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C h a p t e r  O n e   

INTRODUCTION 

1.1. Preface 

Despite of the broad spectrum of electrophysiological and imaging methods available in 

the field of neurobiology still little is known about how exactly complex neural dynamics 

emerge. Hopefully, application of novel theoretical approaches and computational 

methods aimed for analysis and modeling of complex systems might provide a deeper 

insight into physiological and pathological mechanisms of the brain. 

With advent of relatively cheap and high performance personal computers sophisticated 

and computation demanding time series analysis methods became available to a broad 

brain research community. Application of chaos theory and non-linear time series 

methods gave a deeper insight into brain dynamics reflected by EEG signals. For a 

comprehensive recent review on non-linear analysis of EEG I refer to [16]. This 

approach relies on a transition from the time domain to the phase space and generation of 

trajectories for EEG time series using different embedding techniques. Inferences about 

brain dynamics were drawn by estimating different characteristics of trajectory attractors 

using measures such as the correlation dimension D2, the fractal dimension Df, the largest 

Lyapunov exponent L1, etc. Early results were promising and suggested a deterministic 

nature of brain dynamics with a rather low-dimensional chaotic behavior in physiological 

and pathological conditions that could not be revealed using simple linear methods such 

as the power spectral analyses. Filtered noise, however, can mimic the signatures of 

deterministic chaos [17]. This latter finding necessitated a revision of results obtained by 

non-linear techniques. Surrogate data analyses [18] did not entirely support early results 

on the low-dimensional chaotic behavior of the brain. This was in agreement with the 

finding that the relatively high complexity of the EEG signals does not allow a reliable 

dissociation of its waxing and waning oscillations exceeding 2-15 s from that of the 

filtered white noise [19-21]. As a consequence alternative approaches were developed 

including novel non-linear and stochastic time series analysis methods. 

Unlike deterministic approaches aimed at finding low-dimensional chaos, the self-

organized criticality (SOC) framework allows for describing the high-dimensional 

character of the dynamics and the presence of stochastic effects [22]. SOC is a 
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phenomenon characterizing systems that might arrive at a critical state (phase transition) 

without any tuning of a specific parameter [23]. The proof of presence of SOC requires a 

demonstration of spatio-temporal long-range correlations and power-law scale-free (also 

called self-similar or fractal) fluctuations [24]. Scale-free behavior means that no 

characteristic scales dominate the dynamics of the underlying processes. It also reflects a 

tendency of complex systems to develop correlations that decay more slowly and extend 

over larger distances in time and space than the mechanisms of the underlying processes 

would suggest [24-26]. The long-range correlations build up through local interactions 

until they extend throughout the entire system. After this stage, the dynamics of the 

system exhibit power-law scaling behavior and the underlying process operates in a 

critical state [23, 27]. 

Several features of neural networks are consistent with SOC, such as a large number of 

elements (neurons) interacting with each other in a nonlinear way (e.g. presence of 

threshold for spiking), a possibility to change and save connectivity between the 

elements (e.g. via synaptic plasticity), absence of any special parameter tuning, and 

spatio-temporal dynamics obeying power-law statistics [22, 28]. A critical state is a 

regime of a system where opposing forces are balanced. In the nervous system such a 

balance might be represented by the relationship between excitation and inhibition, 

which is known to be important for the transfer of information [29] and for the sustained 

neuronal activity [30]. Neural network simulations demonstrated that the presence of 

long-range spatio-temporal correlations is beneficial for the optimal transfer of 

information since these correlations represent an optimal compromise between high 

susceptibility to perturbations and stability in the system [31, 32]. 

All these properties of the brain suggest that the SOC paradigm might be an appropriate 

tool to investigate and model of neural activities. In line with this fractal geometry of 

brain structures [33, 34] as well as power-law spatio-temporal properties of neuronal 

activities have been revealed. Although the spatial power spectral density (PSDx) of 

scalp EEG recordings might deviate from the ideal power-law scale-free behavior [35], 

the PSDx of epipial EEG conforms to it [36]. Temporal long-range correlations were 

observed at different levels of the brain electrical activity hierarchy in different species 

and during different conditions. For example, Lowen et al. revealed that the individual 

ion channel currents show long-term correlation and possess fractal properties [37]. 

Considering spike trains in extracellular recordings, long-term correlations were found 

among interspike intervals of the medullary sympathetic neurons in cats [38]. Spasic et 
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al. showed that the fractal dimension of local field potentials of anaesthetized rats 

changes significantly after unilateral discrete injury [39]. Fractal exponent of EEG 

activity in the Gallotia galloti lizard decreased with the increment of temperature from 25 

°C to 35 °C [40]. 

1.2. Motivation and aims 

Overall, the motivation of my research is two-fold and the work that I have done may be 

related to different general steps of brain research (Figure 1.1). From the theoretical point 

of view I am interested in how complex neural dynamics emerge across different scales 

and how are these dynamics related to different physiological and pathological 

mechanisms that thoroughly affect the information sensation, processing, storage and 

retrieval of the brain. On the other hand, I am interested in practical aspects of brain 

research as well. Namely, as an engineer I am also motivated to reveal how biologically-

inspired information processing models can be transferred into technical applications, 

including the control of the brain itself. At the confluence of my general research 

interests I found the investigation of vigilance level and epilepsy to be of a crucial 

importance given the well-known influence of these basic mechanisms on the 

information processing properties of the brain. Thus, I devoted my PhD student years to 

explore the capability of the SOC paradigm to describe the information processing 

properties of the brain by fractal analyses of physiological sleep and epileptic neural 

activities. However, due to the size limitations of the dissertation and the difficulties 

related to the analyses of epileptic activities I will here concentrate on presentation of my 

results related to fractal analysis of the human sleep EEG only. To draw inferences about 

fractal properties of the brain activity I assessed topographic and sleep stage-wise 

distribution of monofractal and multifractal EEG features and the relation of these 

measures with power spectral properties. With a more practical motivation in the 

background I assessed whether a combination of fractal and power spectral EEG features 

 

Figure 1.1.  A possible process diagram of brain analyses and intervention. 
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might improve the classification of the vigilance state. 

1.3. Framework of the dissertation 

In Chapter 2, a general description of materials and methods that have been used during 

the investigations is provided. Methods related to specific parts of the research will be 

provided in the corresponding chapters. 

 

In Chapter 3, topographic and sleep stage-wise distribution of monofractal and 

multifractal sleep EEG measures and their relation to power spectral measures are 

assessed. 

 

In Chapter 4, sleep stage discrimination capability of fractal and power spectral measures 

of EEG signals recorded at different topographic locations was analyzed with a special 

regard to combination of different features. 

 

Conclusions are given in Chapter 5. 

 

Summary of the new scientific results in form of thesis and delineation of possible 

applications can be found in Chapter 6. 

 

Chapter 7 contains appendices. 

1.3.1. General notes 

From now on (except of Chapter 6) I will use “We/we” instead of “I” since most of the 

research was carried out in collaboration. 

Although the notations used within a single chapter are unique, the same symbol may 

denote diverse quantities in two different chapters. 
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C h a p t e r  T w o  

MATERIALS AND METHODS 

2.1. Subjects and EEG recordings 

Twenty-two healthy subjects with no sleep disturbances, free of drugs and medications as 

assessed by an interview and questionnaires on sleeping habits and health participated in 

the study (age: 17–55 years, mean±S.D.: 31±9 years, 11 males and 11 females). The 

study was approved by the ethical committee of the Semmelweis University and subjects 

gave written informed consent to participation. Sleep was recorded in the sleep 

laboratory for two consecutive nights. The present study was based on the second night. 

The timing of lights off was determined by the subjects, and morning awakenings were 

spontaneous. On average subjects spent 462.39±69.01 (mean±S.D.) minutes in sleep. 

Sleep was recorded by standard polysomnography, including electroencephalography 

(Fp1, Fp2, F3, F4, Fz, F7, F8, C3, C4, Cz, P3, P4, T3, T4, T5, T6, O1 and O2 

electrodes), electrooculography (EOG), bipolar submental electromyography (EMG) and 

electrocardiography (ECG). EEG electrodes were referenced to the contralateral mastoid. 

Midline EEG electrodes were referenced to the right mastoid. Impedance of the EEG 

electrodes was kept below 5 k�. Signals were collected, pre-filtered, amplified and 

digitized at a sampling rate of 249sf =  Hz using the 30 channel Flat Style SLEEP La 

Mont Headbox with implemented second order filters at 0.5 Hz (high pass) and 70 Hz 

(low pass) as well as the HBX32-SLP 32 channel preamplifier (La Mont Medical Inc., 

USA). Additionally, a 50 Hz digital notch filtering was performed by means of the 

DataLab acquisition software (Medcare, Iceland). 

2.2. EEG processing 

Pre-processing and feature estimation were accomplished in a self-developed EEG 

visualization and processing toolbox under Matlab2009b (MathWorks, Natick, MA, 

USA). This toolbox is freely available under GNU license upon request [41]. 

Calculations were performed on different hardware configurations and operating 

systems. Computation times presented later stand for the following configuration: Linux 

operating system; Intel Xeon 64 bit 3 GHz CPU with 8 cores, 2 MB cache memory; 2 
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GB RAM memory. Statistical analyses were performed using STATISTICA (StatSoft, 

Inc., Tulsa, OK, USA) and Matlab2009b. 

2.2.1. Pre-processing 

Although hardware filtering had been applied during EEG recording, some artifacts 

remained. Thus, we first performed software filtering on the raw EEG recordings with 

Butterworth IIR filters (eight order 0.3 Hz-70 Hz band-pass and 50 Hz notch with a 

quality factor 45Q = ). To avoid phase distortion, we used the built-in filtfilt() function of 

the Matlab for zero-phase digital filtering. 

For all subjects a hypnogram was prepared according to the Rechtschaffen and Kales 

standard [15] using 20 s long epochs. To compare the analyzed EEG features during 

different sleep stages 90 epochs of 20 s length were selected from sleep stages NREM2, 

NREM4 and REM (30 minutes/stage) for all subjects. Selection included segments 

without artifact contamination only. 

2.2.2. Fractal analysis 

Monofractal and multifractal properties of the selected EEG epochs were evaluated by 

estimation of the self-similarity parameter H (also called Hurst exponent or Hurst 

parameter) [42, 43] and the range of fractal spectra (�D) [44], respectively. To estimate 

H, we applied the rescaled adjusted range based approach, while �D was approximated 

by estimation of generalized dimensions spectra. The brief description of the applied 

methods can be found in the following subsections. 

2.2.2.1. Estimation of the Hurst exponent 

The stochastic process ( )X t  with continuous parameter t is self-similar with the self-

similarity parameter H if the distribution of the rescaled process ( )Hc X ct−
 is the same as 

the distribution of ( )X t , where 0c >  is arbitrary [43]. H is widely used to assess 

monofractality, scale-free properties and the degree of long-range temporal correlations 

of time series. When 0 0.5H< < , an increase in the process is more probably followed 

by a decrease (anti-persistence) and vice-versa, the process is considered to have short-

range dependence. If 0.5H = , observations of the process are uncorrelated. When 

0.5 1H< < , an increase in the process is more probably followed by an increase and a 
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decrease is more probably followed by a decrease (persistence), the process is considered 

to have long-range dependence [42, 43, 45-47]. 

Basically two kinds of homogenous self-similar signals exist: fractional Gaussian noises 

(fGn) and fractional Brownian motions (fBm). fGn processes are considered to be 

stationary with a constant mean value and constant variance over time, while fBm’s 

exhibit non-stationary property with a time-dependent variance. fGn and fBm signals are 

interconvertible. Taking the differences between neighboring elements of an fBm time 

series one might create an fGn signal, while by cumulative summation of fGn elements 

one can generate a motion process. The corresponding fBm and fGn signals are 

characterized by the same H. Self-similarity of a time series is also reflected in their 

power spectrum. The power versus frequency relationship is given by ( )P f f κ−∝ , 

where � is called spectral or fractal exponent. Depending on the type of a fractal signal 

the relationship between H and � is given by ( )1 2, 1 1H κ κ= + − < <  for fGn and 

( )1 2 , 1 3H κ κ= − < <  for fBm. Similarly, H is linearly related to the detrended 

fluctuation analysis (DFA) exponent � [48, 49] as H λ=  for fGn signals and 1H λ= −  

in case of fBm processes. Additionally, the Hurst exponent is also related to the widely 

used fractal dimension as 2 fH D= −  for fBm time series [50, 51]. Although many 

approaches are available for the estimation of H none of these can be generally 

considered as an ideal one because of differences of fGn and fBm signals [50, 52-54] and 

doubts related to the estimation of non-linear parameters from time series of finite length 

[47, 55-59]. For the estimation of H we used the rescaled adjusted range or R S  

statistics based method [42, 43, 45]. We implemented this method keeping in mind the 

stationarity properties of the analyzed EEG segments and the fact that this method is 

applicable to stationary fGn processes or to differenced fBm signals only. 

Here we provide a short description of this approach. Let ( )X n  be a discrete time series. 

The partial sum process is defined as 

( ) ( )
1

,      .
n

i

Y n X i n
=

= ∈� �  (2.1) 

The sample variance of the process X can be obtained using 

( ) ( ) ( )
2

2

1

1 1
.

n

i

S n X i Y n
n n=

� �
= −� �

� �
�  (2.2) 
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The adjusted range is given by 

( ) ( ) ( )
11

max min ,
i ni n

R n i i
≤ ≤≤ ≤

= ∆ − ∆  (2.3) 

where 

( ) ( ) ( ).nY
n

i
iYi −=∆  (2.4) 

The R S  statistics or the rescaled adjusted range is defined by 

( ) ( ) ( ).R S n R n S n=  (2.5) 

In [43] it was proven that for self-similar processes the expected value of ( )R S n is 

proportional to 
Hn , i.e. 

( )[ ] ,C~ H

HnnSRE  (2.6) 

as n → ∞ , where HC  is a positive constant and H is the self-similarity parameter of the 

process. Using this power-law relationship the Hurst exponent can be estimated by: 

( )[ ] ( ).log)log(~ nnSREH  (2.7) 

To estimate H, the N sample point long data segments ( 20 249 4980N = ∗ = ) were 

subdivided into K blocks ( 20K = ). Blocks of length N K  corresponded to duration of 1 

second. ( )R S n  was computed starting at points 1,  0,1,..., 1lk lN K l K= + = − . These 

values can be denoted by ( ) ( ), ,l lR k n S k n . Overlapping of blocks was avoided, the 

upper boundary, i.e., the high cut-off point ( 249hcf = ) of n was limited to N K . This 

resulted K different estimates of ( ) ( )R n S n  for each value of lag n. By plotting 

( ) ( )log , ,l lR k n S k n� 	
 �  versus ( )log n  we got the so-called pox plot for the R S  

statistics. H can be estimated by fitting a straight line to the points in this plot. H is equal 

to the slope of the fitted line. Pox plots for 20s long representative brain electrical 

activities recorded from subject #16 (channel Cz) during sleep stages NREM4, NREM2 

and REM can be seen in Figure 2.1. Due to the transient zone at the low end of the plot 

we set a low cut-off point as well. The low cut-off point ( 50lcf = ) was ~20% of N K . 

Thus, we used only values of n that lie between the low and high cut-off points to 

estimate H. This range of n ( ~ 0.2 ,  ~ 1 lcf s hcf s ) was in agreement with the scaling 

range [0.2 s 1 s] used for estimation of DFA �-exponents in [60]. Hereby our estimations 
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were not influenced by the frequency cut-offs of the applied 0.3Hz-70Hz or (3.333s)
-1

-

(0.014s)
-1

 band-pass filter. The computation of a single H value took about 1.8 s with 

these particular settings. 

2.2.2.2. Estimation of multifractal spectra 

Homogenous self-similar time series can be described by a single scale-free exponent. 

These signals are also called monofractal time series. Additionally, heterogeneous 

multifractal time series showing self-similarity only in local ranges of the structure also 

exist. Their scale-free property varies in time. Hence they should be decomposed into 

many sub-sets and characterized by different exponents. This can be carried out by 

estimation of fractal spectra. Using the Alfréd Rényi’s generalized entropy, a continuous 

spectrum of generalized dimensions (also called Rényi dimensions or fractal spectrum) 

 

Figure 2.1.  (A-C) Examples of EEG segments recorded from subject #16 during sleep stages NREM4 (A), 

NREM2 (B) and REM (C). (D-F) Pox plots of the R S statistics and the estimated H values for the EEG 

segments presented in the top row (D: NREM4; E: NREM2; F: REM). (G-I) Generalized dimension 

spectra and the estimated �D values for the EEG segments presented in the top row (G: NREM4; H: 

NREM2; I: REM). 
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Dq can be defined, where q−∞ ≤ ≤ ∞  [61]. A common method for estimation of fractal 

spectra is the box-counting technique. In this study we applied a box-counting approach 

that is based on estimation of the moments of signal amplitude distribution and was also 

used in [44]. One reason for choosing this method is that a previous study [62] revealed a 

promising sleep stage classification performance based on the entropy of amplitudes 

(ENA), a measure that is closely related to the amplitude distribution of time series. In 

our case Dq is defined as follows: 

( )

( )0

log ,
lim ,  1.

1 log
q

V

q V
D q

q Vδ

χ δ

δ→

� 	
 �= ≠
−

 (2.8) 

Vδ  is the bin width or box length (set to 0.3�V in this case based on the conversion 

range and the resolution of the analogue to digital converter). The partition function can 

be obtained using 

( ) ( )
( )
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i
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q V q V
δ

χ δ χ δ
=

= �  (2.9) 

where ( )b Vδ  denotes the number of non-overlapping bins 
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V V

b V
V

δ
δ

−
=  (2.10) 

maxV  and minV  are the maximum and minimum values of EEG signals recorded during 

measurements, respectively. ( ),
q

i iq V pχ δ =  is a weighted measure that represents the 

percentage of EEG values that falls into the ith bin, and q is the moment or weight of the 

measure. If in  is the number of EEG values in the ith bin and N is the total number of the 

samples, than the probability that the signal falls into the ith bin of length Vδ  is: 

.i
i

n
p

N
=  (2.11) 

Some of the Dq values are known under different names and widely used in the field of 

time series analysis. D0 is the Hausdorff-Besicovitch or fractal dimension. For 1q =  one 

should use 
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where the numerator is the well-known Shannon’s entropy and can be related to ENA 

applied in [62]. D2 is called correlation dimension. 

The range of fractal spectra is defined as ( ) ( )max minq qD D D∆ = − , where 

( )max qD D−∞= , ( )min qD D∞= , i.e., D D D−∞ ∞∆ = − , since Dq is a monotonically 

decreasing function. �D is a measure of multifractality, indicates deviation from 

monofractal. Larger �D indicates multifractality, while smaller �D indicates that the 

analyzed system tends to possess the monofractal property. We estimated the range 

values by 50 50D D D−∆ = −  based on preliminary analysis (Fig. 2). The approximation of 

a single �D value took about 2.4 ms with these particular settings. 

2.2.3. Power spectral measures (PSMs) 

To assess the relationship between fractal measures and power spectral properties of 

sleep EEG signals, we estimated the relative power of widely used frequency bands 

(RBPs). Relative powers were used instead of absolute ones in order to avoid the effect 

of variation of total power across subjects. To describe spectral properties in a more 

compact way, we calculated the spectral edge frequency (fse) since this measure can be 

considered as a clinically well-established EEG measure for monitoring sleep cycles and 

depth of anesthesia [62-65]. 

Before estimation of power spectral EEG features, Hanning windowing was applied to 

the selected epochs to damp out the frequency leakage, i.e. the Gibbs phenomenon that 

originates from truncation of time series. From these windowed time series the power 

spectra ( )P f  were obtained using the Fast Fourier Transformation (FFT) with 

frequency resolution 0.152f∆ =  Hz and range [ ]0 Hz, 2  Hzsf . The relative power of 

the B frequency band can be calculated from a power spectrum as follows: 

( )

( )
1
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ub
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B

i
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i
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P
P

P f

=

=

= =
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 (2.13) 

where PT is the total power of the time series, PB is the total power of the B frequency 

band, ( )1if i f= − ∆ with a maximal value of 2sf  when i N= , Bub and Blb are indices 

corresponding to the upper and lower boundary frequencies of the B band, respectively. 

The analyzed bands were as follows: SO: (0.5-1] Hz, �: (1-4] Hz, �: (4-8] Hz, �: (8-11] 
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Hz, 	: (11-16] Hz, 
: (16-30] Hz, �: (30-70] Hz. These frequency bands are thought to 

represent specific EEG patterns. Slow oscillations (SOs) were assessed separately from 

delta band activity given their distinct characteristics [66, 67]. 

The spectral edge frequency was defined as the frequency up to which SEP % of the total 

power of the [ ]0 Hz,  Hzcsef  frequency range is accumulated: 

( ) ( )
0 0

.
100

se csef f
SEP

P f df P f df=� �  (2.14) 

In this study SEP and cut-off fcse frequency parameters were set to 95 % and 70 Hz, 

respectively. According to Eq. (2.14) and the nature of sleep EEG, lower fse values can be 

predicted for deeper sleep stages since during these states the power spectrum is biased 

towards lower frequencies. 

