. Other root-final changes occur in each root that satisfies the formal requirements of the
rule.

It was relatively easy to describe root-final sound alternations in the Humor formalism. Productive
phonological processes that are sensitive to local contexts (such as degemination) could be formalized
as separate rules. However, the phenomenon of gradation (i.e. the systematic alternation of obstruents
in syllable onsets) proved to be so complex that I could not describe it satisfactorily. The root of the
problem is that the Humor analyzer sees each word as a sequence of allomorphs and during analysis
it checks whether the adjacent morphs are locally compatible with each other.

Nganasan gradation, however, does not depend on the morphological make-up of the word: the only
factor at play is syllable structure. Syllable boundaries and morph boundaries do not usually coincide.
In the case of short suffixes (made-up of a single segment), it is possible that even non-adjacent
morphs belong to the same syllable. Moreover, the rules governing gradation in Nganasan are quite
intricate. An obstruent in the onset position is in strong grade (i) in even-numbered open syllables (if
not preceded by a long vowel) and (ii) if it is preceded by a non-nasal coda consonant. Otherwise,
it is in rhythmical weak grade (i) if preceded by a long vowel (or vowel sequence) or (ii) if it is in
odd-numbered syllable. Otherwise, it is in syllabic weak grade in even-numbered closed syllables.
Gradation combines with other alternations in the language: vowel harmony, degemination, root
alternations and various morpho-phonological suffix alternations (as a result of which a monosyllabic
suffix can have as many as 32 different allomorphs). Moreover, there are also apparent lexical
exceptions to the general gradation patterns. These words exhibit gradation patterns which look as
if there were a consonant at a point in the word where there is in fact none. Assuming underlying
abstract consonants in these words is motivated by the fact that the exceptions include a number
of words in which historical language data indicate that these consonants were actually present at
an earlier stage of the history of the language, but they later disappeared on the surface due to a
diachronic process. The exceptions also include loan words (including names) which did not fully
assimilate to the native stock of words. Assuming underlying abstract segments in these words is
only motivated by analogy.

As an illustration, the examples in Table 5.9 demonstrate the purely phonological allomorphy of
a single verbal mood suffix (of narrative mood used in the subjective and the non-plural objective
conjugations) in Nganasan. Each of the rows of Table 5.9 shows a Nganasan word form segmented
into a stem, followed by the narrative mood suffix and a subject agreement ending with a gloss added
at the end. Each of the word forms contains a different allomorph of the mood suffix. The superscript
letters indicate the lexical vowel harmony class of the stems (I: unrounded, U: rounded).

The underlying representation of the morpheme is hA2nhV, and its 12 allomorphs are: banghu, bjanghy,
bambu, bjamby, bahu, bjahy, hwanghu, hjanghy, hwambu, hjamby, hwahu, hjahy. These allomorphs are
produced from the underlying representation by the general phonological processes of the language,
undergoing vowel harmony, a-diphthongization and gradation, as follows.

The harmonic vowel A2 surfaces as a or the diphthong ja as a result of root dependent roundness
harmony. a diphthongizes to wa when it follows a h. (Roots are sorted into lexical classes depending
on their harmonic features. This feature must be marked in the lexicon as it is totally arbitrary. Stem

DOI:10.15774/PPKE.ITK.2015.013

5.4. Finite-state implementation of Samoyedic morphologies 81

stem narr. sfx (hA2nhV) subj. agr. ‘the rumor is that...’
iU bahu [Sg3] he is
aukumU hwahu [Sg3] he tames sg.
ngungkegimtüU banghu [Sg3] he increases sg.
ngungkegimtüU bambu ng[Sg2] you increase sg.
nguemU hwanghu [Sg3] he attaches to sg.
nguemU hwambu ng[Sg2] you attach to sg.
ngumsyqeI bjahy [Sg3] he answers
ngus1iirI hjahy [Sg3] he moves
ngya’kebtyI bjanghy [Sg3] he annoys sy.
ngya’kebtyI bjamby ng[Sg2] you annoy sy.
ini’jaimI hjanghy [Sg3] he becomes old
ini’jaimI hjamby ng[Sg2] you become old

Table 5.9: Purely phonological allomorphy of a single verbal mood suffix (of narrative mood used in
the subjective and the non-plural objective conjugations) in Nganasan

harmony is indicated above as upper indexes: I for unrounded harmony, U for rounded harmony.
Some roots may belong to more than one class, as they exhibit vacillating behavior.) The harmonic
vowel V can surface as u, y, ü or i, its behavior being regulated by roundness and frontness harmonies
(in the suffix being discussed it can only surface as u or y, however, as there is a back vowel (a, ja, wa)
in the previous syllable in every case). The consonant h appears as h in strong grade and as b in weak
grades. The consonant cluster nh surfaces as (i) ngh in strong grade or if it undergoes the so-called
nunnation effect (see below), as (ii) h in rhythmical weak grade, and as (iii) mb in syllabic weak grade.
A nasal consonant assimilates in place of articulation to the following consonant, and it disappears in
rhythmical weak grade unless there is an immediately preceding nasal on the consonantal tier: this
latter phenomenon is called nunnation. Moreover, the same morpheme has another 12 allomorphs
used in the reflexive and the plural objective conjugations, six of which coincide with six of the forms
cited above. The underlying form of these is hA2nhA1vii.

While gradation is extremely difficult to formalize as a set of allomorph adjacency restrictions, it is
such a productive process in Nganasan that it must be included in a proper morphological analyzer.
It seemed, however, that though the formalism of the Humor analyzer proved to be adequate for the
description of most phenomena in the language, the rule-formalism of the development environment
could not easily cover all of the essential processes.

The complexity of Nganasan phonology was not the only factor that prevented the application of the
feature-based formalism. Although the description of Nganasan phonology and morphology upon
which I tried to base my implementation (Várnai, 2002) aimed to present a formalized account of the
language, it proved to be incomplete. It describes phonological processes using context-dependent
rewrite rules of the Generative Phonology tradition, but the ordering of rules is not made explicit. In
addition, The formulation of a number of rules was too vague.

These vague details had to be made explicit, and it was clear that my first guess at the setting
of these parameters is not likely to be correct. Rather I would have to experiment with various
parametrizations and test them on the available linguistic data to find a model which adequately
describes the morphology of the language. It was obvious that this experimentation would require

viiA1 is another harmonic vowel that surfaces as a following a rounded stem, as i following an unrounded
stem and ü/i in previous syllable or if a palatal consonant precedes, and as y following an unrounded
stem and any other vowel in the previous syllable.

DOI:10.15774/PPKE.ITK.2015.013

82 5. Applications of the model to various languages

much less human effort if the computational model which I apply were closer to the formalism used
in the original account.

5.4.1.2 The application of the finite-state formalism

In the end, I managed to create a full description of Nganasan using the xfst formalism. The calculus
implemented by the program makes it possible to ignore irrelevant symbols (such as morpheme
boundaries in the case of gradation) in the environment description of rewrite rules, therefore
environments encompassing non-adjacent morphemes can be easily defined. As during composition
the program automatically eliminates intermediate levels of representation created by individual rules
producing a single finite-state transducer, generation and analysis can be performed efficiently.

Nganasan gradation was described in xfst as a cascade of rules performing syllabification, the
identification of syllable grades, changing the quality of the obstruents in syllable onsets and removing
auxiliary symbols. The rule system covers the irregularities of Nganasan syllabification: the glottal
stop closes the syllable even if it is not followed by another consonant (i.e. V’V is syllabified as
V’.V), and the b in a bt cluster does not normally close the preceding syllable (i.e. V.btV). The rules
describing gradation are reproduced in Figure 5.4. The whole of the rule system naturally contains
several other rules. It describes all productive, automatic phonological rules (e.g. the assimilation of
nasals to the immediately following obstruent, degemination, vowel harmony, nunnation, palatalization
etc.) and morphologically or lexically constrained root and suffix alternations.

5.4.1.3 The conversion of morpheme inventories

Naturally, the new formalism not only affected the rules, but morpheme inventories and morphotactic
rules had to be converted as well. I had to create a converter that would translate the morpheme
inventories into the new formalism. The feature-based description of Humor proved to be very
efficient concerning morphological constraints (e.g. the root selection of suffixes), though it could not
handle the very complex morpho-phonological processes. Fortunately, the Xerox tools also contain a
method for the description of feature-value constraints (Flag Diacritics), therefore these rules could
be automatically translated.

In the formalism of lexc, the lexicon is composed of sublexicons that contain the description of
morphemes. A continuation class must be defined for each morpheme. The continuation class is
either the name of a sublexicon each member of which may follow the given morpheme, or the
word-boundary symbol. The example in Figure 5.5 shows a part of the suffix list written for the
Humor development environment (above), and the representation transformed into lexc items (below).
The example shows the Narrative Mood suffix, the first form of which is used in Subjective, Objective
singular and dual, while the second form is used in Objective plural and Reflexive conjugations.

The symbol @U.S.1@ here means that the suffix attaches to the root belonging to the first root class
(@U.S.1@ in xfst means ’unify the current value of feature S with the value 1’). The symbol @C.S@
clears the value of feature S. The regular root alternation rules create the three root class forms of
derivational suffixes that function as roots.

I converted the graph describing the morphotactics of suffix sequences into a lexc lexicon fragment
which defines the sequencing of suffixes and the general categorial constraints on stem+suffix com-
binations using the continuation class notation of lexc. This, together with the converted suffix
representations defines the underlying representation of all possible suffix sequences in Nganasan,
and the whole suffix grammar combined with the stem lexicon defines the underlying representation
of the set of all possible Nganasan word forms, which our model licenses.

DOI:10.15774/PPKE.ITK.2015.013

5.4. Finite-state implementation of Samoyedic morphologies 83

########## RULES and PROCESSES ##############

#syllabification: syllable boundaries are marked by a dot or a comma in an
alternating fashion:
#.S: even syllable
#,S: odd syllable (except the first one, which is unmarked)
#/NSeg makes sure that non-segmental material is ignored

define Syllab [
#a dot after every syllable that is followed by a syllable which has an onset
[[C* V C*]/NSeg @-> ... "." || _ [C V]/NSeg]
#a dot before syllables without an onset
.o.
[V @-> "." ... || V/NSeg _]
#resyllabify ’ from onset to coda
#insert syllable boundary after ’
.o.
[’ -> ... "." || "."/NSeg _]
#delete syllable boundary before ’
.o.
["." -> 0 || _ [’ "."]/NSeg]
#resyllabify b from coda to onset if followed by t
#insert syllable boundary before b
.o.
[b -> "." ... || _ ["." t]/NSeg]
#delete syllable boundary after b
.o.
["." -> 0 || ["." b]/NSeg _ t/NSeg]
#strong grade after non-nasal codas and m codas not followed by b
.o.
["." -> ... "ˆS" || [[C-[n|m|n1|ng|N|M|N1|NG|Ng]] (Nas)]/NSeg _ ,

[m|M]/NSeg _ [Seg-[b|B]]/NSeg]
#rhythmical weak grade after long vowels
.o.
["." -> ... "ˆW1" || [V V (Nas)]/NSeg _]
#change every second dot to a comma
#. = even syllable
#, = odd syllable
.o.
["." -> "," \/ "." ˜\$["."|","] _]
#rhythmical weak grade in odd syllables not yet marked as strong
(NGrd=not a grade mark)
.o.
["," -> ... "ˆW1" || _ NGrd]
#syllabic weak grade in even syllables with a coda not yet marked as weak
.o.
["." -> ... "ˆW2" || _ [NGrd ?* & [C* V [C-"ˆX"]]/\\[Seg|"."|","]]]
#strong grade in other even syllables (codaless ones)
.o.
["." -> ... "ˆS" || _ NGrd]
];

Figure 5.4: The rules describing gradation.

DOI:10.15774/PPKE.ITK.2015.013

84 5. Applications of the model to various languages

#mode suffixes
#tag phon lp mcat comment
(...)
Narr HA2NHU S1 VTM narrative subj/obj
Narr HA2NHA1 S1 VTMR narrative refl.

(a)

LEXICON infl_V
(...)

@U.S.1@@C.S@hˆA2nhˆV[Narr] infl_VTM_r;
@U.S.1@@C.S@hˆA2nhˆA1[Narr] infl_VTMR_r;

(b)

Figure 5.5: A part of the suffix list written for the Humor development environment(a) and the
same suffixes converted to the lexc formalism (b).

In the case of the stem lexicon, a number of extra steps had to be taken to make it compatible with
the rest of the grammar. The stem lexicon which was converted from the original dictionary data
contained the surface representation of the singular nominative absolute form of nominal stems and
the infinitive of verbs. This is not exactly what was needed as the input of the phonological rules.
First of all, the vowel harmony class of the stem had to appear in the lexicon. This information was
represented in the form of an abstract symbol (ˆU for rounded harmony stems and ˆI for unrounded
harmony stems). This feature was entered into the lexicon manually in the case of nominal stems
where the harmony class could be inferred from inflected forms listed in the dictionary. For verbs, it
was deduced by a script which analyzed the infinitive form, cutting the ending at the same time. For
stems of unknown harmony class two versions were generated, one with rounded harmony and one
with unrounded harmony, so that we can analyze whatever we find in the corpus. Later the missing
information could be entered into the lexicon by analyzing the corpus data concerning these words to
properly constrain the analyzer. There are also a number of words which are known to take both
rounded and unrounded harmonic suffixes. The entries representing these words explicitly contain
both flags in the lexicon source.

Another conversion which was applied to the stem lexicon was the inverse of gradation (so that the
original surface form of the stem be restored when gradation is applied to the whole word form) and a
special repair rule, which introduced the assumed underlying abstract consonant segments for words
which are irregular stem-internally concerning gradation.

The sample below shows a couple of entries from the original stem lexicon and the way they are
represented in the lexc format. (Comments in lexc are introduced by the ! character, while in the
lexicon format of the Humor development environment, the comment character is *, and, to make
things worse, in xfst, it is #.)

DOI:10.15774/PPKE.ITK.2015.013

5.4. Finite-state implementation of Samoyedic morphologies 85

(original lexicon format)
Ugaarne[N|GN:Ugarnaja];
ün1s1üqeU[N:1)utas, szánon utazó, 2)elso szán a fogatban];
ukud1aryI[N:búvármadár (Colymbus)];
zakazU[N:rendelés];
iked1a[Vi:általában van];

(lexc lexicon format -- converted by a script)
!a stem of vacillating (or unknown) harmony (a geographical name)
Ugaarne0:UgaarneˆU [N][GN];
Ugaarne0:UgaarneˆI [N][GN];
!regular entries with inverse gradation applied
ün1s1üqe0:ün1s1üteˆU [N];
ukud1ary0:ukusaryˆI [N];
!irregular entry (a loan word): abstract consonant ˆC inserted
!to preserve strong grade k in the closed 2nd syllable
za0kaz0:zaˆCkazˆU [N];
!verb stem: harmony class (ˆU) is deduced from the infinitive
iked1a:ikeˆU0 [Vi];

Beside irregularities of gradation there is a number of stem alternations which are peculiar to j-final
stems and a subclass of vowel-final stems. Nouns and verbs follow different alternation patterns, and
words having the same ending often behave differently. By analyzing dictionary data, I considered
some of these alternations regular (if the pattern was unambiguous or one pattern was significantly
more frequent than the others for a certain stem ending). These cases were handled by defining rules
in the xfst rule component which create the allomorphs and introduce the necessary flag diacritics
codes. The following fragment from the rule component defines regular stem alternations of j-final
nouns.

#Nouns --- alternations of j
define Stemalt [
#monosyllabic regular case (no syllable boundary precedes,
#no S code in lexicon)
o j -> [o j "#P.S.1#" | u e "#N.S.1#"] ,
u j -> [u j "#P.S.1#" | u u "#N.S.1#"] ,
ü j -> [ü j "#P.S.1#" | ü ü "#N.S.1#"]

|| .#. ˜\$[V] _ [Harm* TAG* Noun]
#polysyllabic regular case (syllable boundary precedes)
.o.
u j -> [u j "#P.S.1#" | u == "#N.S.1#"] ,
ü j -> [ü j "#P.S.1#" | ü == "#N.S.1#"] ,
a j -> [a j "#P.S.1#" | a a "#P.S.2#" | a u "#P.S.3#"]

|| .#. \$[V] _ [Harm* TAG* Noun]

Words which do not follow the regular patterns had to be marked in the lexicon source by entering
the irregular allomorphs (* is a comment character here).

*irregular third stem. S1=S2
beuremuU[N:átkelohely];S3:beurema;
*S3 is irregular because it coincides with S1 and S2
bieI[N:szél];S3:bie;
*S2 and S3 irregular
tugy’I[N:anyag, rongy];S2:tukyd1e;S3:tukyd1i;
*S2 and S3 irregular but they coincide
tujU[N:tuz];!S1:tuu;
*S3 irregular with two alternative forms, S1=S2
tyraaU[A:sekély];S3:tyraa/tyrau;

These entries converted to the lexc lexicon format look like the following. The regular stem alternation
rules do not apply to these entries because they have explicit stem flag marking in the lexicon.

DOI:10.15774/PPKE.ITK.2015.013

86 5. Applications of the model to various languages

beuremu@P.S.3@0:beurema#P.S.3#ˆU [N];
beuremu@N.S.3@0:beuremu#N.S.3#ˆU [N];
bie@P.S.3@0:bie#P.S.3#ˆI [N];
bie@N.S.3@0:bie#N.S.3#ˆI [N];
tugy’@P.S.1@0:tuky’#P.S.1#ˆI [N];
tugy’0@P.S.2@0:tukyse#P.S.2#ˆI [N];
tugy’0@P.S.3@0:tukysi#P.S.3#ˆI [N];
tuj@P.S.1@0:tuj#P.S.1#ˆU [N];
tuj@N.S.1@0:tuu#N.S.1#ˆU [N];
tyraa@N.S.3@0:tyraa#N.S.3#ˆU [A];
tyraa@P.S.3@0:tyraa#P.S.3#ˆU [A];
tyraa@P.S.3@0:tyrau#P.S.3#ˆU [A];

5.4.1.4 The analyzer

Due to the complexity of Nganasan phonology, the standard procedure of building an analyzer with
the Xerox tools could not be applied, because the compiler used up all available memory and crashed.
Thus, instead of first compiling the phonology transducer by composing the rules with each other
and then composing the phonology network with the lexicon, I composed the rules one by one with
the lexicon. Thus the lexicon constrained the space of possible underlying representations from the
very beginning, and the size of the network remained manageable throughout the whole compilation
process.

I compiled two variants of the Nganasan analyzer which differ only in the verbosity of the analyses
they produce. The output of the less verbose variant consists of the citation form and the category
tag of the absolute stem and the morpho-syntactic features the suffixes expose. The more verbose
variant displays the underlying phonological representation of the suffixes as well. This latter is in
fact the basic variant, the other one is obtained by composing an appropriate filter. The following is
the output of the two variants for the word form meunte ‘of your land’ or ‘to (the) land’:

(terse variant of analyzer)
meunte meu[N][Lat][Sg]
meunte meu[N][Gen][Sg][Px][2][Sg]

(verbose variant of analyzer)
meunte meu[N]+[Gen][Sg]+nte[Px][2][Sg]
meunte meu[N]+nteˆC[Lat][Sg]

I created a Nganasan word form generator by inverting the terse version of the analyzer. It generates
the possible word forms exposing a stem-morpho-syntactic feature set combination. The following is
an example of the application of the generator to the morpho-syntactic feature set ‘meu[N][Lat][Sg]’:

(generator)
meu[N][Lat][Sg] meute
meu[N][Lat][Sg] meunte

The word meu has two possible alternative forms because although normally the underlying nt of
the suffix is in rhythmical weak grade due to the preceding vowel sequence eu (the rhythmical weak
grade of nt is t), nunnation may optionally apply here (since the preceding consonant is a nasal m),
preserving the n in the coda.

DOI:10.15774/PPKE.ITK.2015.013

5.4. Finite-state implementation of Samoyedic morphologies 87

5.4.1.5 Testing the morphological analyzer

Computational morphologies can not only be used for text markup but also for the validation of the
adequacy of the grammar implemented, provided that there is a body of linguistic data they can be
tested on. Therefore a set of Nganasan data was prepared to perform the tests upon.

First I checked whether the word forms listed in the original dictionary do in fact arise if I apply
the generator to their lexical representation. For verb stems I checked the infinitive form. The other
internal test performed was generating a random example word form for each allomorph of each suffix
morpheme and checking whether these are in fact valid word forms.

I found, and, with the help of the above mentioned group of linguists, I corrected a number of
errors with the help of these tests. The order of rules had to be changed and we found that the rule
describing the simplification of consonant clusters overapplied to morpheme-internal clusters. We
found a number of verbs in the stem database where the form of the infinitive ending in the lexicon
contradicted the model (the form listed was not a possible infinitive according to the grammar). Some
of these errors were introduced when the dictionary data was converted. A common source of errors
was that the notation used in the dictionary does not distinguish rising diphthongs, e.g. ja and wa,
from vowel sequences, e.g. ia and ua. Two words which only differ in that one of them contains a
diphthong and the other contains a vowel sequence, behave quite differently, because what is an odd
syllable in one is an even syllable in the other and vice versa, so gradation renders the subsequent
syllables differently. These errors were not hard to fix, however some of these words appear printed
in the dictionary in a form which is obviously impossible according to our model.

The model was also tested on a corpus. We used two kinds of material for testing our morphology:
a corpus and model inflectional paradigms. As a corpus we used the texts which appeared in
Wagner-Nagy (2002) and a collection of folklore texts from Labanauskas (2001).

I compiled a word form frequency list from the corpus and tested the analyzer on it. I first checked
words for which the analyzer produced no analysis checking the list in decreasing order of word form
frequency. The most frequent reason for the lack of analysis was that the stem of the word was
missing from the dictionary our stem database was derived from. These words were added to the
stem database.

DOI:10.15774/PPKE.ITK.2015.013

DOI:10.15774/PPKE.ITK.2015.013

6
Generating a finite-state
implementation of morph-

adjacency-constraint-based
models

Humor vs. Xerox: How to turn a small but slow turtle into a fast but big hare...
The dog and the bush also reappear.
OK, but how about hedgehogs?
Well, you need to be patient...

