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Abstract

This dissertation (i) describes polyhedron based algorithm optimiza-

tion method for GPUs and other many core architectures, describes

and illustrates the loops, data-�ow dependencies and optimizations

with polyhedrons, de�nes the memory access pattern, memory access

e�ciency ratio and absolute access pattern e�ciency, and presents

problem decomposition; (ii) introduces a new data stream based ar-

ray processor architecture, called RACER and presents the details

of the architecture from the programming principle to the applied

pipeline processing; (iii) presents a new algorithmic approach devel-

oped to evaluate two-electron repulsion integrals based on contracted

Gaussian basis functions in a parallel way, provides distinct SIMD

(Single Instruction Multiple Data) optimized paths which symboli-

cally transforms integral parameters into target integral algorithms.
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Chapter 1

Introduction

In recent years a new direction has started in the world of computing, which

is based on increasing the number of cores and execution units rather than the

clock frequency of the processors. This trend is manifested in all of the network

devices, desktop computers and even in cell phones. The main reason for this

can be traced back to physical laws, as the miniaturization of microchips and

the increase of the clock frequency led to a much too long communication time

between the remote parts of the processor. This delay is caused mostly by wiring

and metal connections of the chip. The further increase of the clock frequency

is therefore not only impeded by a limit determined by the silicon's switching

speed, but it also increases the experienced value of the delay. Too much delay

implicates more fragmentation of the architecture into several execution units

and cores.

According to Moore's law, the manufacturing cost of digital integrated elec-

tronics per transistor is becoming cheaper. This will help the above mentioned

direction further, as in a well-designed multiprocessor system, the increase of the

number of cores is a simple task. This way not only more and more transistors,

but more and more cores (or, raw computing power, increasing at the same rate

as de�ned in Moore's law) are gained for the same price.

This trend is lead by graphics processing unit (GPU), which is achieved and

even exceeded the number of 5760 cores per microchip in 2014. These multi-

core or many-core systems are DSP, FPGA, CELL and GPU, but this trend

encompasses the embedded, multimedia processors too.

1
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Besides the rapid development of the hardware, the question arises how these

architectures can be programmed e�ciently. Many-core processor systems show

not only more variety than traditional predecessors, but require fundamentally

new programming approach. In order to integrate as many cores as possible in

a processor unit, the computational units were simpli�ed as much as possible.

Practically most of the results of the last twenty years had been thrown away

from single processor core optimization. Which focused on a single processor

core optimization. Thus the di�erence between a simple computational unit, e.g.

Floating-Point Unit, and a core with full functionality is not clear. The functional

di�erences between many-core and traditional processors are illustrated by that

if a strict serial program has been executed on a many-core processor, then the

running time is often 100 times slower than running it on a non-parallel CPU.

The standard OpenCL programming language has been created to program such

a new parallel systems. OpenCL is a low level C language, which pushes o� the

problem of parallelization of the algorithms to the programmers.

The e�cient implementation of an algorithm requires the deep knowledge of

the target architecture. Based on experiences, this knowledge is necessary even

while using OpenCL language because the smallest optimization solutions can

be speed up the program by a few orders of magnitude. The problem is even

more complicated, because the manufacturer (NVIDIA, AMD-ATI) changes its

architecture in every year and fundamentally redesigns it in every two years.

Moreover it is common that the manufacturer has di�culties to understand its

own product and exploit its advantages.

There is signi�cant demand to have solutions that can automate the parallel

implementation of algorithms with mathematically backed methods. This in-

cludes those methods too, where implementing algorithms e�ciently on a new

architecture is assisted by machine learning.

Considering these problems, my aim was to analyze the paralleliza-

tion of general algorithm classes and demonstrate my results and meth-

ods on a few di�cult algorithms.

The trend is obvious, the number of cores per processor will increase exponen-

tially in the next �ve-ten years. However, the di�erence between each, following
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architectures is not only the number of processors, but the changes of architec-

tures. This evolution leads not only to higher number of processing units, but

to the more e�cient and optimized operation and also to the increased computa-

tional power per area. If we examine the parallel architectures, we �nd that the

objective is to maximize the general purpose computing power per unit area by

employing trade-o�s. These trade-o�s and disadvantages at the most common

architectures are the following:

The di�culties of memory reading and writing of CPUs are hidden by using

traditional cache hierarchy. This solution, especially if we have more processor

units, increases untenable the ratio between chip area of cache memory and chip

area of pure computing. It is a good balance for the less computationally intensive

tasks, but quite wasteful in case of scienti�c or graphical computations.

DSP: digital signal processor. These devices are very similar to CPUs, the

di�erence is mainly between their parameters. DSPs are designed for running

signal processing algorithms e�ciently (FFT, matrix-vector operations) with low

power consumption and competitive price. The chip area (ie. the cost of manu-

facturing) is much smaller than CPUs', because of the above reasons, DSPs has

less cache memory. Therefore the system memory access patterns of DSPs is

more restricted if we want to exploit the available bandwidth.

The vector based SIMD (single instruction multiply data) architecture of

GPUs (graphical processing unit) introduces a very strong constraint on the

implementation of threads. In a workgroup every thread has to do the same

operation on di�erent data, reading the data from adjacent memory. Therefore

both the memory bandwidth and computing resource utilization of the silicon

area are very high. But working with this architecture the programmer has to

solve the e�cient use of memory, contrary to the CPU, this system does not hide

the architecture details and does not solve the related problems.

Cell BE (cell broadband engine): this is a hybrid architecture, which includes a

classic PowerPC CPU processor connected to SPUs (synergistic processing units).

The SPUs are very simpli�ed vector processing units, which have relatively large

local memory on chip. The programmers are responsible to solve even every tiny

technical problems, from the appropriate feeding of the pipeline to organize the
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internal logic of the memory operations. This device has only indirect memory

access via the local memory.

FPGA (�eld programmable gate array): On this architecture, arbitrary logic

circuit can be implemented within certain broad limits. Usually the implemented

circuit is relatively e�cient, since the desired circuit is realized physically on the

FPGA by connecting on-chip switches. Consequently the logic circuits of the

FPGA can be adapted directly to the given task, therefore this architecture can

exploit most e�ciently the available processing units. However the cost of this

enormous �exibility is the low density of the processing units on the chip surface,

since the switching circuits and universal wiring need large chip area.

Systolic Array: this classical topological array processor architecture contains

e�ectively only execution (computing) units, adder and multiplier circuits, which

are usually solve some linear algebra operations in parallel. Its applicability is

very limited, because its topology is speci�c for the executed algorithm. This

architecture does not contain neither memory architecture, nor program control

structure. These units should be provided by another system. The �exibility is

sacri�ced for e�ciency, since the computing units utilized almost 100 percent-

age during operation and the surface of the silicon chip contains e�ectively only

computing units.

CNN (cellular nonlinear/neural networks): this architecture is e�cient at us-

ing local image processing operations (low resolution image processing algorithms

on grayscale images) with extremely high speed and low power consumption. Ev-

ery pixel is associated to a processing unit, the process is analog and there is only

a very little analog memory. Accessing the global memory compared to the in-

ternal speed is very slow and also needs the digitalization of the pixels. This

architecture is optimized for 2D topological computations with low memory.

Considering these problems, my aim was to design a computational

architecture (RACER architecture), which is not limited by the dis-

advantages of the previous parallel architectures, Turing complete and

fully general algorithms can be implemented e�ciently on it, moreover

its performance per area is maximized as much as possible.

The dissertation is organized as follows. Chapter 2 describes polyhedron based

algorithm optimization method for GPUs and other many core architectures, de-
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scribes and illustrates the loops, data-�ow dependencies and optimizations with

polyhedrons, de�nes the memory access pattern, memory access e�ciency ra-

tio and absolute access pattern e�ciency, and presents problem decomposition.

Chapter 3 introduces a new data stream based array processor architecture, called

RACER and presents the details of the architecture from the programming prin-

ciple to the applied pipeline processing. Chapter 4 presents a new algorithmic

approach developed to evaluate two-electron repulsion integrals based on con-

tracted Gaussian basis functions in a parallel way, provides distinct SIMD (Single

Instruction Multiple Data) optimized paths which symbolically transforms inte-

gral parameters into target integral algorithms. Chapter 5 summarizes the main

results and highlights further potential applications, where the contributions of

this dissertation could be e�ciently exploited.

The author's publications and other publications connected to the dissertation

can be found at the end of this document.
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Chapter 2

Polyhedron based algorithm

optimization method for GPUs and

other many core architectures

This chapter introduces a new method of a compiler application to many-core

systems. In this method, the source code is transformed into a graph of poly-

hedrons, where memory access patterns and computations can be optimized and

mapped to various many core architectures. General optimization techniques are

summarized.

2.1 Introduction

The multi-core devices like GPUs (Graphics Processing Unit) are currently ubiq-

uitous in the computer gaming market. Graphical Processing Units, as their

name implies are used mostly for real-time 3D rendering in games which is not

only a highly parallel computation, but also needs great amounts of computing

resources. Originally, this need encouraged the development of massively parallel

thousand core GPUs. However these systems can be used to implement not only

computer games, but also other topological, highly parallel scienti�c computa-

tions. Manufacturers are recognizing this market demand, and they are giving

more and more general access to their hardware, in order to aid the usage of GPU

for general purpose computations. This trend has recently resulted in relatively

6
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2.1 Introduction 7

cheap and very high performance computing hardwares, which opened up new

prospects of computationally intensive algorithms.

New generation hardwares contain more and more processing cores, sometimes

over a few thousand, and the trends show that these numbers will exponentially

increase in the near future. The question is how developers could program these

systems and may port already existing implementations on them. There is a

huge need for this today as well as in the forthcoming period. This new approach

of the automation of software development may change the future techniques of

computing science.

The other signi�cant issue is that GPUs and CPUs have started merging for

the biggest vendors (Intel, NVIDIA, AMD). This means that developers will need

to handle heterogeneous many core arrays, where the amount of processing power

and architecture can be radically di�erent between cores. There are no good

methodologies for rethinking or optimizing algorithms on these architectures.

Experience in this area is a hard gain, because there seems to be a very rapid

(≈3 year) cycle of architecture redesign.

Exploiting the advantages of the new architectures needs algorithm porting,

which practically means the complete redesign of the algorithms. New parallel

architectures can be reached by �specialized� languages (DirectCompute, CUDA,

OpenCL, Verilog, VHDL, etc.). For successful implementations, programmers

must know the �ne details of the architecture. After a twenty years long evo-

lution, e�cient compiling for CPU does not need detailed knowledge about the

architecture, the compiler can do most of the optimizations. The question is ob-

vious: Can we develop as e�cient GPU (or other parallel architecture) compilers

as the CPU ones? Will it be a two decade long development period again or can

we make it in less time?

Every algorithm can be seen as a solution to a mathematical problem. The

speci�cation of this problem describes a relationship from the input to the output.

The most explicit and precise speci�cation can be a working platform independent

reference implementation, which actually transforms the input from the output.

Consequently, we can see the (mostly) platform independent implementation, as

a speci�cation of the problem. This implicates that we can see the parallelization
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2.1 Introduction 8

as a compiling problem, which transforms the ine�cient platform independent

representation into an e�cient platform dependent one.

Parallelization must preserve the behavior in the aspect of speci�cation to give

the equivalent results, and should modify the behavior concerning the method of

the implementation. Automated hardware utilization has to separate the source

code (speci�cation) and optimization techniques on parallel architectures [9].

The polyhedral optimization model [53] is designed for compile-time paral-

lelization using loop transformations. Runtime parallelization approaches are

based on TLS (Thread-Level Speculation) method [54], which allows parallel

code execution without the knowledge of all dependencies. Researchers are inter-

ested in algorithmic skeletons [52] recentely. Usage of skeletons is e�ective if the

parallel algorithms can be characterized by generic patterns [55]. Code patterns

address runtime code optimizations too.