Calculation of power spectra and their parameters can be realized almost real-time using 

the FFT algorithm with appropriate settings and hardware architecture. 
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C h a p t e r  T h r e e  

FRACTAL PROPERTIES OF THE HUMAN SLEEP EEG AND 

THEIR RELATIONS TO POWER SPECTRAL MEASURES 

3.1. Introduction 

The exact values of fractal measures may be related to biophysical mechanisms and the 

neural architecture underlying oscillations [22], however, given the uncertainties related 

to the estimation of these measures [47, 55-59] it might be more reasonable to compare 

the variances of features for different conditions. In line with this, a series of human 

studies revealed differences in the fractal measures between specific conditions. For 

example Linkenkaer-Hansen et al. showed that mu and alpha oscillations scale similarly, 

but beta oscillations have a significantly smaller scaling exponent compared to these two 

latter oscillations during eyes-closed state [22]. Another study showed that long-range 

temporal correlations are stronger in the eyes-closed condition as compared with the 

eyes-open condition [68]. In the study of Nikulin and Brismar largest exponent values for 

alpha and beta oscillations were found during the eyes-closed condition in the occipital 

and parietal areas [28]. Fractal dimension was found to be significantly higher for drowsy 

EEG compared to the wake state [69]. Increased sensory input [70] or high level of 

alertness [71] was shown to disrupt long-range temporal correlations. Several studies also 

addressed self-similarity of sleep EEG [46, 60, 72-76]. Generally, most of these studies 

reported higher scaling exponents and thus stronger long-range temporal correlations for 

deeper sleep stages. However, these studies were limited by a low sampling rate (100Hz 

in [46, 73-75]; 128Hz in [60]) or a low number of EEG channels (Fpz-Cz and Pz-Cz in 

[46, 75]; Cz in [73, 74]; C3 in [60, 76]; C4 in [72]). Furthermore, in contrast to the 

general opinion that the EEG is more regular and synchronized during deeper sleep 

stages, the only study that assessed multifractality of the sleep EEG found that the EEG 

is most multifractal during NREM3 and NREM4. It is to be noted that none of the 

abovementioned sleep studies assessed topographic aspects of the temporal fractal 

properties. Moreover, as far as we know, no previous study carried out a joint analysis of 

monofractal and multifractal properties, neither the relationship between fractal and 

power spectral measures was assessed yet. Therefore, in this study we attempted to 

address these theoretical controversies and shortcomings by estimation of spatial and 
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sleep stage-wise distributions of temporal monofractal and multifractal properties of the 

human sleep EEG and by assessing the relation of fractal measures with power spectral 

properties. Our analyses included: comparison of inter-site correlations, estimations of 

cross-correlations between monofractal and multifractal measures as well as between 

fractal and power spectral measures, multiple linear regression analysis, hierarchical 

clustering of the EEG channels and measures, assessment of gender-related differences 

of particular measures. 

3.2. Methods 

3.2.1. Recordings and estimated measures 

All analyses except of the assessment of gender-related differences were carried out 

using the recordings of 22 subjects introduced in the previous chapter. Gender analysis 

was carried out using recordings of 17 subjects only. Nine female (age: 25–37 years, 

mean±S.D.: 29.1±3.9 years) and eight male (age: 24–37 years, mean±S.D.: 30.5±4.2 

years) healthy young adults were selected from the database to form male and female 

groups with similar case numbers and similar age characteristics (mean, range and S.D.). 

Monofractal and multifractal properties of the selected EEG epochs were evaluated by 

estimation of the self-similarity parameter H and the range of fractal spectra (�D), 

respectively. Power spectral properties of the human sleep EEG were assessed by 

calculating relative band powers and the spectral edge frequency. Detailed description of 

estimation settings can be found in the previous chapter. Additionally, we estimated the 

multifractal measures for the whole-night EEG recording with 19 s overlap of the 20 s 

long epochs to reveal general tendencies of the measures across different sleep stages. To 

emphasize slower dynamics and suppress promiscuous perturbations that can occur due 

to artefacts we applied moving average to the whole-night courses of the measures. 

Moving average of the ( )X i  discrete time series with a 2 1,  1, 2,...a a+ =  long sliding 

window was defined as: 

( ) ( )
1

 .
2 1

i a

j i a

MA i X j
a

+

= −

=
+
�  (3.1) 

The value of parameter a was set to 45 for visualization purposes, depicting this way 

averages of 91 estimated values of H and �D. 
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3.2.2. Statistical analysis 

3.2.2.1. Topographic distribution of EEG measures across different sleep stages 

At the individual level comparisons between sleep stages relied on the selected 3x90 

epochs of 20 s length. To test whether the fractal variables H and �D are both together 

affected by the sleep stages, first we performed one-way multivariate analysis of variance 

(MANOVA). The independent variable “STAGE” contained groups NREM4, NREM2 

and REM. Afterwards, to identify the specific dependent variables that contributed to the 

significant overall effect, one-way ANOVA test was applied to both dependent variables 

(H and �D). Since ANOVA revealed significant main effects for both H and �D, Tukey 

HSD post-hoc test was used for pair-wise comparison of group means. All statistical tests 

were carried out for all channels separately. 

At the group level statistical analyses were carried out using individual medians of fractal 

and power spectral measures. Normality of the estimated features was tested using the 

Shapiro-Wilk W test, while the homogeneity of variances was evaluated with the Levene 

test. Since not all of the estimated measures matched normality and homogeneity in each 

channel we evaluated the effect of sleep stages using the non-parametric one-way 

Kruskal-Wallis ANOVA. Individual medians of the estimated measures were grouped 

using the independent variable “STAGE” having the same factors levels as in the case of 

individual-level analyses (NREM4, NREM2 and REM). Pair-wise comparison of sleep 

stages was carried out with rank post-hoc test. To test differences between bilateral 

symmetric scalp locations we used the Wilcoxon matched pairs test for each measure and 

sleep stage. For this purpose eight symmetrical channel pairs (Fp1-Fp2, F7-F8, F3-F4, 

C3-C4, T3-T4, T5-T6, P3-P4, O1-O2) and an additional midline channel pair (Fz-Cz) 

were formed. 

3.2.2.2. Cross-correlation analysis 

Cross-correlations were calculated between locations for all estimated measures (inter-

site correlations) and between the measures at each location. Specifically, cross-

correlations were carried out between monofractal and multifractal measures as well as 

between fractal and power spectral features. Spearman’s correlation coefficients were 

calculated in all cases using individual medians of particular EEG measures. Sleep stages 

were considered separately as well as together. To assess the contribution of specific 

frequency band activities to the compact measures (H, �D and fse) we used multiple 

linear regression analysis. 
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3.2.2.3. Hierarchical clustering 

Effect of topography was analyzed by hierarchical clustering of channels for all three 

sleep stages. Z-score standardization of the individual medians was carried out for all 

measures and channels separately. Hierarchical channel cluster trees were generated by 

pairing eight similarity measures (Euclidean distance (euc); standardized Euclidean 

distance (seu); Mahalanobis distance (mah); city block metric (cit); Minkowski metric 

(min); cosine distance (cos); correlation distance (cor); Chebychev distance (che)) with 

seven linkage methods (unweighted average distance (ave); centroid distance (cen); 

furthest distance (com); weighted center of mass distance (med); shortest distance (sin); 

inner squared distance (war); weighted average distance (wei)). Performance of each 

combination was assessed by calculation of the cophenet correlation coefficient (CCC). 

We selected the similarity-linkage pair with highest CCC value to cluster the channels 

into four and nine clusters. The 4-cluster analysis was aimed to reveal possible groupings 

of neighbor EEG channels and thus forming e.g. anterior, posterior, central, lateral or 

similar clusters. The 9-cluster analysis was applied to assess whether symmetrical EEG 

channels (see section 3.2.2.1) also cluster together. 

Clustergrams were generated for measure and channel clustering using group-level 

medians (medians of individual medians) of all measures in all channels. Standardization 

of features was performed across channels. Clustergrams, enclosing heat maps and 

dendrograms were examined for sleep stages separately. Hierarchical channel cluster 

trees were generated using the cosine similarity metric and the unweighted average 

linkage method. Measure dendrograms were constructed applying the Euclidean distance 

as a similarity measure and the unweighted average method for linkage. Channel 

clustering was also carried out based on the two fractal measures as well as combining 

the seven relative band powers. 

3.2.2.4. Effects of gender 

Normality of the estimated features was tested using the Shapiro-Wilk W test. Since not 

all of the estimated measures matched normality in each channel the effect of gender was 

assessed by the Mann-Whitney U test. Individual medians of all features in all channels 

and during all three sleep stages were compared separately according to the “GENDER” 

factor. 
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3.3. Results 

3.3.1. Distribution of EEG measures across vigilance states and topographic 

locations 

Since results found at the individual level were near similar across subjects here we 

restrict presentation of individual data to a representative subject (#16). Inspection of 

individual whole-night H and �D profiles and corresponding hypnograms in this subject 

indicated a visually striking correlation with the succession of sleep cycles. As can be 

seen in Figure 3.1, as sleep deepens H increases and �D decreases while with sleep 

shallowing H and �D exhibit an inverse course. In Figure 3.2 H and �D measures are 

shown with an expanded time scale for a single sleep cycle that contains a typical 

sequence of sleep stages and for three EEG channels to picture the variation of H and �D 

across brain regions and vigilance states. 

One-way MANOVA analysis yielded a statistically significant overall effect for all 

 

Figure 3.1.  Hypnogram and whole-night courses of H and �D in subject #16. (A) Hypnogram prepared 

according to the Rechtschaffen and Kales standard [15] using 20 s long epochs. Time period between the 

vertical black lines is expanded in Figure 3.1. (B) Estimated H values for channel Cz and their moving 

average (aCz) using a=45. (C) Estimated �D values for channel Cz and their moving average (aCz) 

using 45a = . A sudden increase of H (B) and drop of �D (C) occurring at the beginning of the recording 

are due to immense artefacts before falling asleep. 
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channels (Wilks’ 0.05 0.08λ = − ; 4, 532 340.04 437.82F = − ; 0.00001p < ). Subsequent 

one-way ANOVA tests revealed statistically significant main effects for both measures in 

all channels ( 0.00001p < ). 

Figure 3.3 depicts the topography of average H (for the selected 90 segments) for the 

three vigilance states. Highest average H values emerged in the frontal region during all 

 

Figure 3.2.  Subject #16, expanded hypnogram, H and �D courses corresponding to the interval denoted 

by the vertical black lines in Fig. 3A. (A) Hypnogram prepared according to the Rechtschaffen and Kales 

standard [15] using 20 s long epochs. (B) Moving average of the estimated H values for channels Fp2, Cz 

and O2 using 45a = . (C) Moving average of the estimated �D values for channels Fp2, Cz and O2 using 

45a = . 

 

Figure 3.3.  (A) Subject #16, topographic maps of H averages (for the 90 selected segments of 20 s 

length) for sleep stages NREM4, NREM2 and REM. (B) Topographic maps for differences of the H 

averages between sleep stages. 
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vigilance states, while the minimum was found during REM in the central zone. A 

HNREM4 > HNREM2 > HREM trend could be observed across the whole head surface. Post-

hoc tests revealed significant differences between stages NREM4 and NREM2 as well as 

between NREM4 and REM in all channels ( 0.0001p < ). Comparison of NREM2 and 

REM stages reached significancy at the following recording sites only: Fp1, Fp2, F3, Fz, 

F4, C3, Cz, C4 and P3 ( 0.0001p < ); T3 ( 0.001p < ); T5 ( 0.01p < ). Difference between 

NREM4 and REM as well as between NREM2 and REM reached maxima in Cz 

electrode (Figure 3.3B). 

Measure �D, as expected based on the inverse course of H and �D, showed an opposite 

trend between sleep stages: �DREM > �DNREM2 > �DNREM4 (Figure 3.4A). During all 

sleep stages minima of �D could be found in the fronto-central region. The central 

difference peak that was present for H (Figure 3.3B) disappeared in the �D difference 

maps (Figure 3.4B). Multiple comparisons revealed significant �D differences 

( 0.0001p < ) for all sleep stage pairs in all channels. 

Topographic distributions of group-level medians for the three sleep stages as well as 

their differences are shown in Figure 3.5. Results obtained for the fractal measures were 

in agreement with those obtained at the individual level. Namely, highest H values 

emerged frontally during all sleep stages, while the minimum was found during REM in 

the central zone. A HNREM4 > HNREM2 > HREM trend was present across the whole head 

surface. Measure �D, showed an opposite trend: �DREM > �DNREM2 > �DNREM4. Minima 

of �D could be found in the fronto-central region during all sleep stages, while higher 

values were observed in the posterior circumferential channels. Salient H difference 

peaks that occurred for sleep stage pairs NREM4-REM and NREM2-REM could not be 

 

Figure 3.4.  (A) Subject #8, topographic maps of �D averages (for the 90 selected segments of 20s length) 

for sleep stages NREM4, NREM2 and REM. (B) Topographic maps for differences of the �D averages 

between sleep stages. 
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observed in the case of �D. Power spectral measures also exhibited expected topography. 

Relative band powers of slow activities (SO and � bands) were higher for NREM4 than 

NREM2 as well as for NREM2 than REM. Generally, SOrP  showed a more even 

topographic distribution when compared to rPδ  in all sleep stages. Across all sleep stages 

 

Figure 3.5.  Topographic distribution of group-level medians (medians of individual medians) for the 

analyzed sleep stages and differences of these medians between sleep stages. Relative band powers are 

denoted by the labels of the corresponding frequency bands. 
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the minimum of SOrP occurred at the vertex during REM sleep. Frontal regions exhibited 

slightly higher values of SOrP compared to other regions during NREM2 and REM. 

During NREM4 higher SOrP  values occurred bilaterally in the fronto-temporal region and 

in C4, P4, O2 channels. rPδ  exhibited higher values in the fronto-central channels during 

NREM4 and NREM2 and in the central region during REM sleep. Generally, faster 

activities (above 4 Hz) showed an opposite trend with lower relative band power values 

for deeper sleep stages. During NREM4 relatively even topographic distributions were 

found for faster activities. During NREM2 higher values appeared in the posterior region, 

showing maxima in the parietal channels for rPσ . REM sleep revealed a more diverse 

topography of faster activities. Maximum of theta activity was found centrally. Highest 

values in the � and 	 bands occurred in posterior channels. Finally, relative power of 
 

and � frequency bands peaked in temporal channels. Spectral edge frequency showed 

lower values for deeper sleep stages as it was conjectured from Eq. (2.14). Slightly 

higher values of fse were present in posterior channels during NREM4 and NREM2, 

while during REM higher values were located in temporal channels. 

Comparing sleep stages using one-way Kruskal-Wallis ANOVA revealed highly 

significant ( 0.00001p < ) differences for all measures in all channels except for the 

relative power of the � band (Table 3.I). The level of significance for rPδ  varied across 

channels between 0.01p <  and 0.00001p < . Pair-wise comparison of sleep stages using 

the rank post-hoc test resulted in most significant differences between sleep stages 

NREM4 and REM for all measures and channels with the exception of rPσ . This latter 

measure exhibited highest significance values between NREM4 and NREM2 in fronto-

centro-parietal channels (F3, Fz, F4, C3, Cz, C4, P3 and P4). In general, least or non-

significant differences were observed between sleep stages NREM2 and REM. 

Comparison between NREM4 and NREM2 revealed significant values for all measures 

with the exception of the relative � band power which reached significancy in F3, C3, P3 

and P4 channels only. 

3.3.1.1. Interhemispheric comparisons 

As expected, Wilcoxon matched pairs test revealed (Table 3.II) more significant 

differences for the non-symmetric Fz-Cz channel pair as compared with the other 

symmetric channel pairs. Out of the 30 cases (10 measures ×  3 stages) the Fz-Cz channel 
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pair exhibited 19 significant values. Regarding the symmetric channel pairs most 

TABLE 3.I.  RESULTS OF THE KRUSKAL-WALLIS ANOVA AND RANK POST-HOC TESTS. 

Channel 
Measure Test 

Fp2 F8 T4 T6 O2 Fp1 F7 T3 T5 O1 F4 C4 P4 F3 C3 P3 Fz Cz 

KW 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

N4 - N2 >5 >5 >5 >5 >5 >5 >5 >4 >5 >5 >4 >4 >5 >4 >4 >5 >4 >3 

N4 - R >5 >5 >5 >5 >5 >5 >5 >5 >5 >5 >5 >5 >5 >5 >5 >5 >5 >5 
H 

N2 - R >x >x >x >x <x >x >x >x >x >x >1 >x >x >1 >2 >x >2 >2 

KW 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

N4 - N2 <3 <3 <3 <3 <4 <4 <3 <3 <3 <4 <4 <3 <3 <3 <3 <4 <4 <4 

N4 - R <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 
�D 

N2 - R <2 <2 <2 <2 <x <2 <2 <2 <2 <x <2 <2 <2 <2 <2 <2 <2 <2 

KW 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

N4 - N2 >4 >5 >5 >5 >5 >4 >5 >4 >5 >5 >3 >4 >5 >3 >3 >4 >3 >3 

N4 - R >5 >5 >5 >5 >5 >5 >5 >5 >5 >5 >5 >5 >5 >5 >5 >5 >5 >5 
SO 

N2 - R >x >x >x >x >x >x >x >x >x >x >1 >1 >x >2 >2 >x >2 >2 

KW 5 3 3 5 2 5 2 2 5 2 3 3 3 3 3 5 3 2 

N4 - N2 >x >x >x >x >x >x <x >x >x >x >x >x >1 >1 >1 >2 >x >x 

N4 - R >5 >3 >4 >5 >x >5 >1 >2 >4 >2 >3 >3 >4 >4 >4 >5 >3 >2 
� 

N2 - R >3 >1 >2 >2 >2 >3 >1 >2 >1 >1 >x >x >x >x >x >x >x >x 

KW 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

N4 - N2 <4 <4 <5 <5 <5 <4 <4 <5 <4 <5 <3 <3 <4 <3 <3 <3 <3 <3 

N4 - R <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 
� 

N2 - R <1 <x <x <x <x <1 <x <x <1 <x <2 <2 <2 <2 <2 <2 <2 <3 

KW 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

N4 - N2 <5 <5 <5 <5 <4 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <4 <4 

N4 - R <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 
� 

N2 - R >x >x <x <x <x <x >x <x <x <x <x <x <x <x <x <x <x <x 

KW 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

N4 - N2 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 

N4 - R <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <3 <3 <4 <3 <3 <3 <3 <2 
� 

N2 - R >x >x >x >x >x >x >x >x >x >x >x >1 >1 >x >1 >1 >x >2 

KW 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

N4 - N2 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 

N4 - R <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 
� 

N2 - R <3 <3 <2 <2 <2 <3 <3 <3 <3 <2 <3 <3 <3 <3 <3 <3 <3 <3 

KW 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

N4 - N2 <3 <3 <3 <3 <3 <3 <2 <2 <2 <2 <3 <3 <3 <2 <2 <2 <2 <2 

N4 - R <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 
� 

N2 - R <2 <2 <2 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <3 <2 <2 <3 <2 

KW 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

N4 - N2 <3 <3 <3 <4 <4 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 

N4 - R <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 
fse 

N2 - R <2 <2 <2 <2 <1 <2 <3 <2 <2 <2 <3 <2 <2 <3 <2 <2 <2 <2 

Results of the Kruskal-Wallis ANOVA test are presented for each measure and channel separately in rows 

denoted by KW. Similarly, pair-wise post-hoc comparison of sleep stages can be found in rows denoted by 

N4-N2, N4-R and N2-R (N4: NREM4, N2: NREM2, R: REM). The > (<) sign denotes greater (smaller) 

group-level medians for sleep stages denoted by first codes. Significance level notation are as follows: x 

(not significant), 1 (p<0.05), 2 (p<0.01), 3 (p<0.001), 4 (p<0.0001), 5 (p<0.00001). Relative band powers 

are denoted by the labels of the corresponding frequency bands. 
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significant differences were found for channel pairs P3-P4 (10 cases) and O1-O2 (8 

cases), while least significant differences appeared for the frontal channel pairs Fp1-Fp2 

(2 cases), F7-F8 (4 cases) and F3-F4 (4 cases). In posterior channel pairs more significant 

results occurred during deeper sleep stages while in frontal channel pairs the least 

TABLE 3.II.  RESULTS OF THE WILCOXON MATCHED PAIRS TEST. 

Channel pair 

M S Fp1 

Fp2 

F7 

F8 

T3 

T4 

T5 

T6 

O1 

O2 

F3 

F4 

C3 

C4 

P3 

P4 

Fz 

Cz 
SC 

N4 >x >x >1 <x >x <x <x <1 >3 2 

N2 >x >x >x >x <x <x >x >x >3 0 H 

R >x <x <x <x <x <x <x <x >3 0 

N4 <x <x <x <x >x >1 >x >x <3 1 

N2 >x >x <x <1 >x >x <x <1 >x 2 �D 

R >x >x >x <x >x >x <x <x >x 0 

N4 <x >1 >x <x <3 >x <3 <2 <x 4 

N2 >x <x >x >x >x >x >x >x >3 0 SO 

R <x <x <x <x >x <x <x <x >3 0 

N4 >x <x <x >x >x >x >1 >1 >x 2 

N2 >x >x <x <x >x >2 >1 <x >x 2 � 

R >1 >2 >x >x >x >1 >x >x <1 3 

N4 <x <x <1 >x >x >x >x >x <3 1 

N2 <x >x <x <x <x >x <1 <3 <2 2 � 

R <x >x >x >1 >x >x >x <x <x 1 

N4 <x <x <1 >x >1 >x >x >x >x 2 

N2 <x >x >x <x <x <x <2 <2 <x 2 � 

R >x >x >x >x >x >x <x >x <4 0 

N4 <x <x <x <x >2 >x >x >2 <3 2 

N2 <1 >x >x >x >1 <x <x >x <4 2 � 

R <x >x <x >x >x <x <x <1 <2 1 

N4 >x <x <x >x >1 >x <x <x <4 1 

N2 <x <1 <2 <x >x <1 <1 <1 <4 5 � 

R >x >x <x <x >1 <x <x <x >x 1 

N4 >x <x <x <x <x >x >x >x <4 0 

N2 >x <1 <x <2 <x <x >x <1 <2 3 � 

R >x >x <x <2 <1 <x <x <x >x 2 

N4 <x <x <x <x >2 <x <1 >x <2 2 

N2 <x <x <1 <1 >x <x <x <x <3 2 fse 

R >x >x <x <x <x <x <x <x >x 0 

N4 0 1 3 0 5 1 3 4 7 17 

N2 1 2 2 3 1 2 4 5 7 20 

R 1 1 0 2 2 1 0 1 5 8 
All 

AS 2 4 5 5 8 4 7 10 19 45 

M: measure, relative band powers are denoted by the labels of the corresponding frequency bands; S: 

sleep stage; SC: number of symmetrical channel pairs (the midline Fz-Cz channel pair not included) that 

resulted significant differences; All: number of measures that revealed significant differences summed for 

sleep stages NREM4 (N4), NREM2 (N2) and REM (R) separately as well as considering all sleep stages 

(AS) together. The > (<) sign denotes greater (smaller) group-level medians in the upper row channels 

(electrodes above the left hemisphere and Fz) and it is followed by the significance level sign: x (not 

significant), 1 (p<0.05), 2 (p<0.01), 3 (p<0.001), 4 (p<0.0001). 
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significant differences were found during sleep stage NREM4. Most significant 

interhemispheric differences occurred for relative powers of delta and beta frequency 

bands (7 cases for both out of total 24 = 3 sleep stages ×  8 symmetrical channel pairs). 