Contents
6.1 Difficulties for the morph-adjacency-constraint-based model 90
6.2 The Xerox tools . 90
6.3 Transforming Humor descriptions to a finite-state representation . 91
6.4 Comparison of Humor and xfst . 92

6.4.1 Speed and memory requirement . 92
6.4.2 The grammar formalisms . 94
6.4.3 Lemmatization and generation . 94

DOI:10.15774/PPKE.ITK.2015.013

90 6. Generating a finite-state implementation of morph-adjacency-constraint-based models

6.1 Difficulties for the morph-adjacency-constraint-
based model

One aspect of morphological processing is not covered by the original Humor implementation. It
does not support a suffix-based analysis of word forms whose stem is not in the stem database
of the morphological analyzer. The system cannot be easily modified to add this feature. Such a
morphological guesser would be a very useful tool, because every corpus of natural language text
contains a significant amount of words with novel stems.

Moreover, integration and appropriate usage of frequency information, as would be needed by data-
driven statistical approaches to text normalization (e.g. automatic spelling error correction or speech
recognition), is not possible within the original Humor system. Being able to create a statistical
model could also be useful when building an unknown-word guesser, since this could provide a natural
way of ranking weakly constrained guessed analyses.

A third factor that can be mentioned here is that Humor’s closed-source licensing scheme has been
an obstacle to making these resources widely available.

The problems above could be solved by converting the morphological databases to a representation
that can be compiled and used by finite-state morphological tools.

6.2 The Xerox tools

The most influential implementation of finite-state tools for morphological processing is the xfst-lookup
combo of Xerox (Beesley and Karttunen, 2003). xfst is an integrated tool that can be used to build
computational morphologies implemented as finite-state transducers. The other tool, lookup consists
of optimized run-time algorithms to implement morphological analysis and generation using the
lexical transducers compiled by xfst.

The formalism for describing morphological lexicons in xfst is called lexc. It is used to describe
morphemes, organize them into sublexicons and describe word grammar using continuation classes.
A lexc sublexicon consists of morphemes having an abstract lexical representation that contains the
morphological tags and lemmas and usually a phonologically abstract underlying representation of the
morpheme, which is in turn mapped to genuine surface representations by a system of phonological
rules.

The phonological rules can either be formulated as a sequential or a parallel rule system. xfst can be
used to compile and compose sequential rule systems with a lexc lexicon, yielding a single transducer
mapping surface word forms to lexical representations directly. A similar compiler, twolc is available
for implementing parallel two-level constraints.

The Xerox finite-state transducer implementation makes a factorization of the state space of the
transducers possible in a manner similar to the extended word grammar automaton of the Humor
analyzer. The construct is called flag diacritics. Flag diacritics are implemented as special epsilon
arcs, traversed by the lookup algorithm without consuming input. At the same time, traversal of the
arc affects the extended state of the transducer: the state of the variable denoted by the flag can be
checked, set or cleared by the operation specified on the flag diacritics arc. If a flag checking operation
fails, the lookup algorithm must stop exploring the given path in the transducer and backtrack.

Although handling of flag diacritics during lookup incurs some speed penalty, this feature is very
useful. Using flag diacritics can help prevent the size explosion of the transducer due to long distance
dependencies in the morphology. Furthermore, it can also be used to describe constraints between

DOI:10.15774/PPKE.ITK.2015.013

6.3. Transforming Humor descriptions to a finite-state representation 91

adjacent morphemes in a linguistically expressive and easy-to-understand manner. Using an xfst-
operation, flag diacritics expressing such local constraints can often be eliminated from the transducer
gaining lookup speed benefits without a significant transducer size penalty.

The Xerox tools implement a powerful formalism to describe complex types of morphological structures.
This suggested that mapping of the morphologies implemented in the Humor formalism to a finite-state
representation should have no impediment.

6.3 Transforming Humor descriptions to a finite-
state representation

The standard procedure of building an analyzer with the Xerox tools is first to compile a lexicon
transducer using lexc, which describes possible underlying word forms. Then, using xfst, one compiles
a transducer from each rule in the rule component and composes them into a single transducer which
defines the whole morpho-phonology of the language. Finally, one composes these two transducers into
a single transducer (called a lexical transducer) which can be used as a morphological analyzer.i

However, as the morphological models created with the Humor formalism contain a full description
of the morphology including morphophonology, neither the sequential (xfst) nor the parallel (twolc)
rule component of the finite-state formalism is needed for the conversion of the Humor grammars to
a finite-state representation.

The lexical form and category label of each morph is mapped to the lexical side of the lexc repre-
sentation of the morpheme, while its surface form is mapped to the surface side. The latter one is
real surface form instead of the abstract underlying phonological representation that is common in
usual lexc lexicon sources. Appropriate alignment of corresponding symbols in the lexical and surface
representations is provided by the implementation of the lexicon converter. Tags are represented as
single multicharacter symbols.

Local morph adjacency constraints represented as matrix codes, continuation matrices, binary
properties and requirements vectors can be represented directly as lexc continuation classes. To
simplify the mapping, a switch was added to the piece of code in the development environment that
generates the Humor encoding. When the switch is present, the program creates matrices that alone
completely describe all morph adjacency constraints, thus binary vectors can be ignored. When
generating the lexc representation of each morph, the sublexicon it is to be included in is determined
by its left matrix name and code. Its continuation class is determined by its right-hand-side matrix
name and code along with its word grammar category. Figure 6.1 below shows some entries from the
stem database converted to their lexc representation as well as a fragment of a sublexicon representing
a row of a Humor continuation matrix. Right matrix name and code hook back to the morpheme
lexicons indexed by their left matrix name and code through these sublexicons, directly encoding
the compatibility relations encoded in the Humor matrices. Also note that in the representation in
Figure 6.1, the word kutya ‘dog’ has a different left and right continuation class code than in the
Humor lexicon fragment shown in Figure 3.1. The reason for this is that the matrices alone represent
all adjacency constraints here and are thus more complex than those in the original Humor lexicon.

The easiest way to map the Humor word grammar to a finite-state representation is using flag
diacritics. The main state variable of the automaton is mapped to one flag (called St), while the
extended binary state variables to one additional generated flag each. The exact set of flag diacritics
arcs attached to the representation of each morph is determined by the word grammar category of

iThe motivation for doing it this way is that when all errors in the rule component have been fixed, it
never has to be recompiled again when one adds new stems to the lexicon, which generally speeds up the
compilation of the whole network.

DOI:10.15774/PPKE.ITK.2015.013

92 6. Generating a finite-state implementation of morph-adjacency-constraint-based models

LEXICON Root
<%@U%.St%.START%@>; M_n_1049;

LEXICON M_n_1049
L_n_0;
...
L_n_50;
...
L_n_61;
...

LEXICON L_n_50
...
kutya[S_N]:kutya0 R_(nstem12_%!sup_%!cmpd)_n_2263;
kutya[S_N]:kutyá0 R_(nstem12_%!sup_%!cmpd)_n_2865;

LEXICON L_n_61
...
bokor[S_N]:bok0r0 R_(nstem12_%!sup_%!cmpd)_n_2833;
bokor[S_N]:bokor0 R_(nstem12_%!sup_%!cmpd)_n_1907;
mogyoró*bokor[S_N]:mogyoró0bok0r0 R_(nstem12_%!sup_cmpd)_n_2833;
mogyoró*bokor[S_N]:mogyoró0bokor0 R_(nstem12_%!sup_cmpd)_n_1907;

root lexicon

a lexicon representing
a matrix row

class n 50 morphs (left matrix code)

lexical form

surface form word
grammar
category

right matrix code

Figure 6.1: Fragment of the lexc representation of converted Humor data structures: a row of a
continuation matrix and stem allomorphs

the morph. The sublexicon fragment at the bottom of Figure 6.2 illustrates how this is implemented.
Figure 6.2 also shows the converted representation of the allomorphs of the Hungarian accusative
suffix. Elimination of the word grammar state flag St is possible to increase the speed of lookup on
the transducer. However, it may result in a considerable growth of the state space.

6.4 Comparison of Humor and xfst

Advantages and drawbacks of the two toolsets follow from the properties of the internal representation
of the morphological database of the analyzer/generator and that of the linguistic formalisms used to
create the databases.

6.4.1 Speed and memory requirement

In the Xerox tools, morphology is represented by a simple and homogeneous data structure, a
set of finite-state transducers. An analysis of a word form is simply the traversal of a path in this
homogeneous stream of states and transitions. On the other hand, since transducers are indeterministic
with regard to their input side, the traversal of the net usually involves a lot of backtracking. Moreover,
in real life situations, normally a synchronized traversal of a chain of transducers is needed, and
lookup also has to handle epsilon arcs containing flag diacritics.

DOI:10.15774/PPKE.ITK.2015.013

6.4. Comparison of Humor and xfst 93

LEXICON L_n_121
t[I_ACC]:t0 R_(inf)_n_2557;

LEXICON L_n_172
et[I_ACC]:et0 R_(inf)_n_2557;

LEXICON L_n_302
at[I_ACC]:at0 R_(inf)_n_2557;

LEXICON L_n_342
ot[I_ACC]:ot0 R_(inf)_n_2557;

LEXICON L_n_330
öt[I_ACC]:öt0 R_(inf)_n_2557;

LEXICON R_(nstem12_%!sup_%!cmpd)_n_2865
...
@U.St.N1@@P.St.N2@@P.I.+@ M_n_2865;
@U.St.N+P@@P.St.N+P+N@ M_n_2865;

lexicon of all state
transition arcs with this
word grammar category

suffix allomorphs
(of accusative)

St: N1 → N2, set flag I

Figure 6.2: Fragment of the lexc representation of converted Humor data structures: allomorphs of
the Hungarian accusative suffix and a sublexicon of state transitions labeled by the word grammar
category nstem12 !sup !cmpd

The database of the Humor analyzer is less homogeneous and the search for analyses involves more
different operations such as lexical lookup, checking of morph adjacency constraints, word grammar
automaton traversal and case conversion checks.

Due to the simpler data structure and lookup algorithm, the Xerox analyzer is faster. In fact, there is
a trade-off between speed and memory requirement: the Humor analyzer, on the other hand, requires
much less memory.

Table 6.1 presents a brief comparison of a version of our Hungarian morphology containing about
144000 morphs in the original Humor-compiled lexicon format and the converted version compiled by
the Xerox xfst tool, with and without the elimination of the St flag and used for analysis using the
Xerox lookup tool.

Humor lex lexc with St lexc no St
run-time mem 3.3 MB 20.6 MB 38.5 MB
lookup speed 4700 words/s 12500 words/s 33333 words/s

Table 6.1: Comparison of the original Humor and xfst-compiled equivalents of a 144000-morph
Hungarian lexicon

Finite-state conversion results in a significant increase of the memory footprint (>11 times) of the
morphological analyzer. However, it also yields a significant analysis speed benefit (>7 times).
Elimination of further flags roughly doubles the size of the compiled lexicon for each eliminated flag.

DOI:10.15774/PPKE.ITK.2015.013

94 6. Generating a finite-state implementation of morph-adjacency-constraint-based models

It also leads to an extremely long compilation time, but it does not result in any significant analysis
speed benefit.

Especially in the case of morphologies with a separate rule component, the ratio of compile-time
memory requirement seems to be at least another order of magnitude higher than the difference
between the run-time memory loads.

When working on the Nganasan morphology described in Section 5.4, the standard procedure of
compiling the rule component separately by compiling and composing all the rules using xfst and
then composing it with the lexicon compiled by lexc completely failed in an at that time standard
512 MB machine for lack of memory.

Finally, I tackled this problem by changing the procedure of creating the final transducer: I composed
the rules one by one with the lexicon. The lexicon constrained the space of possible underlying
representations from the very beginning and thus the size of the network remained manageable
throughout the whole compilation process.

25 years ago, when the Humor analyzer was conceived, the compile-time and even the run-time
memory requirements of the finite-state tools would have been unfeasibly high. With today’s RAM
sizes, even a 40 MB analyzer lexicon does not seem to be a serious problem anymore. Nevertheless,
Humor might be a feasible alternative for handheld devices with limited memory capabilities.

6.4.2 The grammar formalisms

Both grammar formalisms are powerful enough to handle the complex morphology of agglutinating
languages without difficulties or compromises. However, the xfst formalism seems to have an
advantage when one has to deal with very complex phonology. Context dependent re-write rules of
the Generative Phonology tradition have been a popular formalism to describe phonological processes.
Such a grammar is obviously easier to translate to the xfst formalism than to a Humor grammar.
Moreover, many details of the description often remain vague in written grammars (such as the
ordering and exact formulation of rewrite rules). These must unavoidably be made explicit in a
computationally implemented grammar. It is also clear that one’s first guess at the setting of these
parameters is not likely to be totally correct, especially if the model is very abstract, as it was in
the case of the Samoyedic languages (see Section 5.4). Rather, one has to experiment with various
parametrizations and test them on the available linguistic data to find a model that adequately
describes the morpho-phonology of the language. It is obvious that this experimentation requires
much less human effort if the computational model which one applies is closer to the formalism used
in the original account.

6.4.3 Lemmatization and generation

There is a point where the lexicon format geared to the slicing-up approach of the Humor analyzer
seems to have a clear advantage over the transducer-based lexicon implementation. The fact that the
Humor analyzer returns both the lexical and surface form of each morph allows for a high level of
parameterizability when doing lemmatization or word form generation. The key difference between a
usual Xerox lexicon created using xfst and a Humor lexicon is that while the ‘lexical form’ of suffixes
is normally an abstract deep phonological representation in the former, in the latter it is the form
that the suffix would assume if no further suffixes were attached.

Whether various derivational affixes should be considered to be part of the lemma, and in what
constructions, often depends on the actual application. In the Humor lemmatizer, these parameters
can be set at run time without a recompilation of the lexicon. The rich output of the analyzer

DOI:10.15774/PPKE.ITK.2015.013

6.4. Comparison of Humor and xfst 95

and the non-abstract lexical forms returned make merging the morphs constituting the lemma very
straightforward. The flexibility of the word form generator described in Section 4.3.2 (i.e. the fact
that, if necessary, the generator can handle non-atomic stems as if they were atomic) is also made
possible by the fact that the corresponding analyzer database can be easily converted into a generator
lexicon in which stems, derivational affixes and inflections have exactly the kind of representation
needed for versatile word form generation.

DOI:10.15774/PPKE.ITK.2015.013

DOI:10.15774/PPKE.ITK.2015.013

7
Extending morphological

dictionary databases without
developing a morphological

grammar
In which we take time to rest, and instead of writing grammars for more languages, a method is
proposed for the extension of dictionary-based computational morphologies without writing a grammar.
And finally, they are here: живые и неживые ежи.

Contents
7.1 Features affecting the paradigmatic behavior of Russian words . . . 99
7.2 Creation of the suffix model . 100
7.3 Ranking . 100
7.4 Evaluation . 102
7.5 Error analysis . 104

DOI:10.15774/PPKE.ITK.2015.013

98 7. Extending morphological dictionary databases without developing a morphological grammar

The morphological grammar development framework described in Chapter 4 allows an easy extension
of the morphology with new lexical items. This approach also gives the creator of the morphology
complete control over the quality of the resource. Building rule-based morphological grammars,
however, requires threefold competence: familiarity with the formalism, knowledge of the morphology,
phonology and orthography of the language, and extensive lexical knowledge. Many morphological
resources, on the other hand, contain no explicit rule component. Such resources are created by
converting the information included in a morphological dictionary to some simple data structures
representing the inflectional behavior of the lexical items included in the lexicon. The representation
often only contains base forms and some information (often just a paradigm ID) identifying the
inflectional paradigm of the word, possibly augmented with some other morphosyntactic features.

With no rules, the extension of such resources with new lexical items is not such a straightforward
task, as it is in the case of rule-based grammars. However, the application of machine learning
methods may be able to make up for the lack of a rule component. The context in which I explored
the possibilities of automatic paradigm identification, was the following task. I needed to make a
pop-up dictionary capable of handling and correctly lemmatizing all inflected word forms of the
vocabulary of a specific Russian–Hungarian dictionary (see also Section 8.1). The method by which I
solved the problem of predicting the appropriate inflectional paradigm of out-of-vocabulary words is
based on a longest suffix matching model for paradigm identification, and it is showcased with and
evaluated against an open-source Russian morphological lexicon.

Morphological paradigm prediction has been a field of interest, especially for researchers dealing with
inflectional, or at least compounding languages. Some studies aim at solving this problem by learning
inflectional paradigms from raw text corpora by clustering word-forms in the corpus and analyzing
the resulting clusters (Nakov et al., 2005; Monson et al., 2008; Dreyer and Eisner, 2011). Other
unsupervised methods applied to morphology induction are that of Wicentowski (2002); Hammarström
and Borin (2011) and Goldsmith (2001), the latter using morphemes to encode a corpus by grouping
morphemes into structures, called signatures, representing inflectional paradigms. These models,
however, mainly aim at only segmenting word forms into stems and affixes: stem alternations cause
paradigms to be scattered into unrelated subparadigms. However, the performance of unsupervised
methods is far behind those using existing resources either as an inventory of inflectional pattern
rules, or as annotated data for supervised machine learning algorithms. For example, when creating a
Humor-based French morphology, I experimented with the Linguistica system described in Goldsmith
(2001), trying to get the system generate an optimal stem-suffix segmentation for French verbal
inflectional paradigms. The system failed to come up with anything usable. Another attempt at using
Morfessor (Creutz and Lagus, 2007) to segment the Russian lexical database used in the research
presented in this chapter resulted in a similar fiasco.

Raw text corpora are also used in approaches where word form statistics are used to validate
inflectional forms generated by a predicted paradigm candidate for a given word. If the resulting
word forms are not represented in a corpus, then the paradigm is not valid. Some examples for such
methods are that of Forsberg et al. (2006) and Oliver and Tadić (2004). The research done in Lindén
(2009) exploits both lexical features and corpus-based information to determine inflectional behavior
by analogy. Šnajder (2013) also defines string-based and corpus-based features used for a support
vector machine classifier to decide if a predicted paradigm is valid or not.

My approach differs from most of the previous ones in that I use a morphological lexicon as annotated
data and the frequency distribution of raw text corpora. I address the problem of predicting inflectional
paradigms based on the lemma and some given lexical features which are usually available even
in some less-sophisticated dictionaries. Based on the information coming from the dictionary, the
morphological lexicon can be extended in a more robust manner than in cases when only raw word
form corpus frequency data is available, and lemma, categorial features and the paradigm all need to
be estimated from that data.

DOI:10.15774/PPKE.ITK.2015.013

7.1. Features affecting the paradigmatic behavior of Russian words 99

ёж[num:Sg.cas:Nom]
ежа[num:Sg.cas:Gen]
ежу[num:Sg.cas:Dat]
ежа[num:Sg.cas:Acc]
ежом[num:Sg.cas:Ins]
еже[num:Sg.cas:Prp]
ежи[num:Pl.cas:Nom]
ежей[num:Pl.cas:Gen]
ежам[num:Pl.cas:Dat]
ежей[num:Pl.cas:Acc]
ежами[num:Pl.cas:Ins]
ежах[num:Pl.cas:Prp]

(a) ёж[N.gnd:Mas.ani:Ani][:8];

ёж[num:Sg.cas:Nom]
ежа[num:Sg.cas:Gen]
ежу[num:Sg.cas:Dat]
ёж[num:Sg.cas:Acc]
ежом[num:Sg.cas:Ins]
еже[num:Sg.cas:Prp]
ежи[num:Pl.cas:Nom]
ежей[num:Pl.cas:Gen]
ежам[num:Pl.cas:Dat]
ежи[num:Pl.cas:Acc]
ежами[num:Pl.cas:Ins]
ежах[num:Pl.cas:Prp]

(b) ёж[N.gnd:Mas.ani:Ina][:9];

Figure 7.1: Differences in case syncretism of the lemma (ёж ’hedgehog’) depending on whether it
is animate (a) or inanimate (b).

7.1 Features affecting the paradigmatic behavior of
Russian words

When attempting to predict the inflectional paradigm for Russian words, certain grammatical features
of the lexical item need to be known in order to have a good chance of guessing right. Lemma and
part of speech are obviously necessary features, although part of speech can be guessed from the
lemma for adjectives and verbs with high confidence. Nevertheless, I assumed these to be known, as
these properties of words are present in any dictionary. In the experiments, I used the LGPL-licensed
open-source Russian morphology available from www.aot.ru (Sokirko, 2004). The core vocabulary
of this morphology is based on Zaliznyak’s morphological dictionary (Zaliznyak, 1980). It contains
174, 785 lexical entries, each of which are classified into one of 2, 767 paradigms.

For nouns, a number of additional features (gender, countability and animacy) play a role in
determining the morphosyntatctic feature combination slots which make up the paradigm of the
given lemma. There are also nouns, which are undeclinable. Of these features, gender is indicated for
each headword in any dictionary, and undeclinable nouns are also usually marked as such. Certain
abstract, collective and mass nouns (and, in the aot resource, also many proper names) lack plural
forms, while there are also pluralia tantum, which have no singular. Some of the latter, however, are
easier to recognize, due to their lemma exhibiting typical plural morphology.

Animacy affects the nominal paradigm in a manner that does not influence the actual set of possible
word forms. However, there is a case syncretism in Russian, which depends on animacy. For animate
nouns, plural accusative coincides with genitive (for masculine nouns, the same applies also to
singular). For inanimate nouns, on the other hand, the form of accusative matches that of the
nominative. This difference is still present in the case of homonyms, where one of the senses of the
word is animate, and another form is inanimate. This phenomenon is illustrated in Figure 7.1 with
the word ёж ‘hedgehog: animal’, and ‘Czech hedgehog: a static anti-tank obstacle’. Note, however,
that the animacy feature, although it is present in the aot lexicon, is not generally made explicit in
other dictionaries, because a human user can infer this information from the meaning of the word.
We thus have not used this information.

Similarly, the set of valid morphosyntactic feature combinations for verbs depends on verbal aspect
and transitivity/reflexivity. Thus, these properties need to be known for verbs, and, indeed, they are
listed in dictionaries. E.g. non-transitive verbs lack passive participles; verbs of perfective aspect lack

DOI:10.15774/PPKE.ITK.2015.013

www.aot.ru

100 7. Extending morphological dictionary databases without developing a morphological grammar

present participle forms; and many verbs of imperfect aspect lack past participial (especially passive)
forms. The adverbial participial forms a verb may assume also depend on aspect (and also on other
idiosyncratic lexical features).