There are di�erent trends and technical standards emerging. Without the

claim of completeness, the most signi�cant contributions are the following: Open-

MP [16] - it supports multi-platform shared-memory parallel programming in

C/C++ and FORTRAN, practically it adds pragmas for existing codes, which

direct the compiler. OpenCL [66] - is an open, standard C-language extension

for the parallel programming of heterogeneous systems, also handling memory

hierarchy. Threading Building Blocks of Intel [17] - is a useful optimized block li-

brary for shared memory CPUs, which does not support automation. One of the

automation supported solution providers is the PGI Accelerator Compiler [18]

of The Portland Group Inc., but it does not support C++. There are appli-

cation speci�c implementations on many-core architectures, one of them is a

GPU boosted software platform under Matlab, called AccelerEyes' Jacket [20].

Overviewing the growing area, there are partially successful solutions, but there

is no universal product and still there are a lot of unsolved problems.

2.1.1 Parallelization conjecture

My conjecture is that any algorithm can be parallelized, even if ine�ciently. This

statement disregards the size of the memory, which can be a limiting factor,

but serial algorithms su�er from the same problem too, so this is still a fair
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comparison. In order to de�ne this statement in a mathematically correct way, I

need a simple de�nition of the parallelization potential of non-parallel programs.

For easier mathematical treatment we can disregard the e�ect of limited global

memory of the device.

Given ∀P1 non-parallel program, with the time complexity Ω(f(n)) > O(1),

let us suppose that ∃PM e�cient parallel implementation on M processors with

the time complexity O(g(n)) where:

lim
M→∞,n→∞

f(n)

g(n)
=∞ (2.1)

This means that given big enough inputs, where the input size is n, and an

arbitrary huge number of core, we can achieve arbitrary big speedup over the serial

implementation of the algorithm. From Equation 2.1 we can derive a practical

measure of how well an algorithm can be implemented e�ciently on a parallel

system:

η(M) = lim
n→∞

f(n)

g(n)
η(M) ≥ O(1) (2.2)

In case of arbitrary big input size n, we can achieve only a speedup limited by

the number of cores. I call this speedup η(M), which is a function of the number

of cores the architecture has. This limit depends on both the implemented al-

gorithm and the architecture, so η(M) can be called parallelization e�ciency. It

can describe in an abstract way how much the implemented algorithm is paral-

lelization friendly. It can be seen that achieving practical speedup is equivalent to

η(M) > O(1). Consequently if η(M) = O(1) then the problem is not (e�ciently)

parallelizable so, Equation 2.1 does not hold.

Some brute-force algorithmic constructions for many-cores yield ine�cient

speedup, for example Equation 2.3, which means that the measured speedup of

the algorithm is the square root of the number of parallel cores.

η(M) ≥
√
M (2.3)
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This limit is very arbitrary, but in my opinion anything lower than
√
M

speedup is not economical, because this scales very well for small architectures,

where the number of cores is below 16, like CPUs, but is very impractical for

GPUs, where the number of cores is measured in thousands.

I can state that anything with a parallelization e�ciency less than
√
M is

practically not parallelizable in the many-core world, however that is why I chose

the lower limit of my conjecture to be
√
M .

2.1.2 Ambition

Parallelization is a very di�cult and potentially time consuming job if done man-

ually. Fully automating it is a computationally impossible task, but even partially

automating it, on a set of algorithmic classes can greatly increase the productivity

of the human programmer.

My aim was to describe algorithms using a general mathematical represen-

tation, which enables us to tackle the algorithm parallelization more formally,

and hopefully more easily. I used polyhedral geometric structures to describe the

loop structure of the program, which is used in modern optimizing compilers for

high level optimizations. However, it was unable to represent more complicated

dynamic control structures and dynamic dependencies inside loops, so I had to

extend the theory to encompass a wider range of algorithmic classes.

In a static loop, we know everything about the control-�ow behavior of the

loop in compile time, this can be easily extended by allowing the loop bounds to

be known just before the start of execution of the whole loop structure [22, 23].

A dynamic loop, or control-�ow, in the other hand cannot be known in compile

time, every decision in the code happens in run-time depending on the results of

the ongoing computations.

While the classical polyhedral approach covers many useful algorithms, it can

be very lacking in practice, because the lack of dynamic control handling. My ob-

servation is that by just including a few more very constrained algorithmic classes

containing dynamic control can practically cover most useful cases, especially if

we only consider GPU programming. This approach simpli�es the original dif-

�cult problems into �tting the algorithms into these classes, after that we have
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2.2 Polyhedrons 11

recipes for implementing these classes on the given architectures.

2.2 Polyhedrons

Because computation time generally concentrates in loops, it is practical to depict

the algorithm as a graph of loops, where the graph represents the data-�ow

between the di�erent loops. These loops are the hot points of the algorithm

and we can run them on parallel architectures for better performance. Hot point

means that most of the execution time is concentrated inside them. This is a

very general way of porting algorithms, but there are numerous issues with this

approach that I aimed to mitigate.

When we execute an algorithm on a parallel architecture, it usually boils down

scheduling loops on cores. This in practice means, that we try to map the parallel

execution onto the parallel hardware units, in both space and time. In order to

optimize and schedule them better, we can convert loops into polyhedrons. This

allows a mathematical approach where each execution of the core of the loop is a

single point of the polyhedron, because (well behaving) loops are strictly bounded

iterative control structures. This mapping between discrete geometric bodies and

loops is a straightforward transformation if possible.

Discrete polyhedra can be de�ned multiple ways with linear discrete algebra.

I de�ned these loop polyhedra as generic �lled geometric shapes in a discrete

euclidean space bounded by �at faces. The exact de�nition can vary by context

in the literature. My de�nition is as follows:

Points: x̄ ∈ Nd

Bounding inequality system: M ·
[
x̄
1

]
≥ 0̄ where M ∈ R(d+1)xn

Points of the polyhedra:P :=

{
x̄

∣∣∣∣M · [x̄1
]
≥ 0̄

}
FΠ
filter := P→ {true, false}

Kkernel := {∂R1...∂Rn, S, ∂W}

(2.4)

De�nition 2.4 de�nes the polyhedron corresponding to a loop structure. The

polyhedron contains points of a d dimensional space of loop variables. The given
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matrix inequality de�nes a convex object in this space. All points of this convex

object are part of the polyhedron, these points de�ne set P.
In the de�nition, x̄ is a point of the polyhedron, matrix M de�nes the faces of

the polyhedron. In the algorithm x̄ corresponds to each execution of the core of

the loop structure, and M corresponds to the bounds of the loops. These bounds

can be linearly dependent on other loop indexes, which allows us to rotate and

optimize the polyhedron.

It is desirable to allow minimal dynamic control-�ow in this formalism, so I

have de�ned FΠ
filter, which is a scheduling-time executable function to decide the

subset of polyhedron nodes that we would like to execute. This means that this

function is quasi static in the sense that it had to be decided just before we start

to execute the loop structure, but we do not know the result of this function

before that. If we run a scheduler before the loops, to map them into parallel

execution units, we can use this FΠ
filter function to �lter out the polyhedral nodes

early. This way we can prevent the scheduling of empty work to the execution

units. It is important to note that �ltered non-functional parts should be in

minority, otherwise the polyhedral representation is useless for optimization, and

it is processing a sparsely indexed structure instead of an actual polyhedron.

The Kkernel represents the kernel operation to be executed in the nodes, this

is the formal representation of the core of the loop structure. I treat this code as

sequential data-�ow, which has memory reads at the start, and writes at the end.

In De�nition 2.4 ∂R1...∂Rn are the memory reads, S is the sequential arithmetic,

and ∂W is the memory write. If we cannot �t the extra control-�ow inside the

kernel into our representation, we can treat the rest inside as data-�ow function

S, but any side e�ects should be included in the memory operations ∂R, ∂W .

Because of the possibly overlapping memory operations, internal dependencies

arise, and possibly between polyhedrons too. We depict dependency set as D with

the following de�nition:
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D := {fi|fi : P→ P}

fi(x̄) := round

(
Di ·

[
x̄
1

])
where Di ∈ Q(d+1)xd

FD
filter := DxP→ {true, false} Dependency condition

fi(x̄) can be evaluated at scheduling-time in O(1) time

(2.5)

Dependency set is a function which maps from nodes of the polyhedron to

nodes of the polyhedron. In practice, it de�nes that a given node of the polyhe-

dron depends on which nodes must precede it in execution time. A dependency

set can be de�ned as multiple maps. Most algorithmic cases can be covered by a

linear dependency mapping, which can be represented as a linear transformation

on the index vector.

Dependencies arise from the overlapping memory operation, mostly because

one operation uses the result of another one, or less likely they update the same

memory and one overwrites the output of another.

The domain of Matrix D is rational numbers, this allows more general trans-

formations, so we can represent most dependencies by a linear transformation.

In simple cases it is an o�set, but it can be a rotation as well, e.g. the swap (or

mirror) of the coordinates. Most of the time linear transformations should have

enough power of representation, because the original algorithms are created by

human intelligence, and these loops tend to have linear dependencies, otherwise

it would be too di�cult to understand.

In practice however, there are dependencies which are dynamic/conditional

and can only be evaluated during execution time. I propose the formal treat-

ment of dynamic dependencies, in the case where we can evaluate them no later

than the start of the loop structure containing the mentioned dependency. It

is possible since the dynamic dependencies, like the previously mentioned FΠ
filter

�lter function, are constraints on the scheduling, and we are doing scheduling

just before executing the loops. This is the reason why the dynamic behavior

of dependencies is treated as FD
filter �lter function, which is very similar to the

FΠ
filter kernel �lter function. This F

D
filter function represents the dynamic part, it

is essentially a condition which states which dependencies on which nodes should

be counted as valid.
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In the following I de�ne the memory access patterns similarly to dependencies.

The access pattern maps from the nodes of the polyhedron to the memory storage

indexes.

A single memory access ∂ in the kernel is described in the following:

∂R, ∂W : read and write operations

g : P→ Nn

g(x̄) := round

(
A ·
[
x̄
1

])
where A ∈ Q(d+1)xn

(2.6)

Where a member of Nn is an n dimensional memory address, and g(x̄) is the

access pattern.

It is interesting to note that the memory can be n dimensional as well. Al-

though the memory is usually handled as a serial one dimensional vector, in some

cases it can be a 2D image mapped topologically into a 2D memory. While the

memory chips are 2D arrays physically, they are addressed linearly from the pro-

cessing units. However, GPUs have hardware supported 2D memory boosted

by 2D coherent cache in order to help the speed of 3D and 2D image process-

ing. Therefore it is useful to manage higher dimensional memory. It is even more

practical from a mathematical point of view since, the polyhedra made from loops

tend to be multidimensional, we can make the memory access pattern optimiza-

tions much easier if we can match the dimensionality of the memory indexing to

the polyhedron.

The similarity between the de�nition of access patterns and dependencies

is not a coincidence as I have mentioned previously, overlapping or connected

memory operation can imply dependencies. However, the importance of access

patterns does not stop here, because most architectures are sensitive to memory

access. Some architectures can only do very restricted memory access patterns,

like FPGA, or systolic arrays. Others are capable of general random access, like

CPUs and GPUs, however the bandwidth di�erence between access patterns can

be over an order of magnitude. It is very important to optimize also this practical

aspect, because such bandwidth di�erences matter greatly in engineering practice.
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2.2.1 Handling dynamic polyhedra

It was mentioned in the previous section that the most important part of this

work is formalizing the handling of dynamic polyhedra, which includes both con-

ditional execution and conditional dependencies. When we process static loops

we generate a walk of polyhedron o�-line. This walk essentially implies an opti-

mized loop structure and perhaps a mapping to parallel cores. Generating a walk

however is not possible for dynamic polyhedra, because essential information is

missing at compile time.