For rPδ  significant cases were distributed similarly across sleep stages, while rPβ  

revealed the most (5 cases) significant differences for NREM2 sleep. SOrP  resulted in 4 

significant cases, all during NREM4. By contrast, no significant interhemispheric 

differences were found for rPγ  in this sleep stage. No gross tendencies were observed for 

rPα  and rPσ across sleep stages and locations, however, there were some significant 

results. Compact EEG features (H, �D and fse) altogether revealed smaller number of 

significant results: 5, 4 and 0 significant cases for NREM4, NREM2 and REM, 

respectively. 

Considering all 10 measures NREM2 (20 cases) and NREM4 (17 cases) revealed twice 

more significant differences as compared to REM sleep (8 cases out of total 80 = 10 

measures ×  8 symmetrical channel pairs). 

3.3.2. Cross-correlation analysis 

3.3.2.1. Inter-site correlations 

In Figure 3.6 the 35 strongest inter-site correlations ( 0.05p < ) are denoted by black lines 

drawn between the appropriate locations for all 10 EEG measures and for each sleep 

stage separately as well as together. Considering all sleep stages together highest inter-

site correlations were observed centrally (F3, Fz, F4, C3, Cz, C4, P3, P4) for all features 

except for the relative power of the � band where highest correlations were found 

intrahemispherically. Sleep stages were characterized by different topography in inter-

site correlation maps. In general, power spectral measures (except for rPγ ) showed 

strongest correlations between anterior channels during NREM4. During NREM2 and 

REM highest correlations were observed more posteriorly. rPγ  exhibited higher 

correlations within than between hemispheres during NREM4 and NREM2, a tendency 

which was not true for REM. Compared to the topographic properties of the above 

spectral measures, H exhibited an opposite trend with higher posterior correlations during 

NREM4 and higher anterior correlations during NREM2 and REM. At the same time �D 

did not reveal such differences between sleep stages. In agreement with previous results 
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presented in �D showed higher inter-site correlations compared to H. 

 

 

Figure 3.6.  Highest 35 inter-site correlations denoted by black lines drawn between the appropriate 

locations. Spearman’s correlation coefficients were calculated considering all sleep stages together 

(column ALL) as well as separately. Only significant ( 0.05p < ) correlations are depicted. Lowest 

presented correlation values can be found above the topographic maps. Relative band powers are 

denoted by the labels of the corresponding frequency bands. 
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3.3.2.2. Cross-correlation of measures 

3.3.2.2.1. Cross-correlation between the fractal measures 

When all sleep stages were considered together strong negative cross-correlations 

( 0.00001p < ) between H and �D were found with weakest correlations in the occipital 

zone (Figure 3.7). Evaluating sleep stages separately one could observe stronger and 

more significant correlation values for deeper sleep stages. During NREM4 lower values 

were found in the occipital and the fronto-polar regions. During NREM2 weakest 

correlations were found posteriorly. REM sleep showed non-significant negative 

correlations in the circumferential channels and non-significant but positive correlation in 

the F3, Fz, and F4 channels. 

3.3.2.2.2. Cross-correlation between fractal and power spectral measures 

Results of cross-correlation analyses between fractal and power spectral measures are 

summarized in Figure 3.8. Generally, a positive cross-correlation was observed between 

H and slower brain activities (SO and � bands), while faster activities (above 4 Hz) were 

negatively correlated with the monofractal measure H. Higher and more significant 

correlations were found for deeper sleep stages. Overall, the strongest positive correlation 

was revealed for the relative power of the SO band, while the strongest negative 

correlation was found for the relative power of the theta band. Generally, weaker 

correlations appeared in the anterior channels during NREM4. During NREM2 stronger 

correlations (positive for the SO and negative for the � band) were found in the anterior 

 

Figure 3.7.  Spearman cross-correlations between H and �D considering all sleep stages together as well 

as separately. Significant values ( 0.05p < ) are denoted on the left side of the color bars using the 

following notations: no sign (none of the values are significant); only + (all values are significant); + 

with a dash (only values below the dash are significant). 
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region while faster activities (	, 
, and � bands) exhibited weakest correlations with H in 

posterior channels. During REM stronger positive correlation between slow activities 

(SO and � bands) and H was found in the temporal and occipital channels while faster 

activities were negatively correlated with the monofractal measure H. Above the � band 

stronger negative correlations were present in the circumferential channels decreasing 

around the vertex and even switching to positive correlation values in the case of � and � 

bands. 

Generally, correlations between �D and RBPs exhibited relationships with a sign 

opposite to that found for measure H. Namely, �D was negatively correlated with slow 

(SO and �) while positively correlated with faster (above 4 Hz) activities. Similarly to H, 

more significant values appeared for deeper sleep stages. Compared to H, correlations of 

 

Figure 3.8.  Spearman cross-correlations between fractal and power spectral measures (PSMs). The left 

panel depicts results obtained for H. Cross-correlations between �D and PSMs are presented in the right 

panel. Sleep stages were considered together (columns denoted by ALL) as well as separately. Significant 

values ( 0.05p < ) are marked on the left side of the color bars using the following notations: no sign (none 

of the values are significant); only + (all values are significant); + with a dash (only values above/below 

the dash are significant). Relative band powers are denoted by the labels of the corresponding frequency 

bands. 
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�D with slow activities were weaker and less significant. Highest positive correlation 

values between �D and rPθ  were found in the anterior channels regardless of sleep 

depth. Relative power of alpha and sigma bands exhibited strongest positive correlations 

with �D in the temporal channels. rPβ  and rPγ  showed strongest positive correlations 

with �D around the Fz channel during NREM4, while the nadirs of these correlations 

were found during REM sleep in the same region. 

Inspection of cross-correlation maps between spectral edge frequency and the fractal 

measures indicated that these correlations reflect contribution of certain frequency bands 

in a compact way, such as in the case of the correlation between fse and H during NREM4 

where the minimum of correlations was found frontally. 

To estimate the contribution of single frequency bands to the overall variation of 

compact measures, one must bear in mind that certain band powers are also correlated 

[77]. To control for this effect, we performed multiple linear regression (MLR) analyses 

with relative band powers as predictors and compact EEG measures as response 

variables. At this point we analyzed sleep stages together and only in those channels 

where best classifications were predicted based on results presented in previous sections. 

Thus, for H MLR was carried out in channel Cz with a result 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

** ***

*****

0.52 0.15 0.04 0.07 0.47 0.11 0.03 0.05

0.04 0.07 0.07 0.06 0.08 0.04 0.82 0.08

SOr r r r

r r r

H P P P P

P P P

δ θ α

σ β γ

= ± + ± − ± + ±

− ± − ± + ± + ±

 

and statistics ( )7,58 200.99F = , 0.00001p < , . . . 0.01Std Err Est = , 0.98R = , 

2
0.96R = , 

2
 0.96Adjusted R = . For �D MLR was performed considering the T4 

channel. The obtained result was 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

*****

*****

0.08 0.12 0.07 0.05 0.55 0.09 0.17 0.11

0.005 0.09 0.14 0.08 0.09 0.06 2.99 0.24

SOr r r r

r r r

D P P P P

P P P

δ θ α

σ β γ

∆ = − ± − ± + ± + ±

+ ± + ± + ± + ±

 

with statistics ( )7,58 77.54F = , 0.00001p < , . . . 0.12Std Err Est = , 0.95R = , 
2

0.9R = , 

2
 0.89Adjusted R = . Finally, contribution of different frequency bands to the spectral 

edge frequency was tested in channel T6 with the 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
**** ***** **

0.08 0.07 0.05 0.03 0.08 0.05 0.04 0.04

0.06 0.04 0.17 0.04 0.73 0.03 9.62 3.12

se SOr r r r

r r r

f P P P P

P P P

δ θ α

σ β γ

= − ± − ± + ± − ±

+ ± + ± + ± + ±
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result and the following statistics ( )7,58 360F = , 0.00001p < , . . . 1.23Std Err Est = , 

0.99R = , 
2

0.98R = , 
2

 0.97Adjusted R = . Coefficients of relative band powers were 

standardized and their standard errors were provided in brackets. Only coefficients with 

stars above them were significant with notation: ** ( )0.01p < , *** ( )0.001p < , **** 

( )0.0001p <  and ***** ( )0.00001p < . 

3.3.3. Clustering of channels and measures 

Hierarchical channel cluster trees were generated for all three sleep stages and EEG 

features separately using the best similarity and linkage combinations. Visual inspection 

of the dendrograms revealed both common and distinct channel clusters across sleep 

stages (see e.g. Figure 3.9 for measure �D). For statistical evaluation channels were 

 

Figure 3.9.  Dendrograms of EEG channels obtained using the multifractal measure �D. Hierarchical 

cluster trees were generated applying the best similarity/linkage (Sim/Lin) methods according to the 

cophenet correlation coefficient (CCC). For the abbreviation of Sim/Lin methods see the section 3.2.2.3. 
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clustered into 4 and 9 clusters, respectively (Table 3.III). 

As can be seen in Table 3.III and Table 3.IV, the 9-cluster analysis showed that most 

EEG features revealed proximity of symmetrical channels in the frontal region and 

during NREM4. During REM most of the symmetric channels were clustered together 

posteriorly. Regardless of the sleep stage most of the measures (6-9 out of 10) indicated 

the proximity of F3-F4, C3-C4 and P3-P4 channels. The non-symmetrical Fz and Cz 

TABLE 3.III.  HIERARCHICAL CLUSTERING OF EEG CHANNELS USING ALL MEASURES SEPARATELY. 

Channel 
M 

Sleep 

stage Fp2 F8 T4 T6 O2 Fp1 F7 T3 T5 O1 F4 C4 P4 F3 C3 P3 Fz Cz 
SC Sim/Lin CCC 

N4 1|7 2|6 2|4 2|2 3|8 4|9 2|5 2|3 2|1 2|2 2|2 2|2 2|2 2|2 2|2 2|2 2|2 2|2 3 seu/cen 0.803 

N2 1|2 2|6 2|7 4|9 3|8 1|1 1|3 1|5 1|5 3|8 1|2 1|4 1|4 1|2 1|4 1|4 1|2 1|4 4 seu/ave 0.859 H 

R 3|1 4|5 4|6 1|9 2|7 3|1 3|2 3|2 2|8 2|8 3|2 3|4 3|3 3|2 3|4 3|4 3|2 3|4 3 cit/ave 0.775 

N4 4|5 3|9 4|3 4|6 1|7 4|5 4|4 4|1 4|2 2|8 4|5 4|6 4|6 4|5 4|6 4|6 4|5 4|6 4 euc/ave 0.840 

N2 3|1 2|6 2|7 1|3 4|9 3|1 3|5 1|4 1|4 4|9 3|2 3|8 3|8 3|2 3|8 3|8 3|2 3|8 5 euc/ave 0.835 �D 

R 3|8 4|9 1|7 2|5 2|2 2|6 2|4 2|4 2|1 2|2 2|3 2|4 2|4 2|3 2|4 2|4 2|3 2|4 4 euc/cen 0.759 

N4 3|9 4|5 4|6 2|1 2|2 3|9 4|7 4|7 2|3 1|8 3|9 2|4 2|2 3|9 2|4 2|4 3|9 2|4 3 euc/ave 0.746 

N2 1|2 1|2 2|7 2|4 3|8 1|5 1|5 1|5 1|6 4|9 1|2 1|2 2|4 1|5 1|1 2|3 1|5 1|1 0 seu/ave 0.814 SO 

R 2|5 4|9 4|9 1|6 2|8 2|3 3|1 3|2 2|4 2|8 2|4 1|7 1|7 2|4 2|4 1|7 2|4 1|7 3 euc/ave 0.706 

N4 4|4 2|2 1|8 1|8 4|7 4|4 2|2 4|5 2|1 3|9 4|4 4|3 4|6 4|4 4|3 4|3 4|4 4|3 4 euc/ave 0.812 

N2 2|8 3|5 3|6 2|4 4|9 2|8 1|2 1|2 1|1 1|7 2|4 2|4 2|4 2|4 2|4 2|3 2|4 2|4 3 seu/ave 0.792 � 

R 2|6 3|1 3|4 3|5 4|9 2|7 3|2 3|4 1|8 1|8 3|3 3|3 3|5 3|3 3|3 3|5 3|3 3|3 4 seu/ave 0.787 

N4 2|4 1|5 1|6 1|6 4|9 2|4 2|3 2|1 2|2 3|8 2|4 2|7 2|7 2|4 2|7 2|7 2|4 2|7 4 euc/ave 0.826 

N2 3|6 2|1 2|2 1|9 4|7 3|6 3|6 2|3 2|4 4|8 3|6 3|5 3|5 3|6 3|5 3|5 3|6 3|5 4 seu/ave 0.844 � 

R 1|1 1|2 1|2 2|3 4|9 3|5 3|6 3|6 2|4 4|9 3|5 3|8 3|8 3|5 3|8 3|8 3|5 3|7 4 seu/ave 0.777 

N4 2|2 2|1 1|4 1|4 4|9 2|2 2|5 2|6 1|7 3|8 2|2 2|2 1|3 2|2 2|2 1|3 2|2 2|2 4 seu/cen 0.826 

N2 1|6 4|1 4|2 2|7 2|3 1|6 1|5 4|8 3|9 2|4 1|6 2|7 2|7 1|6 2|7 2|7 1|6 2|7 4 euc/ave 0.848 � 

R 3|8 1|2 1|2 1|1 2|5 2|3 2|7 2|7 1|6 4|9 2|4 2|4 2|4 2|4 2|4 2|4 2|4 2|4 3 che/ave 0.900 

N4 1|3 2|7 3|9 3|9 4|8 2|5 2|6 4|2 4|2 4|1 1|3 1|4 4|8 1|3 1|4 4|8 1|3 1|4 3 euc/ave 0.766 

N2 4|1 4|5 4|4 4|3 2|6 4|1 4|1 4|3 3|9 2|7 4|1 4|2 1|8 4|1 4|2 1|8 4|1 4|2 4 seu/med 0.763 � 

R 4|7 4|8 2|2 2|1 3|3 1|9 2|2 2|2 2|6 3|4 2|6 2|6 2|6 2|6 2|6 2|6 2|6 2|5 4 euc/ave 0.836 

N4 2|2 1|6 1|6 1|5 2|3 4|9 2|7 2|1 2|1 3|8 2|2 2|2 2|2 2|2 2|2 2|4 2|2 2|4 2 che/cen 0.898 

N2 2|6 1|7 2|3 2|4 3|8 4|9 2|2 2|2 2|1 2|5 2|3 2|3 2|3 2|3 2|3 2|3 2|3 2|3 3 che/sin 0.841 � 

R 2|8 1|7 1|7 1|6 3|1 4|9 2|8 2|3 1|6 3|2 2|4 2|4 1|6 2|4 2|4 1|5 2|4 2|4 3 euc/ave 0.814 

N4 3|8 1|3 1|4 1|4 1|4 4|9 2|5 2|5 2|6 2|1 1|4 1|4 1|4 2|5 2|7 2|2 2|2 2|2 0 che/ave 0.902 

N2 3|5 3|1 3|1 3|2 3|1 4|9 3|3 3|3 2|6 2|7 3|1 3|2 3|2 3|3 1|8 3|4 3|4 3|4 0 che/ave 0.927 � 

R 2|4 2|3 2|3 2|5 2|3 4|9 2|3 2|2 3|8 1|7 2|3 2|3 2|1 2|3 2|6 2|2 2|3 2|3 2 che/ave 0.993 

N4 1|7 1|6 2|8 4|4 4|3 1|7 1|6 3|1 3|2 4|5 1|7 2|9 4|4 1|7 2|9 4|4 1|7 2|9 5 cit/ave 0.712 

N2 2|5 3|3 3|4 3|3 3|4 4|9 2|6 2|6 1|8 2|7 2|6 2|6 2|6 2|1 2|2 2|6 2|1 2|2 1 che/ave 0.775 fse 

R 2|4 2|1 2|6 2|6 2|3 4|9 2|2 2|2 3|8 1|7 2|3 2|3 2|2 2|5 2|3 2|2 2|3 2|3 2 che/ave 0.949 

For all the 3 analyzed sleep stages (N4: NREM4, N2: NREM2, R: REM) channels were clustered into 4 

(denoted by first numbers) and 9 (indicated by second numbers) clusters. Number of symmetrical channel 

pairs (the midline Fz-Cz channel pair not included) that fell into same clusters considering the 9-cluster 

analysis (designated by bold numbers) is presented in column SC. Abbreviation of best similarity (Sim) 

and linkage (Lin) combinations used for clustering can be found in the second last column. Performance 

of these best combinations is described by the cophenet correlation coefficient (CCC). For the definition 

of symmetrical channel pairs as well as for abbreviation of similarity and linkage methods see sections 

3.2.2.1 and 3.2.2.3 Relative band powers are denoted by the labels of the corresponding frequency bands. 
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channels clustered together in much less cases. A more detailed examination of data in 

Table 3.III unveiled that Fz tended to cluster with frontal F3 and F4 channels, while Cz 

mostly formed common clusters with the central channels C3 and C4. With regard to rPγ  

symmetric channels did not cluster together during NREM4 and NREM2 sleep stages but 

did so in REM sleep. 

In the 4-cluster analysis, where all measures were considered separately, a rather uneven 

clustering of channels was found. Notably, in almost all cases there were channels 

(typically the circumferential ones such as: Fp1, Fp2, O1, O2, T5, T6) that formed 

individual clusters because of their large distance from the remaining EEG derivations. 

At the same time, several topographic features revealed by the above analyses could be 

verified. For example, highest rPσ  values in parietal channels during NREM2 (Figure 

3.5) were reflected in a separate cluster formed by P3 and P4 channels. As another 

example disconnection of the hemispheres during NREM4 with regard to the relative 

power of the � band (Figure 3.6) was also supported by forming separate clusters over 

left and right hemispheres. 

Hierarchical clustering of channels was also carried out using all measures together to 

minimize the effect of “outlier” channels and to assess topography of overall brain 

dynamics. Performing 4-cluster analysis of hierarchical channel cluster trees (Figure 

3.10) revealed symmetric channel clusters for all sleep stages (Table 3.V). In general, 

separate clusters were formed by anterior, central, temporal and posterior channels. 

Topographic boundaries of these clusters slightly varied across sleep stages. 

TABLE 3.IV.  NUMBER OF MEASURES THAT INDICATED COMMON CLUSTERS FOR CHANNEL PAIRS BASED ON 

RESULTS OF THE 9-CLUSTER ANALYSIS PRESENTED IN TABLE 3.III. 

Channel pair 
Sleep 

stage 
Fp1 

Fp2 

F7 

F8 

T3 

T4 

T5 

T6 

O1 

O2 

F3 

F4 

C3 

C4 

P3 

P4 

Fz 

Cz 
SC 

NREM4 6 2 0 0 0 9 9 6 3 32 

NREM2 5 0 0 0 2 7 7 7 3 28 

REM 1 1 2 1 3 9 8 7 5 32 

Alls 12 3 2 1 5 25 24 20 11 92 

SC denotes sums across symmetrical channel pairs (the midline Fz-Cz channel pair not included), while 

Alls indicates sums across sleep stages. 
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Figure 3.10.  Clustergrams generated for sleep stages NREM4, NREM2 and REM using group-level 

medians of all measures in all channels. Heat maps and hereby the dendrograms were generated after z-

standardization of the measures across the channels. Hierarchical channel cluster trees were generated 

using the cosine similarity metric and the unweighted average linkage method. The corresponding 

cophenet correlation coefficients (CCCs) were as follows: 0.749 (NREM4), 0.843 (NREM2) and 0.826 

(REM). Measure dendrograms were constructed applying the Euclidean distance as a similarity measure 

and the unweighted average method for linkage (CCC: 0.959 (NREM4), 0974 (NREM2) and 0.886 

(REM)). Relative band powers are denoted by the labels of the corresponding frequency bands. 
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When combining the fractal measures (Table 3.VI) only or the relative band powers only 

(Table 3.VII) less symmetrical and slightly different topographic grouping of channels 

was obtained. E.g. the separate cluster that was formed for the parietal channels during 

NREM2 using all measures together (Table 3.V) was not found using the fractal 

measures only. 

In the next step we hierarchically clustered the computed EEG measures based on the 18 

EEG channels (Figure 3.10). In all sleep stages H was closest to relative band powers of 

slow activities (SO and � bands). Measure �D was clustered with rPβ  and rPγ  during 

NREM4 and NREM2, while it formed a common cluster with rPα  and rPσ  during REM. 

As expected from Eq. (2.14), with sleep deepening fse was clustered with decreasing 

frequency bands, i.e. during REM fse was clustered with rPγ , during NREM2 with rPα  

and during NREM4 with rPθ . 

TABLE 3.V.  CLUSTERING OF EEG CHANNELS INTO 4 CLUSTERS USING ALL MEASURES TOGETHER. 

Sleep stage 
Cluster # 

NREM4 NREM2 REM 

1 Fp1, Fp2, 
F3, F4, Fz 

Fp1, Fp2, 
F7, F8 

Fp1, Fp2, 
F7, F8 

2 C3, C4, Cz 
F3, F4, Fz, 
C3, C4, Cz 

F3, F4, Fz, 
C3, C4, Cz 

3 F7, F8, 
T3, T4 

P3, P4 
T3, T4, 
T5, T6 

4 T5, T6, P3, P4, 
O1, O2 

T3, T4, T5, T6, 
O1, O2 

P3, P4, 
O1, O2 

Hierarchical cluster trees were generated using the cosine similarity metric and the unweighted average 

linkage method. The cophenet correlation coefficient values were as follows: 0.75 (NREM4), 0.843 

(NREM2) and 0.826 (REM). 