Defectivities of the adjectival paradigm, e.g. the lack of short predicative forms and synthetic
comparative and superlative forms depends on semantic and other, seemingly idiosyncratic, features
of the lexeme. E.g. relational adjectives usually lack these forms. Such properties, however, were not
made explicit in the aot lexicon, neither are they present in normal dictionaries, so I did not use any
lexical features for adjectives beside part of speech.

Thus, when defining the feature set for predicting inflectional paradigms of words, I assumed that the
lemma and the lexical properties mentioned above: part of speech, gender, verb type, etc., are known.
However, some morphological characteristics relevant from the aspect of inflection cannot be derived
neither from a simple dictionary, nor from the surface form of a word. Such features are whether
the meaning of a noun is an animate or inanimate entity; an adjective lacks certain grammatical
forms; there is stress variation, idiosyncratic orthographic variations, or other irregularities. Thus,
my model is not necessarily able to predict paradigmatic behavior depending on such features, since
the necessary information is not available to it.

The other set of features I used are n-character-long suffixes of the lemma for various lengths n. The
maximum suffix length is a parameter of the algorithm. It was set to 10 in all the experiments. In
order to exploit this information, a suffix model is created based on the lexicon. An illustration of how
this model including both the endings and the lexical features is generated is shown in Figure 7.2.

7.2 Creation of the suffix model

A suffix trie is built of words input to the training algorithm in the form shown in the right column
of Figure 7.2. The lemma is decorated with the following features (from right to left):

• The tag in brackets consists of two parts: part of speech (and, in the example: gender) is
followed by the appropriate paradigm ID from the aot database; the two are separated by
a hyphen. This is the information to be predicted by the algorithm for unknown words.
After processing the training data, terminal nodes of the suffix trie link to a data structure
representing the distribution (relative frequency) of tags for the given suffix.

• A suffix following a vertical bar is attached to the end of the lemma. This represents the
available lexical knowledge about the lexical item in an encoded form.i

• Some paradigms are restricted to lemmas ending in a specific suffix. There is a hash mark at
the beginning of the suffix of the lemma that is required by the given paradigm ID to be valid.
The given paradigm ID is not applicable to words not having that ending. E.g. all lemmas in
paradigm 1433 must end in ьё.

7.3 Ranking

The suffix-trie-based ranking algorithm that I used was inspired by the suffix guesser algorithm used
in Brants’ TnT tagger to estimate the lexical probability of out-of-vocabulary words (Brants, 2000).
However, that model did not prove to perform well enough in this task. So I modified the model
step-by-step until I arrived at a model that turned out to be simpler, yet to perform much better.

in: neuter noun, *: undeclinable, s: singular only

DOI:10.15774/PPKE.ITK.2015.013

7.3. Ranking 101

мумиё[N.n.*.-];prd:25
остриё[N.n.-];sfx:ё;prd:1709
бабьё[N.n-];sfx:ё;prd:210
дубьё[N.n-];sfx:ё;prd:210
свежевьё[N.n-];sfx:ё;prd:210
цевьё[N.n.-];sfx:ьё;prd:1433
жнивьё[N.n];sfx:ё;prd:1103
суровьё[N.n];sfx:ё;prd:210
мостовьё[N.n];sfx:ё;prd:210

мумиё|n*[N.n-25]
остри#ё|n[N.n-1709]
бабь#ё|ns[N.n-210]
дубь#ё|ns[N.n-210]
свежевь#ё|ns[N.n-210]
цев#ьё|n[N.n-1433]
жнивь#ё|n[N.n-1103]
суровь#ё|ns[N.n-210]
мостовь#ё|ns[N.n-210]

Figure 7.2: A portion of the suffix model. The format of the right column is:
lem#ma|lex-features[PosTag-paradigmID], where ma is a required ending of the lemma for all
items in the paradigm identified by paradigmID.

гурба|f [N.f] [N.f:50]#2.857270 [N.f:175]#0.756756 [N.f:48]#0.293840
[N.f:105]#0.175658 [N.f:88]#0.098045 [N.f:103]#0.051742
[N.f:396]#0.03995 [N.f:611]#0.039730 [N.f:69]#0.029693
[N.f:121]#0.021167

дурака|f [N.f] [N.f:88]#4.466005 [N.f:15]#1.341181 [N.f:273]#0.904291
[N.f:36]#0.738748 [N.f:50]#0.467147 [N.f:16]#0.443249
[N.f:39]#0.300179 [N.f:105]#0.175658 [N.f:96]#0.155983
[N.f:103]#0.051742

Figure 7.3: The ten highest ranked paradigm candidates for the input words гурба—f and дурака—f.
The candidates are listed sorted by their rank, with the calculated score separated by the # mark for
each tag.

The paradigms are predicted by assigning a score to each paradigm for each word. Then, the higher
this score is for a paradigm tag for a certain word, the more probable it is that the word belongs to
that paradigm. I select the top-ranked paradigm to be the predicted inflectional class.

The score for each paradigm in the case of a word is calculated for all suffixes of the word, including
the lexical properties, from shortest to longest. More formally, for all tags, the rank is calculated
iteratively according to Formula 7.1.

ranki+1[tag] = sign× len sfx× rel freq + ranki[tag] (7.1)

where

sign
is negative if the suffix is shorter than the minimal suffix
required by the given paradigm

len sfx is the length of suffix not including lexical properties

rel freq is the relative frequency of tag for the suffix

ranki[tag]
is divided by len sfx if len sfx > 1
is negated if sign > 0 and ranki[tag] < 0
before calculating ranki+1[tag]

The applied ranking score clearly prefers the most frequent paradigm for the longest matching suffix.
Some examples for the ranked candidates are shown in Figure 7.3.

DOI:10.15774/PPKE.ITK.2015.013

102 7. Extending morphological dictionary databases without developing a morphological grammar

7.4 Evaluation

For the evaluation of the performance of the paradigm assignment algorithm, I used the frequency
distribution of Russian lemmas, taken from Serge Sharoff’s Russian internet frequency list.ii

Evaluation of the ranking algorithm was performed for the four different test sets. These are rare
words (LT10), average words (LT100), and frequent words (MT1000). I used standard evaluation
metrics for measuring the performance of my method.

Evaluation of the ranking algorithm was performed on different training and test set combinations.
In each case, I applied five-fold crossvalidation. In order to see how the performance of the algorithms
is affected by the frequency of the lemmas in the training and test sets, I split the aot lexicon into
parts that contained rare words (LT10; not more than 10 occurrences in the Internet corpus; 91,770
words), average words (LT100; between 11 and 100 occurrences; 33,990 words), and frequent words
(MT1000; more than 1000 occurrences; 9,650 words). Moreover, I also evaluated performance on a
random 20% sample of the lemmas disregarding frequency (RAND; 159,935 words).

I used standard evaluation metrics for measuring performance. First-best accuracy measures the ratio
of having the correct paradigm ranked at the first place. This reflects the ability of the system to
automatically classify new words to paradigms. In addition, the accuracy values for 2nd to 9th ranks
were also calculated. Recall is the ratio of having the correct paradigm in the set of the first ten
highest ranked candidates. Following the metrics used by Lindén (2009), precision was calculated as
average precision at maximum recall, i.e. 1/(1 + n) for each word, where n is the rank of the correct
paradigm. This measures the performance of the ranking algorithm. As it might be the case that
paradigm prediction is used to aid human classification, this metric reflects the ratio of noise a human
must face with when verifying the results. Finally, f-measure is the harmonic mean of precision and
recall.

I evaluated our algorithm comparing it to two baseline methods. The first one uses Brants’ suffix
guesser model (Brants, 2000) instead of the longest suffix matching method. This model uses a θ
factor to combine tag probability estimates for endings of different length in order to get a smoothed
estimate. θ is set as the standard deviation of the probabilities of tags. First, the probability
distribution for all suffixes is generated from the training set, then it is smoothed by successive
abstraction according to Formula 7.2.

P (t|ln−i+1, ...ln) = P̂ (t|ln−i+1, ...ln) + θiP (t|ln−i, ...ln)
1 + θi

(7.2)

for i = n...0, with the initial setting P (t) = P̂ , where

P̂
are maximum likelihood estimates of the tag t from the frequencies in the lexicon
of suffixes consisting of letters l

θi
weights are the standard deviation of the unconditioned maximum likelihood
probabilities of the tags in the training set for all i

The other baseline assigns the most frequent paradigm identifier to each word based on its part of
speech and the additional features available (e.g. gender, aspect, etc.). The results of these baselines
compared to our system are shown in Table 7.1. As expected, the second baseline, choosing the most
frequent tag, has a rather low accuracy. However, our longest suffix method outperforms the first
baseline as well. A key difference between the two models is that Brants’ model assigns more weight

iihttp://corpus.leeds.ac.uk/frqc/internet-ru.num

DOI:10.15774/PPKE.ITK.2015.013

7.4. Evaluation 103

Table 7.1: First-best accuracy of paradigm identifiers achieved by the longest suffix match algorithm,
Brants’ model, and by assigning the most frequent paradigm tag

Longest suffix Brants’ model Most frequent tag
MT1000 0.768 0.587 0.410
LT100 0.876 0.593 0.473
LT10 0.887 0.698 0.480
RAND 0.862 0.632 0.466

Table 7.2: Results on full tag agreement (FULL), paradigm identifiers (ID) and equivalent paradigm
classes (EQUIP). The results are measured by first-best accuracy, precision, recall and f-measure.

MT1000 LT100 LT10 ALL/MT1000 ALL/LT100 ALL/LT10 RAND

FU
LL

0.752 0.849 0.879 0.759 0.855 0.872 0.848
0.819 0.903 0.926 0.823 0.910 0.923 0.903
0.903 0.979 0.991 0.923 0.989 0.994 0.982
0.859 0.940 0.958 0.870 0.948 0.957 0.941

ID

0.768 0.876 0.887 0.771 0.872 0.885 0.862
0.830 0.920 0.934 0.834 0.924 0.933 0.915
0.905 0.980 0.992 0.926 0.990 0.994 0.983
0.866 0.949 0.962 0.878 0.956 0.962 0.948

EQ
U

IP

0.819 0.889 0.892 0.813 0.884 0.890 0.875
0.869 0.929 0.937 0.866 0.932 0.936 0.924
0.929 0.984 0.993 0.951 0.993 0.995 0.988
0.898 0.956 0.964 0.907 0.961 0.965 0.955

to unconditioned tag distributions and ones conditioned on shorter suffixes than those conditioned on
longer ones. This is just the other way round in the longest suffix algorithm.

The tags containing paradigm ID’s as well as detailed PoS and subcategorial features define a very
sophisticated classification of words. However, some of the features that distinguish two different
paradigms are not relevant from the aspect of their inflectional behavior, such as the subtype of a
non-inflecting adverb. Moreover, some of these features cannot even be predicted. In many cases,
there is stress variation yielding a different paradigm ID, which, however, does not affect the set of
orthographic forms in the paradigm. Moreover, some paradigm differences are irrelevant from the
point of view of our dictionary lookup task, because they do not affect the set of word forms in the
paradigm. The case syncretism differences between animate and inanimate nouns are examples of
such differences. To see how the algorithms perform in our original lemmatization task, equivalence
classes of paradigms were generated, and a prediction was considered correct if the set of inflected
forms generated by the predicted paradigm was identical to the set of word forms generated by the
correct paradigm. Of the 2, 767 different paradigms, 921 non-unique paradigms could be collapsed
into 283 equivalence classes. Table 7.2 shows the results for each setup, where rows FULL, ID and
EQUIP correspond to full tag, paradigm ID, and equivalence class evaluations, respectively. In the
rows marked by ID, instead of full tag agreement, which might include hard-to-predict information
like that the word is the name of an organization, only the paradigm identifiers were considered. Thus
[N.n._nam:Org.--49], and [N.n.--49] were considered as equivalent.

The three columns on the left show results where the models were trained only on words in the same
frequency class they were tested on. The test set was always 20% of the lemmas in the given frequency

DOI:10.15774/PPKE.ITK.2015.013

104 7. Extending morphological dictionary databases without developing a morphological grammar

Table 7.3: First-best accuracy of paradigm ID prediction in the case of all types of words, nouns,
verbs and adjectives

ALL NOUNS VERBS ADJECTIVES
MT1000 0.768 0.814 0.702 0.683
LT100 0.876 0.935 0.802 0.772
LT10 0.887 0.968 0.869 0.732
RAND 0.862 0.947 0.848 0.682

range. Results in the next four columns were obtained by training the models on the complement of
the test set w.r.t. the whole lexicon.

As the numbers show, our system performs best on rare words, while it achieved the worst results
on very frequent words. This is not very surprising, as irregular words tend to be frequent words,
while rare words have regular inflectional behavior. Correctly predicting the exact paradigm of an
unknown personal pronoun or an irregular verb is indeed a rather difficult task. Since our aim was to
extend existing morphological lexicons, and such resources already contain the most frequent words
of the language, the results obtained for rare words are the ones which are relevant for our task.

Also note that beside similar recall values, precision and first-best accuracy are higher when equivalent
paradigms are collapsed. The prediction algorithm works reasonably well for extending resources for
tasks that do not require full morphological analysis such as indexing for information retrieval or
dictionary lookup.

Table 7.3 shows the first-best paradigm ID accuracy results for all words, nouns, verbs and adjectives
separately. The exact paradigm of verbs and adjectives turned out to be more difficult to guess than
that of nouns. The results achieved for adjectives seem to be especially contradictory to the overall
performance, which can be explained by the unpredictable behavior of adjectives. Semantic factors
and hard-to-predict stress variation affecting paradigmatic classification are explained in the next
section of this paper.

7.5 Error analysis

The most frequent confusions of the longest suffix algorithm for infrequent words are due to failure to
correctly predict

• whether an adjective has synthetic comparative, superlative and/or short predicative forms,
• whether a -ние-final abstract noun has an alternative -нье spelling,
• whether a noun has a second genitive (used in partitive constructions) or locative form,
• stress in past passive participles of certain verb classes and in short and comparative, forms

of certain adjectives, or other optional stress variation across the paradigm (this results in an
е∼ё contrast not normally reflected in orthography),

• whether a non-inflecting noun can be interpreted as plural,
• whether an imperfective verb has past passive participle forms.

Except for stress-related issues and semantically motivated or idiosyncratic defectivity, incorrect
forms are very rarely predicted by the algorithm. Humans would probably make similar mistakes for
words they do not know, especially if they do not know the meaning of the word either. The system
sometimes highlights inconsistencies in the original aot data that even I, not being a native or even
advanced speaker of Russian, can identify as errors, e.g. that while the name of the energy company

DOI:10.15774/PPKE.ITK.2015.013

7.5. Error analysis 105

Кубаньэнерго is categorized as lexically non-plural, the similarly formed Сахалинэнерго does not
have this property.

When looking at errors the algorithm makes when applied to frequent words, we find that the types of
errors are similar to the ones listed above. Nevertheless, failure to predict superlatives, comparatives,
second genitives or special locative forms is more prevalent for this data, as a much higher proportion
of very frequent words have these “irregular” forms.

The most frequent errors of Brants’ original suffix guesser algorithm, on the other hand, include absurd
errors that would not be made even by beginning learners of Russian. This is due to overemphasizing
distributions conditioned on shorter suffixes over those on longer ones. The top-ranked candidate
paradigm is often totally inapplicable to words having the ending the given lexical item has, such as
the paradigm of -кий-final adjectives to -ный-final ones (the most frequent error of that algorithm
for infrequent words).

DOI:10.15774/PPKE.ITK.2015.013

DOI:10.15774/PPKE.ITK.2015.013

8
Applications

“All the proofe of a pudding, is in the eating.” (Camden, 1605)

Contents
8.1 Integration into commercial products 108
8.2 Machine translation systems . 108
8.3 Part-of-speech tagging . 109
8.4 Corpus annotation . 110
8.5 Information retrieval systems . 112
8.6 Other tools . 113

DOI:10.15774/PPKE.ITK.2015.013

108 8. Applications

The Humor morphological analyzer and the computational morphologies described in this thesis have
been used in various commercial tools and research projects. These include spell checker applications,
machine translation systems, corpus annotation projects and tools, search tools, information retrieval
systems etc.

8.1 Integration into commercial products

Spell checker in Microsoft Office The Hungarian morphology described here has been used to
implement a spell checker for Microsoft Word products. The spell checker has been extended with
add-on lexicons covering special, such as financial, medical, nuclear and military, terminology.

Application of the word form generator in the Hungarian stemmer/word breaker used
in Microsoft’s indexing service Microsoft’s indexing service was integrated in various versions
of the Windows operating system (Windows search) and the stemmer/word breaker is also used in
Microsoft database, web service and information retrieval solutions (e.g. SharePoint Server). This
solution works by indexing word forms in documents as they are, and performing query extension
at query time by generating the full paradigm of query terms. Since generating the full paradigm
for languages like Hungarian is not feasible (especially taking into account that derived forms, e.g.
participles, and their further suffixed forms can also be of interest), the specific solution delivered to
Microsoft generates only the at most 200 most frequent forms for each term using the word form
generator described in Section 4.3.2.

Lemmatization in the MoBiMouse/MorphoMouse pop-up dictionary program Morpho-
Logic has had a line of pop-up dictionary tools which are capable of coming up with dictionary
entries for words and multiword expressions pointed at or clicked on by the mouse. Obviously,
the tool must also work for suffixed word forms, thus both the dictionary indexes (created for
headwords, expressions and examples) and the query words are lemmatized using the stem2005
lemmatizer described in Section 4.3.1. The same indexing system is used in on-line dictionary services
run by MorphoLogic (e.g. www.webforditas.hu/szotar.php) and the Grimm Publishing House
(www.grimmonlineszotar.hu/). In order to cover the languages of the dictionaries, I created compu-
tational morphologies using the formalism described in Section 4 for French and Spanish, and adapted
ones for Italian, Dutch and Russian. The methods by which the Russian morphology was extended
to cover the full vocabulary of the Russian–Hungarian dictionary published by the Grimm Publishing
House is described in Section 7. The creation/adaptation and extension of the morphologies got me
in many cases also deeply involved in the proofreading process of the dictionaries.

8.2 Machine translation systems

The need for the automated translation of texts has made the development of machine translation
systems a popular and important field of research. Beside rule-based applications, statistical methods
have also been applied to solve the task of translation. For both methods, a high-accuracy mor-
phological analyzer and generator is of crucial importance, especially for languages with a complex
morphology like Hungarian.

DOI:10.15774/PPKE.ITK.2015.013

www.webforditas.hu/szotar.php
www.grimmonlineszotar.hu/

8.3. Part-of-speech tagging 109

Morphological analysis and generation in the MetaMorpho machine translation system
of MorphoLogic MorphoLogic’s MetaMorpho (Novák et al., 2008; Prószéky and Tihanyi, 2002) is
a rule based machine translation system, which is also at the core of the online English–Hungarian
and Hungarian–English translation services at the sites webforditas.hu and itranslate4.eu.
MetaMorpho is a rule-based system the architecture of which differs from that of most well-known
rule-based systems: it does not contain a separate transfer component. Its grammar operates with
pairs of patterns (synchronous context-free rules enriched with features) that consist of one source
pattern used during bottom-up parsing and one or more target patterns that are applied during
top-down generation of the translation. The architecture of the grammar is completely homogeneous:
the same formalism is used to represent general rules of grammar, more-or-less idiomatic phrases and
fully lexicalized items, these differ only in the degree of underspecification.

In this system, morphological analysis is performed by the Humor analyzer. Moreover, Humor is
used as a word form generator to synthesize output word forms generated by the machine translation
system.

Utilizing morphology in hybrid statistical machine translation systems Statistical ma-
chine translation (SMT) systems do not rely on rules or grammatical pattern matching, but are
trained on parallel corpora of the corresponding languages. Phrase-based SMT methods build
statistical models of the possible translations of words and multi-word phrases from automatically
sentence-and-word-aligned parallel corpora. Moreover, a target-side language model is also built
containing the distribution of n-grams in the training corpus, and it used enable the system to produce
sentences which are more-or-less fluent in the target language.

However, for languages with a rich morphology, pure word-based statistics do not provide a satisfactory
model for translations. Many English function words, such as prepositions, possessive and other
pronouns etc. correspond to bound morphemes in Hungarian. It is difficult to capture these
generalizations using a word-form-based representation. Moreover, the word alignment phase of
training an SMT system makes many alignment errors due to these differences between grammatically
distant languages. Thus, an English-Hungarian SMT system can only achieve satisfactory results if
augmented with a morphological analyzer capable of handling language-specific phenomena.

An example of a state-of-the-art system of this type is that presented in Laki et al. (2013b,a). In
this system, training is performed on a morphologically segmented version of the Hungarian side of
the parallel corpus, while manually crafted syntactic transformation rules are applied to the English
side to reduce word order differences. Thus, a morpheme-based translation system was created in
order to diminish the differences in the number of words and word order between the two languages.
In this system, the Humor analyzer was used to create the morphologically segmented Hungarian
side of the training set. Then, the Humor word form generator is used to generate words from the
morphemes created by the translation process. The results described in Laki et al. (2013a) proved
that morphological analysis has a positive effect on translation quality, resulting in an about 6%
improvement in the mm-BLEU evaluation framework, compared to the word-based system. Moreover,
in human evaluation, the morpheme-based system also ranked better than any of the tested word-
based systems. The quality improvement is due to the capability of the system to translate word
forms that were not present in the training corpus in cases when the individual morphemes were.

8.3 Part-of-speech tagging

Part-of-speech tagging is one of the first steps in a natural language processing pipeline, thus its
accuracy is of crucial importance. Although part-of-speech tagging is generally understood as a task

DOI:10.15774/PPKE.ITK.2015.013

webforditas.hu
itranslate4.eu

110 8. Applications

where only a single part-of-speech label is to be assigned to each token in the text, for morphologically
rich languages, like Hungarian, this is hardly enough for any upstream task. A full morphological
disambiguation including the assignment of a lemma and a rich morphosyntactic annotation is
needed. The Humor analyzer has been used in two implementations of automatic morphological
annotation systems built around a part-of-speech tagger core. Both systems were first trained to
handle Hungarian texts.

PurePos PurePos is an open-source HMM-based automatic morphological annotation tool (Orosz
and Novák, 2013). In order to achieve high accuracy and fast training time, PurePos uses methods
introduced in TnT (Brants, 2000) and HunPos (Halácsy et al., 2007). The tagging model is a linearly
interpolated ngram-based contextual model, and it uses unigram or bigram lexical models.