The obvious solution is generating the walk in runtime, which can have a

performance drawback. In extreme cases this can take longer than the actual

computation we want to optimize. My solution to mitigate this problem is that we

do not need to process everything in execution time. All the static dependencies

can be processed o�ine, and the dynamic dependencies can be regarded as worst

cases in compile time. This in itself does not solve the original problem, but

opens up the avenue to generate code for the scheduler. The job of this scheduler

is to generate the walk during runtime, but due to the knowledge we statically

know about the polyhedron, this scheduler code is another polyhedron itself. Our

aim is to make the structure of the scheduler simpler, and hopefully less dynamic

like the original problem, because otherwise this solution would be an in�nite

recursion.

In practice this means that the schedule should be somewhere halfway between

an unstructured scheduler and a fully static walk. In order to avoid confusion with

the static walk, I am calling the �dynamic walk� Plan. This name is more be�t-

ting, because in the implementation the Plan contains only indexes, instructing

which thread should process which part of the polyhedron.

The unstructured scheduler in this context means that the scheduler cannot

e�ectively use the fact that it is processing a polyhedral representation. It is

a simple algorithm which iterates through each point of the polyhedron, and

schedules them when their dependency is satis�ed. This can be greatly improved

if the scheduler only looks at the possible cases, by using the static information.

Since the Plan governs the order of the execution, it determines the access

patterns of the physical memory, this implicates that the formalism should include
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this relationship as well. The following Plan related notations and de�nitions

are used in this paper: Plan (see Equation 2.8): P(Π) is an optimized dynamic

walk of the polyhedron. It is the job of the scheduler to generate this before the

execution of the loop structure, after that the loop structure is executed according

to this Plan.

Plan e�ciency (see Equation 2.9): η(P) is closely related to parallelization

e�ciency. It well characterizes the hardware computing resources according to

the plan, according to the pipeline and computing unit utilization. In other words

if all the pipelines are optimally �lled in all compute units (cores), we can say that

this e�ciency is 1. We can de�ne this e�ciency as a ratio of available computing

resources and the computing resources used by when we execute the Plan.

Access pattern (see Equation 2.10): ∂(P,Π) depicts the memory access

pattern of the polyhedron while it is using the Plan.

Access pattern e�ciency: η(∂(P,Π)) characterizes the e�ciency of the

utilization of the hardware memory bandwidth. This is similar to the Plan

e�ciency, but instead of computing resource, we have memory bandwidth.

2.2.2 Loops and data-�ow dependencies in polyhedra

In this section I would like to present two examples in order to aid the under-

standing of the concepts behind polyhedral loop optimization. The �rst example

is a loop with two index variables i, j, which can be represented by a discrete

polyhedron depicted in Figure 2.1(a):

for ( int i =0; i <5; i++)
for ( int j =0; j <(5− i ) ; j++)
{

S1 ( i , j ) ;
}

The polyhedron is two dimensional, because there are two loop variables and

it is a triangle because the bound of the second variable j is dependent on the �rst

i. There are no dependencies depicted, and the core of the loop is represented by

an S1(i, j) general placeholder function.

In the following I would like to present a more realistic example:
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(a) (b)

Figure 2.1: (a) Geometric polyhedron representation of loops in the dimensions
of i, j loop variables. (b) Another example, 2D integral-image calculation, where
data-�ow dependencies are represented by red arrows between the nodes of the
polyhedron. The dependency arrows point in the inverse direction compared to
the data-�ow.

for ( int i = 0 ; i < n ; i++)
for ( int j = 0 ; j < m; j++)
{
int sum = array [ i ] [ j ] ;
i f ( i > 0) sum += array [ i −1] [ j ] ;
i f ( j > 0) sum += array [ i ] [ j −1] ;
i f ( i > 0 and j > 0)
sum −= array [ i −1] [ j −1] ;

array [ i ] [ j ] = sum ;
}

This example presents an integral-image calculation, where the algorithm cal-

culates the integral of a 2D array or image in a memory-e�cient way. The equiva-

lent polyhedron can be seen in Figure 2.1(b) where the dependencies are depicted

by arrows, which is practically the same as the indexing of the memory reads.

It was chosen because this polyhedron has a complicated dependency and access

pattern, which will serve as a good example optimization target later.

While the �rst example does not bene�t from polyhedral optimization, as it

can be easily parallelized anyways, the second example will be examined in depth

in the next section.
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Figure 2.2: Polyhedrons can be partitioned into parallel slices, where parallel
slices only contain independent parts of the polyhedron. For an example, rotating
the polyhedron depicted in Figure 2.1(b), an optimized parallel version can be
transformed.

2.2.3 Optimization with polyhedrons

The polyhedral representation of the loops provides a high level geometrical de-

scription where mathematical methods and tools can be used. A�ne transforma-

tions can be applied on polyhedrons. These approaches can be used for multi-core

optimizations. Polyhedrons can be partitioned into parallel slices, where parallel

slices only contain independent parts of the polyhedron and they can be mapped

to parallel execution units. For an example, rotating the polyhedron depicted in

Figure 2.1(b), an optimized parallel version can be transformed, see Figure 2.2.

These rotations can be easily done by polyhedral loop optimizer libraries [24],

but the rotated/optimized code is not presented here because the resulting loop

bound computations are of little interest for the human reader.

Geometric transformations can be used to optimize the access patterns too,

not just the parallelization, because they transform the memory accesses along the

polyhedron. These transformations should be done o�-line (compile time) even

for dynamic polyhedra, because there is usually no closed formula for getting

them. However, in this optimization we search for an optimal a�ne transforma-

tion in the sense that it should allow the highest bandwidth while still obeying

the dependencies and the parallelization. This is a general constrained discrete

optimization problem, and thanks to the low dimensionality, we can easily a�ord

to solve this by a genetic algorithm, or random trials, if we have an accurate
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model of the architecture.

If we want to handle dynamic polyhedra, we need to compute the worst case

for the dependencies while we try to �nd a parallelization, and later on, in exe-

cution time, we use the transformed polyhedra in the scheduler. In this scenario,

the complexity of the scheduler can be greatly reduced, because the problem has

been reduced in the o�-line optimizations. A practical example would be if the

dependencies in Figure 2.2 were actually dynamic. In this case the parallelization

is the same, but for some nodes the dependencies are missing. This is an opti-

mization opportunity because we can possibly execute more nodes in parallel, so

the scheduler can look to the next slice if there are available nodes. Thanks to

the o�-line transformations, the scheduler only needs to look at the polyhedra in

(the compile time determined) parallel slices, which greatly simpli�es the algo-

rithm. Even more, as previously mentioned the structured way of the scheduling

algorithm means that it is in itself a regular loop structure, which can optimized

the same way.

2.2.4 Treating optimization problems

If we need to do high level polyhedral optimizations on real-world algorithms,

we need to complete several steps depicted on Figure 2.3 and explained in more

detail below. Most of these steps can be done automatically for well behaving

algorithms, but some need human intelligence, especially to ensure that we chose

the most well behaving realization of the algorithm to analyze.

I have identi�ed the most common steps of this process:

1. Take the most natural, and the least optimized version of the algorithm

This is very important to help the formal treatment of loop structure, be-

cause the more optimized the algorithm, the more complicated its loop

structure tends to be, which can hide many aspects from the optimizations.

2. Consider the algorithm as a set of loops and �nd the computationally com-

plex loops

This step can be done semi-automatically, with static code analysis and

benchmarking, most compilers already support this (GCC, LLVM)
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3. Represent the problem as mathematical structures (polyhedra)

This is a bijective mapping between loop structures and polyhedra, a purely

mathematical transformation.

4. Discover dependencies in-loop and between loops

Loop dependency tracking is relatively simple after we formalize the loops,

there is at least partial support for this already in GCC and LLVM.

5. Eliminate as many dependencies as possible

Some of the trivial dependencies can be eliminated automatically, but most

of them need a human hand. We need this step, because dependencies

prevent parallelization and constrain the transformations, limiting out the

ability to optimize.

6. Quantify Π, ∂,P

We formally quantify the shape of the polyhedra, the memory operations

and their implied dependencies, and the possible ways for scheduling the

loops.

7. Find the best transformation for parallelization

This is a static polyhedral optimization (we disregard the dynamic parts),

there are useful solutions in the literature [21, 25].

8. Estimate speed based on η

We can estimate the speed by the simulation of the transformed algorithm,

so we can guess our e�ciency.

9. Optimize: transform Π, ∂,P to increase speed

We apply geometric transformation to the polyhedra, in order to increase

the e�ciency of parallelization, and memory access.

2.3 Problems beyond polyhedrons

Of course, not every problem has a corresponding polyhedron representation,

which can be transformed easily and automatically into parallelized form. There
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Figure 2.3: Schematic overview of the steps we need to take before we can apply
geometric polyhedral transformation for optimization.

are a number of cases, which need human creativity to �nd appropriate solutions

or sometimes we do not even know any e�ective solutions for them. In the

following, two such examples are presented.

2.3.1 Dot-product, a simple example

Let us examine the simple dot-product example in the following code comparing

to its polyhedron representation in Figure 2.4(a).

r e s u l t = 0 ;
for ( int i = 0 ; i < n ; i++)

r e s u l t += vector1 [ i ]∗ vector2 [ i ] ;

Unfortunately, there is no usable polyhedral transformation available here.

In this example, data-�ow dependencies force a strict order of the execution.

These dependencies are connected through an associative addition operator. So

the solution of this problem here is to rearrange the order of the associative

operators, see Figure 2.4(b), which will create the well known parallel reduction.

DOI:10.15774/PPKE.ITK.2014.009



2.3 Problems beyond polyhedrons 22

(a) (b)

Figure 2.4: Polyhedron representation of the dot-product example (a). Rear-
ranging the parentheses in associative chains gives a possible solution for its
parallelization (b).

2.3.2 Irreducible reduction

We often encounter more complex algorithms, for example reduction, where the

transformation is not trivial:

xn+1 = f(xn, yn) (2.7)

Where the yn is the input, and the �nal xn is the output of this general

reduction scheme. If the f function is not associative, then we cannot simply use

the parallel reduction. In this case, we have to investigate the f function deeply,

in order to convert the iteration into a parallelizable representation.

I can state, that my polyhedral transformation, and parallelization methods,

can handle the complexity up to the associative operations. This means that if

there are dependencies in the polyhedron, it is only possible to break them up, if

they are connected by associative operators. More complex dependencies are not

breakable, and they can possibly prevent the parallelization. However if the loop

structure has enough dimensions, it still might be possible to �nd a parallelizable

part of the algorithm.
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2.4 High-level hardware speci�c optimizations

Computational complexity usually concentrates in loops. Loops can be rep-

resented by polyhedrons, these are important building blocks of the program.

Branching parts of the code can be reduced into a sequential code, or sometimes

can be built into the polyhedrons, depending on the conditions. After eliminating

the implicit side e�ects, the sequential code can be translated to pure data-�ows.

Applying these methods, only a bunch of polyhedrons - connected together in

a data-�ow graph - have to be optimized. As we have already seen, this is not

trivial in itself, but after we have this representation, we can move forward to the

optimization problem.

2.4.1 Kernel scheduling to threads

Kernel execution scheduling is a mapping of the polyhedron nodes to the symbolic

plane of time × core id. Horizontal and vertical barriers can be de�ned on this

plane. The horizontal barriers are synchronization points of the time axes, so they

separate di�erent parts of the execution in time and the vertical barriers separate

the core groups. Dependencies cross horizontal barriers parallel with the vertical

barriers (Figure 2.5). Actually, the most important task of this hardware aware

scheduling is to place these barriers. After the barrier separation, the micro-

scheduling is usually trivial inside the groups.

The vertical barriers usually represent a physical separation between the com-

puting core groups. In the case of GPUs, it means that the multiprocessors are

separated by the vertical lines. It is very important that the dependencies do not

intersect the vertical lines, but intersect the horizontal lines. If these forbidden

intersections actually happen, then on most architectures we lose the ability to

ensure correctness of the dependency, because the hardware usually decides the

exact timing of the parallel schedule.