TABLE 3.VI.  CLUSTERING OF EEG CHANNELS INTO 4 CLUSTERS USING THE FRACTAL MEASURES ONLY. 

Sleep stage 
Cluster # 

NREM4 NREM2 REM 

1 Fp1, Fp2, 
F3, F4, Fz 

Fp1, Fp2, 
F7, F8 

Fp1, Fp2, 
F7, F8 

2 C3, C4,  
Cz, P3 

F3, F4, Fz, F3, F4, Fz 

3 F7, F8, 
T3, T4, P4 

C3, C4, Cz, 
P3, P4 

C3, C4, Cz, 
P3, P4 

4 T5, T6,  
O1, O2 

T3, T4, T5, T6, 
O1, O2 

T3, T4, T5, T6,  
O1, O2 

Hierarchical cluster trees were generated using the cosine similarity metric and the unweighted average 

linkage method. The cophenet correlation coefficient values were as follows: 0.739 (NREM4), 0.776 

(NREM2) and 0.926 (REM). 
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3.3.4. Gender-related differences 

Topographic distributions of group-level medians (medians of individual medians) 

during all three sleep stages for males and females are shown in Figure 3.11. The 

distribution of the measures across sleep stages and different locations was in general 

agreement with results shown in Figure 3.5. Detailed results on gender-related 

differences (for all measures, channels and sleep stages) can be found in (Table 3.VIII). 

Across all sleep stages group-level median of H was higher in females than males in 

most of the channels (see Figure 3.12). Out of the 18 channels this was true for 17, 13 

and 10 channels for NREM4, NREM2 and REM, respectively. Nevertheless, statistical 

comparisons reached significancy ( 0.0464p = ) in T4 during NREM4 only. At the same 

time �D was higher in males than females in all channels during all sleep stages. 

Statistical comparisons revealed significant differences in several channels during 

NREM4 (F7, F3, T3, T4, T6, C3, C4, Cz, P4) and in one channel (P4) during REM. Out 

of these results highest significance ( 0.0025p = ) was reached for the F7 channel. For 

other channels the significance level was as follows: C4 ( 0.0206p = ); Cz ( 0.0274p = ); 

T3 and T4 ( 0.0359p = ); F3, T6, C3 and P4 ( 0.0464p = ). Compared to �D less 

significant differences emerged for relative band powers. Nevertheless, we revealed 

some remarkable results. Group-level median of SOrP  during NREM4 was higher in 

females in all channels. Significant differences emerged for F8 ( 0.0274p = ) and P3 

( 0.0464p = ) channels. By contrast during NREM2 and REM SOrP  was higher in males 

TABLE 3.VII.  CLUSTERING OF EEG CHANNELS INTO 4 CLUSTERS USING THE RELATIVE BAND POWER 

MEASURES ONLY. 

Sleep stage 
Cluster # 

NREM4 NREM2 REM 

1 Fp1, Fp2, 
F7, F8 

Fp1, Fp2, F7, F8 
F3, F4, Fz 

Fp1, Fp2, 
F7, F8 

2 F3, F4, Fz, 
C3, C4, Cz 

C3, C4, Cz 
F3, F4, Fz, 
C3, C4, Cz 

3 T3, T4, P4 P3, P4 T3, T4, T6 

4 T5, T6, P3, 
O1, O2 

T3, T4, T5, T6, 
O1, O2 

T5, P3, P4, 
O1, O2 

Hierarchical cluster trees were generated using the cosine similarity metric and the unweighted average 

linkage method. The cophenet correlation coefficient values were as follows: 0.733 (NREM4), 0.876 

(NREM2) and 0.842 (REM). 
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in most channels. Statistically significant differences emerged for Fp2 ( 0.0274p = ) and 

 

Figure 3.11.  Topographic distribution of group-level medians (medians of individual medians) for the 

analyzed sleep stages presented for males (panel M) and females (panel F). Relative band powers are 

denoted by the labels of the corresponding frequency bands. 
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O1 ( 0.0055p = ) during REM. Compared to SOrP  the relative band power of delta 

activity showed an opposite trend. Namely, rPδ  was higher in males in more channels 

during NREM4, while it was higher in females in more channels during NREM2 and 

REM sleep stages. No significant differences were found for this measure between 

groups. Group-level median of rPθ  was higher in males in most channels in all three sleep 

stages. However, significant differences were present in channels F7 ( 0.0111p = ) and 

T4 ( 0.0206p = ) during NREM4 only. A common trend of activities above the theta 

band was that in most channels males exhibited higher band powers during NREM4 

TABLE 3.VIII.  RESULTS OF THE MANN-WHITNEY U TEST. 

Channel   
Measure Stage 

Fp2 F8 T4 T6 O2 Fp1 F7 T3 T5 O1 F4 C4 P4 F3 C3 P3 Fz Cz   

NREM4 >x >x >1 >x <x >x >x >x >x >x >x >x >x >x >x >x >x >x   

NREM2 <x >x >x >x <x >x >x >x >x <x >x >x >x >x >x <x >x <x   H 

REM <x >x <x >x <x >x >x <x >x <x <x <x >x >x >x <x >x >x   

NREM4 <x <x <1 <1 <x <x <2 <1 <x <x <x <1 <1 <1 <1 <x <x <1   

NREM2 <x <x <x <x <x <x <x <x <x <x <x <x <x <x <x <x <x <x   �D 

REM <x <x <x <x <x <x <x <x <x <x <x <x <1 <x <x <x <x <x   

NREM4 >x >1 >x >x >x >x >x >x >x >x >x >x >x >x >x >1 >x >x   

NREM2 <x <x <x <x <x <x <x >x >x <x <x <x <x <x >x >x <x >x   SO 

REM <1 <x <x <x <x <x >x >x <x <2 <x <x <x <x <x <x <x >x   

NREM4 >x <x <x <x >x >x <x <x <x >x >x <x <x >x <x >x >x <x   

NREM2 >x >x >x >x >x >x >x >x <x <x >x >x >x >x >x >x >x >x   � 

REM >x >x >x >x <x <x <x >x <x <x >x >x >x <x >x >x >x >x   

NREM4 <x <x <1 <x <x <x <1 <x <x >x <x <x <x <x <x <x <x <x   

NREM2 <x <x <x <x >x <x <x <x <x >x <x <x >x <x <x <x <x <x   � 

REM <x <x >x <x >x <x <x <x <x <x <x <x <x <x <x <x <x <x   

NREM4 <x <x <x <x <x <x <1 <x <x >x <x <x >x <x <x >x <x <x   

NREM2 >x <x <x >x >x >x <x <x <x >x <x >x >x <x >x >x <x >x   � 

REM >x >x <x <x >x >x <x <x <x >x >x <x <x >x >x <x >x >x   

NREM4 <x <x <x <x <x <x <x <x <x <x <x <x <x <x <x <x <x <x   

NREM2 >x >x <x <x <x >x >x <x <x <x >x <x <x <x <x <x >x <x   � 

REM >x >x <x >x >x >x >x >x >x >x >x >x >x >x >x >x >x >x   

NREM4 <x <x <x <x <x <x <1 <x <x >x <x <x <x <x <x <x <x <x   

NREM2 <x <x <x <x >x <x <x <x <x <x <x <x <x <x <x <x <x <x   � 

REM >x >x >x >x >x >1 >x >x >x >1 >x >x >x >x >x >x >x >x   

NREM4 <x <x <x <x <x <x <x <x <x <x <x <x <x <x <x <x <x <x   

NREM2 >x >x <x <x <x >x <x <x <x <x <x <x <x <x <x <x <x <x   � 

REM >x >x >x >x >x >1 >x >x <x >x >x >x <x >x <x <x >x >x   

NREM4 <x <x <1 <x <x <x <1 <1 <x >x <x <x <x <x <x <x <x <x   

NREM2 <x <x <x <x >x >x <x <x <x <x <x <x <x <x <x <x <x <x   fse 

REM >1 >x >x >x >x >1 >x >x <x >1 >x >x >x >x >x >x >x >x   

Detailed statistical results are presented for all measures, sleep stages and channels separately. The > 

(<) sign denotes that the group-level median was higher in females (males). The level of significance is 

denoted as follows: x (not significant), 1 (p<0.05), 2 (p<0.01). 
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while females showed higher values in REM. Significant differences were found for rPα  

( 0.0359p = ) and rPβ  ( 0.0274p = ) in channel F7 during NREM4. During REM 

comparisons reached significancy for rPβ  in channels Fp1 ( 0.0206p = ) and O1 

( 0.0464p = ) and for rPγ  in channel Fp1 ( 0.0464p = ). Spectral edge frequency followed 

the trend exhibited by activities above the theta band that is group-level median of fse in 

males was higher during NREM4 and NREM2 while lower during REM in most 

channels. For this measure statistically significant gender differences were found in 

channels F7 ( 0.0111p = ), T3 and T4 ( 0.0464p = ) during NREM4 and in channels Fp1 

( 0.0206p = ), Fp2 ( 0.0464p = ) and O1 ( 0.0359p = ) during REM sleep. 

3.4. Discussion 

3.4.1. Topographic and sleep stage-wise distribution of measures 

To our knowledge this is the first study providing a detailed comparison of fractal and 

power spectral features of the human EEG considering the effects of topography, sleep 

stages and gender. Fractality of EEG signals was assessed using both monofractal and 

multifractal measures. Power spectral properties were described by relative band powers 

and in a more compact way by estimating the spectral edge frequency. Sleep was 

analyzed considering sleep stages NREM4, NREM2 and REM separately as well as 

Figure 3.12.  Number of channels in which group-level medians were higher in males (case M>F) are 

presented for all measures and sleep stages separately. Number of channels in which group-level 

measure medians are higher in females (case F>M) can be obtained by subtracting these values from 18 

(total number of channels). The * (+) sign denotes measure and sleep stage combinations exhibiting 

significant differences for the case M>F (F>M). Relative band powers are denoted by the labels of the 

corresponding frequency bands. For detailed statistical results see the text and Table 1 in the 

supplementary material. 
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together. Topography was assessed with regard to functional connectivity by analyzing 

interhemispheric differences and regional clustering of EEG derivations. 

Higher H values occurred for deeper sleep stages, while �D showed an opposite trend 

indicating that brain electrical activities tend to be less multifractal and to be more 

persistent during deeper sleep stages. The decrease of �D with the deepening of sleep 

was opposite to the behavior of another multifractal measure, the range of singularity 

strength in a previous study [75] where the multifractality of EEG signals was assessed 

analyzing the distribution of zero-crossings. However, our results fit more into the 

general theory assuming lower complexity of EEG signals during deeper sleep stages. 

The HNREM4 > HNREM2 > HREM trend was in agreement with results of previous studies 

that assessed the DFA � exponent [60, 72-74], the fractal exponent � [76] or the fractal 

dimension Df [78]. Namely, DFA exponent � and � increased with the deepening of 

sleep, while Df exhibited the opposite trend. This suggests that the Hurst exponent 

estimated based on R/S statistics might be able to reflect the self-similarity properties of 

the sleep EEG, although the aforementioned trend could not be observed for H in [46]. 

Nevertheless, searching for the direct relationship between exact values of fractal 

measures and physiological processes has less sense, because of the already mentioned 

doubts related to estimation of fractal measures from time series of finite length. Even 

classification of actual brain dynamics into one of two types of fractional time series 

(fGn and fBm) is questionable. According to one part of the studies, fGn behavior of the 

sleep EEG could be conjectured based on DFA � exponent values below 1 [73, 74] or 

estimated Hurst exponents below 1 using the R/S statistics approach such as in the 

present study and in[46]. Other studies, on the contrary, indicated fBm nature of the 

human sleep EEG by revealing DFA � exponent values above 1 [60, 72] or fractal 

exponent values in the range 1 3κ< <  [76]. These discrepancies might be due to 

different estimation settings and indicate a need for a comprehensive comparison of 

different approaches used for the assessment of fractal properties, including classification 

of EEG signals into one of two classes of fractional time series (fGn or fBm) as it was 

proposed in [50, 52, 53]. Moreover, we should keep in mind that sleep EEG signals 

exhibit multifractal properties and thus monofractal analysis can only give a measure of 

the largest of their fractal dimensions. The 1/f noise-like power spectrum of EEG signals 

can be distorted during different conditions by characteristic peak frequencies (e.g. due to 

the � rhythm or intensive sleep spindles) that could destroy the self-similar nature of 

EEG. Possible analyses for such cases were proposed in [79, 80]. 
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Our data on the topography of relative band powers only partially agreed with those 

published earlier. Slow activities characterizing NREM4 occurred in anterior channels, 

while faster activities during REM dominated posteriorly. This antero-posterior tendency 

is in general agreement with previous studies [81-85]. During NREM sleep stages, the 

fronto-central maximum of slow activities as well as the posterior maximum of theta 

activity and the parietal maximum of the sigma band are also in agreement with results 

presented in [86, 87]. Nevertheless, the frontal maximum of alpha and beta band 

activities [86, 87] was not supported by our results. Also, instead of the frontal 	 and 
 

peaks during REM in the study of [87] we found posterior and temporal peaks in these 

activities. We could neither confirm the frontal peak of NREM4 slow oscillation activity 

described by [88]. We assume that discrepancies might be due to methodological 

differences. Firstly, previous studies mostly used absolute power values while we used 

relative band powers. Secondly, several previous studies [81, 83, 84, 86, 87] evaluated 

NREM sleep stages together, while we examined NREM4 and NREM2 stages 

separately. Nevertheless, we were able to confirm the known topographic spectral 

features of characteristic sleep EEG patterns. The revealed fronto-central peak in delta 

activity during NREM4 and NREM2 likely reflects delta waves and K-complexes [88, 

89]. The parietal peak of sigma activity during NREM2 may stand for fast sleep spindles 

[90-92]. At the same time no salient topographic feature could be related to frontal slow 

spindle activity. Vertex peaks in delta and theta bands during REM sleep likely reflects 

saw tooth waves, characteristic EEG patterns during REM with a know central maximum 

[93]. 

3.4.2. Cross-correlations between measures 

Combining all sleep stages we found a strong negative correlation between H and �D 

with a nadir in the posterior channels (Figure 3.7). As revealed by the sleep stage-wise 

analysis NREM2 and NREM4 contributed most to this occipital nadir. As compared to 

NREM4 weaker and less significant correlations emerged during NREM2. During REM 

there was a further weakening of correlations with a non-significant positive peak in the 

F3, Fz, F4 channels. 

To reveal how spectral properties are reflected in fractal measures, we performed cross-

correlation analysis between these measures (Figure 3.8). Measure H exhibited positive 

correlation with relative powers of slow activities (especially SOrP ), while it mostly 

showed negative correlation with faster activities. More significant values tended to 
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occur for slower activities (except rPδ ) and for deeper sleep stages. All these findings 

support the theory that H is linearly related to the spectral exponent � (see section 

2.2.2.1). Parameter � is estimated by plotting the power spectrum on the log-log scale 

and by fitting a straight line to this plot. The slope of this line is equal to κ− . This 

indicates that higher amount of slow activities and lower amount of faster activities result 

in higher � and H values and vice versa. The log-log plot of the power spectrum produces 

several points at higher frequencies and only few points at lower frequencies. Hence, the 

fitting of a straight line is much more affected by lower frequencies which might be the 

cause of more significant correlations of H with slower brain activities. Thus the 

correlation with H depends not only on the position, width and power amount of a given 

frequency band but it is also affected by properties of other bands. This provides an 

explanation why rPδ  exhibited weaker and less significant correlations with H as it could 

have been expected. As it could be conjectured from the overall negative cross-

correlation between the fractal measures, �D generally revealed opposite correlations 

with power spectral measures compared to those of H. That is, �D was negatively 

correlated with slow activities and positively correlated with RBPs of higher frequency 

bands. Additionally, faster activities (> 4 Hz) showed more significant correlations with 

�D as compared to slower activities and for deeper sleep stages. All this suggests that 

slower EEG patterns tend to make the amplitude distribution more even, while the 

opposite is true for faster EEG patterns. Characteristic topography of cross-correlations 

between H and �D were also reflected in cross-correlations between the fractal measures 

and RBPs. E.g. one of the most striking topographic features of cross-correlations 

between fractal measures and relative band powers could be observed for REM sleep in 

the fronto-central region where weakest correlations occurred. This might explain weak 

and non-significant positive cross-correlation between the two fractal measures during 

REM. Multiple linear regressions supported results of cross-correlation analysis between 

fractal and RBP measures by revealing contribution of individual RBPs to the compact 

EEG measures. We found a positive contribution of slow (SO and � bands) activities to 

H. Out of the faster activities rPα  and rPγ contributed positively while rPθ , rPσ  and rPβ  

contributed negatively to the same measure. The positive contribution of rPα  and rPγ  

might be explained by the observed weak positive cross-correlation between these 

measures and H during REM sleep in the central zone (see Figure 3.8). Highest 

coefficients were revealed for SOrP  and rPθ . Considering �D, negative and non-
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significant contribution of slow activities was obtained. Positive coefficients were found 

for faster activities (above 4 Hz) reaching the significance level only for rPθ . In addition, 

expected results were also found considering fse as a predicted variable. Highest positive 

and significant coefficients were found for two fastest activities ( rPβ  and rPγ ). Fraction 

of variation that could be explained by the relative band powers was highest in case of fse 

(
2

 0.97Adjusted R = ), while the worst regression result was found for �D 

(
2

 0.89Adjusted R = ). This finding could have been anticipated since fse is directly 

computed from power spectra and H may be related to the power spectrum, while �D 

reflects the amplitude distribution of time series. Distance of compact EEG features and 

RBPs was also analyzed by hierarchical clustering of the measures using group-level 

medians in all channels (Figure 3.10). These results were in agreement with those 

obtained by cross-correlation analyses and MLR. Namely, H was clustered with relative 

powers of slow brain activities (SO and � frequency bands) in all sleep stages, while �D 

tended to clustered with faster activities (
 and � bands during NREM4 and NREM2; � 

and 	 bands during REM sleep). 

A direct comparison of our correlation results (between H and spectral measures) with 

those of previous investigators is not possible since previous investigators used different 

measures and only few EEG channels. Nevertheless, our results regarding the correlation 

between H and power spectral measures could be related to those results by [78] who 

revealed a similar trend of measures D2 and Df  across sleep stages and a negative cross-

correlation between D2 and powers of slower frequency bands [76]. Another study 

revealing negative cross-correlation between D2 and DFA exponent � and negative cross-

correlation between D2 and slower activities [60] also seem to be in accordance with our 

data. On the contrary, the weak positive cross-correlation between D2 and � during 

NREM4 and NREM3 found by [76] would suggest negative correlation between H and 

slow activities. As far as we know there are no studies in the literature examining the 

relationship between multifractality and spectral measures of sleep EEG. 

3.4.3. Interhemispheric differences and inter-site correlations 

In the present study we also compared inter-site correlations (Figure 3.6) and 

interhemispheric differences of fractal and power spectral measures (Table 3.II). 

Surprisingly interhemispheric differences of specific measures varied with sleep stages 

and locations more than expected. In addition, it is difficult to relate these results to 
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previous data where sleep stages were combined and/or EEG recording was limited to a 

few channels. Nevertheless, we were able to reveal some coherent tendencies regarding 

the interhemispheric differences of spectral powers. E.g. we observed a right-hemisphere 

predominance of SO during NREM4 which might be related to those results by [94] 

finding predominance of 0.5-2 Hz activity over the right hemisphere during all night 

sleep. At the same time delta activity on the left side tended to predominate in each sleep 

stage. During NREM4 and NREM2 we found higher theta activity on the right side, 

while during REM theta predominated on the left side corroborating the findings of [95]. 

The majority of interhemispheric comparisons of H and �D were not significant. 

Previous investigators revealed interhemispheric asymmetries for measures D2, L1 and Df 

considering C3-C4 channels [78] and interhemishperic differences for D2 in C3-C4, T3-

T4 and O1-O2 locations [96]. Differences between earlier and the present data might be 

due to several methodological differences. Inter-site correlations of RBPs (Figure 3.6) 

partially agreed with those results of coherence analyses revealed in [97-99]. 

Specifically, we found stronger interhemispheric rPγ  correlations during REM compared 

to NREM4 and NREM2, a finding similar to obtained by [97]. However, this result 

should be regarded with caution since disconnection of the hemispheres during NREM4 

and NREM2 sleep regarding rPγ  might also occur due to the application of two separate 

references [58, 100, 101]. 

As expected, less significant differences were found for the symmetrical channel pairs as 

compared with the non-symmetrical channel pair Fz-Cz. These results indicate stronger 

functional connectivity between the homologous hemispheric regions that could be 

mediated to a large part by the corpus callosum and other commissural pathways [102, 

103]. During NREM4 most significant interhemispheric differences were found for 

occipital and parietal symmetrical channel pairs (Table 3.II). Results in the 

interhemispheric analysis were confirmed by the inter-site correlation analysis (Figure 

3.6) revealing strongest correlations between the anterior channels during NREM4. 

During NREM2 and REM strongest correlations were located more posteriorly. The 9-

cluster analysis (Table 3.III and Table 3.IV) also confirmed this trend by revealing a 

tendency of clustering together the frontal symmetrical channels during NREM4 and the 

posterior homologous channels during REM sleep. These findings suggest stronger 

interhemispheric functional connectivity anteriorly during NREM4 and posteriorly 

during REM sleep. Topography of inter-site correlations of compact EEG features 
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(including fractal measures and fse) reflect those of RBPs to some extent but due to the 

compression of information several properties are lost. E.g. the disconnection of the 

hemispheres during NREM4 and NREM2 regarding the gamma band activity cannot be 

revealed from compact features. The 4-cluster analysis revealed similar channel clusters 

(anterior, posterior, central and temporal) for the combined fractal measures (Table 3.VI) 

and for the combined RBPs (Table 3.VII). Nevertheless, there were some differences 

between these two latter clusterings which could be related to the aforementioned 

information loss. For example, the separate cluster that was formed for the parietal 

channels using the RBP measures was modified by clustering the parietal channels 

together with central derivations based on combination of fractal measures. Combination 

of fractal features and PSMs (Figure 3.10 and Table 3.V) provided more symmetrical 

topographic clusters than those obtained for the combined fractal measures or the 

combined RBP measures (as well as combined PSMs: data not presented) separately. 