In addition to statistical modeling, the tagger can incorporate knowledge provided by a morphological
analyzer. The integrated morphological analyzer has a twofold role. On the one hand, it helps to
determine the correct tag for words unseen in the training corpus by eliminating false tag candidates
generated by the suffix guesser. Thus, the tagger achieves better accuracy, since the suffix guesser
may have many false guesses that can be filtered out by using a morphological analyses. On the other
hand, since the identification of lemmata is a subtask of the morphological annotation task, the most
probable lemma that corresponds to each selected tag and token needs to be selected. For tokens
recognized by the morphological analyzer, it supplies lemmata, while in the case of out-of-vocabulary
words, a lemma guesser is used to generate possible lemmata. Each guess contains a morphosyntactic
tag with which it is compatible. Having the guesses for each token and the best tag sequence for the
sentence, the most probable compatible lemma (having the same morphosyntactic tag) is selected for
each token.

HuLaPos2 HuLaPos2 (Laki et al., 2013c) is another automatic tagger/morphological annotation
tool, based on a statistical machine translation system. It considers the disambiguation process
as a translation task, in which the original text is the source side and the lemmatized and tagged
version is the target side of the translation. The drawback of this purely statistical method is its
inability to handle word forms not seen in the training corpus. Thus, beside using a suffix guesser,
the quality of the tagger was improved by integrating the Humor analyzer into the original system.
The morphological analyzer is used to filter out the incorrect part-of-speech and lemma candidates of
the suffix guesser.

8.4 Corpus annotation

Morphological annotation of the Hungarian Gigaword Corpus The second version of the
Hungarian National Corpus (MNSZ2, also called the Hungarian Gigaword Corpus at http://clara.
nytud.hu/mnsz2-dev/ (Oravecz et al., 2014)) was annotated using the Hungarian morphology
described in Section 5.1 and the stem2005 lemmatizer described in Section 4.3.1. The annotation
includes full segmented morphological analysis in addition to lemmatized analysis.

Old and Middle Hungarian annotated corpora The adapted Old and Middle Hungarian
morphology and the automatic and manual annotation tools described in Section 5.2.1 were used in
two parallel OTKA projects of the Research Institute for Linguistics of the Hungarian Academy of
Sciences (Hungarian historical generative syntax [OTKA NK78074], and Morphologically analysed
corpus of Old and Middle Hungarian texts representative of informal language use [OTKA 81189]).
One of the major aims of these projects was is to create morphologically analyzed and searchable

DOI:10.15774/PPKE.ITK.2015.013

http://clara.nytud.hu/mnsz2-dev/
http://clara.nytud.hu/mnsz2-dev/

8.4. Corpus annotation 111

corpora of texts from the Old Hungarian and Middle Hungarian period. The corpora are accessible
at omagyarkorpusz.nytud.hu and tmk.nytud.hu.

Uralic resources The computational morphologies available at the site www.morphologic.hu/
urali have been created in a series of research projects by me and Researchers of the Department
of Finno-Ugric and Historical Linguistics of the Research Institute for Linguistics of the Hungarian
Academy of Sciences (see Section 5.3).

The projects, funded by Hungarian Scientific Research Fund (OTKA) and the National Research
and Development Programme (NKFP), laying the foundations of the tools presented here were the
following:

OTKA 71707 Ob Ugric morphological analyzers and corpora
OTKA K 60807 Development of a morphological analyzer for Nganasan
OTKA T 048309 Linguistic databases for Permic languages
NKFP-5/135/01 A Complex Uralic Linguistic Database

For the Finno-Ugric languages, Komi (see Section 5.3.1), Udmurt, Northern Mansi, and the Khanty
dialects, the Humor morphological analyzer engine was used (see Chapters 3 and 4). These analyzers
were developed by László Fejes and myself. The Nganasan morphology was implemented using the
Xerox xfst toolset by me (see Section 5.4). Some analyzers also present glosses.

The web interface was created by István Endrédy and myself. The site includes corpora for all
the languages we created morphologies for, see below. For the following three languages/corpora:
Mansi (Chr. Vog.), Kazym Khanty and Synya Khanty, the corpus was automatically annotated
and disambiguated using a combination of the respective morphological analyzer and the Hunpos
tagger (Halácsy et al., 2007), and the annotation was manually checked and corrected using the web
interface described in 5.2.1.4. Since the texts are glossed and contain translations, these corpora
are not only morphosyntactically tagged, but the glosses also provide sense tagging. Word sense
disambiguation was already performed in the automatic disambiguation phase by comparing the
glosses of the candidate analyses to the translations we had using a letter-trigram-based similarity
measure, which performed rather well, and could even be used to help bootstrap the iterative training
cycle of the tagger.

The analyzers

Komi-Zyryan The lexicon for the analyzer for standard Komi-Zyryan with Cyrillic orthography
was derived from Beznosikova (2000).

Mansi (WT) In all analyzers for Northern Mansi, glosses for the stems are presented in English,
German and Hungarian. This version uses the transcription of the text collection Kálmán (1976).
The lexicon is based on the vocabulary of the same book.

Mansi (Chr. Vog.) This version uses the transcription of the text collection Kálmán (1963). The
lexicon is based on the vocabulary of the same book.

Mansi (VNGY) This version uses the transcription of the text collection Munkácsi (1892). The
lexicon is based on the vocabulary Munkácsi (1986), digitized by myself, corrected by László Fejes.

Kazym Khanty The stem lexicon was created and the morphological annotation of the corpus was
disambiguated by Mária Sipos. Glosses for the stems are presented in English and Hungarian.

Synya Khanty The corpus presented on the website was collected and transcribed, morphological
annotation of the corpus was disambiguated and the stem lexicon was created by Eszter Ruttkay-
Miklián. Glosses for the stems are presented in English and Hungarian.

DOI:10.15774/PPKE.ITK.2015.013

omagyarkorpusz.nytud.hu
tmk.nytud.hu
www.morphologic.hu/urali
www.morphologic.hu/urali

112 8. Applications

Udmurt The lexicon is derived from the dictionary Kozmács (2002). Glosses are presented in
Hungarian.

Nganasan The Nganasan analyzer uses a Latin-based phonemic transcription (various transcription
versions are available on the web interface of the tools, which are variants of the transciption used in
the text collection Wagner-Nagy (2002). The lexicon is based on the vocabulary of the same book
and the dictionary Kost’erkina et al. (2001).

8.5 Information retrieval systems

In search tools, both at indexing and at query time, it is a common practice to use stemming in order
to be able to find all the different forms corresponding to the words in the query.

Search engine for Hungarian ophthalmology notes In Section 5.2.2, I have described how
the Humor analyzer was extended to be able to handle the special vocabulary of clinical documents.
This version of the morphological analyzer was not only used to process clinical notes, but was also
integrated into a search engine built to retrieve information from a database of ophthalmology notes.
In this system, the Humor analyzer is used both at indexing and query time to be able to find all
inflected forms of words including this special medical vocabulary.

Solr integration of Humor As the search engine for ophthalmology notes uses the Lucene/Solr
document retrieval system, the integration of Humor in the system required the implementation of a
Lucene/Solr API to Humor. Thus, Humor can be used as an alternative analyzer and stemmer in
other Solr-based search engine solutions.

Precognox search engine The search engine of Precognox is a domain-independent intelligent
indexing and search solution built on enterprise search platforms enhanced by natural language
processing applications. The Humor analyzer is used in this system to process query terms and both
the stored and retrieved documents. The concept of the search process is a simple user interface, but
the results to the entered query are presented in an organized manner.

News management system of the MTI Hungarian News Agency The stemmer engine built
around the Hungarian Humor morphological analyzer has been integrated into the document retrieval
system used by news editors of the MTI Hungarian News Agency.

Archives of the Hungarian Atomic Energy Authority The Hungarian Atomic Energy Au-
thority, a government office, has a sizable archive of technical documentation concerning nuclear
facilities, transport containers, as well as with the security of nuclear and other radioactive materials
and associated facilities in Hungary. Documentation in the archive in various languages had to be
made digitally accessible. A Humor-based stemmer was used to index the documents in a custom-made
information retrieval system in Hungarian, English and Russian. For Hungarian, the morphology
was extended with nuclear terminology to improve the coverage of the stemmer. Erroneous words
were indexed with an additional automatically corrected stem, hyphenated words were properly
dehyphenated.

DOI:10.15774/PPKE.ITK.2015.013

8.6. Other tools 113

8.6 Other tools

Accent restoration Due to clumsy mobile device interfaces and reluctance of users to spend too
much time entering their message, a great amount of text is generated in a format that lacks the
diacritic marks normally used in the orthography of the language the text is written in. An automatic
system that can restore the fully accented equivalent of such accent-stripped texts can be used not
only to make the text more readable for humans but is also a prerequisite for the applicability of
higher-level natural language processing tools. Thus, I created a method based on statistical machine
translation that is able to restore accents in Hungarian texts with high accuracy. However, due to
the agglutinating characteristic of Hungarian, there are always wordforms unknown to any system
trained on a fixed vocabulary. In order to be able to handle such words, I integrated the Humor
analyzer into the system that can suggest accented word candidates for unknown words as well.

I considered the problem of accent restoration as a translation task, where the source language is the
unaccented version, and the target language is the accented Hungarian. Since it is easy to come up
with a parallel training corpus for this task, methods of statistical machine translation (SMT) can be
applied.

In my implementation, I used Moses (Koehn et al., 2007), a widely used SMT toolkit for building the
translation models and performing decoding, and SRILM (Stolcke et al., 2011) to build the necessary
language models.

In the baseline setup, only the translation and language models built from the training corpus
were used. The input for the decoder was Hungarian raw texts with all the accents removed. The
translation model was responsible for predicting the distribution of accented forms and the language
model exploited contextual information. The combination of these two models could determine the
accented forms but only for words already seen in the training corpus.

In order to be able to restore accents in unseen words as well, Humor was integrated. For unknown
words, all possible correct accented candidates were generated by the morphological analyzer. These
candidates were then fed to the Moses decoder with a probability assigned to each candidate. First,
I assumed uniform distribution among the candidates. However, this approach assigned the same
probability to the most common and the most nonsensical (although grammatical) candidates as well.
Thus, in some cases these forms showed up in the results. In order to avoid the system to make such
errors, a more sophisticated distribution was estimated for the candidate set. For this, I applied a
linear regression model based on corpus frequency data determined for the lemma and other features
of the candidate word (since the actual wordform was not present in the corpus). Thus, for each
candidate,

• its lemma frequency (LEM),
• the number of productively applied compounding (CMP),
• the number of productively applied derivational affixes (DER), and
• the frequency of the inflectional suffix sequence returned by the analysis (INF)

were determined. Based on these components, a score was assigned to each candidate based on
Formula (8.1).

score = − λcCMP − λdDER+ log10LEM + λilog10INF −MS (8.1)

, where

MS =
{
minscore− 1 if minscore ≤ 0

0 otherwise
(8.2)

DOI:10.15774/PPKE.ITK.2015.013

114 8. Applications

The MS component was used to scale up the scores by adding |minscore|+ 1, i.e. the lowest score
received for any candidate in the actual candidate set. After this score was counted for each candidate
for a certain word, the individual scores were normalized in order to have values in the range of a
probability distribution.

Grapheme-to-phoneme conversion A crucial component of text-to-speech systems is the one
responsible for the transcription of the written text to its phonemic representation. Though the
complexity of the relation between the written and spoken form of languages varies, most languages
have their regular and irregular phonological set of rules. In the case of phonetic languages, such as
Finnish, Estonian or Hungarian, the transcription of a written wordform is almost always straightfor-
ward. However, there are two types of phenomena that make the transcription nontrivial: changes in
pronunciation due to the interference of certain sounds, and traditional or foreign words. Another
problem is the normalization of semiotic systems (e.g numbers written in digits, abbreviations resolved
when pronounced, etc.).

I have developed a tool for the phonemic transcription of Hungarian that performs well even on texts
containing a high number of (foreign or other) names. My method is based on three components: the
morphological analyzer, Humor, a lexicon for irregular stems and the implementation of phonological
rules using xfst.

First, the morphological structure of each word is identified. This is necessary in order to find
morpheme boundaries to which certain morpho-phonological rules refer. Compounds, which are also
quite frequent in Hungarian, might contain components that have an irregular pronunciation. These
should also be recognized by the analyzer to avoid their transcription by the regular phonological
rules.

Due to the incorporation of Humor, the system is more than a look-up tool for individual words, but
is able to transcribe whole phrases or sentences, taking into account sound assimilations appearing
at word boundaries as well. Moreover, as the system is not limited to the vocabulary of a prebuilt
dictionary, it is capable of transcribing any wordforms, which is of crucial importance in languages
like Hungarian, where agglutination and compounding can produce an unlimited number of words.
I compared the performance of the system to that of the most popular freely-available grapheme-
to-phoneme tool, eSpeak. The word-error-rate of my system was 0.35%, while that of eSpeak was
0.98%.

In 2007, the database of Geographical names of the Institute of Geodesy, Cartography and Remote
Sensing (FÖMI) was converted to a phonemic transcription using this tool.

Helyeśırás.hu The helyesiras.mta.hu website is an interactive automatic online consultation
service concerning Hungarian orthography. It is able to tell the user what the orthographically correct
form of a query word is. Moreover, it also gives an explanation and presents the corresponding rules
of orthography. The website uses different natural language processing tools to analyze the query
and to find the answer to specific questions. The Hungarian Humor analyzer, which is capable of
returning orthographically relevant information (such as number of syllables and compound members
in the stem) explicitly in addition to morphological analyses, is a key component of the system.

A special accent restoration tool: marking the mid-ë phoneme The official Hungarian
orthography does not make a difference between the short low e and the short mid ë sounds, as in the
standard dialect, there is only a single short e phoneme. Though most native speakers of Hungarian
are not able to recognize or to produce the latter one, some of those who use it, feel the need to
differentiate these two phonemes in written texts as well. I participated in a project, in which a

DOI:10.15774/PPKE.ITK.2015.013

helyesiras.mta.hu

8.6. Other tools 115

semi-automated tool was created to mark closed ë phonemes in texts. In this project, the database of
Humor was extended to handle suffixes correctly, moreover these phonemes appearing in stems were
marked by a number of competent speakers. The system is able to analyze mid-ë marked text, it is
able to transform standard texts semi-automatically (the tool has an easy-to-use user interface to
correct cases where the system failed to select the contextually correct variant), and it can also be
used as a spell checker for this language variant.

DOI:10.15774/PPKE.ITK.2015.013

DOI:10.15774/PPKE.ITK.2015.013

9
Conclusion

New scientific results
The most important part of this thesis, summarizing new scientific results described in the previous
chapters. A must-read.

Contents
9.1 A morphological grammar development framework 118
9.2 Application of the model to various languages 119
9.3 Adaptation of the Hungarian morphology to special domains 120
9.4 Finite-state implementation of constraint-based morphologies . . . 120
9.5 Extending morphological dictionary-based models without writing

a grammar . 121
9.6 A flexible model of word form generation and lemmatization 122
9.7 A tool for annotating and searching text corpora 123

DOI:10.15774/PPKE.ITK.2015.013

118 9. Conclusion – New scientific results

The better the database of a linguistic program models the language, the better results it can produce.
A key module in a linguistic model is the morphological component, which is responsible for the
analysis and generation of words in the given language. In this research, I have explored various
ways of creating linguistically adequate computational morphologies for morphologically complex
languages.

I have created a model for morphological description that has been successfully applied to a number of
different languages. The language descriptions and the tools created using the model have been used
in various commercial products, such as spell checkers, stemmers, pop-up dictionaries, a rule-based
machine translation system, and in various scientific projects.

9.1 A morphological grammar development
framework

Creating a morphological analyzer for an agglutinative language is quite a challenge, as the number
of morpheme combinations is practically infinite. Thus, the standard methods applied for isolating
languages, such as English, do not give satisfactory results for morphologically complex ones. The
standard tool used for Hungarian has long been MorphoLogic’s Humor (‘High speed Unification
MORphology’) morphological analyzer engine (Prószéky and Kis, 1999). The model this analyzer uses
is based on constraints on adjacent morphs. It performs a classical ‘item-and-arrangement’ (IA)-style
analysis. I used this program as the starting point for my research.

Humor analyzes the input word as a sequence of morphs. Each morph is a specific realization (an
allomorph) of a morpheme. The word is segmented into parts which have a surface form (that appears
as part of the input string, the morph); a lexical form (the ‘quotation form’ of the morpheme) and a
(possibly structured) category label.

The program performs a depth-first search on the input word form for possible analyses. Two kinds of
checks are performed at every step: a local compatibility check of the next morph with the previous
one and a global word structure check on each locally compatible candidate morph by traversing
a deterministic extended finite-state automaton (EFSA) that describes possible word structures.
The lexical database of the Humor analyzer consists of an inventory of morpheme allomorphs, the
word grammar automaton and two types of data structures used for the local compatibility check of
adjacent morphs. One of these are continuation classes and binary continuation matrices describing
the compatibility of those continuation classes. The other are binary properties and requirements
vectors. Each morph has a continuation class identifier on both its left and right hand sides, in
addition to a right-hand-side binary properties vector and a left-hand-side binary requirements
vector.

The database is difficult to create and maintain directly in the format used by the analyzer, because
it contains redundant and low-level data structures. To avoid these problems, I designed and
implemented a morphological grammar development environment that automatically creates the
lexical resources used by the Humor analyzer from a high-level human readable redundancy-free
morpheme-based grammatical and lexical representation that only contains idiosyncratic features of
morphemes and is easy to maintain and extend. Polymorphemic entries, such as compounds, can also
be added to the lexicon, and an inheritance mechanism ensures that these entries inherit idiosyncratic
properties from their final element by default, thus minimizing redundancy in the description and
enhancing consistency. The system also creates a redundant but still easy-to-read intermediate
representation that facilitates the checking of the correctness of allomorph creation rules. The system
ensures the consistency of the created lexical resources and automatically checks for possible syntactic
errors and contradictions in the source descriptions.

DOI:10.15774/PPKE.ITK.2015.013

9.2. Application of the model to various languages 119

The high-level human-readable description is transformed by the system to the redundant representa-
tions of the analyzer by performing the operations described by the rules and converting the features
and constraint expressions using an encoding definition description. This defines how each high-level
feature should be encoded for the analyzer. Certain features are mapped to binary properties while
the rest determine the continuation matrices, which are generated by the system dynamically. The
system is not geared to a particular language; it can be effectively used to describe the morphologies
of various languages without any modification of the programs.

All Humor morphologies built after the creation of the development environment were developed
using this higher-level formalism.

THESIS 1:
I designed and implemented a morphological grammar development environment that automati-
cally creates the lexical resources used by the Humor analyzer from a high-level human readable
redundancy-free morpheme-based grammatical and lexical representation that only contains
idiosyncratic features of morphemes and is easy to maintain and extend.

Related publications: 13, 14, 54, 55, 56, 61, 63

9.2 Application of the model to various languages

The development environment was used to create computational morphologies for a number of
languages, among them agglutinating ones. I created state-of-the-art morphologies for Hungarian,
Spanish and French. In addition, I co-authored Humor morphologies for the following Uralic
languages: Komi, Udmurt, Mari, Northern Mansi and various Khanty dialects. Moreover, based on
various morphological descriptions, I also created Humor-compatible morphologies for Dutch, Italian,
Romanian and Russian, extending the coverage of the original descriptions as required. I also created
computational morphologies for two Samoyedic languages. Although these agglutinating languages
are also members of the Uralic language family, describing their very intricate morpho-phonology
using the constraint-based Humor formalism turned out to be too difficult. Thus, these morphologies
were implemented using the finite-state formalism of Xerox using lexc and xfst.

THESIS 2

I created and co-authored computational morphologies for several languages.

THESIS 2a:
I created, co-authored or adapted computational morphologies for the following languages in the
formalism I introduced demonstrating the capabilities of the framework: Hungarian, Spanish,
French, Dutch, Italian, Romanian, Russian, Komi, Udmurt, Mari, Northern Mansi and the
Synya and Kazym Khanty dialects.

THESIS 2b:
I created morphologies for two seriously endangered Northern Samoyedic languages, Nganasan
and Tundra Nenets, using the Xerox finite-state formalism.

Related publications: 22, 63, 59, 61, 14, 58, 55, 56, 54, 48, 49, 50

DOI:10.15774/PPKE.ITK.2015.013

120 9. Conclusion – New scientific results

9.3 Adaptation of the Hungarian morphology to
special domains

Language use in special domains and language variants may deviate in a significant manner from
what one encounters in the standard written dialect of the language. The morphological model needs
to be adapted when texts from such a special language variant are to be analyzed. Two examples of
such phenomena were described here, demonstrating the adaptibility of the analyzer built using the
development framework. The first task for which the analyzer was adapted, was the annotation of Old
and Middle Hungarian texts. The adapted analyzer can handle extinct morphological constructions
as well as dialectal variants missing from Modern Standard Hungarian. The other example is an
adaptation of the Hungarian morphology to the clinical domain, where the domain-specific terminology,
which includes a vast amount of word forms of foreign origin, had to be treated in a robust manner.

THESIS 3:
I demonstrated the adaptability of morphologies created using the formalism I introduced by
extending the Hungarian morphology I created.

THESIS 3a:
I adapted the Humor morphological analyzer for Hungarian to be capable of analyzing words
containing morphological constructions, suffix allomorphs, suffix morphemes, paradigms and
stems that were used in Old and Middle Hungarian but no longer exist in present-day Hungarian.

Related publications: 38, 42

THESIS 3b:
I created a method for semi-automatically extending the Humor morphological analyzer to
be capable of analyzing words used in the clinical language that contains non-standard word
constructions, phrases of foreign origin and a high ratio of abbreviations. I created methods to
distinguish words of foreign origin, to predict their pronunciation and to predict the part of
speech of words to be added to the lexicon. The resulting analyzer is able to analyze medical
language in an appropriate and robust manner.

Related publications: 2, 37, 65, 36, 7, 1

9.4 Finite-state implementation of constraint-based
morphologies

Humor’s closed-source licensing scheme has been a limitation to making resources made for it widely
available. Moreover, there are a few limitations of the rule-based Humor engine: lack of support
for morphological guessing and the use of frequency information or other weighting of the models.
These problems were solved by converting the databases to a finite-state representation that allows
morphological guessing and the addition of weights and has open-source implementations.