In the groups separated by the barriers, the hardware speci�c micro-scheduling

is executed, which is trivial because we do not have to take into account the

dependencies.
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(a) (b)

Figure 2.5: Scheduling polyhedron nodes to the time× core plain. In the �rst step
we place horizontal and vertical barriers, which segment the plane into groups
(a). The horizontal barriers are synchronization points of the time axes, so they
separate di�erent parts of the execution in time and the vertical barriers separate
the core groups. In the next step microschedule the inside the groups to obtain
the �nal structure (b).

A Plan is a parallel walk of the polyhedron, de�ned in the following way:

P(Π) : NxN→
{

P
(NOP)

(2.8)

Indexing of the plan is : P(Π(t, i)) where t is time and i is the core id.

The plan maps the polyhedron to the nodes of a polyhedron. It is possible that

this set includes symbolic empty items too, because not all nodes have functional

operations. The e�ciency of a plan can be de�ned by simply dividing the number

of polyhedron nodes by the area of the plane (which is equal with the number of

nodes multiplied by time). Obviously the dependencies will limit the maximum

e�ciency.

Plan e�ciency de�nes the e�ectiveness of the usage of computing resources

according to the plan:

P(t, i) t ∈ [1;T ] i ∈ [1; I]

η(P) =

∑
|Pi|tPi
T · I

(2.9)
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2.5 Memory access

On a multi-core architecture we need to keep the utilization of both the cores and

memory bandwidth at optimal levels. Improving the core utilization has been dis-

cussed already in depth in previous sections. In this section the focus is on how

to improve the memory bandwidth after we have achieved the parallelization and

handled the dependencies. Many-core architectures are less reliant on traditional

memory caching, because they cannot put enough cache memory into every core,

due to the chip area constraints. Therefore the memory access of each core has to

be coordinated in a way which is close to the preferred access pattern of the main

memory. This memory is almost aways physically realized by DRAM technology,

which prefers burst transfers. Burst transfers are continuous in address space,

so when cores are accessing the memory, the parts of the memory accessed by

di�erent cores should be close to each other. Older GPUs [26] mandate that each

thread should access the memory in a strict pattern dictated by their respective

thread IDs, otherwise the memory bandwidth is an order of magnitude lower

than optimal. Newer GPUs [34, 27] use relatively small cache memories for re-

ordering the memory transfer in real-time, consequently we only need to keep the

simultaneous memory accesses close together, but there is no dependence between

the relative memory address and the thread IDs. These constraints on optimal

memory access patterns underline the importance of the access pattern optimiza-

tion, however even if we look at the traditional CPU cache coherency, we can

�nd that there are optimizations possible too, if we wish to achieve the maximal

performance, so these optimizations are important regardless of the architecture.

2.5.1 Access pattern (∂(P,Π)) and relative access pattern
e�ciency (η(∂(P,Π)))

I have formally de�ned the access pattern including its dependence on the runtime

walk of the polyhedron, which is the plan. The access pattern can be seen as a

product of the data storage pattern and the walk of the polyhedron. Together

these two contain where and when the program accesses the memory.

So we can formally write:
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∂(P,Π) := ∂ ◦ P (2.10)

Where the ∂(P,Π) is the access pattern which depends on the parallelization.

2.5.2 Memory access e�ciency ratio (θ)

We can write the memory bandwidth e�ciency as η, which is the ratio of the

full theoretical bandwidth and the achieved bandwidth. Usually achieving the

theoretical maximum is unfeasible, so we can depict maximal achievable e�ciency

as ηbest. Consequently we can depict the lowest possible bandwidth by ηworst, in

this case we deliberately force the worst possible access pattern to try to lower

the bandwidth of the memory access. We can de�ne an interesting attribute:

θ :=
ηbest
ηworst

(2.11)

Where θ is the memory access e�ciency ratio. This number can describe,

in a limited way, the sensitivity of the architecture to the access pattern of the

memory. Bigger θ usually means that the architecture is more sensitive to the

memory access pattern, and we need to be more careful in the optimization. The

important limitation of this number is that it does not tell us anything about the

access patterns themselves.

2.5.3 Absolute access pattern e�ciency (η(∂(Π)))

If we want to optimize the access pattern, we can approach the problem from

two sides. The �rst is to optimize the storage pattern of the data we want to

access. This is constrained by the fact that we usually need to access the same

data from di�erent polyhedra, so the di�erent storage patterns may be optimal

for di�erent places of accesses, but we can only choose one. The second way is

to optimize the plans(P), which are runtime walk of the polyhedra. This is done

independently from other polyhedra which access the same data, however we

are constrained by the polyhedral structure, the parallelization and the internal

polyhedral dependencies.
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For easier handling of the optimization, we wish to, at least formally, eliminate

the dependence of the access pattern e�ciency on the plan(P).

Let the absolute access pattern e�ciency be:

η(∂(Π)) ≈ max
P

(η(∂(P,Π))) (2.12)

In other words, the absolute access pattern e�ciency is the maximal achiev-

able access pattern e�ciency by only changing the plan(P). This eliminates the

dependency on the plan, so the storage pattern optimization can take place.

This de�nition seems quite nonconstructive, since it implicitly assumes that we

somehow know the best possible solution. However, the polyhedral optimization

is a relatively low dimensional problem, and the dependencies also constrain it

even more, which means that the plan has an even lower degree of freedom, so

low that we can even perform exhaustive search. Very often this means searching

in one degree of freedom. As a consequence it is a�ordable to compute η(∂(Π)).

2.5.4 Coalescing

In GPU programming terminology memory access coalescing means that each

thread of execution accesses memory in the same pattern as their IDs as depicted

in Figure 2.6 and Figure 2.7a. This is usually true for the indexes of the processing

cores as well. This coalescing criterion only has to hold locally, for example, on

every group execution threads, but not between the groups. This minimal size of

these groups is a hardware parameter.

On GPUs coalesced access is necessary for maximizing the memory band-

width, however for modern GPUs [34, 27] the caches can do fast auto-coalescing.

This means that the accesses should be close together, so the cache can collect

them into a single burst transfer for optimal performance.

2.5.5 Simple data parallel access

This is the ideal data parallel access as depicted on Figure 2.7a, where every

thread of execution reads and write only once, in other words there is a linear

mapping between cores and memory. GPUs are principally optimized for this,
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Figure 2.6: Typical coalescing pattern used on GPUs, where the core or thread
IDs correspond to the accessed memory index

because this is very typical in some image processing tasks, e.g. pixel-shaders.

This access pattern is highly coalesced by de�nition, this can achieve the highest

bandwidth on GPUs.

2.5.6 Cached memory access

If the e�ects of caching are signi�cant, mostly because they are big enough, we can

optimize for cache locality. Consequently we achieve much higher bandwidth than

the main memory has, because if our memory accesses are mostly local, and stay

inside the cache, they do not trigger actual main memory transfers. However,

highly spread-out memory accesses trigger main memory transfers, but due to

the logical page structure of the memory, these transfers are even worse, because

every transfer triggers a transfer of a whole page to/from the main memory.

The size and bandwidth of the various levels of the cache hierarchy are very

important factors, sometimes even more important than the bandwidth of the

main memory. All modern CPUs are optimized for this operation, and newer

GPUs also contain enough cache, so this might be relevant for them too. This is

depicted on Figure 2.7b.
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(a) (b) (c)

Figure 2.7: (a) A simple coalesced memory access pattern. (b) Random memory
access aided by cache memory. (c) Explicitly using the local memory for shu�ing
the accesses in order to achieve the targeted memory access pattern.

2.5.7 Local memory rearranging for coalescing

Local memory rearranging is a GPU technique for achieving more coalesced mem-

ory access as depicted in Figure 2.7c. I would like to emphasize that this opti-

mization can be automatized in my formal mathematical framework, which would

o�oad a lot of work from the human programmer. Furthermore this is the most

important step in linear algebra algorithms implemented on GPUs [28], because

complex but regular access patterns routinely arise in these algorithms.

Essentially this is similar to caching, but thanks to the precise analysis based

on the polyhedral model we know the exact access patterns. Therefore instead

of using general heuristic caching algorithms, we can determine the storage pat-

tern of the data inside the local memory, which would maximize the memory

bandwidth. This would always perform signi�cantly better than caching for rep-

resentable problems in this framework. On some GPUs [34] there is enough

caching for signi�cantly speed up the non-coalesced access, this can be seen in

Figure 2.8, where run times of an 8192×8192 matrix transposition algorithm are
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GPU Full-coalesced Non-coalesced write Non-coalesced read
name run time run time run time

Tesla C1060 35406us 483123us(13.6×) 487898us(13.8×)
Tesla C2050 6700us 10600us(1.58×) 12800us(1.9×)

GeForce GTX 780 4650us 5860us(1.26×) 8420us(1.81×)

Figure 2.8: Run times of an 8192 × 8192 matrix transposition algorithm are
depicted on NVIDIA GPU architectures. In the Full-coalesced case I use local
memory to achieve coalescing for memory reads and memory writes at the same
time. The other two cases are naive implementations, where either the reads or
the writes are coalesced only. In the case of Tesla C2050 there is a noticeable im-
provement which is thanks to the sophisticated and relatively large caches on the
NVIDIA Fermi architecture. The NVIDIA GTX780 contains further improved
caching which re�ects of the benchmark times.

depicted. It can be seen that both the run times and the coalesced/non-coalesced

ratios are improving due to the improvements of the caches.

After we have processed the optimization problem into polyhedra and the

access patterns the local memory rearranging can be seen as a local memory

sized re-indexing of the data, and computing this becomes feasible. Thanks to

the low dimensionality of the problem, and the simple locality constraint on

modern GPUs, this optimization can be done by brute-force trying out re-indexing

schemes. We will not be able to cover the whole search space on re-indexing this

way, however this should produce near optimal solutions in most cases due to the

simplicity of the constraints.

This technique is an especially good target for automatic optimization, be-

cause of its relative simplicity for computers, and signi�cant complexity for human

programmers.

2.6 Algorithmic classes

The algorithmic classes, or more precisely the control-�ow data-�ow structures

which this theory can handle, can be de�ned by relaxing the constraints of Static

Control Parts. The most basic classes of algorithms which can be represented

here are the ones with static loop structures and branches, which are only linearly
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dependent on the loop variables. In this case the loop bounds are allowed to be

parametric, but these bound should be known right before the execution of the

loop. The dependencies should also be linear, which implies that the arrays are

only indexed with a linear expression of the loop variables.

The �rst relaxation is that I allow the conditional execution of the core of

loop to depend on contents of arrays, where the arrays are also linearly indexed,

and they are known before the start of the loop execution.

The second relaxations of the constraints is that I allow the dependencies to

be conditional in a similar fashion to the conditional execution of loop cores.

2.7 GPU implementation of H.264 video encoder

The H.264 ITU video standard is currently one of the most widely used video

coding. This algorithms consist of two bigger parts, the lossy encoding and the

lossless encoding. The �rst part, the lossy encoding consists of two main branches,

the inter and intra coding. The second part is a form of entropy coding, which

includes the Context-adaptive variable-length coding (CAVLC). The Constrained

Baseline Pro�le feature set of the H.264, which de�nes the features of both parts

was implemented.

This video encoding achieves very good compression ratios at acceptable qual-

ities by employing sophisticated prediction schemes in the lossy part of the en-

coding. The inter coding represents inter frame encoding where the current frame

is predicted from the previous frames, and only the di�erence (residual) of the

actual and predicted frame is stored. The prediction employs block matching to

determine the local motion vectors of the image block-by-block. In the version

which I have implemented, I use macroblock granularity (16× 16 pixes), but the

H.264 allows �ner block sizes too. By default, everything is processed in mac-

roblocks: motion vectors, inter, intra coding and CAVLC. This has an important

implication to the memory representation, because if each thread processes a

macroblock, then they should be able to do coalesced access. In my implementa-

tion the images are stored in both macroblock coalesced pattern, and in images

with 2D caching. There is one exception when the access does not have the mac-

roblock granularity, and this is when we process the previous image. During the
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motion vector search, we associate a motion vector with every macroblock, but

these vectors point to a non-aligned 16×16 block of pixels in the previous frame,

therefore we need to store the previous frame in image format also. The motion

estimation and the inter coding are parallel for every macroblock.