Nevertheless, all these results indicate a re-organization of functional connectivity 

between brain regions across sleep stages. 

3.4.4. Gender differences 

In the present study we also compared fractal and power spectral measures between 

males and females during the analyzed sleep stages and according to 18 scalp locations. 

We were able to identify an EEG parameter, a recording site and a sleep stage 

differentiating genders most efficiently. As an EEG parameter we disclosed the 

multifractal measure �D which tended to be higher in all channels and during all sleep 

stages in males. Gender difference for �D also reached statistical significance for many 

channels. Regarding the number of significant differences �D was followed by the 

relative theta power which also tended to be higher in the vast majority of the EEG 

channels during all three sleep stages in males. Similar distribution of �D and relative 

theta activity between genders and across locations and sleep stages is likely due to the 

high correlation between the two measures. In contrast to the latter measures relative SO 

power during NREM4 was higher in females, a result in agreement with previous data on 

female excess in slow wave activity during NREM4 [104, 105]. Monofractal measure H 

also exhibited elevated values in females during NREM4, and distribution similar to that 

of the relative SO as could be presumed based on the high correlation between these 

measures. Activities above the theta band showed contrasting gender tendencies across 

sleep stages: in males higher activity was present in the �, 	, 
 and � bands during 
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NREM4 while females exhibited excess in the same frequency bands during REM sleep. 

The spectral edge frequency also followed this latter trend. These results are not entirely 

consistent with earlier data where higher spectral power in faster frequencies was found 

in females both during NREM [105] and REM sleep [104]. Yet a direct comparison is 

not possible since Carrier et al. [105] used a single while Dijk et al. [104] used two EEG 

channels only. Furthermore Dijk et al. [104] did not subdivide NREM sleep while Carrier 

at al. [105] studied NREM sleep only. Another important difference is that previous 

studies [104-106] used absolute power spectral measures while we used relative band 

powers. Since females usually have thinner skull than males this anatomical difference 

might have obscured neuronal gender differences and might have contributed to higher 

band powers over a wide frequency range in females as originally proposed by Dijk et al. 

[104]. 

A rather unexpected result from the present study is that among locations the highest 

number of significant gender differences (5 significant comparisons) was found for the 

F7 channel. Given that the F7 recording site lies over or near the Broca’s area it is 

tempting to hypothesize that differences at this specific region reflect gender differences 

in verbal functions [107, 108]. Out of the 5 significant comparisons highest significance 

was found for the multifractal measure �D during NREM4. 

Comparing sleep stages regarding the number of significant differences revealed that 

NREM4 exhibited most significant differences. At the same time no significant 

differences emerged during NREM2 and thus we could not replicate the result of 

Huupponen et al. [109] on female excess in spindle activity the left frontopolar channel. 

The major finding from the present study is that the multifractal measure �D proved to 

exhibit larger gender differences overall compared to the monofractal measures H and 

the power spectral measures. In a previous study the DFA � exponent did neither exhibit 

significant gender differences at specific locations during eyes-closed condition [28]. 

Superiority of the multifractal measure over the relative band powers might be due to the 

fact that �D reflects activities of several frequency bands that might not be enough to 

produce significant gender differences alone. Alternatively, it might be ascribed to the 

fact that �D also reflects signal characteristics independent of actual band powers as it 

was revealed by MLR. Since spectral edge frequency is a measure also reflecting spectral 

power values but here produced less significant comparisons we suggest that superior 

performance of �D is likely due to the non-linear information content of this compact 

measure. 
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Finally, we should also note that recent investigations revealed effects of age [28] as well 

as genetic contributions to long-range temporal correlations [110] in wake EEG signals. 

Therefore, effects of these factors should be investigated during different sleep stages as 

well. Our preliminary analyses indicated that H tends to decrease, while �D tends to 

increase with age (Appendix A, Figure 7.1). However, our results cannot be considered 

representative due to the uneven age distribution. 
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C h a p t e r  F o u r  

CLASSIFICATION OF SLEEP STAGES BY COMBINING 

FRACTAL AND POWER SPECTRAL EEG FEATURES 

4.1. Introduction 

Motivated by different possible applications the automatic classification of the vigilance 

state has become a distinguished research topic. E.g. automatic classification of the sleep 

stages would be beneficial for clinicians when assessing long-term recordings. Other 

applications might be the real-time monitoring of the depth of anesthesia [111] during 

surgery or drowsiness detection [112] for people working under monotonic and at the 

same time dangerous circumstances. Furthermore, in more sophisticated applications 

such as the brain computer interfaces detection of vigilance state might enhance the 

system performance via optimizing the parameters of event detection/prediction 

algorithms. 

Accordingly, numerous attempts have been made to automate the sleep stage 

discrimination [113, 114]. These methods are mostly based on extraction of certain 

features from EEG, EOG, and EMG signals after which the actual state is determined by 

a classifier. Classifiers are usually optimized using a supervised learning algorithm based 

on scoring results of human experts. These approaches include extraction of specific 

power spectral and non-linear measures [62, 115, 116] and apply conventional linear and 

nonlinear classification, such as linear discriminant analysis [117] and artificial neural 

networks [118-120]. Detection of waveforms by various pattern recognition algorithms 

can be also used for sleep staging [121-128]. Furthermore, different groups applied rule-

based reasoning methods using contextual information [113, 129]. For a more detailed 

review of this research field see [116, 129]. 

According to the summary of Park et al. [129] the agreement rate between automated 

scoring and manual scoring is generally 75-85 % in recordings of normal young adults 

and somewhat lower (65-75 %) for populations with sleep disorders. 

Recent studies showed that application of novel measures including the fractal features 

[75, 116] may improve the discrimination of sleep stages. However, the studies related to 

fractal analyses were limited by a low number of EEG channels: Fp1, Fp2, C3, C4, O1, 

O2 in [116] and Fpz-Cz, Pz-Oz in [75]. 
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Despite of the extent literature on automatic sleep staging several shortcomings 

remained. Namely, most of the studies are still restricted to analyses of the central 

channels, a thorough overview of channel x measure combinations and a comprehensive 

comparison of different classification paradigms are still lacking. Moreover, most of the 

studies disclosed results related to group-level classifications only. We admit that 

individual-level classification is unachievable e.g. when sleep staging has to be applied 

for assessment of ambulatory whole-night data since usually no training recordings are 

available. Nevertheless, some more user-specific applications might require the 

individual-level classification of the vigilance state. 

In this study we attempted to address the aforementioned shortcomings by combining 

monofractal, multifractal and power spectral measures estimated for 18 EEG channels 

and by comparing different classification paradigms both at individual and group levels. 

4.2. Methods 

4.2.1. Recordings and feature extraction 

All analyses were carried out using the 3 90×  20 s long EEG epochs selected for all 22 

subjects introduced in Chapter 2. Thus, here we examined discrimination of NREM4, 

NREM2 and REM sleep stages. Waking and remaining sleep stages (NREM1 and 

NREM3) were not evaluated due to the lack of appropriate number of segments for 

statistical analyses. Here we remark that according to the new guidelines of the American 

Academy of Sleep Medicine (AASM) [130] NREM3 is not anymore considered as a 

separate stage, but as a state of slow wave sleep (SWS) along with NREM4. 

Monofractal and multifractal properties were evaluated by estimation of the self-

similarity parameter H and the range of fractal spectra �D, respectively. Power spectral 

properties of the human sleep EEG were assessed by calculating relative band powers 

and the spectral edge frequency. Detailed description of estimation settings can be found 

in Chapter 2. 

4.2.2. Classification of sleep stages 

Classification of sleep stages was performed both at individual and group levels 

according to the steps presented in Figure 4.1. At the individual level 3 90×  estimated 

values were used for each subject, while 22 3 90× ×  values were considered at the group 

level. Selection of the features was carried out using a 10-fold cross-validation procedure 
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and applying Kappa analysis of confusion (also called error) matrices to obtain the 

accuracy of classifications. 

4.2.2.1. Classification paradigms 

Nine supervised classification methods were applied to differentiate the sleep stages at 

the individual level: 

� Linear discriminant analysis (LD), 

� Quadratic discriminant analysis (QD), 

� Naïve Bayes classifier (NB), 

� Feedforward neural network (FF), 

� Radial basis function neural network (RB), 

� Probabilistic neural network (PN), 

� Adaptive neuro-fuzzy inference system (AN), 

� Support vector machine with a linear kernel function (LS), 

� Support vector machine with a radial basis kernel function (RS). 

For all classifiers except of LS and RS we used the implementations available in different 

toolboxes of MATLAB. For support vector machine classifiers we applied the freely 

available LIBSVM library [131]. Based on individual-level classification accuracy 

performances and computational times RB and AN classification paradigms were 

excluded from group-level analysis. Namely, these two classifiers performed similarly or 

even worse, but their computational demand was higher several times (even more than 3 

magnitudes in some cases) as compared to other classifiers. Thus, at the group level the 

remaining seven classification methods were applied only. 

Here we provide a brief introduction of the applied classification paradigms, for more 

detailed description we refer to [132, 133]. LD and QD classifiers attempt to discriminate 

between different categories by separating them in the feature space using hyperplanes 

and hyperquadratic surfaces, respectively. In case of LD Matlab fits a multivariate 

normal density to each class, with a pooled estimate of covariance, while for QD it fits 

multivariate normal densities with covariance estimates stratified by class. These 

methods are attractive candidates for initial, trial classifiers [132]. The NB classifier 

 

Figure 4.1.  A process diagram of a sleep staging method development. 
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applies the well-known Bayes classification rule and is designed for use when features 

are independent of one another within each class. However, it appears to work well in 

practice even when this independence assumption is not valid [132]. To model the 

distribution of features we used the kernel distribution since it does not require a strong 

assumption such as a normal distribution and can be used in cases where the distribution 

of a feature may be skewed or have multiple peaks or modes. For each feature a separate 

kernel density was estimated for each class based on the training data for that class. 

Usage of kernel distributions requires more computing time and more memory than the 

normal distribution. In demanding applications were the patterns are not linearly 

separable application of more sophisticated methods is advisable. A possible alternative 

approach may be multilayer neural networks. In this study we applied three different 

types of neural networks: FF, RB and PN. After optimizations of the parameters (see 

Appendix B) that have been carried out using the extracted features of the representative 

subject #16, we applied a FF classifier with a one hidden layer and five neurons. The 

spread of radial basis functions was equal to 1 and 0.1 for RB and PN classifiers, 

respectively. The AN classifier is a hybrid soft computational method that combines the 

advantages of fuzzy inference systems (FIS) and neural networks. A fuzzy inference 

system consists of three conceptual components: a fuzzy rule base, which contains a set 

of fuzzy if-then rules; a database, which defines the membership functions used in the 

fuzzy rules; and a reasoning mechanism, which performs the inference procedure upon 

the rules to derive a reasonable output or conclusion [134]. The extension of a FIS for 

optimization of its parameters and an example learning rule can be found in section 3.2 

of [133]. After preliminary analyses we applied three Gaussian membership functions for 

all input features, a linear output membership function of the Sugeno-type inference 

system and the genfis1 training method with default training parameters. Finally, we also 

assessed support vector machine (SVM) classifiers with linear and radial basis kernel 

functions. With an appropriate nonlinear function SVMs map the input features into 

sufficiently high dimension were the categories can be always separated by hyperplanes. 

The goal of SVMs is to find the separating hyperplanes with largest margins. The support 

vectors are transformed training patterns that are equally close to hyperplanes and denote 

the maximal margins. For a more detailed description of SVM classifiers see section 5.11 

in [132]. After parameter optimization we used 10C =  cost parameter for LS and 

10000C = , 0.01γ =  parameter combination for RS classifiers. 
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4.2.2.2. Confusion matrix 

A confusion matrix C is a k k× quadratic matrix, where k is the number of classes. 

Columns of C stand for the reference data (sleep staging performed by the human expert 

in this case) and rows denote the classified data. Hence, ij ijC n=  is a count of EEG 

segments scored by the human expert into the jth class but classified to the ith class using 

a specific classification paradigm. For an example see Table 4.I that presents the 

confusion matrix obtained by LD classification of sleep stages using �D measure in Cz 

channel of a representative subject #16. 

The number of segments classified to the ith class using different classifiers is 

1

,
k

i ij
j

n n+

=

=�  (4.1) 

while 

1

k

j ij
i

n n+

=

=�  (4.2) 

is the total number of segments scored to the jth sleep stage by the human expert. Let pi,j 

denote the proportion of samples in the i, jth cell of C, corresponding to ni,j: 

,
ij

ij

n
p

n
=  (4.3) 

where n is the total number of the analyzed EEG segments. Furthermore, marginals pi+ 

and p+j can be defined by 

TABLE 4.I.  CONFUSION MATRIX OBTAINED FOR LD CLASSIFICATION OF SLEEP STAGES USING ESTIMATED 

�D VALUES IN CZ CHANNEL OF A REPRESENTATIVE SUBJECT #16. 

  HEC (reference) 

  
NREM

4 

NREM

2 
REM 

ni+ 

NREM4 87 0 0 87 

NREM2 3 76 9 88 

L
D

A
C

 

REM 0 14 81 95 

n+j 90 90 90  

The corresponding values are as follows: ˆ 0.85K = , ( ) 4ˆˆvar 7.25 10K −=  and 90.37OA =  %. HEC: 

classification carried out by the human expert; LDAC: classification performed by linear discriminant 

analysis. 
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1
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i ij
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=�  (4.4) 

and 

1

.
k

j ij
i

p p+

=

=�  (4.5) 

4.2.2.3. Kappa analysis 

The Kappa analysis is a technique used to statistically test whether two confusion 

matrices are significantly different. The result of Kappa analysis is a KHAT statistic 

( K̂ ), an estimate of Kappa that is a measure of classification accuracy or agreement. It is 

based on the difference of the actual agreement (the major diagonal of the error matrix) 

and the chance agreement (indicated by the row and column totals, i.e. marginals). If the 

actual agreement is 

1

k

o ii
i

p p
=

=�  (4.6) 

and the chance agreement is defined as 

1

,
k
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p p p+ +

=

=�  (4.7) 

the estimate of Kappa is given by 
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The variance of Kappa is as follows: 
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where 
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K̂  can take values from the range [ ]1,1− . However, positive values are expected since 

there should be a positive correlation between classifications performed by human 

experts and machine classifiers. Landis and Koch characterized the possible ranges for 

KHAT into three groups [135]: a value greater than 0.80 (i.e., >80%) represents strong 

agreement; a value between 0.40 and 0.80 (i.e., 40–80%) represents moderate agreement; 

and a value below 0.40 (i.e., <40%) represents poor agreement. As it can be seen in 

Table 4.I, a strong agreement ( ˆ 0.85K = ) between classifications performed by the 

human expert and LD was found using the �D measure in the central channel of subject 

#16. 

It was shown that the Kappa analysis overestimates the proportion of randomness and 

thus underestimates the classification accuracy [136, 137]. Therefore, where applicable, 

we also provide the most widely used classification performance measure, the overall 

accuracy 

1 .

k

ii
i

n
OA

n
==
�

 (4.14) 

For the particular confusion matrix presented in Table 4.I with ˆ 0.85K = , the 

corresponding overall accuracy was 90.37 %. 

The fact that the K̂  statistic is asymptotically normally distributed provides a means for 

testing the significance of K̂  for a single confusion matrix to determine if the agreement 

between the classifications performed by the human expert and a particular machine 

classifier is significantly grater than zero, i.e., the particular classification method 

performs better that than a random classifier. The test statistic is expressed by: 

( )

ˆ
.

ˆˆvar

K
Z

K
=  (4.15) 
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Given the null hypothesis 0 : 0H K = , and the alternative 1 : 0H K ≠ , 0H  is rejected if 

2Z Zα≥ , where 2α  is the confidence level of the two-tailed Z test. 

Moreover, there is a test to compare if two confusion matrices are significantly different. 

This provides us the opportunity to compare classifications performed using different 

EEG measures, channels and classification paradigms. Let 1K̂  and 2K̂  ( ( )1
ˆˆvar K  and 

( )2
ˆˆvar K ) denote the estimates of the Kappa statistic (estimates of variances) for 

confusion matrix #1 and #2, respectively. The test statistic in this case is defined as 

( ) ( )
1 2

1 2

ˆ ˆ

.
ˆ ˆˆ ˆvar var

K K
Z

K K

−
=

−
 (4.16) 

Z is standardized and normally distributed. Given the null hypothesis 0 1 2: 0H K K− = , 

and the alternative 1 1 2: 0H K K− ≠ , 0H  is rejected if 2Z Zα≥ . 

Finally, in addition to computing statistics for an entire confusion matrix, it may be 

useful to look at the agreement of individual classes. Individual class accuracy can be 

tested using the conditional Kappa coefficient. The estimates of the conditional Kappa 

coefficient and its variance for the ith class are given by 
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respectively. The same comparison tests available for the Kappa coefficient also apply to 

this conditional Kappa for an individual class. For more details and comparison of Kappa 

analysis to other methods we refer to [136, 137]. 

4.2.2.4. Feature selection 

Combination of the features was performed using the sequential forward feature selection 

(SFFS) method [138, 139]. A typical feature selection block diagram can be seen in 

Figure 4.2. 
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A possible pseudo code of the SFFS algorithm is as follows: 

 

already_selected_features = empty 

#already_selected_features = 0 

remaning_features = all_extracted_features 

#remaning_features = #extracted_features 

for i = 1 to #features_to_be_selected 

 for j = 1 to #remaning_features 

  actually_selected_features = already_selected_features + remaning_features(j) 

  confusion_matrix = classification_with_nfold_cross_validation(actually_selected_features) 

  classification_error(j) = 1 - abs(determine_KHAT(confusion_matrix)) 

 end 

 jmin = index_of_the_minimal_value(classification_error) 

 already_selected_fatures = already_selected_fatures + remaining_features(jmin) 

remaning_features = remaning_features - remaining_features(jmin) 

#already_selected_features = #already_selected_features + 1 

#remaning_features = #remaning_features - 1 

end 

 

In the first round the algorithm will select the best single feature that corresponds to the 

minimum value of the criterion function. In our case the criterion function is given by 

( ) ( )ˆ1 ,i K iε = −  (4.19) 

where ( )K̂ i  stands for the classification accuracy of the ith feature and it is obtained 

from the confusion matrices after 10-fold cross-validation. In the next round the 

algorithm will select the second best feature from the remaining subset by combining all 

remaining features with the best one and by finding again the minimum of ( )iε . This 

procedure is continued until the desired number of features is achieved. 

We applied the SFFS method in order to reveal the best single features and to find witch 

are the subsequent ones that provide most additional information. To assess the sleep 

 

Figure 4.2.  A process diagram of a feature selection. 
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stage discrimination capability of all measures and topographic locations we performed 

the feature selection using three different approaches: 

- by combining the measures of single channels (measure selection - MS), 

- by combining the channels for single measures (channel selection - CS), 

- and by allowing the combination of all channel x measure pairs (channel x measure 

selection - CMS). 

4.3. Results 

4.3.1. Cross-validation and feature selection times 

Cross-validation (CVT) and feature selection (FST) times obtained at the individual level 

can be seen in Figure 4.3. Considering CVT highest values were obtained for RB and AN 

classifiers. Cross-validations of the AN classifier were about 3000 times longer as 

compared to the LS paradigm that resulted in lowest values. The CVT increased 

systematically for higher feature numbers considering the NB and AN paradigms only. 

For other classifiers no systematic changes were found. However, FST increased for 

higher feature numbers for all feature selection approaches as well as for all classifiers. 

 

Figure 4.3.  Individual-level overall median cross-validation (mCVT) and feature selection (mFST) times 

for all classification methods. Bars represent normalized values, real computation times in seconds can be 

obtained using multiplication factors presented above the bar diagrams. (A) First bars stand for cross-

validations with a single input feature, 2nd-4th bars denote classifications with 2-4 measures of single 

channels, 5th-7th bars present results for classifications with 2-4 channels of single measures, 8th-10th bars 

stand for classifications using 2-4 measure x channel combinations as features. (B) Meaning of the bars is 

equal to those of 2nd-10th bars in (A) part of the Figure. To resolve the abbreviation of the classification 

methods see section 4.2.2.1. 
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Similarly to CVT highest FST values occurred for RB and AN methods, while lowest 

values were found for the LS method. Based on these results we extrapolated the CVT 

and FST times for group-level analyses. Due to the high computation demand (and 

similar classification accuracy results as for other methods - see later) of RB and AN 

approaches we excluded these from further analyses. 

At the group level (Figure 4.4) similar trends appeared for CVT and FST as compared to 

the individual-level. However, the computational time increased for specific paradigms 

by different factors. Highest increments were found for the SVM classifiers (350-450 

times longer FSTs were obtained at the group level). LD and QD were found to be the 

fastest classifiers, while FF and RS methods were definitively the most computation 

demanding ones. 