The Xerox tools (Beesley and Karttunen, 2003) implement a powerful formalism to describe complex
types of morphological structures. This suggested that mapping of the morphologies implemented in
the Humor formalism to a finite-state representation should have no impediment.

THESIS 4:
I created a method to convert the Humor databases to a finite-state representation that allows
morphological guessing and the addition of weights and has open source implementations.

Related publications: 30, 31

DOI:10.15774/PPKE.ITK.2015.013

9.5. Extending morphological dictionary-based models without writing a grammar 121

9.5 Extending morphological dictionary-based
models without writing a grammar

Most freely available morphological resources contain no rule component. They are usually based on
just a morphological lexicon, containing base forms and some information (often just a paradigm ID)
identifying the inflectional paradigm of the word, possibly augmented with some other morphosyntactic
features. Resources of this type are much more difficult to extend with new words than rule-based
morphologies. However, the application of machine learning methods may be able to make up for the
lack of a rule component. I prepared an algorithm that makes the integration of new words into such
resources as easy as a rule-based morphology can be extended. This is achieved by predicting the
correct paradigm for words, which are not present in the lexicon. The suffix-trie-based supervised
learning algorithm is based on longest matching suffixes and lexical frequency data, and it was used
to extend a Russian morphology, on which its performance was evaluated. With minimal adaptation,
the tool can be used for any language provided there is a morphological resource available. I assumed
that a dictionary with some lexical features is also available, thus such features could be used for
disambiguating paradigm candidates. The results showed that the method performs with an accuracy
of about 90% in all different setups, achieving the best performance on relatively rare words, which
are good candidates of being absent in the original lexicon.

I found that assigning more weight to distributions conditioned on longer suffixes than on shorter
ones yields much better prediction performance, not only in terms of the number of exact predicted
paradigm matches, but especially when taking into account what sorts of errors the system makes.
While the baseline suffix guesser algorithm often proposes paradigms inapplicable to the given lexical
item, my algorithm makes errors that arise due to the lack of lexical semantic information. Humans
would make similar errors in similar situations.

THESIS 5:
I prepared an algorithm that makes the integration of new words into lexicon-based morphological
resources easy by automatically predicting the correct paradigm for words which are not present
in the lexicon.

Related publications: 27, 5

DOI:10.15774/PPKE.ITK.2015.013

122 9. Conclusion – New scientific results

9.6 A flexible model of word form generation and
lemmatization

The original Humor system lacked the capability of word form generation and the existing lemmatizer
was unable to correctly lemmatize certain non-trivial word constructions. I solved these problems
by extending the system so that it can also be used as a morphological generator and implementing
better lemmatization algorithms.

The generator produces all word forms that could be realizations of a given morpheme sequence.
The input for the generator is a lemma followed by a sequence of category labels that express the
morphosyntactic features the word form should expose.

The Humor generator is not a simple inverse of the corresponding analyzer: it can generate the
inflected and derived forms of any multiply derived and/or compound stem without explicitly referring
to compound boundaries and derivational suffixes in the input even if the whole complex stem is not in
the lexicon of the analyzer. This is a useful feature in the case of languages where morphologically very
complex stems are commonplace. When generating inflected (or derived) forms of a morphologically
complex stem, one does not have to be concerned whether the stem is included in the stem database.
If the corresponding analyzer can analyze it in any way, the generator will be able to correctly
generate its inflected forms.

It is possible to describe preferences for the cases when a certain set of morphosyntactic features may
have more than one possible realization. This can be useful for such applications of the generator
as text generation in a machine translation system, where the generation of a single preferred word
form is required. The Hungarian morphological description was extended with information expressing
markedness. Marked forms are automatically removed during compilation from the version of the
database that is intended for word form generation in the machine translation system.

Since there is considerable variation in suffix ordering in some of the languages for which I created
morphologies (e.g. Komi), I also created a version of the generator that has another useful feature:
it does not assume that the morphosyntactic features are properly ordered in the input, rather it
considers them a set.

The Humor ‘lemmatizer’ tool, built around the analyzer core, does more than just identifying lemmas
of word forms: it also identifies the exposed morphosyntactic features. In contrast to the more
verbose analyses produced by the core analyzer, compound members and derivational suffixes do not
appear as independent items in the output of the lemmatizer, so the internal structure of words is not
revealed. The analyses produced by the lemmatizer are well suited for such tasks as corpus tagging,
indexing and parsing.

There are two implementations of the lemmatizer. Both can properly handle the task of correctly
lemmatizing and filtering special word constructions, e.g. ones that are not (only) suffixed at the end
of the word thus improving the accuracy of lemmatization.

THESIS 6:
I created new word form generator and lemmatizer tools for the Humor system.

THESIS 6a:
I implemented a word form generator as a Humor module, which can generate the inflected and
derived forms of any multiply derived and/or compound stem without explicitly referring to
compound boundaries and derivational suffixes in the input even if the whole complex stem is
not in the lexicon of the analyzer. The generator was used in various commercial applications
and research prototype systems in the domain of information retrieval and machine translation.

DOI:10.15774/PPKE.ITK.2015.013

9.7. A tool for annotating and searching text corpora 123

THESIS 6b:
I created a lemmatizer tool for Humor, which can properly handle the task of correctly lem-
matizing and filtering special word constructions, e.g. ones that are not (only) suffixed at the
end of the word. The lemmatizer was used in various corpus annotation projects and it was
integrated into information retrieval and machine translation systems.

Related publications (on applications of the tools): 3, 35, 41, 53, 51, 52, 11, 49

9.7 A tool for annotating and searching text cor-
pora

To support the process of manual checking and the initial manual disambiguation of an annotated
corpus, I created a web-based interface where disambiguation and normalization errors can be corrected
very effectively. The system presents the document to the user using an interlinear annotation format
that is easy and natural to read and it supports handling glosses, normalization and translations.

I also created a web-based corpus query tool, which does not only make it possible to search for
different grammatical constructions in the texts, but it is also an effective correction tool. Errors
discovered in the annotation or the text appearing in the “results” box can immediately be corrected
and the corrected text and annotation is recorded in the database. Naturally, this latter functionality
of the corpus manager is only available to expert users having the necessary privileges.

A fast and effective way of correcting errors in the annotation is to search for presumably incorrect
structures and to correct the truly problematic ones at once. The corrected corpus can be exported
after this procedure and the tagger can be retrained on it.

THESIS 7:
I developed a disambiguation system that can be used for automatic and manual disambiguation

of the morphosyntactic annotation and glossing of texts and I created a corpus manager
appropriate for searching and correcting annotated corpora.

Related publications: 42, 38, 49, 50

DOI:10.15774/PPKE.ITK.2015.013

DOI:10.15774/PPKE.ITK.2015.013

10
List of Papers

Journal publications
1 Borbála Siklósi, Attila Novák, Gábor Prószéky (2016): Context-aware correction of

spelling errors in Hungarian medical documents, In: Computer Speech & Language, Vol.
35, pp. 219-233, ISSN 0885-2308, http://dx.doi.org/10.1016/j.csl.2014.09.001.

2 György Orosz, Attila Novák, Gábor Prószéky (2014): Lessons learned from tagging clin-
ical Hungarian. In: International Journal of Computational Linguistics and Applications,
Vol. 5 no. 2. ISSN 0976-0962

3 László János Laki, Attila Novák, Borbála Siklósi, György Orosz (2013): Syntax-
based reordering in phrase-based English-Hungarian statistical machine translation. In:
International Journal of Computational Linguistics and Applications, Vol. 4 no. 2. pp.
63–78. ISSN 0976-0962

4 István Endrédy, Attila Novák (2013): More effective boilerplate removal – the Gold-
Miner algorithm. In: Polibits 48. pp. 79–83. ISSN 1870-9044

Book chapters
5 Attila Novák (2015): Making morphologies the ‘easy’ way, In: A. Gelbukh (ed.) Lecture

Notes in Computer Science Volume 9041: Computational Linguistics and Intelligent Text
Processing Springer International Publishing, Berlin–Heidelberg. Part I pp. 127–138.
ISBN 978-3-319-18110-3

6 Borbála Siklósi, Attila Novák (2014): Identifying and Clustering Relevant Terms in
Clinical Records Using Unsupervised Methods. In: Besacier, L.; Dediu, A.-H. and
Mart́ın-Vide, C. (eds.) Lecture Notes in Computer Science Volume 8791: Statistical
Language and Speech Processing Springer International Publishing, Berlin–Heidelberg.
pp. 233–243 ISBN 978-3-319-11396-8

DOI:10.15774/PPKE.ITK.2015.013

126 10. List of Papers

7 Borbála Siklósi, Attila Novák, Gábor Prószéky (2013): Context-Aware Correction
of Spelling Errors in Hungarian Medical Documents. In: Adrian-Horia Dediu, Carlos
Mart́ın-Vide, Ruslan Mitkov, Bianca Truthe (eds.) Lecture Notes in Computer Science
Volume 7978: Statistical Language and Speech Processing, First International Conference,
SLSP 2013. Springer, Berlin Heidelberg. pp. 248–259 ISBN 978-3-642-39592-5

8 György Orosz, László János Laki, Attila Novák, Borbála Siklósi (2013): Improved
Hungarian Morphological Disambiguation with Tagger Combination. In: Habernal,
Ivan; Matousek, Vaclav (eds.) Lecture Notes in Computer Science, Vol. 8082: Text,
Speech, and Dialogue, 16th International Conference, TSD 2013. Pilsen, Czech Republic.
Springer, Berlin–Heidelberg. pp. 280–287. ISBN: 978-3-642-40584-6

9 Nóra Wenszky, Attila Novák (2013): The hypercorrect key witness. In: Péter Szigetvári
(ed.) VLlxx: Papers presented to Varga László on his 70th birthday. Department of
English Linguistics, Eötvös Loránd University. ISBN 978-963-284-315-5

10 Borbála Siklósi, Attila Novák (2013): Detection and Expansion of Abbreviations in
Hungarian Clinical Notes. In: F. Castro, A. Gelbukh, M.G. Mendoza (eds.) Lecture Notes
in Computer Science, Vol. 8265: Advances in Artificial Intelligence and Its Applications.
Springer, Berlin Heidelberg. pp. 318–328. ISBN 978-3-642-45114-0

11 László János Laki, György Orosz, Attila Novák (2013): HuLaPos 2.0 – Decoding
morphology. In: F. Castro, A. Gelbukh, M.G. Mendoza (eds.) Lecture Notes in Computer
Science, Vol. 8265: Advances in Artificial Intelligence and Its Applications. Springer,
Berlin–Heidelberg. pp. 294–305. ISBN 978-3-642-45114-0

12 György Orosz, Attila Novák, Gábor Prószéky (2013): Hybrid text segmentation for
Hungarian clinical records. In: F. Castro, A. Gelbukh, M.G. Mendoza (eds.) Lecture
Notes in Computer Science, Vol. 8265: Advances in Artificial Intelligence and Its
Applications. Springer, Berlin–Heidelberg. pp. 306–317. ISBN 978-3-642-45114-0

13 Novák Attila, Wenszky Nóra (2007): Mire jó és hogyan készül egy számı́tógépes
morfológia. In: Alberti Gábor, Fóris Ágota (eds.) A mai magyar formális nyelvtudomány
műhelyei. Nemzeti Tankönyvkiadó, Budapest. 157–169.

14 Gábor Prószéky, Attila Novák (2005): Computational Morphologies for Small Uralic
Languages. In: A. Arppe, L. Carlson, K. Lindén, J. Piitulainen, M. Suominen, M.
Vainio, H. Westerlund, A. Yli-Jyrä (eds.) Inquiries into Words, Constraints and Contexts.
Festschrift in the Honour of Kimmo Koskenniemi on his 60th Birthday. Gummerus
Printing, Saarijärvi/CSLI Publications, Stanford. pp. 116–125.

15 Novák Attila (2002): Többértelmű vagy homályos? In: Kálmán László, Trón Viktor,
Varasdi Károly (eds.) Lexikalista elméletek a nyelvészetben. Tinta Könyvkiadó, Budapest.
(Segédkönyvek a nyelvészet tanulmányozásához 13.) pp. 277–287.

16 Novák Attila (2002): HPSG fonológia. In: Kálmán László, Trón Viktor, Varasdi Károly
(eds.) Lexikalista elméletek a nyelvészetben. Tinta Könyvkiadó, Budapest. (Segédkönyvek
a nyelvészet tanulmányozásához 13.) pp. 99–128.

DOI:10.15774/PPKE.ITK.2015.013

127

17 Kálmán László, Novák Attila (2001): A magyar egyszerű mondat fajtái. In: Kálmán
László (ed.): Magyar léıró nyelvtan, Mondattan I. Tinta Könyvkiadó, Budapest, 2001.
pp. 10–23.

18 Gyuris Bea, Novák Attila (2001): A topik és a kontraszt́ıv topik. In: Kálmán László
(ed.): Magyar léıró nyelvtan, Mondattan I. Tinta Könyvkiadó, Budapest, 2001. pp.
24–53.

19 Novák Attila, Dudás Kálmán, Kálmán László (2001): Igevivők. In: Kálmán László
(ed.): Magyar léıró nyelvtan, Mondattan I. Tinta Könyvkiadó, Budapest, 2001. pp.
54–75.

20 Novák Attila (2001): A kommentelőzmények. In: Kálmán László (ed.): Magyar léıró
nyelvtan, Mondattan I. Tinta Könyvkiadó, Budapest, 2001. pp. 76–91.

21 Novák Attila (2001): A hatókör felsźıni egyértelműśıtése. In: Kálmán László (eds.)
Magyar léıró nyelvtan, Mondattan I. Tinta Könyvkiadó, Budapest, 2001. pp. 92–97.

22 Novák Attila (1999): Inflectional paradigms in Hungarian – The conditioning of suffix-
and stem-alternations (Ragozási paradigmák a magyarban – A toldalék- és tőalternációkat
kiváltó tényezők), Szakdolgozat, ELTE Elméleti Nyelvészet Szak, Budapest.

23 Attila Novák (1998): HPSG Phonology. In: Lexicon Matters. ELTE Theoretical
Linguistics Programme, Budapest, 1998. pp. 33–48

24 Attila Novák (1998): Ambiguity and Vagueness. In: Lexicon Matters. ELTE Theoreti-
cal Linguistics Programme, Budapest, 1998. 115–120

Conference proceedings
25 Novák Attila, Siklósi Borbála (2015): Automatic Diacritics Restoration for Hungarian.

In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, Lisbon, Portugal: Association for Computational Linguistics. pp. 2286–91.

26 Siklósi Borbála, Novák Attila (2015): Restoring the intended structure of Hungarian
ophthalmology documents. In: Proceedings of the BioNLP 2015 Workshop at the 53rd

Annual Meeting of the Association for Computational Linguistics, ACL 2015. Beijing,
China. pp. 152–157

27 Novák Attila (2015): “Olcsó” morfológia In: Tanács Attila, Varga Viktor, Vincze
Veronika (eds.) XI. Magyar Számı́tógépes Nyelvészeti Konferencia. Szegedi Tu-
dományegyetem, Informatikai Tanszékcsoport, Szeged. pp. 145–157

28 Siklósi Borbála, Novák Attila (2015): Nem felügyelt módszerek alkalmazása releváns
kifejezések azonośıtására és csoportośıtására klinikai dokumentumokban. In: Tanács
Attila, Varga Viktor, Vincze Veronika (eds.) XI. Magyar Számı́tógépes Nyelvészeti
Konferencia. Szegedi Tudományegyetem, Informatikai Tanszékcsoport, Szeged. pp.
237–248

DOI:10.15774/PPKE.ITK.2015.013

128 10. List of Papers

29 Borbála Siklósi, Attila Novák, Gábor Prószéky (2014): Resolving Abbreviations in
Clinical Texts Without Pre-existing Structured Resources. In: Proceedings of the Fourth
Workshop on Building and Evaluating Resources for Health and Biomedical Text Processing
(BioTxtM 2014). Reykjav́ık. pp. 69–75

30 Attila Novák (2014): A New Form of Humor – Mapping Constraint-Based Compu-
tational Morphologies to a Finite-State Representation. In: Proceedings of the 9th
International Conference on Language Resources and Evaluation (LREC-2014). Reyk-
jav́ık. pp. 1068–1073

31 Novák Attila (2014): A Humor új Fo(r)mája. In: Tanács Attila, Varga Viktor,
Vincze Veronika (eds.) X. Magyar Számı́tógépes Nyelvészeti Konferencia. Szegedi
Tudományegyetem, Informatikai Tanszékcsoport, Szeged. pp. 303–308. ISBN 978-963-
306-246-3

32 Siklósi Borbála, Novák Attila (2014): Rec. et exp. aut. Abbr. mnyelv. KLIN. szöv-ben
– rövid́ıtések automatikus felismerése és feloldása magyar nyelvű klinikai szövegekben. In:
Tanács Attila, Varga Viktor, Vincze Veronika (eds.) X. Magyar Számı́tógépes Nyelvészeti
Konferencia. Szegedi Tudományegyetem, Informatikai Tanszékcsoport, Szeged. pp.
167–176. ISBN 978-963-306-246-3

33 Siklósi Borbála, Novák Attila (2014): A magyar beteg. In: Tanács Attila, Varga
Viktor, Vincze Veronika (eds.) X. Magyar Számı́tógépes Nyelvészeti Konferencia. Szegedi
Tudományegyetem, Informatikai Tanszékcsoport, Szeged. pp. 188–198. ISBN 978-963-
306-246-3

34 Orosz György, Novák Attila (2014): PurePos 2.0: egy hibrid morfológiai egyértelműśıtő
rendszer. In: Tanács Attila, Varga Viktor, Vincze Veronika (eds.) X. Magyar Számı́tógépes
Nyelvészeti Konferencia. Szegedi Tudományegyetem, Informatikai Tanszékcsoport, Szeged.
pp. 373–377. ISBN 978-963-306-246-3

35 Laki László, Novák Attila, Siklósi Borbála (2013): Hunglish mondattan –
átrendezésalapú angol-magyar statisztikai gépiford́ıtó-rendszer. In: Tanács Attila; Vincze
Veronika (eds.) A IX. Magyar Számı́tógépes Nyelvészeti Konferencia előadásai. SZTE,
Szeged. pp. 71–82 ISBN 978-963-306-189-3

36 Siklósi Borbála, Novák Attila, Prószéky Gábor (2013): Helyeśırási hibák automatikus
jav́ıtása orvosi szövegekben a szövegkörnyezet figyelembevételével. In: Tanács Attila;
Vincze Veronika (eds.) A IX. Magyar Számı́tógépes Nyelvészeti Konferencia előadásai.
SZTE, Szeged. pp. 148–158 ISBN 978-963-306-189-3

37 Orosz György, Novák Attila, Prószéky Gábor (2013): Magyar nyelvű klinikai rekordok
morfológiai egyértelműśıtése. In: Tanács Attila; Vincze Veronika (eds.) A IX. Magyar
Számı́tógépes Nyelvészeti Konferencia előadásai. SZTE, Szeged. pp. 159–169 ISBN
978-963-306-189-3

38 Novák Attila, Wenszky Nóra (2013): O & ko.zepmaǵar zoalactany elemzo. . In: Tanács
Attila; Vincze Veronika (eds.) A IX. Magyar Számı́tógépes Nyelvészeti Konferencia
előadásai. SZTE, Szeged. pp. 170–181 ISBN 978-963-306-189-3

DOI:10.15774/PPKE.ITK.2015.013

129

39 Endrédy István, Novák Attila (2013): Egy hatékonyabb webes sablonszűrő algoritmus
– avagy miként lehet a cumisüveg potenciális veszélyforrás Obamára nézve. In: Tanács
Attila; Vincze Veronika (eds.) A IX. Magyar Számı́tógépes Nyelvészeti Konferencia
előadásai. SZTE, Szeged. pp. 297–301 ISBN 978-963-306-189-3

40 György Orosz, László János Laki, Attila Novák, Borbála Siklósi (2013): Combining
Language-Independent Part-of-Speech Tagging Tools. In: J. P. Leal, R. Rocha, and
A. Simoes (eds.) 2nd Symposium on Languages, Applications and Technologies. Porto:
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. pp. 249–257 ISBN 978-3-939897-52-1

41 László János Laki, Attila Novák, Borbála Siklósi (2013): English-to-Hungarian
Morpheme-based Statistical Machine Translation System with Reordering Rules. In:
Marta R. Costa-jussa, Reinhard Rapp, Patrik Lambert, Kurt Eberle, Rafael E. Banchs,
Bogdan Babych (eds.) Proceedings of the Second Workshop on Hybrid Approaches to
Machine Translation (HyTra). Association for Computational Linguistics. pp. 42–50

42 Attila Novák, György Orosz, Nóra Wenszky (2013): Morphological annotation of Old
and Middle Hungarian corpora. In: Piroska Lendvai, Kalliopi Zervanou (eds.) Proceedings
of the 7th Workshop on Language Technology for Cultural Heritage, Social Sciences, and
Humanities. Association for Computational Linguistics. pp. 43–48

43 György Orosz, Attila Novák (2013): Purepos 2.0: a hybrid tool for morphological
disambiguation. In: Galia Angelova, Kalina Bontcheva, Ruslan Mitkov (eds.) Proceedings
of the international conference Recent Advances In Natural Language Processing RANLP
2013. Hissar, Bulgaria. pp. 539–545 ISSN 1313-8502

44 György Orosz, Attila Novák (2012): PurePos – an open source morphological disam-
biguator. In: Bernadette Sharp, Michael Zock (eds.) Proceedings of the 9th International
Workshop on Natural Language Processing and Cognitive Science. Wroc law, Poland. pp.
53–63

45 Borbála Siklósi, György Orosz, Attila Novák, Gábor Prószéky (2012): Automatic
structuring and correction suggestion system for Hungarian clinical records. In: LREC-
2012: SALTMIL-AfLaT Workshop on “Language technology for normalisation of less-
resourced languages”. Istanbul, Turkey, 2012. pp. 29–34

46 Siklósi Borbála, Orosz György, Novák Attila (2011): Magyar nyelvű klinikai dokumen-
tumok előfeldolgozása. In: VIII. Magyar Számı́tógépes Nyelvészeti Konferencia (MSZNY
2011). Szegedi Tudományegyetem, pp. 143–340

47 Novák Attila, Orosz György, Indig Balázs (2011): Javában taggelünk. In: VIII. Magyar
Számı́tógépes Nyelvészeti Konferencia (MSZNY 2011). Szegedi Tudományegyetem, pp.
336–340.