The intra encoding unlike the inter encoding does not use the previous frames,

but instead predicts the macroblock from the top and left neighbors as depicted

on Figure 2.9. This dependency results from the particular way that the lossy

compression works: every predictive lossy encoding must be followed by a de-

coding step in order to generate the reference image. This is important, because

we cannot use the original images as references in the prediction, they are not

accessible in the decoder. When we want to decompress/decode the video, we

only have the decoded frame, therefore in order to preserve consistency we need

to generate the decoded frames in the encoder too.

The top left neighbor dependencies are designed in a way that there are no

circular dependencies. This method �ts very well to the serial row-major pro-

cessing of the intra macroblocks. However this dependency severely limits the

number of active parallel threads, because we can only process an intra block if

we already have the top and left neighbor computed.

Because the intra coded macroblocks are not dependent on previous frames,

they are used as key frames (I-frame), which allows seeking inside the video.

However in H.264 the intra blocks are much �exible: inside P-frames the encoder

can chose to mix inter and intra blocks arbitrarily in order to achieve better

compression or better quality. These choices are governed by heuristics which are

not in the scope of this thesis.

The CAVLC encoding is parallel like inter encoding, where every macroblock

can be encoded in parallel. However the actual situation is much more complex

because parts of the frame are intra encoded, other parts are inter encoded, and

the static non moving parts are not encoded at all. Consequently we do not have

to run CAVLC for some macroblocks at all.

The block diagram of the implemented H.264 GPU encoder is depicted on

Figure 2.10, and the lossy parts of the encoder are depicted on Figure 2.11 which

contains the intra and inter coding.
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Figure 2.9: Top and left macroblock dependence of the intra coded blocks due to
the in-frame prediction

2.7.1 Static polyhedra

The static polyhedral structure of this problem which can be seen on Equa-

tion 2.13 is two dimensional and its bounds are frame sizes (N ×M) measured

in the number of macroblocks. For the intra blocks there are two dependencies,

the top dependency, and the left dependency. Because of the static nature of this

approach and because of we can have arbitrary mix of inter and intra macroblocks

in a frame, the number of parallel threads becomes restricted to the worst case

when every macroblock is intra. This practically means that if the frame has

N ×M macroblocks, than the min(N,M) will be maximal number of active par-

allel threads. This is considerably worse than the best case N ∗M . This can be

easily improved by handling the two branches separately, but that still fails to

signi�cantly improve the intra processing speed.


1 0 0
0 1 0
−1 0 N − 1
0 −1 M − 1

 ·
xy

1

 ≥ 0̄ (2.13)

The memory access pattern is very regular too, the thread which is processing

the (x, y) point of the polyhedron accesses only the (x, y) points of the data

structures. The exception is the intra prediction which also accesses (x − 1, y)

and (x, y − 1).
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Figure 2.10: Data-�ow diagram of the GPU implementation of the H.264 video
encoder
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Figure 2.11: Data-�ow diagram of the lossy encoding part of the GPU implemen-
tation
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f1(x, y) :=

[
1 0 0
0 1 −1

]
·

xy
1

 (2.14)

f2(x, y) :=

[
1 0 −1
0 1 0

]
·

xy
1

 (2.15)

The top and left dependencies are described by Equation 2.14 and Equa-

tion 2.15 respectively. If we apply static parallelization to this problem we get

the following transformations:

1 0 0
1 1 0
0 0 1

 ·
xy

1

 :=

ab
1

 (2.16)

 1 0 0
−1 1 0
0 0 1

 ·
ab

1

 :=

xy
1

 (2.17)

We can substitute the transformation in Equations 2.16, 2.17 into Equa-

tions 2.13, 2.14, 2.15, so we get:


1 0 0
−1 1 0
−1 0 N − 1
1 −1 M − 1

 ·
ab

1

 ≥ 0̄ (2.18)

f1(a, b) :=

[
1 0 0
0 1 −1

]
·

ab
1

 (2.19)

f2(a, b) :=

[
1 0 −1
0 1 −1

]
·

ab
1

 (2.20)

We can choose to map the a axis to the number of threads and the b axis

to the time. This way (a1, b1) and (a2, b2) polyhedral points are allowed to be

executed parallel if b1 = b2. This is possible because in this transformed space

both f1 and f2 dependency functions map to an earlier point on the time axis b,

f1(a, b) := (a, b− 1), f1(a, b) := (a− 1, b− 1).
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2.7.2 Dynamic polyhedra

This case can be optimized further by my dynamic polyhedral model. The �lter

functions to the inter and intra coding are a simple �ag stored in memory for

every macroblock (point of the polyhedra in out case). This �ag tells us if we

compute the macroblock in inter, in intra or skip it completely.

Because of the nature of inter macroblocks, we do not have dependencies be-

tweem them. This means that when an intra macroblock depends only on inter

macroblocks we can compute that intra independently from all other intra. Con-

sequently the mix of inter and intra macroblocks can be computed signi�cantly

more e�ciently than a frame full of intra macroblocks.

According to my dynamic method, we have to de�ne a scheduler algorithm

for inter and intra computation. The dependency between the two types of mac-

roblocks can be resolved by running the inter calculation �rst. The scheduler for

the inter calculation is a very general algorithm, which simply evaluates the �ag

which indicates the type of the macroblock, and stores all the inter macroblock

coordinates inside an array. For high e�ciency the parallel computation of each

index of the index of the macroblock, can be done by running a parallel pre�x sum

on the Ffilter function, where the true, false evaluates to 1, 0 respectively. This

way, in every thread where the Ffilter function evaluates to true, we will have the

linear index (+1) where we can store the point of polyhedra (macroblock index),

which we want to process.

This kind of scheduling for inter macroblocks improves e�ciency because in

SIMD GPU architectures group of threads are running in lock-step. This im-

plicates that the when Ffilter function evaluates to false, the thread must wait

for other threads in the same group to �nish processing, before it can continue.

Consequently the Ffilter function cannot completely realize its speed enhancing

function. In order to minimize the time when threads wait, we run the scheduler,

which only does a lightweight computation (pre�x sum, or atomic sum) to com-

pute the indexes which can ensure that the actual computation can run at full

throughput, e�ciently utilizing the hardware.

In the case of the intra processing we will have Ffilter functions for the de-

pendencies too. This means that at �rst glance the dependencies have to be
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scanned exhaustively during run-time. Fortunately we can take the polyhedral

transformation which was originally meant for the intra processing, and use it

for the intra scheduler. We can trivially group the intra macroblocks which pass

the Ffilter function into parallel groups by using the transformed coordinates in

Equation 2.18, however this is itself would be a small improvement over the static

optimization. The more advanced algorithm can inspect only nearby groups, and

merge them. This way we can get the speedup when the intra blocks are sparse

inside the P-frame, and we do not need a full dependency search. This is a trade-

o� between how much we scan dependencies (speed of the scheduler) and the

how much parallelism we can achieve in the intra processing. The polyhedral

transformation introduces the case where we do not need to scan at all compared

to the full scan, where we check all possible dependencies repeatedly.

In case of the I-frames where all macroblocks are intra, the static polyhedral

approach cannot be improved further by using dynamic polyhedrons. However

in this case I reordered the intra computation in order to minimize the run-time

of the parts which are a�ected by the dependencies.

The non GPU adapted version of the intra encoder is depicted on Figure 2.12.

The reference feedback, which causes the dependencies, encompasses all the

blocks, so the they cannot be factored out of the dependency. This computation

is less e�ciently parallelizable due to the dependencies, so moving out blocks

from this computation can improve the overall speed.

The dependencies in the intra computation are irreducible in the sense that

we cannot easily reduce them to trivial or associative parts, like I have mentioned

in Section 2.3.2. I have solved the problem by restructuring and changing the

computation, this improved version can be seen on Fgiure 2.13.

Originally the feedback loop, which generates the dependency, exists because

we need to use the same reference image which will be generated at the de-

coder, otherwise the error would accumulate catastrophically. I have moved the

DC prediction and the lossy compression (frequency domain transformation, and

quantization) outside the feedback loop, so I use the wrong reference image. In

order to correct it, I created a new feedback loop, which computes the corrections

and creates the actual reference image, and the �nal results. This is possible be-

cause I use DC prediction which mathematically permits the complete decoupling
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Figure 2.12: Data-�ow diagram of the non GPU adapted version of the intra
encoder. The reference feedback, which causes the dependencies, loops all the
blocks, so the they cannot be factored out of the dependency.
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Figure 2.13: Data-�ow diagram of the GPU adapted version of the intra encoder.
The new feedback loop uses DC correction instead of the reference image inside
the intra computation, this way most of the computation is free of dependencies.
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of the DC component in the frequency domain transformations and quantization,

however the frequency domain transformation used by the H.264 standard is an

inaccurate Discrete Cosine Transform, which creates a slight coupling between

the DC and AC components. Consequently the correction step is needed which

computes the correction based on the approximation of the DC-AC coupling.

2.7.3 Benchmarks

25fps X264 on Intel i7 960 My implementation on GTX 580

Input streams 12 22
800x600

Output streams 48 88
640x480(QP=26)
640x480(QP=28)
320x240(QP=26)
160x120(QP=26)

Figure 2.14: The results of the benchmark of my GPU implementation built into a
live video transcoding system compared to the CPU implementation. The inputs
stream were decompressed, rescaled and re-encoded into di�erent resolutions and
image qualities.

25fps X264 on Intel i7 960 My implementation on GTX 580

Input streams 10 18
960x720

Output streams 40 72
640x480(QP=26)
640x480(QP=28)
320x240(QP=26)
160x120(QP=26)

Figure 2.15: The results of the benchmark of my GPU implementation built into a
live video transcoding system compared to the CPU implementation. The inputs
stream were decompressed, rescaled and re-encoded into di�erent resolutions and
image qualities.
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My GPU H.264 implementation was built into a live video transcoding system,

which made practical benchmarks possible. Intel i7 960 and NVIDIA GTX 580

was used as the testing hardwares whose release date is only one year apart, so

the benchmarks are comparable. There are measurements depicted in Figure 2.14

and in Figure 2.15. In the tests, higher resolution stream were received, decoded,

scaled and re-encoded in multiply resolutions and qualities (QP). The quality of

the encoded streams were measured by human observer, and it was found to be

corresponding to the con�gured quality.

2.8 Conclusion

Polyhedron optimizations themselves can not solve the huge problem of paral-

lelization, but based on my experiments it seems to be a promising start. The

basic idea is to reduce these optimization problems into topological transforma-

tions. I went on this road, and reduced other parts of the problem, too. Along

the way I determined possible pitfalls and bottlenecks, which need to be worked

around. The most important ones are data-�ow dependencies, so investigating

more data-�ow dependence operator primitives provides more handy tools to be

able to perform polyhedral optimizations, therefore expanding the scope of algo-

rithmic problems we can handle inside this framework.

It is an important lesson learned that problems should be treated in their

simplest forms, optimized forms are usually di�cult or impossible to handle.

There are quite many hardware speci�c heuristics, and sometimes not even the

manufacturer knows them completely, so benchmarking everything is necessary.

Fortunately benchmarking access patterns and thread scheduling is quite easy in

this framework.

We are seeing exponential growth in core number (according to Moore's Law),

which implies that very soon only parallelizable algorithms will be important as

optimization targets. I strongly suspect that every practical algorithm is par-

allelizable, but actually implementing these will be even more important in the

near future.