4.3.2. Discrimination of sleep stages using single EEG measures in single 

channels 

Sleep stage classification results obtained by the LD classifier for all measures in all 

channels can be found in Figure 4.5. Maximal K̂  values across subjects (Figure 4.5A) 

yielded best classifications for �D, sef  and rPβ  features. There were 9 channels with 

Figure 4.4.  Group-level overall median cross-validation (mCVT) and feature selection (mFST) times for 

all classification methods. Bars represent normalized values, real computation times in seconds can be 

obtained using multiplication factors presented above the bar diagrams. (A) First bars stand for cross-

validations with a single input feature, 2nd-4th bars denote classifications with 2-4 measures of single 

channels, 5th-7th bars present results for classifications with 2-4 channels of single measures, 8th-10th bars 

stand for classifications using 2-4 measure x channel combinations as features. (B) Meaning of the bars 

is equal to those of 2nd-10th bars in (A) part of the Figure. To resolve the abbreviation of the classification 

methods see section 4.2.2.1. 
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highest K̂  values for �D and 8 channels for sef . Kappa analysis did not reveal 

significant differences between the performances of these two measures at either channel 

 

Figure 4.5.  Sleep stage classification results obtained using linear discriminant analysis both at 

individual and group levels. (A) Maximal K̂  values taken across subjects. (B) Averaged individual K̂  

values. (C) Group-level K̂  values. (D) Individual conditional K̂  values averaged across subjects for 

sleep stage NREM4. (E) Individual conditional K̂  values averaged across subjects for sleep stage 

NREM2. (F) Individual conditional K̂  values averaged across subjects for REM sleep. (G) Group-level 

conditional K̂  for NREM4 sleep. (H) Group-level conditional K̂  for sleep stage NREM2. (I) Group-

level conditional K̂  for REM sleep. Relative band powers are denoted by the labels of the corresponding 

frequency bands. 
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(Table 4.II, imax test). Taking the average of K̂  values across subjects, �D provided the 

best performance in all channels (Figure 4.5B). At the group level (Figure 4.5C) highest 

K̂  values were also found for �D in most of the channels (except for T5, P3, P4, O1 and 

O2 channels) followed by measures sef  and rPβ . Comparing these three measures there 

were 8 channels (with a predominance of circumferential electrodes) where �D achieved 

significantly better performance compared to measures sef  and rPβ  (Table 4.II, g test). 

Considering the individual-level conditional K̂  values averaged across subjects �D 

showed best performance for NREM4 (Figure 4.5D) as well as for NREM2 (Figure 4.5E) 

in all channels while during REM �D, rPβ , rPγ  and sef  revealed similar performance 

(Figure 4.5F). Group-level conditional K̂  values were presented in the last three columns 

of Figure 4.5 (G, H, I). For NREM4 (Figure 4.5G), �D showed the best classification 

results in all channels except for the occipital electrodes (Table 4.II, gcN4 test). During 

TABLE 4.II.  KAPPA ANALYSIS OF SLEEP STAGE CLASSIFICATIONS PERFORMED BY LINEAR DISCRIMINANT 

ANALYSIS. 

Channel 
Test Measures 

Fp2 F8 T4 T6 O2 Fp1 F7 T3 T5 O1 F4 C4 P4 F3 C3 P3 Fz Cz 

�D vs. � > > > > >* >* > > > >* > > > > > > > > 

�D vs. fse < < > > > > < < < > < < > < > > = > imax (A) 

fse vs. � > >* > > > >* > >* >* >* > > > > > > > > 

�D vs. � >* >* >* >* <* >* >* >* > <* > > < >* >* < > > 

�D vs. fse >* >* >* >* <* >* >* >* < <* > > < > >* < >* > g (C) 

fse vs. � >* > >* < > >* >* >* >* >* < > > > > > <* < 

�D vs. � >* >* >* >* >* >* >* >* >* >* >* >* >* >* >* >* >* >* 

�D vs. fse >* >* >* >* <* >* >* >* >* <* >* >* >* >* >* >* >* >* gcN4 (G) 

fse vs. � >* >* >* >* >* >* >* >* >* >* >* >* >* >* >* >* >* >* 

�D vs. � >* >* >* > <* >* >* >* > <* > > < >* >* < >* > 

�D vs. fse >* >* >* >* <* >* >* >* < <* >* >* > >* >* > >* > gcN2 (H) 

fse vs. � > > > <* < >* >* >* > >* < < <* > < < <* < 

�D vs. � <* <* <* <* <* <* <* <* <* <* <* <* <* <* <* <* <* <* 

�D vs. fse <* <* <* < <* <* <* <* <* <* <* <* <* <* <* <* <* <* gcR (I) 

fse vs. � <* <* <* <* < <* <* <* <* < <* <* < <* <* < <* < 

imax: maximal K̂  values taken across subjects; g: group-level K̂  values; gcN4: group-level conditional 

K̂  values for NREM4; gcN2: group-level conditional K̂  values for NREM2; gcR: group-level 

conditional K̂  values for REM. Letters in brackets indicate the appropriate columns in Figure 4.5. The > 

(<) sign denotes grater (smaller) K̂  values of front measures. Significance of differences was determined 

using a 95% confidence level (Zc = 1.96) and marked by an asterisk. � denotes the relative power of the 

beta frequency band. 
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NREM2 best performance was also achieved for �D in most channels (13 out of 18 

channels) (Figure 4.5H). Performance of �D significantly exceeded those of sef  and 

rPβ in 9 channels (Table 4.II, gcN2 test). By contrast, during REM sef  and rPβ  

significantly outperformed �D in all channels (Table 4.II, gcR test). Best classifications 

were obtained for measure rPβ  in all channels. For all columns presented in Figure 4.5 

maximal K̂  values of �D were found in the circumferential channels (Table 4.III) with 

the best performance in T4 channel in 4 cases including mean K̂  values for the 

individual level (row B), K̂  values at the group level (row C) as well as conditional K̂  

values in rows D and H. As can be seen in Table 4.III, best classification performance 

across EEG measures was found for �D considering all rows with the exception of rows 

(F, I) that is the conditional values for REM. In (rows A-C) best classifications of �D 

exceeded 80 % overall accuracy (peaking in 97.78 % at individual level for subject #3). 

Compared with other measures, H generally performed below the average with central 

peaks in K̂  values. In contrast to its general low level of performance it quite efficiently 

TABLE 4.III.  MAXIMAL K̂  VALUES, CORRESPONDING OVERALL ACCURACY VALUES AND EEG 

DERIVATIONS OF �D, rPβ  AND fse MEASURES FOR ALL COLUMNS IN FIGURE 4.5. 

Measure 
 

�D P�r fse 

(A) 0.9667, (97.78); 
T6, O2 (3) 

0.9167, (94.44); 
T6 (3) 

0.9611, (97.41); 
T3, T5 (3) 

(B) 0.8432, (89.55); T4 0.7585, (83. 9); F3 0.7657, (84.38); P4 

(C) 0.7210, (81.4); T4 0.6695, (77.97); P4 0.6877, (79.19); T3 

(D) 0.9810; T4 0.8215; O2 0.9193; O2 

(E) 0.7927; T3 0.6753; F4 0.6327; T6 

(F) 0.7652; T6 0.9047; Fz 0.8270; F3 

(G) 0.9440; Fp1 0.7361; O2 0.8649; O2 

(H) 0.6053; T4 0.5153; P4 0.5305; T3 

(I) 0.6616; T6 0.9083; F3 0.8599; F3 

First column denote column labels in Figure 4.5. (A) Maximal K̂  values taken across subjects. (B) 

Averaged individual K̂  values. (C) Group-level K̂  values. (D) Individual conditional K̂  values 

averaged across subjects for sleep stage NREM4. (E) Individual conditional K̂  values averaged across 

subjects for sleep stage NREM2. (F) Individual conditional K̂  values averaged across subjects for REM 

sleep. (G) Group-level conditional K̂  for NREM4 sleep. (H) Group-level conditional K̂  for sleep stage 

NREM2. (I) Group-level conditional K̂  for REM sleep. Overall accuracy is provided in brackets only 

where applicable (the first three rows only). In the first row the subject id is also provided in brackets 

after the channel labels to denote for which subject(s) were the maximal K̂  values found. 
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classified NREM4. When regarding results obtained for relative band powers (Figure 

4.5), higher overall performance was found for faster brain activities. In general, better 

TABLE 4.IV.  MEASURE X CHANNEL COMBINATIONS CORRESPONDING TO MAXIMAL K̂  VALUES. 

Classification method 
Condition 

LD QD NB FF PN LS RS 

Best 

 classifiers 

(A) 

�D; 
 0.9667, 
 (97.78); 

 T6, O2 (3) 

�; 
 0.9722, 
 (98.15); 

F8, T4, O1, 
F4 (14), 
 F3 (3) 

�; 
 0.9778, 
 (98.52); 
 T4 (14) 

�; 
 0.9722, 
 (98.15); 
 O2 (14) / 

 fse; T3 (3) 

�D; 
 0.9667, 
 (97.78); 

T6, O2 (3) / 
 fse; F3 (3) 

fse; 
 0.9778, 
 (98.52); 
 T3 (3) 

fse; 
 0.9667, 
 (97.78); 
 T3 (3) 

NB / LS 

(B) 

�D; 
 0.8432, 
 (89.55); 

 T4 

�D; 
 0.8483, 
 (89.89); 

 T3 

�D; 
 0.8501, 
 (90.02); 

 T4 

�D; 
 0.8288, 
 (88.6); 

 T4 

�D; 
 0.8468, 
 (89.8); 

 T4 

�D; 
 0.8463, 
 (89.76); 

 T4 

�D; 
 0.8463, 
 (89.76); 

 T4 

NB 

(C) 

�D; 
 0.721, 
 (81.4); 

 T4 

�D; 
 0.7258, 
 (81.72); 

 T4 

�D; 
 0.728, 

 (81.87); 
 T4 

�; 
 0.7268, 
 (81.79); 

 F3 

�D; 
 0.7283, 
 (81.89); 

 T4 

�D; 
 0.7288, 
 (81.92); 

 T4 

�D; 
 0.7273, 
 (81.82); 

 T3 

LS 

(D) 
�D; 

 0.982; 
 T4 

�D; 
 0.9824; 

 F7 

�D; 
 0.9825; 

 T4 

�D; 
 0.9723; 

 Fp1 

�D; 
 0.9807; 

 T4 

�D; 
 0.9805; 

 T4 

�D; 
 0.9838; 

 T4 
RS 

(E) 
�D; 

 0.7927; 
 T3 

�D; 
 0.7888; 

 T3 

�D; 
 0.7826; 

 T3 

�D; 
 0.7597; 

 T3 

�; 
 0.8949; 

 P3 

�; 
 0.8499; 

 F4 

�D; 
 0.7752; 

 T3 
PN 

(F) 
�; 

 0.9047; 
 F3 

�; 
 0.8839; 

 F3 

�; 
 0.8609; 

 F3 

�; 
 0.8388; 

 F3 

�; 
 0.9354; 

 Fz 

�; 
 0.9662; 

 Fz 

�; 
 0.891; 

 Fz 
LS 

(G) 
�D; 

 0.944; 
 Fp1 

�D; 
 0.9353; 

 Fp1 

�D; 
 0.9173; 

 Fp1 

�D; 
 0.912; 
 Fp2 

�D; 
 0.9325; 

 Fp1 

�D; 
 0.9226; 

 Fp1 

�D; 
 0.9227; 

 Fp1 
LD 

(H) 
�; 

 0.6778; 
 Cz 

�; 
 0.7531; 

 F4 

�; 
 0.6536; 

 P3 

�; 
 0.6454; 

 P4 

�; 
 0.8673; 

 F4 

�; 
 0.6977; 

 F3 

�; 
 0.6817; 

 P3 
PN 

(I) 
�; 

 0.9083; 
 F3 

�; 
 0.8867; 

 F3 

fse; 
 0.8192; 

 F3 

fse; 
 0.808; 

 F3 

�; 
 0.9733; 

 F3 

fse; 
 0.8445; 

 Fz 

fse; 
 0.8399; 

 Fz 
PN 

Measure x channel combinations corresponding to maximal K̂  values for columns of Figure 4.5 and 

figures in Appendix C. Overall accuracy is provided after the K̂  values in brackets only where applicable 

(first three rows). In the first row the subject id is also provided in brackets after the channel labels to 

denote for which subject(s) were the maximal K̂  values found. Labels in the first column of the table 

correspond to column labels of Figure 4.5 and figures in Appendix C with the following meaning. (A) 

Maximal K̂  values taken across subjects. (B) Averaged individual K̂  values. (C) Group-level K̂  values. 

(D) Individual conditional K̂  values averaged across subjects for sleep stage NREM4. (E) Individual 

conditional K̂  values averaged across subjects for sleep stage NREM2. (F) Individual conditional K̂  

values averaged across subjects for REM sleep. (G) Group-level conditional K̂  for NREM4 sleep. (H) 

Group-level conditional K̂  for sleep stage NREM2. (I) Group-level conditional K̂  for REM sleep. 

Relative band powers are denoted by the labels of the corresponding frequency bands. To resolve the 

abbreviation of the classification methods see section 4.2.2.1. 
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classification results were found for NREM4 as compared with NREM2 and REM. 

Worst and non-significant (comparing against a random classifier) classification results 

were obtained at group level for sleep stage NREM2 using measures SOrP  (channel Fp2) 

and rPδ  (channels F3, Fz, F4, F7, C4). 

Classification results obtained by QD, NB, FF, PN, LS and RS paradigms can be found 

in Appendix C. Comparing the results obtained for all classifiers we found some 

differences considering specific channel x measure combinations. E.g. comparing to 

other classifiers lower group-level KHAT values appeared for PN and LS paradigms in 

all channels when the P�r measure was applied. However, overall classification profiles 

were similar across the classification methods and this was also reflected in channel x 

measure combinations exhibiting best classifications (Table 4.IV). Considering both 

averaged individual and group-level results we obtained best sleep stage classification 

performance in most of the EEG channels and for most of the classifications methods by 

applying the multifractal measure �D. 

Moreover, best classifications for �D were achieved in temporal channel T4 for most of 

the classifiers at both levels. Using the �D x T4 single feature at the group level highest 

overall accuracy (OA=81.92 %) was achieved by a support vector machine with a linear 

kernel function, while individual-level analysis revealed best average classification result 

(OA=90.02 %) for a naïve Bayes classifier. Overall maximal individual-level 

classifications were achieved by �D, sef  and rPβ  measures depending on the 

classification method. Best results were found for subjects #3 and #14 achieving even 

98.52 % overall accuracy. 

4.3.3. Combination of EEG measures and channels 

Considering group-level results supplementation of the best single features by 

appropriate second ones significantly improved the overall sleep stage classification 

performance (Table 4.V, row g). Addition of a second measure for the same channel and 

addition of another channel x measure feature enhanced the performance of more 

classifiers as compared to addition of a second channel for the same measure. 

Conditional Kappa analysis (Table 4.V, rows gcN4, gcN2 and gcR) revealed that the 

overall classification accuracy improved for many classifiers due to the higher 

classification accuracy of NREM2 and REM sleep stages. This can be also observed for 

the MS feature selection approach by comparing last three columns of Figure 4.6 and 
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Figure 4.7. It can be seen that the addition of the second measures most significantly 

improves the classifications of NREM2 and REM stages and this is especially true for 

channels placed around the vertex. Going further by comparing Figure 4.7 and Figure 

7.13 as well as by comparing Figure 7.13 and Figure 7.14 it can be seen that the addition 

of further measures improves the overall and conditional classification performance in 

several channels in most of the classifiers. However, significant improvements can be 

achieved by combining of up to three measures (Table 4.VI, first two rows). Comparing 

best classifications obtained by combining 2, 3 and 4 channels for single measures (Table 

4.VI, rows 3-4) it becomes clear that addition of third and fourth channels does provide 

further significant improvements. 

 

TABLE 4.V.  A COMPARISON OF FEATURE SELECTION APPROACHES APPLYING ONLY ONE OR TWO FEATURES. 

Classification method 
Level Comparison 

LD QD NB FF PN LS RS 
SC 

2M/1CM * * * * * * * 7 

2C/1CM * * x * x x * 4 g 

2CM/1CM * * * * * * * 7 

2M/1CM x x x x x x x 0 

2C/1CM x x x * x x x 1 gcN4 

2CM/1CM x x x * x x x 1 

2M/1CM x * * * x * * 5 

2C/1CM x x x * x x * 2 gcN2 

2CM/1CM * x * * * * * 6 

2M/1CM * * * * * * * 7 

2C/1CM x x * x * x * 3 gcR 

2CM/1CM * * * x * * * 6 

Group-level overall (g) and conditional (gcN4-NREM4, gcN2-NREM2, gcR-REM) Kappa analyses were 

based on confusion matrices corresponding to maximal K̂  values. 2M denotes selections of two best 

measures for single channels, 2C stands for selections of two best channels considering single measures 

and 1CM-2CM stand for selections of 1-2 best channel x measure combinations. Significant differences are 

denoted by an asterisk, while not significant differences are marked by x. Sums of classification methods 

that exhibited significant differences are presented in the last column (SC). A one-sided test was used with 

Zc = 2.45 value for the Bonferoni corrected �B = 0.05/7 since feature selection approaches before the 

slashes are supposed to provide better classifications by theory. To resolve the abbreviation of the 

classification methods see section 4.2.2.1. 
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However, a combination of up to four channel x measure features may result in further 

significant improvements (Table 4.VI, rows 5-6). Table 4.VI also shows that 

combinations of measures in single channels provide significantly better classifications 

when compared to combinations of channels using single measures (rows 7-9). 

Furthermore, combinations of channel x measure features perform significantly better as 

compared to the other two feature selection approaches (CS and MS). Note that MS and 

CMS approaches may result in similar classification performances for combination of 

two features (Table 4.VI, row 13). 

 

Figure 4.6.  K̂  values achieved by first best measures in particular channels. Rows present results for 

different classifiers. Meaning of the column labels is as follows. (A) Maximal K̂  values taken across 

subjects. (B) Averaged individual K̂  values. (C) Group-level K̂  values. (D) Individual conditional K̂  

values averaged across subjects for sleep stage NREM4. (E) Individual conditional K̂  values averaged 

across subjects for sleep stage NREM2. (F) Individual conditional K̂  values averaged across subjects for 

REM sleep. (G) Group-level conditional K̂  for NREM4 sleep. (H) Group-level conditional K̂  for sleep 

stage NREM2. (I) Group-level conditional K̂  for REM sleep. To resolve the abbreviation of the 

classification methods see section 4.2.2.1. 
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Considering overall group-level classification results (Figure 4.8) better classification 

were obtained using FF and SVM classifiers as compared to the traditional methods such 

as LD, QD and NB. Nevertheless, this tendency was not true at the individual level, 

where the traditional methods performed even better, especially in cases where the 

number of features was higher (see Figure 1.0). 

When comparing the maximal classification performances of individual and group levels 

it can be observed that as expected better discrimination of sleep stages can be obtained 

at the individual level achieving even 100 % overall accuracy for several subjects. 

 

Figure 4.7.  K̂  values achieved by combination of two best measures in particular channels. Rows present 

results for different classifiers. Meaning of the column labels is as follows. (A) Maximal K̂  values taken 

across subjects. (B) Averaged individual K̂  values. (C) Group-level K̂  values. (D) Individual conditional 

K̂  values averaged across subjects for sleep stage NREM4. (E) Individual conditional K̂  values averaged 

across subjects for sleep stage NREM2. (F) Individual conditional K̂  values averaged across subjects for 

REM sleep. (G) Group-level conditional K̂  for NREM4 sleep. (H) Group-level conditional K̂  for sleep 

stage NREM2. (I) Group-level conditional K̂  for REM sleep. To resolve the abbreviation of the 

classification methods see section 4.2.2.1. 

DOI:10.15774/PPKE.ITK.2010.008



Results 

 

75 

The superiority FF and SVM classifiers also appeared for the best group-level 

classification results obtained for different feature selection approaches and feature 

numbers (Table 4.VII). Specifically, the FF and RS methods were found to be the best 

classifiers significantly outperforming the traditional paradigms in most of the cases (see 

Table 4.VII, last column). Combining different measures in single channels (Table 4.VII, 

rows 2M, 3M and 4M) best classifications appeared for F3, C3, C4 and P4 channels by 

combining in most of the cases �D, P�r, P�r, fse and H measures. �D was selected usually 

as the best or third best (after P�r, P�r) measure. H was selected only as the fourth 

measure. Best classifications for the CS feature selection approach (Table 4.VII, rows 

2C, 3C and 4C) were achieved in most of the cases by �D and P�r measures. For measure 

�D best classifications were obtained usually by combining T3, T4, F8, O1, O2, Fp1 and 

Fp2 channels. For P�r the F3, F4, O2, F7, F8 and Fz channels were selected. 

TABLE 4.VI.  A COMPARISON OF DIFFERENT FEATURE SELECTION APPROACHES BASED ON CONFUSION 

MATRICES CORRESPONDING TO MAXIMAL K̂  VALUES OBTAINED AT THE GROUP LEVEL. 

Classification method 
Comparison 

LD QD NB FF PN LS RS 
SC 

3M/2M * x * * x * * 5 

4M/3M x x x x x x x 0 

3C/2C x x x x x x x 0 

4C/3C x x x x x x x 0 

3CM/2CM * * * * * * * 7 

4CM/3CM x x x x x * * 2 

2M/2C
1
 > >* >* >* > >* >* 5 

3M/3C
1
 >* >* >* >* > >* >* 6 

4M/4C
1
 >* >* >* >* > >* >* 6 

2CM/2C * * * * * * * 7 

3CM/3C * * * * * * * 7 

4CM/4C * * * * * * * 7 

2CM/2M * x x x * x x 2 

3CM/3M * * * * * * * 7 

4CM/4M * * * * * * * 7 

2M-4M denote selections of 2-4 best measures for single channels, 2C-4C stand for selections of 2-4 best 

channels considering single measures and 2CM-4CM stand for selections of 2-4 best channel x measure  

features. Significant differences are denoted by an asterisk, while not significant differences are marked by 

x. Sums of classification methods that exhibited significant differences are presented in the last column 

(SC). A one-sided test was used with Zc = 2.45 value for the Bonferoni corrected �B = 0.05/7 in those 

comparisons where feature selection approaches before the slashes provided better classifications by 

theory. For other comparisons1 a two-sided test was used by applying a critical Zc = 2.69 value for the 

Bonferoni corrected �B = (0.05/2)/7. The > sign denotes that feature selection approaches before the 

slashes provided better classifications. To resolve the abbreviation of the classification methods see section 
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Figure 4.8.  Overall averages of group-level K̂  values (A) and maximal group-level K̂  values (B) f for 

different feature selection approaches and classification methods. First bars stand for classifications based 

on a single feature, 2nd-4th bars denote classifications with 2-4 measures of single channels, 5th-7th bars 

present results for classifications obtained by combination of 2-4 channels for a same measure, 8th-10th

bars stand for classifications using 2-4 channel  x measure combinations as features. Note that the last 

three bars are equal in (A) and (B) cases. To resolve the abbreviation of the classification methods see 

section 4.2.2.1. 