48 Fejes László, Novák Attila (2010): Obi-ugor morfológiai elemzők és korpuszok.
In: VII. Magyar Számı́tógépes Nyelvészeti Konferencia (MSZNY 2010). Szegedi Tu-
dományegyetem, pp. 284–291

49 Bakró-Nagy Marianne, Endrédy István, Fejes László, Novák Attila, Oszkó Beatrix,
Prószéky Gábor, Szeverényi Sándor, Várnai Zsuzsa, Wagner-Nagy Beáta (2010): Online
morfológiai elemzők és szóalakgenerátorok kisebb uráli nyelvekhez. In: VII. Magyar

DOI:10.15774/PPKE.ITK.2015.013

130 10. List of Papers

Számı́tógépes Nyelvészeti Konferencia (MSZNY 2010). Szegedi Tudományegyetem, pp.
345–348

50 István Endrédy, László Fejes, Attila Novák , Beatrix Oszkó, Gábor Prószéky, Sándor
Szeverényi, Zsuzsa Várnai, Beáta Wágner-Nagy (2010): Nganasan – Computational
Resources of a Language on the Verge of Extinction. In: Creation and Use of Basic
Lexical Resources for Less-Resourced Languages: 7th SaLTMiL Workshop (LREC-2010).
La Valletta, Malta, pp. 41–44

51 Novák Attila, Prószéky Gábor (2009): Kı́sérletek statisztikai és hibrid magyar–angol
és angol– magyar ford́ıtórendszerek megvalóśıtására. In: VI. Magyar Számı́tógépes
Nyelvészeti Konferencia (MSZNY 2009). Szegedi Tudományegyetem, pp. 25–34

52 Attila Novák (2009): MorphoLogic’s submission for the WMT 2009 Shared Task. In:
Proceedings of the Fourth Workshop on Statistical Machine Translation at EACL 2009.
Athens, Greece. pp. 155–159

53 Attila Novák, László Tihanyi, Gábor Prószéky (2008): The MetaMorpho translation
system. In: Proceedings of the Third Workshop on Statistical Machine Translation at
ACL 2008. Columbus, Ohio. pp. 111–114

54 Attila Novák (2008): Language resources for Uralic minority languages. In: Proceedings
of the SALTMIL Workshop at LREC-2008: Collaboration: interoperability between people
in the creation of language resources for less-resourced languages. Marrakech, pp. 27–32

55 Novák Attila, M. Pintér Tibor (2006): Milyen a még jobb Humor. In: IV. Magyar
Számı́tógépes Nyelvészeti Konferencia (MSZNY 2006). Szegedi Tudományegyetem, pp.
60–69

56 Attila Novák (2006): Morphological Tools for Six Small Uralic Languages. In: Pro-
ceedings of The Fifth International Conference on Language Resources and Evaluation
(LREC-2006), Genoa, pp. 925–930

57 Novák Attila, Endrédy István (2005): Automatikus ë-jelölő program. In: III. Magyar
Számı́tógépes Nyelvészeti Konferencia (MSZNY 2005). Szegedi Tudományegyetem, pp.
453–454

58 Novák Attila, Wenszky Nóra (2005): Tundrai nyenyec morfológiai elemző és generátor.
In: III. Magyar Számı́tógépes Nyelvészeti Konferencia (MSZNY 2005). Szegedi Tu-
dományegyetem, pp. 200–208

59 Novák Attila (2004): Az első nganaszan szóalaktani elemző. In: II. Magyar
Számı́tógépes Nyelvészeti Konferencia (MSZNY 2004). Szegedi Tudományegyetem, pp.
195–202

60 Attila Novák, Viktor Nagy, Csaba Oravecz (2004): Combining symbolic and statistical
methods in morphological analysis and unknown word guessing. In: Proceedings of The
Fourth International Conference on Language Resources and Evaluation (LREC-2004).
Lisbon, pp. 1255–1258

DOI:10.15774/PPKE.ITK.2015.013

131

61 Attila Novák (2004): Creating a Morphological Analyzer and Generator for the Komi
language. In: Proceedings of the SALTMIL Workshop at LREC-2004: First Steps in
Language Documentation for Minority Languages. Lisbon, pp. 64–67.

62 Novák Attila, Nagy Viktor, Oravecz Csaba (2003): Magyar ismeretlenszó-elemző
program fejlesztése. In: Magyar Számı́tógépes Nyelvészeti Konferencia (MSZNY 2003).
Szegedi Tudományegyetem, 45–57

63 Novák Attila (2003): Milyen a jó Humor? In: Magyar Számı́tógépes Nyelvészeti
Konferencia (MSZNY 2003). Szegedi Tudományegyetem, pp. 138–145

64 Attila Novák, Viktor Nagy, Csaba Oravecz (2003): Corpus assisted development of a
Hungarian morphological analyser and guesser. In: Dawn Archer, Paul Rayson, Andrew
Wilson and Tony McEnery (eds.) Proceedings of the Corpus Linguistics 2003 conference.
UCREL technical paper number 16. UCREL, Lancaster University, pp. 583–590

Research reports
65 Borbála Siklósi, Attila Novák, György Orosz, Gábor Prószéky (2014): Processing noisy

texts in Hungarian: a showcase from the clinical domain, In: Péter Szolgay (ed.), Jedlik
Laboratories Reports, Vol. II, no. 3, pp. 5–62 ISSN 2064-3942

DOI:10.15774/PPKE.ITK.2015.013

DOI:10.15774/PPKE.ITK.2015.013

List of Figures
2.1 Different word forms in a corpus representative of the given language. 9

3.1 Humor representation of the allomorphs of the Hungarian stem morpheme bokor ‘bush’
(and some other stems starting with ‘bok’), kutya ‘dog’ and those of the accusative
suffix. The fields separated by commas are the following: surface form, right-hand-side
continuation class, right-hand-side binary properties vector, left-hand-side continuation
class, left-hand-side binary requirements vector, lexical form, morphosyntactic tag . 17

3.2 Compatibility matrix for non-verbal categories in the original Hungarian Humor database. 19
3.3 Fragment of the Hungarian word grammar automaton – non-final state N2. 20
3.4 Fragment of the mapping of right-hand-side properties to word grammar automaton

arc label categories in the Hungarian morphological description. 20

4.1 Entries in the high-level stem database. 22
4.2 The multilevel database. Shaded blocks: input to the system. Unshaded blocks:

generated by the system. 23
4.3 Fragment of the tabular source of the Synya Khanty suffix lexicon 27
4.4 A fragment of the Hungarian level-1 stem lexicon . 28
4.5 The level-2 entry of the verb fut ‘run’ . 30
4.6 The level-2 entry of the verb fut ‘run’ in a compact format 32
4.7 Fragment of the Hungarian rule grammar: a rule generating allomorphs of Hungarian

final vowel lengthening stems and those of the orthographically similarly behaving
o/ö-final stems. 32

4.8 A sample suffix grammar describing Hungarian nominal inflectional suffix sequences 35
4.9 The definition of some complex properties using atomic ones 39
4.10 The definition of mutually exclusive properties using a 5-bit automatic range from the

encoding definition of the Synya Khanty analyzer . 40
4.11 Definition, usage and expansion of extended word grammar category macros 43
4.12 Definition and usage of word grammar list macros 44
4.13 Expansion of a word grammar fragment containing list macros in Figure 4.12 45
4.14 The xfst regex source of the Udmurt word grammar 46
4.15 The Humor word grammar automaton for Udmurt 47
4.16 The level-2 entry of the Hungarian dative case marker suffix 48

5.1 The web-based disambiguation interface . 66
5.2 The query interface . 69
5.3 A list of all nominal and verbal alternation classes in Komi 77
5.4 The rules describing gradation. 83
5.5 A part of the suffix list written for the Humor development environment(a) and the

same suffixes converted to the lexc formalism (b). 84

6.1 Fragment of the lexc representation of converted Humor data structures: a row of a
continuation matrix and stem allomorphs . 92

6.2 Fragment of the lexc representation of converted Humor data structures: allomorphs
of the Hungarian accusative suffix and a sublexicon of state transitions labeled by the
word grammar category nstem12 !sup !cmpd . 93

7.1 Differences in case syncretism of the lemma (ёж ’hedgehog’) depending on whether it
is animate (a) or inanimate (b). 99

DOI:10.15774/PPKE.ITK.2015.013

134 List of Figures

7.2 A portion of the suffix model. The format of the right column is:
lem#ma|lex-features[PosTag-paradigmID], where ma is a required ending of the
lemma for all items in the paradigm identified by paradigmID. 101

7.3 The ten highest ranked paradigm candidates for the input words гурба—f and
дурака—f. The candidates are listed sorted by their rank, with the calculated score
separated by the # mark for each tag. 101

DOI:10.15774/PPKE.ITK.2015.013

List of Tables
4.1 The fields used in the Hungarian suffix lexicon file 27
4.2 Top-level attributes used in the level-2 lexicon files 31
4.3 Examples of lemmatizing derived and inflected words 46

5.1 Components of the Hungarian morphological description 54
5.2 Stem alternation codes used in the Hungarian description 56
5.3 The interpretation of special characters in the value of the phon feature in the Hungarian

description: . 62
5.4 Possible values of the mtag feature in the Hungarian suffix lexicon file 63
5.5 Disambiguation performance of the tagger . 68
5.6 Latinate adjectives used in Hungarian NP’s using Latin orthography – examples from

the ophthalmology corpus . 71
5.7 The languages and dialects covered by the Uralic projects 73
5.8 Properties of the morphologies . 75
5.9 Purely phonological allomorphy of a single verbal mood suffix (of narrative mood used

in the subjective and the non-plural objective conjugations) in Nganasan 81

6.1 Comparison of the original Humor and xfst-compiled equivalents of a 144000-morph
Hungarian lexicon . 93

7.1 First-best accuracy of paradigm identifiers achieved by the longest suffix match algo-
rithm, Brants’ model, and by assigning the most frequent paradigm tag 103

7.2 Results on full tag agreement (FULL), paradigm identifiers (ID) and equivalent
paradigm classes (EQUIP). The results are measured by first-best accuracy, pre-
cision, recall and f-measure. 103

7.3 First-best accuracy of paradigm ID prediction in the case of all types of words, nouns,
verbs and adjectives . 104

DOI:10.15774/PPKE.ITK.2015.013

DOI:10.15774/PPKE.ITK.2015.013

Bibliography
Aleksa, M. (2006). Automatic morphological analysis of the croatian language: The verbal, adjectival and

nominal inflections within the morphological parser humor. In CESCL1, Proceedings of the First Central
European Student Conference in Linguistics, Budapest. Institute for Lingistics, Hungarian Acadey of
Sciences.

Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., and Mohri, M. (2007). OpenFst: A General and Efficient
Weighted Finite-State Transducer Library. In Holub, J. and Zdárek, J., editors, Proceedings of the Ninth
International Conference on Implementation and Application of Automata, (CIAA 2007), volume 4783 of
Lecture Notes in Computer Science, pages 11–23. Springer.

Beesley, K. R. and Karttunen, L. (2003). Finite State Morphology. CSLI Publications, Ventura Hall.

Beznosikova, L., editor (2000). Komi-Roč Kyvčukör. Komi Nebör Ledzanin, Syktyvkar.

Brants, T. (2000). TnT – A Statistical Part-of-Speech Tagger. In Proceedings of the Sixth Conference on
Applied Natural Language Processing, pages 224–231. Association for Computational Linguistics.

Camden, W. (1605). Remaines of a greater worke, concerning Britaine.

Cavnar, W. B. and Trenkle, J. M. (1994). N-Gram-Based Text Categorization. In Proceedings of SDAIR-94,
3rd Annual Symposium on Document Analysis and Information Retrieval, pages 161–175, Las Vegas, US.

Chomsky, N. and Halle, M. (1968). The Sound Pattern of English. Harper & Row, New York, NY.

Creutz, M., Hirsimäki, T., Kurimo, M., Puurula, A., Pylkkönen, J., Siivola, V., Varjokallio, M., Arisoy, E.,
Saraçlar, M., and Stolcke, A. (2007). Morph-based Speech Recognition and Modeling of Out-of-vocabulary
Words Across Languages. ACM Trans. Speech Lang. Process., 5(1):3:1–3:29.

Creutz, M. and Lagus, K. (2007). Unsupervised models for morpheme segmentation and morphology learning.
ACM Trans. Speech Lang. Process., 4(1):3:1–3:34.

Daciuk, J., Watson, B. W., Mihov, S., and Watson, R. E. (2000). Incremental construction of minimal acyclic
finite-state automata. Comput. Linguist., 26(1):3–16.

Dreyer, M. and Eisner, J. (2011). Discovering Morphological Paradigms from Plain Text Using a Dirichlet
Process Mixture Model. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 616–627, Stroudsburg, PA, USA. Association for Computational Linguistics.

Elekfi, L. (1994). Magyar ragozási szótár [Dictionary of Hungarian inflections]. MTA Nyelvtudományi Intézet,
Budapest.

Fábián, P. and Magasi, P. (1992). Orvosi helyeśırási szótár. Akadémiai Kiadó, Budapest.

Forsberg, M., Hammarström, H., and Ranta, A. (2006). Morphological Lexicon Extraction from Raw Text
Data. In Salakoski, T., Ginter, F., Pyysalo, S., and Pahikkala, T., editors, Advances in Natural Language
Processing, volume 4139 of Lecture Notes in Computer Science, pages 488–499. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Gábor, K. (2010). Creating a shallow-parsed Hungarian corpus with NooJ. In Váradi, T., Kuti, J., and
Silberztein, M., editors, Applications of Finite-State Language Processing: Selected Papers from the 2008
International NooJ Conference, pages 318–328. Cambridge Scholars Publishing, Newcastle upon Tyne.

Goldsmith, J. (2001). Unsupervised Learning of the Morphology of a Natural Language. Comput. Linguist.,
27(2):153–198.

Hajič, J. (2001). Disambiguation of Rich Inflection - Computational Morphology of Czech, volume I. Prague
Karolinum, Charles University Press. 334 pp.

DOI:10.15774/PPKE.ITK.2015.013

138 Bibliography

Halácsy, P., Kornai, A., Németh, L., Rung, A., Szakadát, I., and Trón, V. (2003). A Szószablya projekt. In I.
Magyar Számı́tógépes Nyelvészeti Konferencia, Szeged. Szegedi Tudományegyetem.

Halácsy, P., Kornai, A., Németh, L., Rung, A., Szakadát, I., and Trón, V. (2004). Creating open language
resources for hungarian. In Proceedings of the Fourth International Conference on Language Resources and
Evaluation, LREC 2004, May 26-28, 2004, Lisbon, Portugal.

Halácsy, P., Kornai, A., and Oravecz, C. (2007). HunPos: an open source trigram tagger. In Proceedings of
the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, ACL ’07, pages
209–212, Stroudsburg, PA, USA. Association for Computational Linguistics.

Hammarström, H. and Borin, L. (2011). Unsupervised Learning of Morphology. Comput. Linguist., 37(2):309–
350.

Helimski, E. (1998). Nganasan. In Abondolo, D., editor, The Uralic Languages, pages 480–515. Routledge,
London.

Hockett, C. J. (1954). Two Models of Grammatical Description. Word, 10:210–231. Reprinted in M. Joos, ed.
(1957), ıt Readings in Linguistics I, 386–399.

Hoeksema, J. and Janda, R. (1988). Implications of Process-Morphology for Categorial Grammar. In Oehrle,
R., Bach, E., and Wheeler, D., editors, Categorial Grammars and Natural Language Structures, volume 32
of Studies in Linguistics and Philosophy, pages 199–247. Springer Netherlands.

Huldén, M. (2009). Foma: a Finite-State Compiler and Library. In Lascarides, A., Gardent, C., and Nivre, J.,
editors, Proceedings of EACL 2009, pages 29–32, Athens, Greece. The Association for Computer Linguistics.

Huldén, M. and Francom, J. (2012). Boosting statistical tagger accuracy with simple rule-based grammars.
In Chair), N. C. C., Choukri, K., Declerck, T., Doğan, M. U., Maegaard, B., Mariani, J., Odijk, J., and
Piperidis, S., editors, Proceedings of the Eighth International Conference on Language Resources and
Evaluation (LREC’12), Istanbul, Turkey. European Language Resources Association (ELRA).

Jackendoff, R. (1977). X-bar-Syntax: A Study of Phrase Structure. Linguistic Inquiry Monograph 2. MIT
Press, Cambridge, MA.

Jakab, L. (2002). A Jókai-kódex mint nyelvi emlék szótárszerű feldolgozásban. Számı́tógépes Nyelvtörténeti
Adattár. Debreceni Egyetem, Debrecen.

Jakab, L. and Kiss, A. (1994). A Guarÿ-kódex ábécérendes adattára. Számı́tógépes nyelvtörténeti adattár.
Debreceni Egyetem, Debrecen.

Jakab, L. and Kiss, A. (1997). Az Apor-kódex ábécérendes adattára. Számı́tógépes nyelvtörténeti adattár.
Debreceni Egyetem, Debrecen.

Jakab, L. and Kiss, A. (2001). A Festetics-kódex ábécérendes adattára. Számı́tógépes nyelvtörténeti adattár.
Debreceni Egyetem, Debrecen.

Johnson, C. D. (1972). Formal Aspects of Phonological Description. Mouton, The Hague.

Jurafsky, D. and Martin, J. H. (2000). Speech and Language Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1st edition.

Kaplan, R. M. and Kay, M. (1994). Regular Models of Phonological Rule Systems. Computational Linguistics,
20(3):331–378.

Kálmán, B. (1963). Chrestomathia Vogulica. Tankönyvkiadó, Budapest.

Kálmán, B. (1976). Wogulische Texte mit einem Glossar. Budapest.

DOI:10.15774/PPKE.ITK.2015.013

Bibliography 139

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran,
C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007). Moses: Open Source Toolkit
for Statistical Machine Translation. In Proceedings of the ACL 2007 Demo and Poster Sessions, pages
177–180, Prague. Association for Computational Linguistics.

Koskenniemi, K. (1983). Two-level Morphology: a General Computational Model for Word-form Recognition
and Production. Technical Report 11, Department of General Linguistics, University of Helsinki.

Kost’erkina, N. T., Momd’e, A. ., and Ždanova, T. J. (2001). Slovar’ nganasansko-russkij i russko-nganasanskij.
Prosvesčen’ije, Sankt-Pet’erburg.

Kozmács, I. (2002). Udmurt-Magyar Szótár. Savaria University Press, Szombathely.

Labanauskas, K., editor (2001). Nganasanskaja Fol’klornaja Xrestomat’ija. Fol’klor Narodov Tajmyra 6.
Tajmyrskij Okružnyj Centr Narodnogo Tvorčestva, Dud’inka.

Laki, L. J., Novák, A., and Siklósi, B. (2013a). English to Hungarian Morpheme-based Statistical Machine
Translation System with Reordering Rules. pages 42–50, Sofia, Bulgaria. Association for Computational
Linguistics.

Laki, L. J., Novák, A., and Siklósi, B. (2013b). Syntax-based reordering in phrase-based English-Hungarian
statistical machine translation. International Journal of Computational Linguistics and Applications.

Laki, L. J., Orosz, G., and Novák, A. (2013c). HuLaPos 2.0 – Decoding Morphology. In Castro, F., Gelbukh,
A., and González, M., editors, Advances in Artificial Intelligence and Its Applications, volume 8265 of
Lecture Notes in Computer Science, pages 294–305. Springer Berlin Heidelberg.

Lindén, K. (2009). Entry Generation by Analogy – Encoding New Words for Morphological Lexicons. Northern
European Journal of Language Technology, 1(1):1–25.

Lindén, K., Silfverberg, M., Axelson, E., Hardwick, S., and Pirinen, T. (2011). HFST—Framework for
Compiling and Applying Morphologies. In Mahlow, C. and Pietrowski, M., editors, Systems and Frameworks
for Computational Morphology, volume Vol. 100 of Communications in Computer and Information Science,
pages 67–85.

Matthews, P. H. (1991). Morphology 2nd Edition. Cambridge Textbooks in Linguistics. Cambridge University
Press, Cambridge.

Šmerk, P. (2009). Fast morphological analysis of czech. In Proceedings of the Raslan Workshop 2009, Brno.
Masarykova univerzita.

Minnen, G., Carroll, J., and Pearce, D. (2001). Applied morphological processing of English. Natural Language
Engineering, 7:207–223.

Monson, C., Carbonell, J. G., Lavie, A., and Levin, L. S. (2008). ParaMor: Finding Paradigms across
Morphology. In Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D. W., Peñas, A., Petras, V., and
Santos, D., editors, Advances in Multilingual and Multimodal Information Retrieval, volume 5152 of Lecture
Notes in Computer Science, pages 900–907. Springer Berlin Heidelberg.

Munkácsi, B. (1892). Vogul Népköltési Gyűjtemény. Magyar Tudományos Akadémia, Budapest.

Munkácsi, B. (1986). Wogulisches Wörterbuch. Akadémiai Kiadó, Budapest.

Šnajder, J. (2013). Models for predicting the inflectional paradigm of Croatian words. In Slovenšcina 2.0,
pages 1–34.

Nakov, P., Bonev, Y., Angelova, G., Gius, E., and von Hahn, W. (2005). Guessing morphological classes
of unknown German nouns. In Nicolov, N., Bontcheva, K., Angelova, G., and Mitkov, R., editors,
RANLP, volume 260 of Current Issues in Linguistic Theory (CILT), pages 347–356. John Benjamins,
Amsterdam/Philadelphia.

DOI:10.15774/PPKE.ITK.2015.013

140 Bibliography

Németh, L., Trón, V., Halácsy, P., Kornai, A., Rung, A., and Szakadát, I. (2004). Leveraging the open-source
ispell codebase for minority language analysis. In Proceedings of SALTMIL 2004. European Language
Resources Association.

Novák, A. (1999). Inflectional paradigms in hungarian – the conditioning of suffix and stem alternations.
Master’s thesis, ELTE Theoretical Linguistics Programme, Budapest.