The given model is designed for many core programming and the theoretical

aspects were derived from practical experience on GPUs and FPGAs. The model
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can be easily extendable to FPGAs, Cell BE and CPU clusters. However, the

importance of di�erent aspects of this formalism strongly vary depending on

architectures. For example, local memory is the most important part of Cell BE

architecture, but less important for GPUs, and missing for CPUs.
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Chapter 3

RACER data stream based array

processor

In this Chapter, �rst I give an introduction of the current trends in computational

architectures. I summarize the main issues of the most popular approaches by

highlighting the disadvantages of these architectures. The introduction includes

the main targeted problems to be solved as well. In Section 3.2 I introduce my

invention, the RACER architecture, which is a novel massively parallel hetero-

geneous data stream architecture. I describe the programming principle of the

proposed architecture. To maximize computational and data transfer speed per

chip area I designed an active memory device, which is presented in detail. Next,

the �ne structure of its processing array and the applied pipeline processing are

described. RACER programming and its emulated functionality are presented

through simulations.

3.1 Introduction

The trend of the evolution of the processors is obvious, the number of cores per

processor will increase exponentially in the next �ve-ten years. However, the

di�erence between each of the following architectures is not only the number of

processors, but the changes in their architectures. This evolution leads not only

to a higher number of processing units, but to the more e�cient and optimized

operation and also to an increased computational power per area.

44
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3.1.1 Compromises of common architectures

If we examine the current parallel architectures, we �nd that their objective is

the maximization of the general-purpose computing power per unit area. This is

achieved through technological improvements and trade-o�s. These compromises

of their memory and computing structures at the most common architectures are

the following:

CPU (Central Processing Unit) [29]: CPUs usually have only one type of

explicitly addressable memory and general caching is applied. Caching generally

means that data are stored by a special method to be available more quickly

than in direct memory access. The so-called cache memory contains selected data

elements and it is con�gured to provide the data elements to the CPU as quickly

as possible. The computing architecture of CPU is characterized by the "out-of-

order execution" method, which is required for the run-time rearrangement of the

order of the instructions. A signi�cant part of the chip area of CPU is used by

the cache memory, the number of transistors of the arithmetic logic circuits is less

than the number of transistors of other logic parts. At the same time, relatively

only a few parallel threads can be run on one CPU using its small number of

arithmetic units, but these units are very well utilized. In case of a multi-core

CPU each core can have separate cache memory.

The di�culties of memory reading and writing of CPUs are hidden by using

traditional hierarchical cache. This solution, especially if we have more processor

units, increases untenable the ratio between the chip area of the cache memory

and the chip area of pure computing. It is a good balance for the less computa-

tionally intensive tasks, but quite wasteful in the case of scienti�c or graphical

computations.

DSP (Digital Signal Processor) [30, 31]: These devices are very similar to

CPUs, the di�erence is mainly between their parameters. DSPs are designed for

running signal processing algorithms e�ciently (FFT, matrix-vector operations)

with low power consumption and competitive price. The chip area (ie. the cost of

manufacturing) is much smaller than the CPUs', because of optimization reasons,

DSPs have less cache memory. Therefore the system memory access patterns of

DSPs are more restricted if we want to exploit the available bandwidth.
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GPU (Graphics Processing Unit) [32, 33, 34]: The widely used GPU has many

same processor units which can access the required data through a hierarchical

memory system. The processing units of the GPU are organized into groups and

units can locally communicate with each other within a group. The GPU is not

characterized by locality, its memory system is organized in hierarchic tree struc-

ture. For the completely local organization of the same SIMD (single instruction,

multiply data) type processor units, more global wires have to be connected to

each processing unit. Despite local connections between the processor units, the

global wires limit the maximum size. On the transistor level, the dimensions are

so small and a chip is proportionately so large that the communication between

the two farthest processor takes too much time.

The computing architecture of GPU has many very simple core processing

units, that are usually SIMD type vector processors. Most of the transistors of

GPU are parts of a processing unit, which usually consists of a combination of an

ALU (Arithmetic Logic Unit) and an FPU (Floating Point Unit). GPU has a very

simple pipeline management with deep pipelining. Pipelines are chains of data

processing stages. Deep pipelining means that the chain of sequential steps of the

processing operations is long. Consequently, compared to CPU, GPU contains

many processing cores, but they are typically less utilized.

A further di�culty of GPU-based devices is the delivery of data to the process-

ing units. The maximum utilization is measured by the number of computational

operations per data elements in order to fully exploit the capacity of the archi-

tecture. In case of ideal memory utilization, this number means usually 25-30

operations. For GPUs this number is low because the processing is overlapped

with data transfer, but generally this number is still too high to utilize optimally

their performance since the algorithms typically do not perform 25-30 operations

on the same data element before loading it back into the memory. If the GPU

device does not perform the optimally required operations on a data element then

the processing units are �starving� by reason of slow memory access and they are

inactive for a signi�cant part of time.

The hierarchic memory structure of GPU usually contains addressable local

memory for each processing unit or unit group. GPU is connected to global

memory too, which applies caching, but less than CPU has. Generally, GPU is
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also capable of using two-dimensional caching that is treated as a two-dimensional

array of memory blocks for image processing.

The vector based SIMD architecture of GPUs has a very strong constraint to

the implementation of threads. In a workgroup every thread has to do the same

operation on di�erent data and read the data from the adjacent memory. But

working with this architecture the programmer has to solve the e�cient use of

memory, because contrary to the CPU, this system does not hide the details and

does not solve the related problems automatically.

Cell BE (Cell Broadband Engine) [35]: this is a hybrid architecture, which

includes a classic PowerPC CPU processor connected to synergistic processing

units. The synergistic processing units are very simpli�ed processing units, which

have relatively large local memory on chip. The programmers are responsible to

solve every tiny technical problem, from the appropriate feeding of the pipeline

to organize the internal logic of the memory operations. This device has only

indirect memory access via the local memory.

FPGA (Field Programmable Gate Array) [36, 37]: On this architecture, ar-

bitrary logic circuit can be implemented within certain broad limits. Usually

the implemented circuit is relatively e�cient, since the desired circuit is realized

physically on the FPGA by connecting on-chip switching circuit components.

Consequently the logic circuits of the FPGA can be adapted directly to the given

task, therefore this architecture can exploit most e�ciently the available process-

ing units. However, the cost of this enormous �exibility is the low density of the

processing units on the chip surface, since the switching circuits and universal

wiring need large chip area.

FPGA is usually connected to on-board memory and next to its arithmetic

units there are local memory modules too. Usually on an FPGA there is no or very

simple caching, but if cache memory is implemented, it requires too much chip

surface. On an FPGA, usually there are more than a thousand general processing

units (e.g. arithmetic units), and these units are complemented by hundreds of

thousands of more simple logic processing units (CLB). The reprogramming of

the FPGA, which is a hardware implementation of an appropriate computing

architecture is slow compared to the computation power of FPGAs. During the

rede�nition of the computing architecture the auto-routing process has to be
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carried out, which means essentially the hardware design. In the course of auto-

routing procedure the compiler converts the designed FPGA program to physical

FPGA logic circuit. This compilation is slow (o�-line), because there are many

di�erent potentially working circuits but we need to �nd the optimal (or quasi-

optimal) solution. The reprogramming of a standard sized FPGA can take up to

half an hour using a currently available PC, because it includes a high dimensional

combinatorial optimization problem, which is NP-complete.

FPOA (Field Programmable Object Array) [38]: The memory architecture

of FPOA is essentially identical to the FPGA's. Compared to FPGA, FPOA

contains higher level processing units such as ALUs or FPUs, and a smaller

number of freely programmable universal logic units.

Systolic Array [39]: this classical topological array processor architecture con-

tains e�ectively only execution (computing) units, adder and multiplier circuits,

which usually solve some linear algebra operations in parallel. Its applicability

is very limited, because its topology is speci�c to the executed algorithm. This

architecture does not contain either memory architecture, or program control

structure. These units should be provided by another system. The �exibility is

sacri�ced for e�ciency, since the computing units are utilized almost fully during

operation and the surface of the silicon chip contains e�ectively only computing

units.

The systolic array is a topological array, which receives input, and gives out-

put at the edge of the array. According to the design of the systolic array, only a

single algorithm can be executed at the same time, so there is no task level paral-

lelism. The processing elements of the systolic array are ALUs or FPUs, which are

connected to each other by one-way connections, thus a loop can not be de�ned.

The stream of the data is prede�ned on the hardware by the one-way directed

connections, therefore it can not be changed. It practically has no control-�ow,

but it can be programmed by the order of the input data and/or arithmetic in-

structions sent to the processing elements. This architecture is characterized by

good computing performance per area, but only very speci�c, prede�ned tasks

can be performed e�ciently. The systolic array is not Turing-complete.

CNN (Cellular Nonlinear/Neural Networks) [40, 41]: this architecture is e�-

cient at local image processing operations (low resolution image processing algo-
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rithms on gray-scale images) with extremely high speed and low power consump-

tion. Every pixel is associated with a processing unit, the process is analog and

there is only a very little analog memory. Accessing the global memory compared

to the internal speed is very slow and also needs the analog to digital conversion

of the pixels. It is optimized for 2D topological computations with low memory.

Data�ow architectures [42]: Based on the implementations, data�ow archi-

tectures can be classi�ed as static and dynamic architectures. MIT Data�ow

Architecture [45], DDM1 [44], LAU [50] and HDFM [51] were designed using the

static model. Manchester Data�ow Machine [46], the MIT Tagged-Token [43],

DDDP [48] and PIM-D [47] were designed using the dynamic model. To over-

come the main disadvantage of the dynamic model, which is the overhead of

matching tokens, expensive associate memory implementations are included in

the architecture (e.g. Monsoon architecture [49]). Although the data�ow archi-

tecture is very promising because of its execution paradigm, but in practice it

can not exploit e�cient parallelism based on its inherent limitations. Another

problem of this approach is that it is di�cult to program because of its functional

languages.

3.1.2 The main targeted problems

In case of multiprocessor computer architectures, moving data e�ciently between

memory and processing cores poses a signi�cant programming challenge. We need

to transfer the data - that we want to process to the cores - in the order which

is e�cient to process, however the e�cient pattern of memory access usually

con�icts with the e�cient processing pattern. The more cores we have on a

single chip, the more sensitive we are to the memory access patterns, because

more cores have to share the same global memory bandwidth and less space is

allocated to cache memory, which can partially mitigate this problem.

Further disadvantage of the most of the well known multiprocessor array based

computer architectures is that the clock signal is distributed to each processing

elements through specially dedicated global wiring. This global wiring is op-

timized for synchronized operation, because these architectures are completely

synchronized by themselves. This wiring is di�cult to implement e�ciently on
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semiconductors, because the wavelength of the clock frequency is comparable to

the length of the wire and delivering the clock signal everywhere on the chip in

the exact same time is a highly complex task. On the other hand, not just the

clock signal, but the data has to arrive at the exact right time at the processing

units as well. Most often the faster data pipelines need to be slowed down, so

the slowest pipeline is the speed limiting factor. This problem can be solved by

highly complex execution and pipeline control, or alternatively by much simpler

locally controlled pipelines. However, locally controlled pipelines are fundamen-

tally incompatible with the classically programmed architectures.

Considering these problems, my aim was to design a computational

architecture (RACER architecture), which is not limited by the disad-

vantages of the previous parallel architectures, is Turing complete and

fully general algorithms can be implemented e�ciently on it, moreover

its performance per area is maximized as much as possible.

The purpose of this work is to create a multiprocessor array based computer

architecture, which is able to accomplish the ordering and re-ordering of data

elements of the data streams during processing more e�ciently than the well-

known architectures.

Another purpose of this work is to design a multiprocessor array based com-

puter architecture, wherein the computer architecture does not require globally

wiring the clock signal to each processing unit. The desired architecture should

have greater fault tolerance against the synchronization delays of data streams

and it should provide synchronization of data streams more e�ectively than other

well-known architectures.

The proposed RACER computer architecture ensures the ordering of the data

elements of the data streams with greater e�ciency than the well-known systems,

therefore the architecture contains an active data memory which, besides storing

the data, is able to reorder the data elements of the data stream. This ordering

unit is integrated in the active data storage. Moreover, without an external unit,

the ordering unit is able to re-order the data streams every time when the stream

passes through a memory unit.