 

Figure 4.9.  Overall averages of individual K̂  values (A) and averages of individual-level maximal K̂

values (B) for different feature selection approaches and classification methods. First bars stand for 

classifications based on a single input feature, 2nd-4th bars denote classifications with 2-4 measures of 

single channels, 5th-7th bars present results for classifications with 2-4 channels of single measures, 8th-10th

bars stand for classifications using 2-4 measure x channel combinations as features. To resolve the 

abbreviation of the classification methods see section 4.2.2.1. 
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Combining arbitrary channel x measure features best classifications were found in most 

of the cases by combining �D measure of temporal (T3, T4) channels, P�r in F3 and Fz 

channels, P�r in centro-parietal (C4, Cz, P3) channels and P�r in channel O2. �D was 

TABLE 4.VII.  FEATURE COMBINATIONS CORRESPONDING TO MAXIMAL K̂  VALUES OBTAINED AT THE GROUP 

LEVEL. 

Classification method 
FS 

LD QD NB FF PN LS RS 

DOC 

2M 

�D, �; 
0.7708, 
(84.72); 

F3 

�, �; 
 0.799, 
 (86.6); 

 P4 

�, �; 
 0.784, 
 (85.6); 

 P4 

�, �; 
 0.8149, 
 (87.66); 

 C4 

�D, fse; 
 0.7673, 
 (84.49); 

 F3 

�, �; 
 0.7985, 
(86.56); 

 C4 

�, �; 
 0.8139, 
 (87.59); 

 C4 

FF, RS, QD,  
LS, NB*, 
 LD*, PN* 

3M 

�D, �, �; 
0.8382, 
(89.21); 

C3 

�, �, �D; 
 0.8126, 
 (87.51); 

 C4 

�, �, �D; 
 0.8098, 
 (87.32); 

 C4 

�, �, �D; 
 0.8655, 
 (91.04); 

 F3 

�D, fse, �; 
 0.786, 

 (85.74); 
 F3 

�D, �, �; 
 0.8516, 
 (90.11); 

 F3 

�, �, �D; 
 0.8612, 
 (90.75); 

 F3 

FF, RS, LS, 
 LD*, QD*, 
 NB*, PN* 

4M 

�D, �, �, H; 
0.8536, 
(90.24); 

C3 

�, �, �D, H; 
 0.8238, 
 (88.25); 

 C4 

�, �, �D, H; 
 0.821, 

 (88.07); 
 C3 

�, �, �D, �; 
 0.8767, 
 (91.78); 

 F3 

�D, fse, �, �; 
 0.7918, 
 (86.12); 

 F3 

�D, �, �, H; 
 0.8612, 
 (90.75); 

 C3 

�, �, �D, H; 
 0.8711, 
 (91.41); 

 F3 

FF, RS, LS, 
 LD*, QD*, 
 NB*, PN* 

2C 

�D; 

0.7488, 
(83.25); 
T4, T3 

�D; 

 0.7537, 
 (83.58); 
 T4, T3 

�; 

 0.7534, 
 (83.56); 
 F3, O2 

�; 

 0.7643, 
 (84.28); 
 F4, O2 

�D; 

 0.7536, 
 (83.58); 
 T4, T3 

�D; 

 0.7501, 
 (83.34); 
 T4, T3 

�; 

 0.7724, 
 (84.82); 
 F3, O2 

RS, FF, QD, 

 PN, NB, 
 LS, LD 

3C 

�D; 
0.7582, 
(83.88); 

T4, T3, F8 

�D; 
 0.7577, 
(83.85); 

 T4, T3, F8 

�; 
 0.7594, 
 (83.96); 

 F3, O2, F8 

�; 
 0.7825, 
 (85.5); 

 F3, O2, F8 

�D; 
 0.7642, 
 (84.28); 

 T4, T3, O1 

�D; 
 0.7612, 
(84.08); 

 T4, T3, Fp1 

�; 
 0.7792, 
 (85.28); 

 F3, O2, F8 

FF, RS, PN, 
 LS, NB, 

 LD*, QD* 

4C 

�D; 
0.7623, 
(84.15); 

T4, T3, F8, 
 O2 

�D; 
 0.7671, 
 (84.47); 

 T4, T3, F8 
, O1 

�; 
 0.762, 

 (84.13); 
 F3, O2, F8, 

 Fz 

�; 
 0.785, 

 (85.67); 
 F3, O2, F7, 

 T4 

�D; 
 0.7779, 
 (85.2); 

 T4, T3, O1, 
 Fp2 

�D; 
 0.7675, 
(84.5); 

 T4, T3, 
 Fp1, T5 

fse; 
 0.7886, 
 (85.9); 

 T3, F3, O2, 
 T4 

RS, FF, PN, 
 LS, QD, 
 LD*, NB* 

2CM 

�DxT4, 
�xFz; 

0.8025, 
 (86.83) 

�DxT4, 
 �xFz; 

 0.7921, 
 (86.14) 

�DxT4, 
 �xF3; 

 0.8043, 
 (86.95) 

�DxT4, 
 �xF3; 

 0.8108, 
 (87.39) 

�DxT4, 
 fsexF3; 
 0.7916, 
 (86.11) 

�DxT4, 
 �xF3; 

 0.8073, 
 (87.15) 

�DxT3, 
 �xF3; 

 0.8139, 
 (87.59) 

RS, FF, LS, 
 NB, LD, 
 QD, PN 

3CM 

�DxT4, 
�xFz, 
�xP3; 

 0.8759, 
 (91.73) 

�DxT4, 
 �xFz, 
 �xC4; 

 0.8486, 
 (89.91) 

�DxT4, 
 �xF3, 
 �xCz; 

 0.8509, 
 (90.06) 

�xF3, 
 �xCz, 

 �DxF8; 
 0.8952, 
 (93.01) 

�DxT4, 
 fsexF3, 
 �xP3; 

 0.8268, 
 (88.45) 

�DxT4, 
 �xF3, 
 �xCz; 

 0.8835, 
 (92.23) 

�DxT3, 
 �xF3, 
 �xCz; 

 0.8825, 
 (92.17) 

FF, LS, RS, 
 LD*, NB*, 
 QD*, PN* 

4CM 

�DxT4, 
�xFz, 
�xP3, 
�xP3; 

 0.8896, 
 (92.64) 

�DxT4, 
 �xFz, 
 �xC4, 

 �DxFp2; 
 0.8628, 
 (90.85) 

�DxT4, 
 �xF3, 
 �xCz, 
 �xO2; 

 0.8688, 
 (91.26) 

�DxT4, 
 �xF3, 
 �xCz, 
 �xO2; 

 0.9116, 
 (94.11) 

�DxT4, 
 fsexF3, 
 �xP3, 

 �DxFp1; 
 0.8455, 
 (89.7) 

�DxT4, 
 �xF3, 
 �xCz, 
 �xO2 

; 0.9025, 
 (93.5) 

�DxT3, 
 �xF3, 
 �xCz, 
 �xO2; 

 0.9126, 
 (94.18) 

RS, FF, LS, 
 LD*, NB*, 
 QD*, PN* 

Best feature combinations, corresponding K̂  and overall accuracy (in brackets) values are shown for 

different feature selection (FS) approaches and different classification paradigms. 2M-4M denote 

selections of 2-4 best measures for single channels, 2C-4C stand for selections of 2-4 best channels 

considering single measures and 2CM-4CM stand for selections of 2-4 best measure x channel 

combinations. Last column denotes decreasing orders of classifiers (DOC) according to the achieved K̂  

values. Best classifiers were statistically compared to other methods using a one-sided Z test with a critical 

Zc = 2.4 value for the Bonferoni corrected �B = 0.05/6. Methods with significantly lower performance are 

marked by an asterisk. Relative band powers are denoted by the labels of the corresponding frequency 

bands. For abbreviations of the classification methods see section 4.2.2.1. 
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selected as the best feature in most of the cases and it was usually followed by P�r, P�r 

and P�r. This order was also true for the best overall classification (OA=94.18 %) that 

was obtained by combining the �D x T3, P�r x F3, P�r x Cz and P�r x O2 features and 

applying a support vector machine classifier with a radial basis kernel function. 

The previously described trends in selection of specific measures and channels are 

presented in a more detailed way in Figure 4.10 and summarized in Figure 4.11 and 

Figure 4.12 to emphasize the importance of particular features. 

As it can be seen from these figures the selection of measures and channels was very 

similar across the classification paradigms when feature selection was carried out on 

 

Figure 4.10.  Group-level feature selection results. Number of cases (paradigms) when particular 

measures were selected as the best measures in single channels (MS), particular channels were selected as 

the best channels considering particular measures (CS) and when particular channel x measure 

combinations were selected as the best features according to the obtained K̂  values. (A)-(D) denote cases 

when particular measures, channels and channel x measure combinations were found to be the 1st, 2nd, 3rd

and 4th best features, respectively. Row (E) stands for sums of cases presented in rows (A)-(D). The order 

of the measures is H, �D, PSOr, P�r, P�r, P�r, P�r, P�r, P�r, fse, while the order of the channels is as follows: 

Fp2, F8, T4, T6, O2, Fp1, F7, T3, T5, O1, F4, C4, P4, F3, C3, P3, Fz, Cz. 
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channel x measure pairs (CMS). Selections of the best measures in single channels (MS) 

and selections of channels for specific measures (CS) resulted in slightly different 

distributions of selected features as compared to the CMS approach. Generally, 

individual-level feature selection results (Appendix E) were very similar to those obtain 

at the group level. However, some differences also emerged. As it could be expected 

selections of channel and measures were more uneven. In addition, measure H was 

selected in more cases (especially as the third or fourth best feature) as compared to the 

group-level results. 

 

Figure 4.11.  Group-level results. Number of cases (paradigms x channels) when particular measures were 

selected within the best four features. MS denotes the selection of measures in single channels, while CMS 

stands for the selection of channel x measure features. (A)-(D) denote cases when particular measures 

were found to be within the 1st, 2nd, 3rd and 4th best features, respectively. Row (E) stands for sums of cases 

presented in rows (A)-(D). The order of the measures is as follows: H, �D, PSOr, P�r, P�r, P�r, P�r, P�r, P�r, 

fse. Bars can be considered as sums across the columns of corresponding subplots in Figure 4.10. 
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4.4. Discussion 

To our best knowledge this is the first study that assessed sleep stage discrimination 

capabilities of fractal and power spectral measures of EEG signals recorded at different 

topographic locations by applying different classification paradigms at both individual 

and group levels. 

Our results revealed that considering both averaged individual- and group-level 

classification results best performance was achieved by the multifractal measure �D in 

most of the channels. Subsequent best measures were fse and rPβ . This tendency was true 

for most of the applied classification paradigms. Furthermore, best classifications for �D 

were found in temporal channel T4. 

 

Figure 4.12.  Group-level results. Number of cases (paradigms x measures) when particular channels were 

selected within the best four features. CS denotes the selection of channels considering single measures, 

while CMS stands for the selection of channel x measure features. (A)-(D) denote cases when particular 

channels were found to be within the 1st, 2nd, 3rd and 4th best features, respectively. Row (E) stands for sums 

of cases presented in rows (A)-(D). The order of the channels is as follows: Fp2, F8, T4, T6, O2, Fp1, F7, 

T3, T5, O1, F4, C4, P4, F3, C3, P3, Fz, Cz. Bars can be considered as sums across the rows of 

corresponding subplots in Figure 4.10. 
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Examination of conditional K̂  values revealed that high overall performance of �D was 

achieved due to significantly better classification of the NREM4 sleep stage. 

Comparatively, measure �D was found to be less efficient in classifying NREM2 and 

REM. Nevertheless, topographic maps in Figure 4.5 (and figures in Appendix C) 

indicated that these latter stages could be classified better based on other specific EEG 

measures at specific locations. E.g. best classification of NREM2 was revealed using rPσ  

centrally (Figure 4.5H) and best classification of REM was achieved using rPβ  in frontal 

channels (Figure 4.5I). Thus, we assumed that overall sleep stage classification 

performance could be improved by combining different measures at different locations. 

And indeed, combinations of up to two channels for same measures and combinations of 

up to three measures in single channels resulted in significant classification 

improvements. Our results also revealed that combinations of measures in single 

channels provide significantly better classifications as compared to combinations of 

different channels for single measures. This might be considered as a promising result 

since usage of single channels can enable the development of cheaper and more 

ergonomic vigilance state detector devices. Best classifications were found in F3, C3, C4 

and P4 channels by combining in most of the cases �D, P�r, P�r and fse measures. H was 

found to be the fourth best measure for most of the classifiers, but its addition did not 

resulted in a significant improvement. Topography of the best channels is in a general 

agreement with previous studies that revealed supremacy of central derivations. 

However, further significant improvement of the classification performance can be 

achieved by combining up to four appropriate channel x measure features. For this 

feature selection approach �D of temporal (T3 or T4) channels was found to be the best 

feature followed by the P�r x F3, P�r x Cz and P�r x O2. Using the combination of these 

features even 94.18 % overall accuracy could be achieved at the group level. 

As expected, better classifications were achieved at the individual level as compared to 

the group level. This finding could be related to the considerable individual variability of 

sleep EEG features [140, 141]. In line with this in Chapter 2 we revealed significant 

gender-related differences of the multifractal measure �D suggesting separate gender 

groups for training of sleep stage classifiers. 

Superior performance of �D and fse is in agreement with results obtained previously for 

the entropy of amplitudes and spectral edge frequency measures [62]. Measure H 

performed below the average considering all measures. This result is in contrast with a 
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previous study [116] finding a superior performance of two other monofractal measures 

(the fractal exponent and the fractal dimension) when compared to spectral measures. To 

our surprise, worst classification performance was obtained for the relative band power 

of slow activities. This might be explained by confining the � band to the 1-4 Hz range 

and considering slow oscillations (0.5-1 Hz) separately. Furthermore, the outstanding 

performance of �D, fse and rPβ  indicate that it is the faster rather than the slow activities 

that might be of superior performance in the classification of the analyzed sleep stages. 

Comparing different classification paradigms we found that at the group level 

feedforward neural networks and support vector machine classifiers with radial basis 

kernel function significantly outperform the traditional approaches such as linear 

discriminant analysis, quadratic discriminant analysis and naïve Bayes classifiers. This 

result is not in agreement with the finding that non-linear classifiers produce only slightly 

better classification results as compared to LD [142]. However, classification results in 

[142] were obtained for discrimination of five mental tasks. FF and RS methods are 

highly computation demanding as compared to other classifiers. An optimal selection 

could be the LS method that performed similarly to the best ones, but exhibited about 5-8 

times lower feature selection times. In contrast to the group-level results traditional 

methods outperformed the more sophisticated approaches at the individual level. This 

was especially true for higher number of input features. The reason could be the 

relatively low number of training samples at the individual level causing insufficient 

parameter optimizations for the sophisticated methods. Thus, at the individual level we 

suggest the usage of traditional classification methods that exhibit also lower 

computational times. We also note that preliminary parameter optimizations (Appendix 

B) were carried out for a single subject and measure. By optimizing the parameters 

always for the subjects (individual or group) and features of particular interest further 

improvements could be achieved. 

In this study we used the SFFS method to reveal the best channel x measure features and 

the following supplementing ones. We admit that application of exhaustive feature 

selection algorithms could reveal even better classifications using combination of 

features not revealed here. 

Polygraphic information (EMG, EOG, ECG) might obviously improve the sleep stage 

classification performance [116]. Nevertheless, developing sleep stage classifications not 
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relying on polygraphic information might be useful for invasive intracranial EEG 

recordings where polygraphy is typically not available. 

In this study we assessed the relatively well-distinguishable sleep stages NREM4, 

NREM2 and REM. It remains to be tested whether other sleep stages (NREM1 and 

NREM3), waking states or the wake-sleep transition can be classified and detected with a 

same performance using fractal measures alone or combined with other features. 

However, we must also keep in mind that although the Rechtschaffen and Kale’s 

standard was the only widely accepted standard for approximately 40 years, its rules 

were criticized for leaving plenty of room for subjective interpretation and different 

amendments were suggested [143-145]. As a results a modified standard was proposed 

by the AASM in 2007 [130]. It remains to be tested how this new standard affects the 

already developed automatic sleep staging methods. Finally, it also remains to be more 

deeply investigated whether sleep scoring of human experts (mostly based on visual 

inspection of recordings) appropriately reflects sleep dynamics or unsupervised 

classification algorithms could reveal additional information. 
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C h a p t e r  F i v e  

CONCLUSIONS 

The aim of this dissertation was to reveal spatio-temporal fractal properties of the human 

sleep and to assess sleep stage discrimination capability of monofractal and multifractal 

EEG features. 

It was found that the topography of both monofractal and multifractal EEG properties 

exhibit sleep stage-specific distributions. Moreover, the monofractal measure H tended to 

increase (HNREM4 > HNREM2 > HREM), while the multifractal measure �D tended to 

decrease (�DNREM4 < �DNREM2 < �DREM) with the deepening of sleep. Thus, one can 

conclude that EEG signals tend to be more persistent and less multifractal with the 

deepening of sleep. 

Based on the observed spatio-temporal trends we speculate that the brain modulates its 

information processing capability and susceptibility to outer and inner stimuli via re-

organization of spatio-temporal correlations. By building up longer spatio-temporal 

correlations and by shrinking the fractal spectrum the localized processing elements of 

the brain (e.g. columns of the neocortex) become less reactive to stimuli and their 

selective information processing capability decreases as the sleep deepens because of the 

activities that spread over longer distances. 

Furthermore, sleep stage-specific topographies were also revealed for inter-site 

correlations of the fractal measures as well as for cross-correlations between them. These 

results suggest that despite of the general opposite tendency of the two fractal properties 

there might be different mechanisms in the brain that control multifractality and 

monofractality of the spatio-temporal dynamics in a more complex way. 

Despite of the strong cross-correlations that appeared between the fractal and specific 

power spectral features it was found that fractal properties (especially �D) carry 

additional information about brain dynamics as compared to the traditional spectral 

measures. This finding might indicate that brain electrical activities are more complex 

than they could be fully described by spectral measures or by a single monofractal 

exponent and therefore the multifractal approach may be more appropriate for modeling 

the SOC properties of brain dynamics. Nevertheless, we should note that several studies 

revealed power-law neural fluctuations that do not necessarily reflect self-organized 
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critical states of brain [146-148]. All these findings indicate that combination of different 

approaches may be needed for overall modeling of brain dynamics. 

Regarding the overall sleep stage discrimination capability of the analyzed EEG features 

the multifractal measure outperformed relative band powers, the compact power spectral 

measure fse as well as the monofractal exponent H. Considering the averaged individual-

level as well as the group-level classifications results obtained using single features best 

classifications were exhibited by �D in temporal channels T3 and T4. Classification 

performance exceeded 80 % overall accuracy at the group level, and achieved even 97.78 

% at the individual level. Furthermore, by supplementing the best single features with up 

to three additional appropriate channel x measure combinations the classification 

performance could be significantly improved. By combining four features 94.18 % 

overall accuracy was achieved at the group level, while at the individual level even 100 

% performance was obtained for several subjects. Although the selection of the 

appropriate channels and measures was slightly different at individual and group levels 

we conclude that when combining fractal and power spectral measures the most 

appropriate features generally are: multifractality in temporal channels T3 and T4, 

relative band powers of 
 and 	 frequency bands over the fronto-centro-parietal region 

and relative band power of � activity in the occipital region. 
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C h a p t e r  S i x  

SUMMARY 

6.1. New scientific results 

Thesis I:  Fractal properties of the human sleep EEG and their relation to power spectral 

measures 

(Related publications: [1-3], [5].) 

I.1.  I have revealed that EEG signals tend to be more persistent and less 

multifractal with the deepening of sleep. In addition, both monofractal and 

multifractal EEG measures exhibit topographic distributions that are sleep 

stage-specific. 

 Topographic distributions of the fractal measures for the analyzed sleep stages are 

shown in Figure 6.1. Highest values of the monofractal measure H emerged frontally 

during all sleep stages, while the overall minimum was found during REM in the 

central zone. A HNREM4 > HNREM2 > HREM trend was present across the whole head 

surface. The multifractal measure �D showed an opposite trend: �DREM > �DNREM2 > 

�DNREM4. Minima of �D could be found in the fronto-central region during all sleep 

stages, while higher values were observed in the posterior circumferential channels. 

Based on the observed spatio-temporal trends I speculate that the brain modulates its 

information processing capability and susceptibility to outer and inner stimuli via re-

organization of spatio-temporal correlations. By building up longer spatio-temporal 

correlations and by shrinking the fractal spectrum the localized processing elements of 

the brain (e.g. columns of the neocortex) become less reactive to stimuli and their 

selective information processing capability decreases as the sleep deepens because of 

 

Figure 6.1.  Topographic distributions of group-level medians of the fractal measures. 
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the activities that spread over longer distances. 

I.2.  I have found that the topography of inter-site correlations of H is more 

variable than that of �D across sleep stages. Furthermore, I have shown that 

the cross-correlation between H and �D exhibits sleep stage-specific 

topography. 

As it can be seen in Figure 6.2 (column ALL) both fractal measures exhibited strongest 

inter-site correlations in the central region when all sleep stages were considered 

together. However, H exhibited higher posterior inter-site correlations during NREM4 

and higher anterior correlations during NREM2 and REM. At the same time �D did 

not reveal such differences between sleep stages. Measure �D showed higher inter-site 

correlations as compared to H. 

By combining all sleep stages I found a strong negative correlation between H and �D 

with a nadir in the posterior channels (Figure 6.3). As revealed by the sleep stage-wise 

analysis NREM2 and NREM4 contributed most to this occipital nadir. As compared to 

NREM4 weaker and less significant correlations emerged during NREM2. During 

REM there was a further weakening of correlations with a non-significant positive 

peak in the F3, Fz, F4 channels. 