Novák, A. (2008). Language resources for Uralic minority languages. In Proceedings of the SALTMIL
Workshop at LREC-2008: Collaboration: Interoperability between People in the Creation of Language
Resources for Less-resourced Languages, pages 27–32.

Novák, A., Tihanyi, L., and Prószéky, G. (2008). The MetaMorpho Translation System. In Proceedings of the
Third Workshop on Statistical Machine Translation, StatMT ’08, pages 111–114, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Oflazer, K. (1993). Two-level description of turkish morphology. In Proceedings of the Sixth Conference on
European Chapter of the Association for Computational Linguistics, EACL ’93, pages 472–472, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Oliver, A. and Tadić, M. (2004). Enlarging the Croatian Morphological Lexicon by Automatic Lexical
Acquisition from Raw Corpora. In LREC. European Language Resources Association.

Oravecz, C. and Dienes, P. (2002). Efficient Stochastic Part-of-Speech Tagging for Hungarian. In Proceedings
of the 3rd Language Resources and Evaluation Conference, pages 710–717, Las Palmas, Espanha.

Oravecz, C., Váradi, T., and Sass, B. (2014). The hungarian gigaword corpus. In Chair), N. C. C., Choukri,
K., Declerck, T., Loftsson, H., Maegaard, B., Mariani, J., Moreno, A., Odijk, J., and Piperidis, S., editors,
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14),
Reykjavik, Iceland. European Language Resources Association (ELRA).

Orosz, G. and Novák, A. (2012). PurePos – an open source morphological disambiguator. In Sharp, B. and
Zock, M., editors, Proceedings of the 9th International Workshop on Natural Language Processing and
Cognitive Science, pages 53–63, Wroclaw.

Orosz, G. and Novák, A. (2013). PurePos 2.0: a hybrid tool for morphological disambiguation. In Proceedings
of the International Conference on Recent Advances in Natural Language Processing, pages 539–545, Hissar,
Bulgaria.

Orosz, G., Novák, A., and Prószéky, G. (2013). Hybrid text segmentation for Hungarian clinical records. In
Castro, F., Gelbukh, A., and González, M., editors, Advances in Artificial Intelligence and Its Applications,
volume 8265 of Lecture Notes in Computer Science, pages 306–317. Springer Berlin Heidelberg, Heidelberg.

Packard, D. W. (1973). Computer-Assisted Morphological Analysis of Ancient Greek. In COLING, pages
343–356.

Papp, F. e. (1969). A magyar nyelv szóvégmutató szótára (Reverse-alphabetized Dictionary of the Hungarian
Language). Akadémiai Kiadó, Budapest.

Paumier, S., Nakamura, T., and Voyatzi, S. (2009). UNITEX, a Corpus Processing System with Multi-Lingual
Linguistic Resources. In eLexicography in the 21st century: new challenges, new applications (eLEX’09),
pages 173–175.

Petersen, U. (2004). Emdros — a text database engine for analyzed or annotated text. In Proceedings of
COLING 2004., pages 1190–1193.

Peterson, J. L. (1980). Computer programs for spelling correction : an experiment in program design. Lecture
notes in computer science. Springer-Verlag, Berlin, New York. Includes index.

Petitpierre, D. and Russell, G. (1994). MMORPH - The Multext morphology program.

Porter, M. (1980). An algorithm for suffix stripping. Program: electronic library and information systems,
14(3):130–137.

DOI:10.15774/PPKE.ITK.2015.013

Bibliography 141

Prószéky, G. (2001). Az ‘újrafelhasznált’ szóvégmutató szótár. Modern filológiai közlemények, 3(2):121–123.

Prószéky, G. and Kis, B. (1999). A unification-based approach to morpho-syntactic parsing of agglutinative
and other (highly) inflectional languages. In Proceedings of the 37th annual meeting of the Association for
Computational Linguistics on Computational Linguistics, ACL ’99, pages 261–268, College Park, Maryland.
Association for Computational Linguistics.

Prószéky, G. and Tihanyi, L. (2002). MetaMorpho: A Pattern-Based Machine Translation System. In
Proceedings of the 24th ’Translating and the Computer’ Conference, ASLIB, pages 19–24, London, United
Kingdom.

Ritchie, G. D., Black, A. W., Russell, G. J., and Pulman, S. G. (1992). Computational Morphology: Practical
Mechanisms for the English Lexicon. MIT Press, Cambridge Mass.

Salminen, T. (1997). Tundra Nenets inflection. Mémoires de la Société Finno-Ougrienne 227, Helsinki.

Siklósi, B. and Novák, A. (2013). Detection and Expansion of Abbreviations in Hungarian Clinical Notes. In
Castro, F., Gelbukh, A., and González, M., editors, Advances in Artificial Intelligence and Its Applications,
volume 8265 of Lecture Notes in Computer Science, pages 318–328. Springer Berlin Heidelberg, Heidelberg.

Siklósi, B., Orosz, G., Novák, A., and Prószéky, G. (2012). Automatic structuring and correction suggestion
system for Hungarian clinical records. In De Pauw, G., De Schryver, G.-M., Forcada, M., M. Tyers, F.,
and Waiganjo Wagacha, P., editors, 8th SaLTMiL Workshop on Creation and use of basic lexical resources
for less-resourced languages, pages 29–34, Istanbul, Turkey.

Silberztein, M. (1994). Intex: A corpus processing system. In COLING, pages 579–583.

Silberztein, M. (2005). Nooj: a linguistic annotation system for corpus processing. In HLT-Demo ’05 Pro-
ceedings of HLT/EMNLP on Interactive Demonstrations, pages 10–11. The Association for Computational
Linguistics.

Sokirko, A. V. (2004). Morphological modules at the site www.aot.ru. In Dialog’2004.

Stolcke, A., Zheng, J., Wang, W., and Abrash, V. (2011). SRILM at sixteen: Update and outlook. In Proc.
IEEE Automatic Speech Recognition and Understanding Workshop, Waikoloa, Hawaii.

Trón, V. (2004). Hunlex – morfológiai szótárkezelő rendszer. In II. Magyar Számı́tógépes Nyelvészeti
Konferencia, Szeged. Szegedi Tudományegyetem.

Trón, V., Halácsy, P., Rebrus, P., Rung, A., Vajda, P., and Simon, E. (2006). Morphdb.hu: Hungarian lexical
database and morphological grammar. In Proceedings of the Fifth conference on International Language
Resources and Evaluation, pages 1670–1673, Genoa.

Trón, V., Kornai, A., Gyepesi, G., Németh, L., Halácsy, P., and Varga, D. (2005). Hunmorph: Open Source
Word Analysis. In Proceedings of the Workshop on Software, Software ’05, pages 77–85, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Várnai, Z. (2002). Hangtan. In Wagner-Nagy, B., editor, Chrestomathia Nganasanica, Studia Uralo-Altaica
Supplementum 10. SZTE Finnugor Tanszék – MTA Nyelvtudományi Intézet, Szeged – Budapest.

Wagner-Nagy, B., editor (2002). Chrestomathia Nganasanica. Studia Uralo-Altaica Supplementum 10. SZTE
Finnugor Tanszék – MTA Nyelvtudományi Intézet, Szeged – Budapest.

Wicentowski, R. (2002). Modeling and Learning Multilingual Inflectional Morphology in a Minimally
Supervised Framework. Technical report.

Wo losz, R. (2005). Efektywna metoda analizy i syntezy morfologicznej w jezyku polskim. Problemy wspó lczesnej
nauki, Teoria i zastosowania. Akademicka Oficyna Wydawnicza Exit.

Young, C. and Chan, E. (2009). Review of Finite State Morphology. Word Structure, pages 245–254.

Zaliznyak, A. A. (1980). Russian grammatical dictionary – Inflection. Russkij Jazyk, Moskva.

DOI:10.15774/PPKE.ITK.2015.013

DOI:10.15774/PPKE.ITK.2015.013

A
Appendix

A.1 Format of the rule files

A.1.1 Variable declaration and manipulation

A.1.1.1 Declaring named scalar variables

Declaration example 1. $V="[aeiouüöAEIOUÜÖ]"; #short vowels (this is a comment)
2. $C="(?:dzs|[ds]z|[cz]s|[ltgn]y|[rtpsdfghjklcvbnmz])"; #consonants

Description of the
declaration

The name of scalar variables begins with a $ sign and contains one or more
alphanumeric characters [a-zA-Z0-9] the first of which is not a digit. When
assigning a value to the variable, the name of the variable is followed by an equal
sign and the value assigned to the variable between single or double quotes. Double
quoted strings are “interpolated” in the sense that variable names appearing in
the string are substituted with the value of the variable.

Usage example (in
regular expressions –
i.e. between //)

#jósol/kotor
1. root:/($C)$V([lr])$/&&!-ik #if the root ends in a consonant+
#short vowel+[l or r] sequence and is not an -ik verb ...
...
#sokall, rühell...
2. root:/Vll/&&!1syl #if the root ends in a short vowel+ll
#sequence and is not monosyllabic...

Using the variable The same kind of variable interpolation happens in regular expressions (between
//). If the name of the variable is followed by alphanumeric characters in the
string that could be mistakenly be regarded to be part of the name, you can put
the alphanumeric part of the variable name between braces: in $Vll only $V is the
variable (followed by the string ll, see example 2.).

DOI:10.15774/PPKE.ITK.2015.013

144 A. Appendix

A.1.1.2 Declaring named list variables

Declaration example 1. @ppron=qw/én te õ mi ti õ/;#personal pronouns
2. @ppron=(’én’,’te’,’õ’,’mi’,’ti’,’õ’);# this is equivalent
3. @psfxneki=qw/em[e1] ed[e2] i[e3] ünk[t1] tek[t2] ik[t3]/;

Description of the
declaration

The name of list variables begins with a @ sign and contains one or more alphanu-
meric characters [a-zA-Z0-9] the first of which is not a digit. When assigning a
value to the variable, the name of the variable is followed by an equal sign and the
value assigned to the variable. The value is a list that can be given as a comma
separated list of values between parentheses (example 2.), or, in the case of the
list of words, as a whitespace separated list of words preceded by qw/ and followed
by / (examples 1. and 3.).

Usage example (gen-
erating the dative
forms of personal pro-
nouns)

root:/neki/&&humor:DAT
+//@ppron+nek+@psfxneki/;;

Using the list variable List variables can be used in an allomorph generation block to generate a list
of polymorphemic entries. Note that when using list variables, it is obligatory
to include the braces around the name of the variable (e.g. @ppron) even if no
alphanumeric character follows it. If more than one list appears in the allomorph
generation expression, they have to have the same length, and the resulting list will
contain strings in which the nth element of the one list is concatenated with the
nth element of the others. E.g. the usage example above produces the following
polymorphemic entries (assuming the declarations of @ppron and @psfxneki as
given in examples 1. and 3. above):
én+nek+em[e1], te+nek+ed[e2], õ+nek+i[e3],
mi+nek+ünk[t1], ti+nek+tek[t2], õ+nek+ik[t3]

A.1.1.3 Declaring local attribute names

Declaration example my root;
my seg;
my equ;
my phon;
my* humor;
my stemalt;

Description of the
declaration

Local attributes are declared using the my keyword, which is followed by the name
of the attribute to be handles locally. The declaration is ended by a semicolon.
The keyword my may be followed by an asterisk (my*).

Declaring an attribute local has the following effects:

• You can refer to the value of the attributes as $rp, $rr etc. in attribute manipulation instructions, i.e.
you can refer to them the same way as to scalar variables. Attributes not declared local cannot be
referred to as $attr, they must be referred to as $mrf >’attr’.

• Locally handled attributes are manipulated more efficiently than non-localized ones.
• Local attributes are not written to the level 2 lexicon file (i.e. for local attributes, the level 2 file

contains exactly the same attributes and values as given in the level 1 lexicon file) unless the my
keyword is followed by an asterisk (e.g. my* humor;). If the phon attribute is declared to be local
(using my), for example, the phon attribute will only appear in entries which already had it in the level
1 lexicon (i.e. only irregular pronunciation will appear in the level 2 lexicon), even if the pronunciation
is calculated for every inflectable lexical item in the rule file, as in the following example 2.

DOI:10.15774/PPKE.ITK.2015.013

A.1. Format of the rule files 145

Usage example 1. ;;root:$seg; #the root is the same as seg
2. !phon:/./;;phon:$root; #phon defaults to be the same as the root #
(unless otherwise specified)

A.1.2 Attribute manipulation instructions

Examples 1. ;;Cfin; #add the property Cfin to rp
2. phon:/$C2$/;;DIG; #mark it digraph-final if it is
3. Vfin&&!ifin&&!rr:vST;;=jA =i;
4. else rr:(SVS|vST|VZA);;!=jA !=jAi;
5. humor:/MNa/||seg:/.?bb$/;;non grad&&no sÁg;
6. rp:s/VHVB/VHFU/;Cini;;

Description The instruction consists of the following fields (delimited by semicolons):
<conditionals>; <requirement setting>; <property setting>; In examples
1–5., there is no requirement setting (note the two semicolons ;; in the middle).
In example 1., the conditional part is also missing (note the two semicolons ;; at
the beginning of the line). In example 6., the property setting is missing (note the
two semicolons ;; at the end of line).

The conditional Example 2. shows that in the conditional part you may check a property of an
attribute: here a regular expression (/$C2$/) is matched against the value of the
attribute phon. The attribute to use for checking is rp (=‘right properties’) by
default (in example 3., rp is checked for the presence of the Vfin feature and the
absence of the ifin feature (expressed by the negation operator !, see below)). If
you want to check a different attribute, you have to prefix the name of it with a
colon to the checking expression. In example 3., the absence of the vST feature is
checked in rr (expressed as !rr:vST). If the checking expression contains a regular
expression operator (//) or a substitution operator (s///, see below), using the
attribute name prefix is always mandatory (even if the attribute involved is rp,
see example 6.).

Using Boolean opera-
tors

You can check more than one condition and use the conjunction (“and”, &&) or
the disjunction (“or”, ||) operators between the checking expressions (examples 3.
and 5.). You can also use negation (marked by a ! before the expression to be
negated).
You can not at present use parentheses in the Boolean conditional expressions.
(And thus negation may only appear before atomic expressions.) The reason for
this is the following:
Not only expressions delimited by slashes //, but also the other checking expressions
not containing slashes are implemented as regular expression matching. Example
4. shows that this is the case: (SVS|vST|VZA) is really a regular expression
containing the regular expression disjunction operator | (this is a single | in
contrast to the double || of Boolean disjunction) and the grouping operator ()
(i.e. parentheses). Since parentheses are part of the regular expression syntax,
they are never considered to partition the Boolean conditional expression. (Note
that the parentheses are in fact superfluous in the case of (SVS|vST|VZA).)

DOI:10.15774/PPKE.ITK.2015.013

146 A. Appendix

In the Boolean expression, negation (!) has the highest precedence and disjunction
(||) has the lowest. Thus A&&!B||C is interpreted as (A&&(!B))||C.
Note that you can always use regexp disjunction (|) instead of Boolean disjunction
(||) if the two conditions to be checked refer to the same attribute. (In example 4.
the all refer to the attribute rr (=‘right requirements’).) The regexp disjunction
(|) has higher precedence than either negation (!) or (Boolean) conjunction (&&).

The evaluation of
Boolean expressions

Only as much is evaluated of the Boolean expression as is needed for the determi-
nation of its truth value: if a left conjunct is false, the right one is not evaluated
(and the whole expression is false); similarly, if the left member of a disjunction is
true, the right one is not evaluated (and the whole expression is true).

Using else Example 4. also shows that the keyword else may appear at the beginning of the
conditional. In that case, the whole instruction is executed only if the conditional
of the previous instruction was false. This means that example 4. is never executed
if example 3. is.

Using substitution in
the conditional

Example 6. also shows that the conditional may even contain a sort of ex-
pression that actually changes the value of the attribute to which it refers to:
rp:s/VHVB/VHFU/ changes the first occurrence of the string VHVB to VHFU within
the value of the attribute rp. s/regex/subst/ is a regular expression based
substitution expression, which changes the substring matched by the regular ex-
pression regex to the string given as subst. If you add a switch g to the end:
s/regex/subst/g, then not only the first matched substring is replaced, but all
such substrings are (g stands for ‘global’ matching).

A.1.2.1 Manipulating properties and requirements of morphemes

1. Add left or right properties if certain conditions are met.

Examples 1. phon:/$V $/;;Vfin; #add the property Vfin to rp if vowel final
2. allomf:/ˆ$/;;lp:0mrf; #mark zero morphs
3. Vfin&&!ifin&&!rr:vST;;=jA =i;

Description The third field is normally used to set properties. The instruction affects the
attribute rp by default. Use a prefix to affect another attribute (lp in example
2.) You can add more than one property by giving a space separated list of them
(example 3.).

2. Delete left or right properties if certain conditions are met

Examples 1. rr:(SVS|vST|VZA);;!=jA !=jAi;
Description You can also delete properties from rp, lp or gp by preceding them by an ! in

field 3. If the condition in example 1. is met, the properties =jA and =jAi are
deleted from rp. (In fact, an ! in field 3 can be used to remove a word from the
value of any attribute, including the removal of requirements.)

DOI:10.15774/PPKE.ITK.2015.013

A.1. Format of the rule files 147

3. Add left or right requirements if certain conditions are met

Examples 1. rp:s/VHVB/VHFU/;Cini;;
2. lp:comp2;lr:!cat vrb;; #right compound members must follow a nominal
(non-verbal) stem

Description You can also add requirements. Field 2 is normally used for this purpose. The
attribute affected by the operation in field 2 is rr (=‘right requirements’) by
default. If you want to add a requirement to another attribute (e.g. to lr), you
must use a prefix (example 2.). When used in field 2, the ! does not mark that the
requirement should be removed but it marks the addition of a negative requirement
(i.e. in contrast to field 3, the ! is not treated specially; example 2.).

A.1.2.2 Manipulation of the values of other morpheme level attributes

1. Simple value assignment

Examples 1. ;;root:$seg; #the root is the same as seg
2. !phon:/./;;phon:$root; #phon defaults to be the same as the root (unless
otherwise specified)

Description You can use field 3 for the purpose of simple value assignment. If you change the
value of a non-list valued attribute (i.e. something other than the property or
requirement list attributes: rp, rr, lp, lr, gp, glr, grr), then the effect is
not the addition of the value to the value list, but simply the assignment of the
given value to the attribute. The result of ;;root:$seg; is not the concatenation
of the value of the seg attribute with that of the root, but the root attribute is
simply assigned the same value as the seg attribute. Value assignment can of
course be combined with condition checking (if given in field 1, see example 2.).
You can refer to the values of attributes as $attr if you declared them to be local
using my attr;. Otherwise you must refer to them as $mrf->’attr’.

2. Regular expression based substitution

Examples 1. root:s/["?!#=%@(̂){}]|[<[].*?[]>]|\.\.\.//g;;; #remove special segmen-
tation characters from root
2. seg:/=ik$/&&root:s/ik$//;;-ik;

Description Regular expression based substitution has the following syntax:
attr:s/regexp/subst/;;; (see example 1.)
You can use field 1 (i.e. the condition field) for this purpose. If substitution
has a precondition, you can add that before the substitution expression using
conjunction (see example 2.), and, since the right conjunct is not evaluated if
the left conjunct is false, no substitution occurs if the precondition fails. The
substitution expression itself is true if actual substitution occurs. Thus if the
attribute manipulation instruction also specifies e.g. the addition of a property (in
field 3, -ik; in example 2.), this addition only occurs if both the precondition is
satisfied and actual substitution occurs.

DOI:10.15774/PPKE.ITK.2015.013

148 A. Appendix

3. Character translation

Examples 1. phon:tr/A-ZÁÉÍÓÚÖÜÕÛ/a-záéı́óúöüõû/;;; #decapitalize phon

Description The format of character translation is: attr:tr/fromchars/tochars/;;;
You can use field 1 (i.e. the condition field) for this purpose. Every occurrence
of the nth character from between the 1st pair of slashes is replaced by the nth
character from between the 2nd pair of slashes. You can use character ranges
(as example 1. shows). A range is actually an ASCII code range, thus accented
characters must be listed explicitly.
All the remarks about the preconditions etc. described at the regular expression
based substitution apply here as well. One important difference between character
translation and regular expression based substitution is that in the case of the
former the match and the replacement character lists are taken verbatim: variables
are not interpolated into either of them.

A.1.3 Blocks of statements

A.1.3.1 Conditional blocks

Examples

1. if(cat_(N|Adj|Num|Part))
{

... #all rules specific to nominal stems go within this block
}

2. unless(phon:/(?:[aeoö]|$C2)$/||GEM||stemalt:/./)
{

... #the most common case: no alternation
}
elsif(!stemalt:/./)
{
... #productive alternations
}
else
{
... #improductive stem alternations
}

The if block The most common conditional block is the if block (example 1.). The modifier
of the if block is of the form if(<Boolean expression>), i.e. the keyword if
is followed by a Boolean expression in parentheses. The block following the if
modifier is only evaluated if the condition expressed by the Boolean expression
is true. All the properties of the conditional field of the attribute manipulation
instruction apply to the Boolean expression in the conditional block modifier: you
can use Boolean operators (&&, || and !, but not parentheses), regular expressions,
attribute name prefixes (the default attribute to check is rp), substitution etc.

DOI:10.15774/PPKE.ITK.2015.013

A.1. Format of the rule files 149

The unless block The only difference between the if block and the unless block (example 2.) is
that in the case of the latter the block is only executed if the Boolean expression
in the modifier is false.

The elsif block An elsif block (example 2.) is executed if neither the preceding if or unless block
or any of the preceding elsif blocks were executed and the Boolean expression in
the modifier is evaluated to be true.

The else block An else block (example 2.) is executed if neither the preceding if or unless
block or any of the preceding elsif blocks were executed. An else or elsif block
can also be used right after a single attribute manipulation instruction if that
instruction has a conditional.
cat N&&!no -Vs;;-Vs;
else
{
...
}

A.1.3.2
Generating allomorphs and setting their properties (allomorph
generation blocks)

Examples

1. root:/dzs$/&&!GEM&&DIG #if the root is non-geminate dzs final
+;;DIG; #bridzs (base allomorph)
+//ddzs/;INS;=Al; #briddzs(el), +// is a shorthand for +/dzs$/

2. root:/([ds]z|[cz]s|[ltgn]y)$/&&!GEM&&DIG #non-gem. digraph final
+;;DIG; #fagy (base allomorph)
+/(.)(.)$/$1$1$2/;INS;=Al; #faggy(al)

Description Allomorph generation rules consist of a conditional row (bold) that checks whether
the conditions for the stem allomorphy described by the rule are met and a sequence
of allomorph generation instructions that actually generate the allomorphs (these
begin with a +).