The RACER architecture has a simpler structure and smaller parametric

search space such as FPGA. In this architecture, the connections of process-
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ing units are simpler and higher level processing units are applied. The RACER

architecture tolerates the sub-optimal paths better, therefore data stream paths

can be created much more simply and quickly.

3.2 RACER architecture

The main functional blocks of the RACER computer architecture can be seen in

Figure 3.1. The architecture includes a central processing unit (RCPU), memory

units (MU), periphery units (PU), control unit (RCU) and instruction stream

router unit (ISRU). The units of the architecture are connected to each other

through the RCPU. The RCPU processes the program stream which consists of

instruction stream and data stream divided into data elements, see Figure 3.2.

The ISRU, which de�nes the instruction stream, can be integrated in RCPU, but

in any case it is still a separated unit within the RACER architecture. The RCPU

contains an array of blocks of processing elements and each block is surrounded

by data routing elements. Lateral processing elements are connected to the neigh-

boring data transfer elements. Lateral processing elements are those which are

physically located on the edge of the block.

The computer program of the RACER architecture contains an instruction

stream which de�nes the program stream path and the hardware parameter de-

tails of the implementation of the program. The route of the program stream

through the parts of the architecture especially through the RCPU and memory

devices de�nes the stream path, which is essentially the topology of the comput-

ing hardware structure of the problem. The RACER architecture recon�gures the

hardware structure before each program execution, namely it plans the routes of

the program streams which may vary per each execution.

Every MU of the RACER architecture contains a sorting processing unit

(SPU) to be able to order or reorder the data elements of the program stream.

The design of such memories, namely an SPU is integrated in the MUs, allows

the extremely rapid reordering of the data elements. While the unordered data

stream is being stored in the memory, the properly ordered data stream can be

read out. This sorting process can be solved very e�ciently by integrating the

data sorting function into the MUs. For the investigated algorithms the number
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Figure 3.1: The main functional blocks of the RACER computer architecture can
be seen. The architecture includes a central processing unit (RCPU), memory
units (MU), periphery units (PU), control unit (RCU) and instruction stream
router unit (ISRU). The units of the architecture are connected to each other
through the RCPU.

Figure 3.2: The program stream which consists of the instruction stream and the
data stream divided into data elements, and the disassembly stream.
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of MUs connected to RCPU was typically between four and eight, but more MUs

can be connected to the RCPU.

The SPU of RACER architecture prepares the data streams and controls the

appropriate data feeding of the RCPU. The data stream starts from a PU or MU

and arrives at a PU or MU too. It can �ow through even several times in di�erent

MUs while the calculations are carried out by the processing elements. Because

PU and MU provide the same interface, they both can be used as a source or a

destination of a program stream. The instruction stream of the program stream

contains the tasks of MU too, which is the sorting of the data elements of data

streams into di�erent patterns.

In the common stream processing based multiprocessor computer architec-

tures, the program streams, which are leaving the central processing unit, are

reordered by the cache and the processor itself. In the literature this reordering

is usually called �coalescing�. The reordering is necessary to obtain the appropri-

ate order of data elements from the computing point of view, moreover to read

and write the memory by a continuous data transfer. In the RACER architecture

the task of coalescing is done by the MU. Thus, unlike the well-known architec-

tures, where the contents of the memory are ordered close to the processor, the

MU contains a special purpose processor for this task. Thus, the sorting of the

data can be performed using a so-called on-chip processor much faster than in

the well-known devices. The usage of these memories in the RACER architecture

is especially bene�cial for performing local data reordering.

The better the advantages of SPU can be exploited, the higher the bandwidth

utilization of the memory is. The data bus bandwidth of a computer architecture

determines the maximum transferable data per unit time. In order to provide

adequate speed of data processing, the data bus of the RACER computer archi-

tecture is typically much wider than in conventional architectures.

3.2.1 Programming principle

As mentioned, the MU can do more than just store the data, because it has an

integrated sorting processor. Therefore, it is naturally optimized for comparing

and moving instead of computing, however it should be possible to run simple
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algorithms on it like maximum or minimum search, or random shu�ing. This

opens a new possibility: using the memory as an active part of the algorithm as

seen in Figure 3.4. The link between the memory and RCPU should be able to

transfer data both ways at the same time for optimal performance, so the memory

can be used as a part of the data stream pipeline. This way the bottleneck

introduced by the strictly coalesced memory reading can be avoided, without

using caching.

Figure 3.3: A simple data stream processing example is shown, where the addition
of two data streams from di�erent sources is realized element-by-element by an
adder operator realized in the RCPU. The width of data streams can be 4 × 32
bits, but this parameter can vary depending on the hardware implementation.

The head of the program stream contains the instruction stream and the

central part of the program stream contains the data stream. The data stream

contains the ordered data elements, which are processed by the RACER architec-

ture. The head of the program stream contains the instructions for the memory

and the arithmetic and control operations for the processing elements. The data

elements of the central part of the program stream are arranged according to

the computing structure, essentially arranged in a topology as the processing is

carried out by the processing elements on the data elements of the stream. The

tail part of the program stream includes the disassembly stream which ends with

a disassembly message. The disassembly stream e�ectively terminates the pro-

gram by resetting all the hardware elements to their respective default state. In

every case in the program stream of RACER architecture, a given instruction

DOI:10.15774/PPKE.ITK.2014.009



3.2 RACER architecture 55

Figure 3.4: The computation of Figure 3.3 realized on RACER architecture.
The addition of the �rst and second data channel of the input data stream is
computed, and the result is placed in the �rst channel of the output data stream.
Of course the RCPU can perform more complex operations, too

precedes the data element, which it is executed on. It is possible that the in-

struction stream and data stream is not separated in the program stream, i.e.,

the elements of the instruction stream and data stream can alternate.

In Figure 3.3 a simple example is shown for processing data streams, where

the addition of two data streams from di�erent sources is realized element-by-

element by an adder operator realized in the RCPU. The width of data streams

can be 4 × 32 bits, but this parameter can vary depending on the hardware

implementation. In Figure 3.4 the addition of the �rst and second data channel

of the input data stream can be seen, and the result is placed in the �rst channel

of the output data stream. Arriving from the MU and passing through the RCPU

the data stream is at least partially processed, as it can be seen in Figure 3.4. Of

course the RCPU can perform more complex operations, too.

3.2.2 Active memory

The role of the RACER MU is twofold: data storage and data sorting. Figure 3.5

shows a simple example of the reordering of the data in the MU. The input pro-

gram stream is stored in a suitable storage and then during the readout process,

the SPU creates the rearranged output data stream. In order to minimize the

processing time of the MU, the MU and its SPU is optimized for data move and
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comparison operations. The RACER memory is capable of performing only sim-

ple algorithms, such as searching maximum or minimum elements or generation

of index for data elements.

In Figure 3.5 the sorting of an input data stream is depicted. In this sorting

process one of the channels of the data stream contains the indexes. These in-

dexes/tags are related to the data elements of the data stream, which the SPU

arranges by their indexes and it creates the corresponding output data stream.

In a more advanced example, the MU sorts the data elements mixed by a loop,

because the loops and other control structures have the tendency to shu�e the

order of the data elements. However, we also may need to reorder the data el-

ements if the elements are not explicitly mixed but other di�erent parts of the

algorithm require di�erent orderings. All nontrivial programs would contain con-

trol structures for example loops. This underlines the importance of the sorting

capability of the MU.

Figure 3.5: Illustration of the RACER memory, it sorts the information by tags.
In this sorting process one of the channels of the data stream contains the indexes.
These indexes are related to the data elements of the data stream, which the SPU
arranges by their indexes and it creates the corresponding output data stream.

In Figure 3.6 the block diagram of the RACER MU can be seen. The RACER

MU contains a memory processing unit (MPU) for comparing the data elements.

This MPU can be an ALU or an FPU, it should have at least minimally ade-

quate computing capability for data sorting, and is controlled by the memory
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control unit (MCU). The MCU receives and executes the related parts of the

instruction stream. The MU also includes a data link controller unit (DLCU),

which is connected through the data bus to a port of RCPU, where the data

transmission can be implemented by optical �ber or conventional wiring. The

DLCU has a data bu�er storage and frames the program streams and send them

to the RCPU. It is important to note that the MU is not a homogeneous block of

memory, and its structure is optimized for sorting and processing, by intermixing

memory (DRAM) and compare blocks. Data sorting is based on comparisons,

consequently the highest throughput operation inside the MU is data compari-

son. This is very important, because in order to achieve optimal e�ciency the

comparison and sorting should be fast enough so it can run parallel with the MU

reading and writing operations. In the ideal case when only local sorting is needed

on the data stream, this high throughput allows the full parallel operation of the

MU, so the receiving of the stream (write), the sorting, and the sending(read)

operations can all run parallel. This drastically lowers the delay, caused by the

sorting operation.

3.2.3 Structure of the RACER central processing unit

In Figure 3.7 the details of the internal structure of the RCPU can be seen. This

device contains the block of processing elements and the data routing elements.

The processing elements are connected to the neighbors and are able to process

operations on program streams based on the instruction stream. The role of

the data routing elements enables the passage of the stream to the processing

elements. Usually data routing elements connected to their neighbors can be

placed at all four sides of a block of processing elements. More data routing

elements are connected to a block of processing elements, more di�erent paths

can be used to transfer and enter the program stream into the processing block.

The elements of the data stream pass through the data routing elements without

processing the stream. In case of the processing of multiple or branching data

streams in the same time, streams can cross each other through the routing

elements. The data routing elements ensure that a data stream can enter at the

right place of the block of processing elements, so the processing elements can be
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Figure 3.6: Structure of the RACER MU with the communication paths. The
RACER MU contains a memory processing unit (MPU) for comparing the data
elements. This MPU can be an ALU or an FPU, it should have at least minimally
adequate computing capability for data sorting, and is controlled by the memory
control unit (MCU). The MCU receives and executes the related parts of the
instruction stream. The MU also includes a data link controller unit (DLCU),
which is connected through the data bus to a port of RCPU, where the data
transmission can be implemented.
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distributed optimally between the data streams whose processing is overlapped

in time.

In Figure 3.7 there are multiple processing blocks, where the processing blocks

are connected by data routing elements. The data stream can be processed while

it passes through multiple processing blocks, before leaving the RCPU through the

input/output ports. The data stream can leave to the RACER memory or other

peripheries through the input/output communication ports, that is the RCPU

communicates with the units of the architecture through the ports. The RCPU

has a lot of possible communication ports, in case of a square arrangement of

processing elements, the number of communication ports can be, as an example,

4×M , where M is the number of processing elements at the edges.

The data routing elements are along and between the processing blocks that

the data streams can enter processing blocks at the optimal location. The data

streams can even cross each other in the data routing elements. The intersecting

data streams do not interact with one another, they cross each other without

exchanging data.

It is important to note that since using longer data stream paths are relatively

non-resource and non-time consuming, delay can be tolerated, the RCPU scales

well in space, and the computing area can be extended easily by placing modular

processing blocks next to each other and connecting them with data routing

elements.

A processing block generally contains n × m processing elements. In Fig-

ure 3.7, in the given example n = m = 4, but n and m can be chosen arbitrarily.

The processing elements are arranged in square blocks including general process-

ing elements and elements with enhanced functionality. These special elements

are placed at the bottom and the right side of the block. In Figure 3.7 the

processing elements are labeled by P and the enhanced processing elements are

labeled by G, accordingly. The enhanced functionality processing elements have

all functionality of general processing elements, in addition, they may have con-

ditional data stream control, which is implemented by the conditional control of

their multiplexers, namely they are particularly suitable for the implementation

of certain types of branching. Some of these branches can be implemented by
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Figure 3.7: Internal structure of the RACER central processing unit. This device
contains the block of processing elements and the data routing elements. The
processing elements are connected to the neighbors and are able to process oper-
ations on program streams based on the instruction stream. The role of the data
routing elements enables the passage of the stream to the processing elements.
The processed data stream can leave to the RACER memory or other peripheries
through the input/output communication ports.
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general processing elements too. The types of branching are described in detail

in Section 3.3.