These results suggest that despite of the general opposite tendency of the two fractal 

properties there might be different mechanisms in the brain that control multifractality 

and monofractality of the spatio-temporal dynamics in a more complex way. 

 

Figure 6.2.  Highest 35 inter-site correlations of the fractal measures denoted by black lines drawn 

between the appropriate locations. Spearman’s correlation coefficients were calculated considering all 

sleep stages together (column ALL) as well as separately. Only significant ( 0.05p < ) correlations are 

depicted. Lowest presented correlation values can be found above the topographic maps. 
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I.3.   I have assessed the relationship between fractal and power spectral EEG 

measures as well as the contribution of individual frequency band activities to 

the fractal measures. 

Overall, I found stronger correlations between the fractal and the power spectral 

measures during deeper sleep stages than in lighter stages. Additionally, I also revealed 

that the monofractal measure H is positively correlated with relative powers of slow 

activities (especially PSOr) and negatively correlated with faster activities (above 4 Hz) 

exhibiting strongest negative correlations with P�r. By contrast, �D is negatively 

correlated with slow activities and positively correlated with relative powers of higher 

frequency bands achieving strongest correlations with P�r, P�r and P�r in temporal 

channels during NREM4. However, despite of the strong correlations revealed 

between the fractal and the power spectral measures, using a multiple linear regression 

analysis I found that fractal measures (especially �D) carry additional information 

about EEG signals compared to the power spectral features. 

I.4.  I have revealed gender-related differences of monofractal and multifractal 

EEG measures at specific topographic locations and during different sleep 

stages. 

I found that sleep EEG signals are more multifractal during NREM4, NREM2 and 

REM sleep stages at all topographic locations in males than in females (Figure 6.4). 

Most significant differences occurred during sleep stage NREM4 exhibiting a minimal 

0.0025p =  value in channel F7. By contrast, the monofractal measure H was higher in 

 

Figure 6.3.  Spearman cross-correlations between H and �D considering all sleep stages together as 

well as separately. Significant values ( 0.05p < ) are denoted on the left side of the color bars using the 

following notations: no sign (none of the values are significant); only + (all values are significant); + 

with a dash (only values below the dashes are significant). 

DOI:10.15774/PPKE.ITK.2010.008



New scientific results 

 

89 

females in most of the channels, however, a significant difference ( 0.0464p = ) 

appeared during NREM4 in channel T4 only. 

Given that the F7 recording site lies over or near the Broca’s area I hypothesize that 

differences at this specific region reflect gender differences in verbal functions. 

Thesis II:  Classification of sleep stages by combining fractal and power spectral EEG 

features 

(Related publications: [2], [4].) 

II.1.   I have assessed sleep stage discrimination capability of fractal and power 

spectral measures of EEG signals at specific topographic locations by applying 

different classification paradigms at both individual and group levels. 

Considering both averaged individual- and group-level results, I obtained best sleep 

stage classification performance in most of the EEG channels and for most of the 

classification methods by applying the multifractal measure �D. Moreover, I found 

best classifications for �D in temporal channel T4 for most of the classifiers at both 

levels. Using conditional Kappa analysis I revealed that overall high performance of 

�D emerged due to the high classification accuracy of the NREM4 stage. Using the 

�D x T4 single feature at the group level highest overall accuracy (OA=81.92 %) was 

achieved by a support vector machine with a linear kernel function, while individual-

level analysis revealed best average classification result (OA=90.02 %) for a naïve 

Bayes classifier. 

 

Figure 6.4.  Number of channels in which group-level medians were higher in males (case M>F) are 

presented for both fractal measures and sleep stages separately. Number of channels in which group-

level measure medians are higher in females (case F>M) can be obtained by subtracting these values 

from 18 (total number of channels). The * (+) sign denotes measure and sleep stage combinations 

exhibiting significant differences for the case M>F (F>M). 
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II.2.  I have shown that a combination of fractal and power spectral measures of 

EEG signals recorded at different topographic locations significantly improves 

the discrimination of sleep stages. 

I found that supplementation of the best single feature with an appropriate second one 

may significantly improve the sleep stage classification performance. Addition of a 

second measure for the same channel and addition of another channel x measure 

feature enhances the performance in more classifiers as compared to addition of a 

second channel for the same measure. Using conditional Kappa analysis I revealed that 

the overall classification accuracy improves due to the higher classification accuracy of 

NREM2 and REM sleep stages. Addition of a third channel considering the same 

measure does not improve significantly the classification. However, a combination of 

up to three measures of single channels and a combination of up to four channel x 

measure features may result in further significant improvements. Combinations of 

measures in single channels provide significantly better classifications when compared 

to combinations of channels using single measures. Furthermore, combinations of 

channel x measure features perform significantly better as compared to combinations 

of measures in single channels. Considering feature combinations at the group level I 

obtained the best classification results using feedforward neural network and support 

vector machine classifiers that performed in most of the cases significantly better that 

the traditional methods such as the linear discriminant analysis, the quadratic 

discriminant analysis and the naïve Bayes classifier. This tendency was not true at the 

individual level, where due to the lower number of training samples the traditional 

 

Figure 6.5.  Averages of individual maximal K̂  values and group-level maximal K̂  values. First bars 

stand for classifications based on the best single input features, 2nd-4th bars denote classifications with 

2-4 measures of single channels, 5th-7th bars present results for classifications with 2-4 channels of 

single measures, 8th-10th bars stand for classifications using 2-4 channel x measure feature 

combinations. RB and AN classifiers were excluded from group-level analyses due to their high 

computational demand. 
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methods performed even better, especially in those cases where the number of features 

was higher (see Figure 6.5). 

When comparing the maximal classification performances of individual and group 

levels it can be observed that as expected better discrimination of sleep stages can be 

obtained at the individual level achieving even 100 % overall accuracy for several 

subjects. 

At the group level I achieved the best classification performance (OA=94.18 %) using 

the combination of �D x T3, P�r x F3, P�r x Cz and P�r x O2 features and by applying 

a support vector machine classifier with a radial basis kernel function. As it can be 

seen in Figure 6.6 and Figure 6.7, selection of these measures and channels was very 

similar across classification paradigms when feature selection was carried out on 

channel x measure pairs (CMS). Selections of the best measures in single channels 

(MS) and selections of channels for specific measures resulted in slightly different 

distributions of selected features as compared to the CMS approach. In addition, 

individual-level results were comparable to those found at the group level. Measures 

�D, P�r, P�r and channels T3-T4, O2, Cz proved to be the most appropriate features in 

all cases. Thus, I conclude that when combining fractal and power spectral measures 

 

Figure 6.6.  Group-level results. Number of cases (paradigms x channels) when particular measures 

were selected within the best four features. MS denotes the selection of measures in single channels, 

while CMS stands for the selection of channel x measure features. (A)-(D) denote cases when particular 

measures were found to be within the 1st, 2nd, 3rd and 4th best features, respectively. Row (E) stands for 

sums of cases presented in rows (A)-(D). The order of the measures is as follows: H, �D, PSOr, P�r, P�r, 

P�r, P�r, P�r, P�r, fse. 
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the most appropriate features generally are: multifractality in temporal T3 and T4 

channels, relative band powers of 
 and 	 frequency bands over the fronto-centro-

parietal region and relative band power of � activity in the occipital region. 

6.2. Possible applications 

The more theoretical results presented in Thesis I might contribute to reveal how the 

brain re-organizes itself across different vigilance states to modulate its information 

processing and reactivity to stimuli. However, more refined analyses are needed to assess 

fractal properties of the sleep EEG during cyclic alternating pattern (CAP) and non-CAP 

sequences since CAP translates a condition of sustained arousal instability between 

greater and lesser arousal levels, while non-CAP denotes a condition of arousal stability 

[149-151]. In addition, to reveal the origin of self-similarity properties of macro EEG 

signals fractal analysis of brain activities at different scales is required. Application 

possibilities of the more practical results summarized in Thesis II are straightforward. 

E.g. automatic classification of the vigilance state would be beneficial for clinicians 

when assessing long-term recordings. Other applications might be the real-time 

monitoring of the depth of anesthesia during surgery [111] or drowsiness detection [112] 

 

Figure 6.7.  Group-level results. Number of cases (paradigms x measures) when particular channels 

were selected within the best four features. CS denotes the selection of channels considering single 

measures, while CMS stands for the selection of channel x measure features. (A)-(D) denote cases when 

particular channels were found to be within the 1st, 2nd, 3rd and 4th best features, respectively. Row (E) 

stands for sums of cases presented in rows (A)-(D). The order of the channels is as follows: Fp2, F8, T4, 

T6, O2, Fp1, F7, T3, T5, O1, F4, C4, P4, F3, C3, P3, Fz, Cz. 

DOI:10.15774/PPKE.ITK.2010.008



Possible applications 

 

93 

for people working under monotonic and at the same time dangerous circumstances. 

Going even further, based on the current state of neural engineering it is evident that the 

widespread usage of brain computer interfaces for clinical and entertaining purposes will 

be among future trends. One of the clinical applications might be the real-time 

modulation of the brain activity for control of epileptic seizures by local drug delivery or 

electrical stimulation [152]. During recent years several seizure detection/prediction 

methods have been proposed based on different measures of brain activities [153]. 

However, background of false event recognitions, the reason of relatively low 

performance of algorithms remained unclear since generally not even the systematic 

assessment of possible effects of the vigilance state variation was carried out. My 

investigations (not presented in the dissertation) of fractal properties of epileptic brain 

activities [7-14] disclosed that both monofractal and multifractal measures exhibit sudden 

drops during the seizures and show slower trends during preictal and postictal states. 

Combining these findings with the results presented in the dissertation it becomes evident 

that the variation of the vigilance state might modulate epileptic events and hereby it 

might also affect their detections/predictions by applying these measures. Since probably 

all measures are affected by the vigilance state I suggest a novel approach for 

detection/prediction of seizures that is enhanced by the determination of the vigilance 

state (Figure 6.8). 

 

 

Figure 6.8.  A possible enhancement of seizure detection/prediction capabilities by determination of the 

vigilance state for control of epileptic seizures. 
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C h a p t e r  S e v e n  

APPENDICES 

A. Cross-correlations between EEG measures and age 

 

Figure 7.1.  Spearman cross-correlations between EEG measures and age. Significant values ( 0.05p < ) 

are marked on the left side of the color bars using the following notations: no sign (none of the values are 

significant); only + (all values are significant); + with a dash (only values above/below the dash are 

significant). Relative band powers are denoted by the labels of the corresponding frequency bands. 

DOI:10.15774/PPKE.ITK.2010.008



Optimization of classifier parameters 

 

95 

B. Optimization of classifier parameters 

B.1. Feedforward neural network classifier 

The number of hidden layers and neurons of feedforward neural network classifiers was 

optimized using the Levenberg-Marquardt training algorithm and settings indicated in 

Table 7.I. See Figure 7.7 for detailed information on optimization process and for the 

obtained classification results using different number of hidden layers and neurons. 

TABLE 7.I.  APPLIED PARAMETER SETTINGS 

Parameters Values 

epochs 100 

time Inf 

goal 0 

max_fail 5 

mem_reduc 1 

min_grad 1.0e-10 

mu 1.0e-03 

mu_dec 0.1 

mu_inc 1.1 

mu_max 1.0e100 

For the meaning of particular parameters see the Matlab help. The goal parameter was changed to 1e-06 

at the group level to improve the generalization capability of the classifier. 

 

Figure 7.2.  Parameter optimization results obtained for a feedforward neural network classifier by 

considering different numbers of hidden layers and different numbers of neurons in particular layers. Top 

rows indicate cases when only one hidden layer was used with 2-10 numbers of neurons. Median cross-

validation times (mCVT) and mean K̂  values (m K̂ ) were obtained by classifications performed using 

the �D measure and considering all channels separately as well as by combining up to four channels for 

subject #16. As an optimal combination we selected an architecture consisting of a single hidden layer 

with five neurons based on the maximal m K̂  values and low cross-validation time achieved by this 

configuration. 
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B.2. Radial basis function neural network classifier 

 

 

B.3. Probabilistic neural network classifier 

 

Figure 7.3.  Parameter optimization results obtained for a radial basis function neural network classifier 

by considering different spread values. Median cross-validation times (mCVT) and mean K̂  values 

(m K̂ ) were obtained by classifications performed using the �D measure and considering all channels 

separately for subject #16. We selected the default spread value 1 as the optimum based on the maximal 

m K̂  value and low cross-validation time achieved by this setting. 

 

Figure 7.4.  Parameter optimization results obtained for a probabilistic neural network classifier by 

considering different spread values. Median cross-validation times (mCVT) and mean K̂  values (m K̂ ) 

were obtained by classifications performed using the �D measure and considering all channels 

separately for subject #16. We selected the default spread value 0.1 as the optimum based on the maximal 

m K̂  value achieved by this setting. Although the mCVT was highest for this particular spread setting, it 

was higher only with about 0.03 s from the minimum. 
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B.4. Support vector machine with a linear kernel function 

 

 

B.5. Support vector machine with a radial basis kernel function 

 

Figure 7.5.  Parameter optimization results obtained for a support vector machine classifier with a linear 

kernel function by considering different C values. Median cross-validation times (mCVT) and mean K̂  

values (m K̂ ) were obtained by classifications performed using the �D measure and considering all 

channels separately for subject #16. We selected the C=10 parameter value as the optimum based on the 

maximal m K̂  value and low cross-validation time achieved by this setting. 

 

Figure 7.6.  Parameter optimization results obtained for a support vector machine classifier with a radial 

basis kernel function by considering different C and � parameter values. Median cross-validation times 

(mCVT) and mean K̂  values (m K̂ ) were obtained by classifications performed using the �D measure 

and considering all channels separately for subject #16. We selected the C=10000, �=0.01  parameter 

combination as the optimum based on the maximal K̂  and high m K̂  values and low cross-validation 

time achieved by this setting. 
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C. Classification of sleep stages using single features 

C.1. Quadratic discriminant analysis 

 

Figure 7.7.  Sleep stage classification results obtained using quadratic discriminant analysis both at 

individual and group levels. (A) Maximal K̂  values taken across subjects. (B) Averaged individual K̂  

values. (C) Group-level K̂  values. (D) Individual conditional K̂  values averaged across subjects for 

sleep stage NREM4. (E) Individual conditional K̂  values averaged across subjects for sleep stage 

NREM2. (F) Individual conditional K̂  values averaged across subjects for REM sleep. (G) Group-level 

conditional K̂  for NREM4 sleep. (H) Group-level conditional K̂  for sleep stage NREM2. (I) Group-

level conditional K̂  for REM sleep. Relative band powers are denoted by the labels of the corresponding 

frequency bands. 
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C.2. Naïve Bayes classifier 

 

Figure 7.8.  Sleep stage classification results obtained using a naïve Bayes classifier both at individual 

and group levels. (A) Maximal K̂  values taken across subjects. (B) Averaged individual K̂  values. (C) 

Group-level K̂  values. (D) Individual conditional K̂  values averaged across subjects for sleep stage 

NREM4. (E) Individual conditional K̂  values averaged across subjects for sleep stage NREM2. (F) 

Individual conditional K̂  values averaged across subjects for REM sleep. (G) Group-level conditional 

K̂  for NREM4 sleep. (H) Group-level conditional K̂  for sleep stage NREM2. (I) Group-level 

conditional K̂  for REM sleep. Relative band powers are denoted by the labels of the corresponding 

frequency bands. 
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C.3. Feedforward neural network 

 

Figure 7.9.  Sleep stage classification results obtained using a feedforward neural network classifier both 

at individual and group levels. (A) Maximal K̂  values taken across subjects. (B) Averaged individual K̂  

values. (C) Group-level K̂  values. (D) Individual conditional K̂  values averaged across subjects for 

sleep stage NREM4. (E) Individual conditional K̂  values averaged across subjects for sleep stage 

NREM2. (F) Individual conditional K̂  values averaged across subjects for REM sleep. (G) Group-level 

conditional K̂  for NREM4 sleep. (H) Group-level conditional K̂  for sleep stage NREM2. (I) Group-

level conditional K̂  for REM sleep. Relative band powers are denoted by the labels of the corresponding 

frequency bands. 
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C.4. Probabilistic neural network 

 

Figure 7.10.  Sleep stage classification results obtained using a probabilistic neural network classifier 

both at individual and group levels. (A) Maximal K̂  values taken across subjects. (B) Averaged 

individual K̂  values. (C) Group-level K̂  values. (D) Individual conditional K̂  values averaged across 

subjects for sleep stage NREM4. (E) Individual conditional K̂  values averaged across subjects for sleep 

stage NREM2. (F) Individual conditional K̂  values averaged across subjects for REM sleep. (G) Group-

level conditional K̂  for NREM4 sleep. (H) Group-level conditional K̂  for sleep stage NREM2. (I) 

Group-level conditional K̂  for REM sleep. Relative band powers are denoted by the labels of the 

corresponding frequency bands. 
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C.5. Support vector machine with a linear kernel function 

 

Figure 7.11.  Sleep stage classification results obtained using a support vector machine classifier with a 

linear kernel function both at individual and group levels. (A) Maximal K̂  values taken across subjects. 

(B) Averaged individual K̂  values. (C) Group-level K̂  values. (D) Individual conditional K̂  values 

averaged across subjects for sleep stage NREM4. (E) Individual conditional K̂  values averaged across 

subjects for sleep stage NREM2. (F) Individual conditional K̂  values averaged across subjects for REM 

sleep. (G) Group-level conditional K̂  for NREM4 sleep. (H) Group-level conditional K̂  for sleep stage 

NREM2. (I) Group-level conditional K̂  for REM sleep. Relative band powers are denoted by the labels 

of the corresponding frequency bands. 
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C.6. Support vector machine with a radial basis kernel function 

 

Figure 7.12.  Sleep stage classification results obtained using a support vector machine classifier with a 

radial basis kernel function both at individual and group levels. (A) Maximal K̂  values taken across 

subjects. (B) Averaged individual K̂  values. (C) Group-level K̂  values. (D) Individual conditional K̂  

values averaged across subjects for sleep stage NREM4. (E) Individual conditional K̂  values averaged 

across subjects for sleep stage NREM2. (F) Individual conditional K̂  values averaged across subjects 

for REM sleep. (G) Group-level conditional K̂  for NREM4 sleep. (H) Group-level conditional K̂  for 

sleep stage NREM2. (I) Group-level conditional K̂  for REM sleep. Relative band powers are denoted by 

the labels of the corresponding frequency bands. 
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D. Combination of measures 

D.1. Combination of three measures 

 

Figure 7.13.  K̂  values achieved by combination of three best measures in particular channels. Rows 

present results for different classifiers. Meaning of the column labels is as follows. (A) Maximal K̂  

values taken across subjects. (B) Averaged individual K̂  values. (C) Group-level K̂  values. (D) 

Individual conditional K̂  values averaged across subjects for sleep stage NREM4. (E) Individual 

conditional K̂  values averaged across subjects for sleep stage NREM2. (F) Individual conditional K̂  

values averaged across subjects for REM sleep. (G) Group-level conditional K̂  for NREM4 sleep. (H) 

Group-level conditional K̂  for sleep stage NREM2. (I) Group-level conditional K̂  for REM sleep. 
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D.2. Combination of four measures 

 

Figure 7.14.  K̂  values achieved by combination of four best measures in particular channels. Rows 

present results for different classifiers. Meaning of the column labels is as follows. (A) Maximal K̂  

values taken across subjects. (B) Averaged individual K̂  values. (C) Group-level K̂  values. (D) 

Individual conditional K̂  values averaged across subjects for sleep stage NREM4. (E) Individual 

conditional K̂  values averaged across subjects for sleep stage NREM2. (F) Individual conditional K̂  

values averaged across subjects for REM sleep. (G) Group-level conditional K̂  for NREM4 sleep. (H) 

Group-level conditional K̂  for sleep stage NREM2. (I) Group-level conditional K̂  for REM sleep. 
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E. Individual-level channel and measure selection results 

E.1. Overall results 

 

Figure 7.15.  Individual-level feature selection results. Number of cases (subjects x paradigms) when 

particular measures were selected as the best measures in single channels (MS), particular channels 

were selected as the best channels considering particular measures (CS) and when particular channel x 

measure combinations were selected as the best features according to the obtained K̂  values. (A)-(D) 

denote cases when particular measures, channels and channel x measure combination were found to be 

the 1st, 2nd, 3rd and 4th best features, respectively. (E) stands for sums of cases presented in rows (A)-(D). 

The order of the measures is H, �D, PSOr, P�r, P�r, P�r, P�r, P�r, P�r, fse, while the order of the channels is 

as follows: Fp2, F8, T4, T6, O2, Fp1, F7, T3, T5, O1, F4, C4, P4, F3, C3, P3, Fz, Cz. 
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E.2. Measure selection results 

 

Figure 7.16.  Individual-level results. Number of cases (subjects x paradigms x channels) when particular 

measures (MS) and channel x measure combinations (CMS) were selected as the best features. (A)-(D) 

denote cases when particular measures and channel x measure combinations were found to be the 1st, 2nd, 

3rd and 4th best features, respectively. Row (E) stands for sums of cases presented in rows (A)-(D). The 

order of the measures is as follows: H, �D, PSOr, P�r, P�r, P�r, P�r, P�r, P�r, fse. Bars can be considered as 

sums across the columns of corresponding subplots in Figure 7.15. 
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E.3. Channel selection results 

 

 

Figure 7.17.  Individual-level results. Number of cases (subjects x paradigms x measures) when 

particular channels (CS) and channel x measure combinations (CMS) were selected as the best features. 

(A)-(D) denote cases when particular channels and channel x measure combinations were found to be the 

1st, 2nd, 3rd and 4th best features, respectively. Row (E) stands for sums of cases presented in rows (A)-(D). 

The order of the channels is as follows: Fp2, F8, T4, T6, O2, Fp1, F7, T3, T5, O1, F4, C4, P4, F3, C3, 

P3, Fz, Cz. Bars can be considered as sums across the rows of corresponding subplots in Figure 7.15. 
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