The conditional row The conditional row first names the attribute from the value of which the form
of allomorphs is generated (this is normally the root attribute) and checks some
property (usually the ending) of it using a regular expression. Additional properties
may be checked using Boolean operators (&&, || and !). Note that this conditional
row does not contain semicolons (;) in contrast to attribute manipulation rows.

The allomorph gener-
ation rows

Allomorph generation rows conform to the general format of attribute manipulation
instructions. In this case, however, the conditional field begins with a + (this
indicates the addition of an allomorph to the list of allomorphs.) The other fields
can be used as usual to set requirements and properties. In this context, however,
not global (i.e. morpheme level) properties and requirements are set, but local
ones: i.e. the requirements and properties set in the allomorph generation rows
pertain only to the allomorph generated by the statement. Negative properties
can also be given and thus morpheme-level properties can be deleted in individual
allomorphs (see the example below).

Example: negative
properties

root:/hamu$/
+;;;
+/u/v/;vST (POSS|PL|-jÚ);LOW !Vfin Cfin;

DOI:10.15774/PPKE.ITK.2015.013

150 A. Appendix

Adding the base allo-
morph

If the + is not followed by slashes (i.e. field 1 consists only of a + or the + is
followed by a Boolean operator), like in the first allomorph generation row of both
examples 1. and 2. above, then the form of the allomorph to be added is identical
to the value of the attribute named in the conditional row (i.e. that of the root
attribute). This is the base (‘lexical’) allomorph of the morpheme.

Adding other allo-
morphs

Otherwise the expression that follows the + sign must in fact be a regular expression
based substitution expression (but no s before the first slash). The form of the
allomorph to be added is produced from the value of the attribute named in the
conditional row (i.e. that of the root attribute) by applying the changes specified
by the substitution expression to it. If the regular expression in the row does not
match the value of the specified attribute (i.e. root), then no allomorph is added by
the row. E.g., in the case of the example below, while the first allomorph generation
row applies to both o-final and ö-final stems (generating a base allomorph), the
second row applies only to o-final ones, while the last one applies only to ö-final
ones.

#o-final lengthening Oslo -> Osló
root:/[oö]$/
+;0mrf;;
+/o$/ó/;!0mrf;;
+/ö$/}o/;!0mrf;;

If the regexp is empty If the regular expression part of the substitution expression is empty (i.e. two
slashes follow the +, as in the second allomorph generation row of example 1.),
then the regular expression given in the conditional row (/dzs$/ in the case of
example 1.) is used.

Inserting a harmonic
vowel

In the Hungarian description, an ! at the end of the replacement part of a
substitution expression in an allomorph generation row marks that the automaton
computing vowel harmony must be applied to the form of the allomorph generated
by the statement. In the case of the following example, the second allomorph
generation row first generates the form fürOd! from the root fürd by inserting
the mid harmonic vowel O , to which vowel harmony is applied (because of the final
!), and thus we obtain the correct allomorph form füröd .

#fürd.ik
root:/($C)d$/&&-ik&&1syl
+;; -ik -Ok -Unk -Ás -Ó -AndÓ -AtlAn =At =Asz =AlAk =AnA =AnAk =OtOk
+//$1Od!/;; -hAt -vA =jUk =j =d =gAt =sz =lAk =nA =nAk =tOk =tAm

This is not a built-in feature, however, but it is achieved by the following row in
an allomorph list manipulation block (for(@allomfs), see below) that affects all
allomorphs (dovhrm() applies a Kimmo vowel harmony automaton to the string
given as its argument):

#! at the end of allomorph marks that vowel harmony must be done:
allomf:s/(.*)!$/dovhrm($1)/e;;;

(The /e switch at the end of the substitution expression indicates that the replace-
ment part of the expression should be evaluated as a perl expression (and call the
subroutine dovhrm) instead of as a string.)

Flow of control in
allomorph generation
rules

A single allomorph generation rule behaves like a conditional block concerning
control flow, i.e. if the initial conditional is satisfied, then all the allomorph
generation rows in the block are evaluated in sequence. A sequence of allomorph
generation rules behave like a sequence of if-elsif blocks: the first rule the initial
conditional of which is satisfied is executed, the rest in the sequence are skipped.

DOI:10.15774/PPKE.ITK.2015.013

A.1. Format of the rule files 151

Setting variables in
the conditional row

You can add special variable assignments to the end of the conditional row of
allomorph generation rules in the form of a comment. This construction can be
used when some material from an attribute different from the attribute normally
used for generating the form of allomorphs (i.e. from something other than root)
must be used for generating the form of an allomorph. The material from the other
attribute (in the example below: from phon) can be extracted using the regular
expression grouping operator (). The material matched by the first, second etc.
group in the last regular expression is always stored in the temporary variables
$1, $2 etc. (in the example below: the final digraph of the value of phon feature
is grouped and stored: ($C2)), and it can be permanently stored in a variable by
adding a comment containing the variable assignment statement (here: in $finC2)
and later used in an allomorph generation row. Note that the comment that
contains the variable assignment must begin with two !’s. If you want to have
more than one variable assignments, you must separate them with commas (,) (not
semicolons (;)). Normal comments are not allowed in the initial conditional row of
allomorph generation blocks.

#foreign digraph-final Milosevic -> Miloseviccs(el)
#if the phon is digraph final but the root is not:
!root:/$C2$/&&phon:/($C2)$/#!!$finC2=$1
+;;DIG; # Milosevic
+/$/$finC2/;INS;=Al; # Miloseviccs

Preconditions in al-
lomorph generation
rows

You can add preconditions to the end of allomorph generation rows (after the
third ; closing the property setting field). The preconditions follow an if or an
unless in parentheses and have the same format as all other conditionals. These
are evaluated first, and the rest of the line is only evaluated if the preconditions
are all satisfied.

An example of pre-
conditions

root:/($V_$C)[eoöau]($C)$/
+;!VZA;;if(stemalt:VZA)
+;;!stmalt;if(stemalt:VZA\+)

A.1.3.3
Manipulating properties and requirements of individual allo-
morphs (allomorph list manipulation blocks)

Allomorph list manip-
ulation blocks

Allomorph list manipulation blocks begin with either for(@allomfs), to manipu-
late all allomorphs, or for($allomfs[0]), to manipulate only the first (normally
the base) allomorph and are enclosed in braces { ... }. The opening and closing
braces must appear on a line of their own.

Attribute manipula-
tion instructions

Within the block, you can use the attribute manipulation instructions to
a) add left or right properties if certain conditions are met,
b) delete left or right properties if certain conditions are met,
c) add left or right requirements if certain conditions are met.
Like in the case where morpheme-level properties are set (i.e. when you use the
attribute manipulation instructions outside of an allomorph manipulation block),
the default attribute to check in the condition field (field 1) is rp, the default
attribute to set in the requirements field (field 2) is rr, and the default attribute
to set in the properties field (field 3) is rp.

DOI:10.15774/PPKE.ITK.2015.013

152 A. Appendix

Allomorph-local at-
tributes

In contrast to the morpheme-level case, however, the following attributes are
assumed to be allomorph-local in this context: gp, glr, grr, lr, rr, lp, rp
and allomf. All the other attributes are global (i.e. they belong to the morpheme
as a whole) in this context as well. If, for any reason, you want to refer to the
morpheme level variant of the rr, rp etc. attributes, or a property within them,
precede them with a caret (ˆ).The caret must precede the negation mark if one
is present, e.g. !̂1syl. See the examples below. You can also use conditional
blocks within allomorph list manipulation blocks. In these, the same attributes
are assumed to be allomorph-local.

Examples: reference
to global properties

for($allomfs[0])
{
##mark the first allomorph of all verbs with -ik/-03 and regular

unless marked otherwise
#add -ik or -03 property marking sg3 ind pres ending
ˆ-ik&&!-ik;;-ik;
if(!ˆirreg&&!irreg)
{
;;reg; #mark it regular
!ˆ-ik&&!-03;;-03;
...
}}

Morpheme-level prop-
erties and require-
ments

The properties and requirements of individual allomorphs specific to the stem
allomorphy are set by the allomorph generation rules already. The morpheme-
level properties and requirements coming from the lexicon and specified by mor-
pheme level attribute manipulation rules (gp, glr, grr, lr, rr, lp and rp)
can be added to these by using the &addprops; statement at the beginning of the
for(@allomfs) block (see the example below). Another variant of this statement,
&addlexprops;, adds only properties and requirements specified in the lexicon,
but not the ones set by the morpheme-level attribute manipulation rules.

An example

#add properties of nominal allomorphs
for(@allomfs)
{
#add morpheme-level properties to each allomorph
&addprops;

#fix the v-final allomf of V->v stems
Cfin;;!Vfin;

#the 0 allomf of -i[IKEP]
humor:IKEP&&allomf:/ˆ$/;;=_t =Vs =AtlAn;

#accusative sfx -t/Vt
if(!=Vt&&!=_t)
{
phon:/(ss|ssz|n$Sb|$V_$Sb|$Sn$Sn|$V_$Sn|$V_)$/&&!LOW;;=_t;
else seg:/($V__$Sb|$V__$Sn)$/&&!LOW;;=_t;
else phon:/$V_$/&&!rr:vST;;=_t;
else ;;=Vt;
}
...
}

DOI:10.15774/PPKE.ITK.2015.013

A.1. Format of the rule files 153

A.1.3.4 Allomorph duplication blocks

An example

###split underspecified allomfs
map(@allomfs)
{
#split vacillating harmonic stems
#VHV:balett -[oe]t, n[ae]k
#VHVF:mágnes -es, n[ae]k
#VHVB:klarinét -ot, n[ae]k
dup(VHV[FB]?)
{
rp:s/VHVB?/VHB/;;;
rp:s/VHVF?/VHFU/;;;
rp:s/VHVB/VHFU/;Cini;; #only consonant-initial front suffixes
rp:s/VHVF/VHB/;Cini;; #only consonant-initial back suffixes
}
#split allomorphs having specifications like =A0lAk
#to one having =lAk and another having =AlAk
dup(rp:/=[ˆ &]+0/)
{
rp:s/=[ˆ &]+0/=/g;;;
rp:s/=([ˆ &]+)0/=$1/g;;;
}
}

Description Allomorph duplication can be done within a map(@allomfs) block. Within the
block, only comments and dup (=allomorph duplication) blocks may appear. The
dup keyword is followed by a Boolean expression in parentheses. The dup block is
executed if this conditional expression is true.
Within the dup block, there is a sequence of attribute manipulation instructions,
the conditional part of which normally contains a substitution expression which
changes the disjunctive property into one of its possible alternatives. Each of the
attribute manipulation instructions the conditional of which matches, produces an
allomorph with the property changed as specified by the substitution expression,
and possibly with the addition or deletion of other properties or requirements.

DOI:10.15774/PPKE.ITK.2015.013

154 A. Appendix

A.2 A sample analysis trace

The following is the trace of the analysis of the Hungarian word form tör ‘breaks sg.’ by the Humor
morphological analyzer engine. At each lookup position (marked by |->| in the input), the actual state of the
word grammar automaton is shown in the lines marked by State Name:, while the extended state variables
in the lines marked by Flags:. Morphs looked up successfully are marked by OK:. The output contains their
lexical and surface form and tag to be output (Morpheme:), their left-hand-side requirement vector and matrix
code (Required:), their right-hand-side feature vector and matrix code (Features:), and their word grammar
category (Categ. Name:). Morphs looked up that do not match the previous morph have exclamation marks
(!) in the positions where there is a vector or matrix clash. In addition, this situation is marked by Error:
not matching to previous morpheme or dialect condition. Another error message, Error: matching
morphemes not found marks situations where no matching morphemes with an appropriate outgoing category
are found in the given state. A successful analysis is marked by ******** Result:. Backing up in the word
grammar automaton is marked by a right brace (}).

>tör

Processing: "tör"

Looking up: "|->|tör"
State Name: START
Flags: 00000000 00000000 00000000 00000000

{
Morpheme: "tör=ik[S_IGE]=tör"
Required: .0...... 8
OK: (first)
Features: 11011001 11000010 00000000 00000000 #24
Categ. Name: vstem_!cmpd

Looking up: "tör|->|"
State Name: V
Flags: 00000000 00000000 00000000 00000000

{
Morpheme: "[I_NOM]"
Required: 10...... #44
Error: =!====== ======== ======== ======== = (#24)
Error: not matching to previous morpheme or dialect condition

Morpheme: "[I_e2]"
Required: 11...11. #28
Error: =====!!= ======== ======== ======== = (#24)
Error: not matching to previous morpheme or dialect condition

Morpheme: "[I_e3]"
Required: 11...... #26
Error: ======== ======== ======== ======== ! (#24)
Error: not matching to previous morpheme or dialect condition

Morpheme: "[I_TPe2]"
Required: 11...... M
Error: ======== ======== ======== ======== ! (#24)
Error: not matching to previous morpheme or dialect condition

Morpheme: "[D=HA_ESSMOD=0]"
Required: #20
Error: ======== ======== ======== ======== ! (#24)
Error: not matching to previous morpheme or dialect condition

}

Morpheme: "tör=ik[S_IGE]=tör"
Required: .0...... 8
OK: (first)
Features: 11011000 00000000 00000000 00000000 V
Categ. Name: vstem_!cmpd

DOI:10.15774/PPKE.ITK.2015.013

A.2. A sample analysis trace 155

Looking up: "tör|->|"
State Name: V
Flags: 00000000 00000000 00000000 00000000

{
Morpheme: "[I_NOM]"
Required: 10...... #44
Error: =!====== ======== ======== ======== ! (V)
Error: not matching to previous morpheme or dialect condition

Morpheme: "[I_e2]"
Required: 11...11. #28
Error: =====!!= ======== ======== ======== ! (V)
Error: not matching to previous morpheme or dialect condition

Morpheme: "[I_e3]"
Required: 11...... #26
Error: ======== ======== ======== ======== ! (V)
Error: not matching to previous morpheme or dialect condition

Morpheme: "[I_TPe2]"
Required: 11...... M
Error: ======== ======== ======== ======== ! (V)
Error: not matching to previous morpheme or dialect condition

Morpheme: "[D=HA_ESSMOD=0]"
Required: #20
Error: ======== ======== ======== ======== ! (V)
Error: not matching to previous morpheme or dialect condition

}

Morpheme: "tör[S_IGE]"
Required: .0...... 8
OK: (first)
Features: 11011001 11000010 00000000 00000000 #5
Categ. Name: vstem_!cmpd

Looking up: "tör|->|"
State Name: V
Flags: 00000000 00000000 00000000 00000000

{
Morpheme: "[I_NOM]"
Required: 10...... #44
Error: =!====== ======== ======== ======== = (#5)
Error: not matching to previous morpheme or dialect condition

Morpheme: "[I_e2]"
Required: 11...11. #28
Error: =====!!= ======== ======== ======== = (#5)
Error: not matching to previous morpheme or dialect condition

Morpheme: "[I_e3]"
Required: 11...... #26
OK: ======== ======== ======== ======== = (#5)
Features: 00100000 00000000 00000000 00000100 #666
Categ. Name: inf

******** Result: "tör[S_IGE]+[I_e3]"

Looking up: "tör|->|"
State Name: END
Flags: 00000000 00000000 00000000 00000000

{
Morpheme: "[I_NOM]"
Required: 10...... #44
Error: !======= ======== ======== ======== = (#666)
Error: not matching to previous morpheme or dialect condition

Morpheme: "[I_e2]"
Required: 11...11. #28
Error: !!===!!= ======== ======== ======== = (#666)
Error: not matching to previous morpheme or dialect condition

DOI:10.15774/PPKE.ITK.2015.013

156 A. Appendix

Morpheme: "[I_e3]"
Required: 11...... #26
Error: !!====== ======== ======== ======== = (#666)
Error: not matching to previous morpheme or dialect condition

Morpheme: "[I_TPe2]"
Required: 11...... M
Error: !!====== ======== ======== ======== = (#666)
Error: not matching to previous morpheme or dialect condition

Morpheme: "[D=HA_ESSMOD=0]"
Required: #20
Error: ======== ======== ======== ======== ! (#666)
Error: not matching to previous morpheme or dialect condition

}

Morpheme: "[I_TPe2]"
Required: 11...... M
Error: ======== ======== ======== ======== ! (#5)
Error: not matching to previous morpheme or dialect condition

Morpheme: "[D=HA_ESSMOD=0]"
Required: #20
Error: ======== ======== ======== ======== ! (#5)
Error: not matching to previous morpheme or dialect condition

}

Morpheme: "t._tisztelt[S_MN|ROV]=t+[I_NOM]"
Required: #0
OK: (first)
Features: 00000000 00000100 00000000 00000100 #883
Categ. Name: uninfl+dot

Looking up: "t|->|ör"
State Name: DOTREQ
Flags: 00000000 00000000 00000000 00000000

{
Error: matching morphemes not found

}

Morpheme: "t[S_FN|BETU]"
Required: #0
OK: (first)
Features: 10010000 00100100 00010000 00001100 #999
Categ. Name: qstem_!sup_!cmpd_nosug

Looking up: "t|->|ör"
State Name: NUM
Flags: 10000000 00000000 00000000 00000000

{
Morpheme: "Ör[S_FN]=ör"
Required: #0
Error: ======== ======== ======== ======== ! (#999)
Error: not matching to previous morpheme or dialect condition

Morpheme: "ö[S_FN|BETU]"
Required: #0
Error: ======== ======== ======== ======== ! (#999)
Error: not matching to previous morpheme or dialect condition

}

Morpheme: "t_tonna[S_FN|ME|ROV]=t"
Required: #23
OK: (first)
Features: 10000001 00100100 00011000 00000100 #999
Categ. Name: acron_!cmpd

DOI:10.15774/PPKE.ITK.2015.013

A.2. A sample analysis trace 157

Looking up: "t|->|ör"
State Name: N2u
Flags: 10000000 00000000 00000000 00000000

{
Morpheme: "Ör[S_FN]=ör"
Required: #0
Error: ======== ======== ======== ======== ! (#999)
Error: not matching to previous morpheme or dialect condition

Morpheme: "ö[S_FN|BETU]"
Required: #0
Error: ======== ======== ======== ======== ! (#999)
Error: not matching to previous morpheme or dialect condition

}

Morpheme: "t[D=MN_MIB]"
Required: 11.0.... H
OK: (first)
Features: 10100110 11111111 00000000 00000000 #524
Error: transition not found

Morpheme: "t[D=MN_MIB]"
Required: 11.10... H
OK: (first)
Features: 10110110 11111111 00000000 00000000 #524
Error: transition not found

Morpheme: "t[D=MN_MIB]"
Required: 11.11... H
OK: (first)
Features: 10111110 11111111 00000000 00000000 #524
Error: transition not found

Morpheme: "t=a[D=FN_IF=tA]=t"
Required: 11.0....1. #44
OK: (first)
Features: 10100101 11001111 00000000 00000000 #963
Error: transition not found

Morpheme: "t=e[D=FN_IF=tA]=t"
Required: 11.1....1. #44
OK: (first)
Features: 10110111 11001111 00000000 00000000 #963
Error: transition not found

Morpheme: "T_trı́cium[S_FN|ROV|VEGY]=t"
Required: #0
OK: (first)
Features: 10000101 11001100 10011000 00000100 #999
Categ. Name: acron_!cmpd

Looking up: "t|->|ör"
State Name: N2u
Flags: 10000000 00000000 00000000 00000000

{
Morpheme: "Ör[S_FN]=ör"
Required: #0
Error: ======== ======== ======== ======== ! (#999)
Error: not matching to previous morpheme or dialect condition

Morpheme: "ö[S_FN|BETU]"
Required: #0
Error: ======== ======== ======== ======== ! (#999)
Error: not matching to previous morpheme or dialect condition

}

}

End of processing

Analysis of "tör":

tör[S_IGE]+[I_e3]

DOI:10.15774/PPKE.ITK.2015.013

	Introduction
	Background
	Computational morphology
	Affix-stripping models
	Finite-state models

	Humor
	The lexical database
	Morphological analysis
	Local compatibility check
	Word grammar automaton

	A morphological grammar development framework
	Creating grammar-based morphological models with minimal redundancy
	Creating a morphological description
	Conversion of the morphological database

	Components of the framework
	Lexicon files
	Rules
	The encoding definition file
	The word grammar

	Lemmatization and word-form generation
	The lemmatizer
	Word form generation

	Applications of the model to various languages
	The Hungarian analyzer
	Stem lexicon
	Suffix lexicon
	Rule files

	Adaptation of the Hungarian morphology to special domains
	Morphological annotation of Old and Middle Hungarian corpora
	Extending the lexicon of the morphological analyzer with clinical terminology

	Examples from other Uralic languages
	The Komi alanyzer

	Finite-state implementation of Samoyedic morphologies
	Nganasan

	Generating a finite-state implementation of morph-adjacency-constraint-based models
	Difficulties for the morph-adjacency-constraint-based model
	The Xerox tools
	Transforming Humor descriptions to a finite-state representation
	Comparison of Humor and xfst
	Speed and memory requirement
	The grammar formalisms
	Lemmatization and generation

	Extending morphological dictionary databases without developing a morphological grammar
	Features affecting the paradigmatic behavior of Russian words
	Creation of the suffix model
	Ranking
	Evaluation
	Error analysis

	Applications
	Integration into commercial products
	Machine translation systems
	Part-of-speech tagging
	Corpus annotation
	Information retrieval systems
	Other tools

	Conclusion – New scientific results
	A morphological grammar development framework
	Application of the model to various languages
	Adaptation of the Hungarian morphology to special domains
	Finite-state implementation of constraint-based morphologies
	Extending morphological dictionary-based models without writing a grammar
	A flexible model of word form generation and lemmatization
	A tool for annotating and searching text corpora

	List of Papers
	List of Figures
	List of Tables
	Bibliography
	Appendix
	Format of the rule files
	Variable declaration and manipulation
	Attribute manipulation instructions
	Blocks of statements

	A sample analysis trace