Each processing element contains programming logic, which is con�gured by

the local memory. This programming logic controls the multiplexers, and also

implements control �ow operations. The simplest approach is to view the pro-

gramming logic as LUTs (lookup tables). These LUTs tell the multiplexers how

they should behave in each situation. Di�erent situations arise depending on

the state of the incoming and outgoing pipelines, and the control-�ow operation

which the processing element implements.

On the side of the processing blocks, each processing element has three data

routing neighbors on one side and can be connected to only one data routing

element.

Figure 3.8: Internal connections of the RACER CPU, the structure is black, the
connections are gray. These connection gates provide the passage of the data
stream between processing elements and data routing elements, between data
routing elements and between processing elements.

Figure 3.8 shows a part of Figure 3.7 where connection gates are also included.

These connection gates provide the passage of the data stream between processing

elements and data routing elements, between data routing elements and between

processing elements.
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In Figure 3.7 three dots note that the structure of RCPU can be extended

in the speci�ed directions. In the indicated directions more blocks of processing

elements can be arranged in the same structure. The data routing elements are

connected to the ports on all sides of the RCPU, as it is shown in Figure 3.7 and

also at the right side and the bottom.

3.2.4 Program stream

In Figure 3.9, as a simple example of RACER algorithms, the path of its program

stream is depicted. According to the Figure, the data streams pass through the

data routing elements and processing elements. The processing elements perform

calculation operations on the data streams. The data streams merge into one

data stream in the junction, which leaves the RCPU through the output port. In

Figure 3.9, the data streams are displayed by their traversed routes.

In case of using program streams, the implemented program included in the

instruction stream travels before the data stream. The program stream assigns

the tasks to each processing element, the processing elements receive their in-

structions as the program stream passes through them, therefore global control

of processing elements is not needed. Using such program streams, processing

elements are locally controlled only. The instruction stream router unit (ISRU)

de�nes the route of the data stream, which will con�gure the required archi-

tectural layout for a given algorithmic calculation. The ISRU is optimized for

especially this task, so it can run to solve this optimization problem e�ciently in

real-time. This is very important, because this allows the RCPU to be a truly

multitasking architecture.

In the RACER architecture, there are several options to concatenate the in-

struction stream with the data stream. The program stream may be received

from an external periphery, in this case it does not contain an instruction stream

yet. When the program stream reaches a place where the routes are not de�ned

and not included in the stream, it will stop. So the ISRU provides the instruction

stream, which includes the program, and then the data and instruction streams

are concatenated into a program stream. The instruction stream is transferred
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Figure 3.9: A simple algorithm routed on the RACER CPU. Grey depicts the
used elements. The data streams pass through the data routing elements and
processing elements. The processing elements perform calculation operations on
the data streams. The data streams merge into one data stream in the junction,
which leaves the RCPU through the output port. The data streams are displayed
by their traversed routes.
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through the data routing elements to the concatenation junction. Because the in-

struction stream is capable of creating and breaking down its route dynamically,

it uses the data routing elements only temporarily to reach the concatenation

junction. This junction should be at a PU, or inside an MU. In the case of the

MU, the actual concatenation of the streams is done by the MCU inside the MU.

The processing elements operate on the data of the program stream accord-

ing to the program implemented in the instruction stream. The data elements of

the data stream are provided in the requested order of the program. Thus, the

processing elements do not have to wait for the data and contrary to known archi-

tecture global connections are not needed to implement the appropriate layout of

this architectural design. The number of operations processed by the processing

elements can be changed dynamically depending on the task to be performed.

This means that based on the load of the processing elements, the route of the

data elements of the data stream can be dynamically changed within a given

limit. It is possible to construct alternative paths, which can receive the data

elements in case the other paths were overloaded. This approach is analogous to

the traditional SIMD multi-threaded execution.

The processed data streams may have further merges and branches in RCPU

as it can be seen in Figure 3.9. Two data streams can be merged if previously

they logically belonged to the same stream. In Figure 3.9, the route of the merge

is designed so that the conditions of the convergent data streams are appropriate

to the requirement of the program. It is possible that the program requires the

implementation of a loop, then the route of the data stream is a closed path. The

data stream enters at a given element of the closed route, and also the processed

data stream leaves at a given element of the closed route. An important feature of

a loop is that it mixes the data which demonstrates that the data sorting ability

of the MU has high importance.

3.2.5 Detailed structure of the processing element

In Figure 3.10 the internal structure of the processing element can be seen. The

processing element includes an input multiplexer (input MUX) capable of pro-

cessing the input of the ports, a local memory connected to the input MUX, a
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local processing unit (LPU) connected to the output of the input MUX, and an

output multiplexer (output MUX) connected to the output of the LPU, providing

the output of the processing element.

Figure 3.10: The internal structure of the processing element of the RACER
architecture is depicted. The processing element includes an input multiplexer
(input MUX) capable of processing the input of the ports, a local memory con-
nected to the input MUX, a local processing unit (LPU) connected to the output
of the input MUX, and an output multiplexer (output MUX) connected to the
output of the LPU, providing the output of the processing element.

The LPU can be an ALU and/or FPU. The currently used ALUs and/or

FPUs (like in GPU architecture) can be applied in RACER architecture, but

small changes may be required. Applying of an FPU as an LPU can be suitable
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for 3D visualization, scienti�c calculations and simulations. An ALU is much

smaller than an FPU, therefore it can be integrated easier into the processing

elements.

The processing element also contains the input and output MUXes, which

controls the travel of the data elements between the input, LPU and output.

As previously mentioned, the MUXes are controlled by LUTs stored in the LMU.

These LUTs can implement all kinds of RACER control-�ow including conditional

branches, by receiving all the relevant pipeline status information along with the

condition. This status information is the occupancy of each ingoing and outgoing

pipeline stage of MUX. The clock signal can be also included, which used to

implement fork and PHI branches for evenly splitting and merging data streams.

The LMU is a read-only memory with 256-512 bits size. It usually contains a

few arithmetic constants and multiplexer control LUTs which are initialized when

the head of the program stream reaches the given processing element.

In Figure 3.10, the inputs are the upper and left side of the processing element,

the outputs are the lower and right side of the processing element. Accordingly,

the inputs of the processing elements are connected to their upper and left neigh-

bors (to processing or data routing elements), respectively, the outputs of the

processing elements are connected to their lower and right neighbors (to process-

ing or data routing elements). It is also possible that in other implementations of

the architecture, at each side of the processing elements there are inputs as well

as outputs too. In these implementations, two-way data exchange is also allowed

between the neighboring processing elements. For the implementation of a closed

route, utilization of enhanced processing elements is necessary.

In Figure 3.10 the input and output of the processing element is interconnected

by bypass and feedback connections. If it is required, the LPU can be bypassed

or its output can be feedback (MAC operation feedback for signal processing) to

the input MUX.

3.2.6 Applied pipeline processing

In Figure 3.11, the internal structure of an FPU, which is an example for an LPU,

can be seen. The FPU contains a multiplier unit, two compare units (compara-
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tors) and an adder unit, which are connected to each other as it is illustrated in

Figure 3.11. The RACER computer architecture operates based on the pipelined

parallel principle, accordingly pipeline stages are designed. A data element is de-

�ned as an amount of data, which can be processed during the processing time of a

single pipeline stage. Pipeline registers, that are suitable to store a data element,

are assigned to the pipeline stages of the processing and data routing elements of

the RACER architecture. While processing the data stream, a data element is

stored in the corresponding pipeline registers of its pipeline stage and transferred

to the pipeline register of the next pipeline stage at least one processing time unit

later.

Figure 3.11: The internal structure of the FPU without pipeline stages. The
FPU contains a multiplier unit, two comparative units (comparators) and an
adder unit, which are connected to each other.

In Figure 3.12, the internal structure of FPU can be seen depicted with

pipeline stages. The number of pipeline stages depends on the applied technol-

ogy. The given pipeline stage allocation is typically around 1GHz clock frequency.

In Figure 3.12 the multiplier, the adder and also the comparison unit comprises

more than one pipeline stage. One of the important features of the RACER
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computer architecture is that it does not include global wiring, the clock signal

propagates its waves locally. Because of this, single cycle delay may occur during

the processing of data streams, depending on the relative angle of propagation

of the data stream and the clock single wave. The length of the delay in the

FPU can also depend dynamically on the processed data too, because all these

extra and less predictable delays are implicitly handled by the locally controlled

pipeline nature of the architecture.

A processing element is staying typically identical for a long time during

processing, doing the same operation on di�erent data. This behavior is ex-

pected from stream architectures (data-�ow driven architectures), furthermore

the RACER architecture can be de�ned as a super-set of classic data-�ow ma-

chines.

The clock wires are smaller, shorter, and the clock signal ampli�ers (clock

bu�ers) are fewer, because RACER architecture uses a locally wired asynchronous

clock, which has the same frequency everywhere on the chip, but the phase is spa-

tially di�erent. As a consequence, the frequency is not limited by the capacity of

global wiring, besides using higher processing frequency, lower power consump-

tion can be achieved than in the case of global wiring solutions.

Figure 3.12: The internal structure of the FPU with pipeline stages. The multi-
plier, the adder and also the comparison unit comprises more than one pipeline
stages. Pipeline registers, that are suitable to store data elements, are assigned
to the pipeline stages of the processing.
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In case of pipeline processing, the data streams are routed through processing

elements, data routing elements of RCPU and the MUs. Typically more stages

are in the processing elements and at least one stage is in the data routing ele-

ments. In order to store the data elements, a pipeline register (e.g. D-�ip-�op)

belongs to each pipeline stages. The route of the data stream can be described by

the sequentially visited pipeline stages. Where these visited pipeline stages are

neighboring pipeline stages, they are responsible for the processing or the transfer

of the data element.

The data stream is constructed in a way that during the normal processing of

the data stream, the data elements of the data stream are stored in every other

pipeline register of the pipeline stages. The state of the data stream is called half-

speed processing, when every other pipeline stage is loaded with a data element,

ie. one data element and one empty stage follow each other repeatedly.

The half-speed processing is preferred, because in case of an obstruction

caused by a loop, a congestion may occur and the data stream can stop. In

the case of a congestion the processing of the data stream is not in normal opera-

tion state, the empty pipeline stages propagate backwards. This happens because

the indication of the empty stage propagates backwards at the same speed as the

data elements propagate forward.

If there is any fork branch in the route of the data stream, in case of an ob-

struction the data elements at the junction can choose the bypass direction. So

obstructions can be e�ectively overcome by branches and bypass routes, which

means that the architecture can dynamically divide the work between alternative

paths. The compiler can take into account the potentially dangerous congestion

locations and determine the route of the processing providing such detours. De-

termining the congestion points can happen heuristically, or by benchmarking

the program. From the algorithmic viewpoint, congestion happens because the

bandwidth is higher than the processing speed. This is often the case with more

complex algorithms. Consequently the congestion is a useful feature because it

can gracefully decrease the bandwidth to exactly match the processing speed of

the implemented algorithm. Solving the congestion problem involves adding by-

pass routes, which just means the increasing of processing power by adding more

parallelism. these bypass routes are e�ectively duplications of the bottleneck part
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of the program. Consequently bypass routes execute the same computations, so

their results can be simply merged back to the original route.

The length of the detour does not necessarily have to match with the length

of the normal route. The mixture of data elements caused by the di�erence can

be �xed e�ciently with the sorting memory process of the RACER architecture.

The use of half-speed processing is also advantageous because the architecture

will not be sensitive to processing delays, and clock-cycle phase delay up to 90? is

allowed without any e�ect to the processing. The unusually high tolerance of out-

of-phase clocks can be explained by the pipeline behavior where a moving data

element is always surrounded by empty pipeline stages, which avoids collisions.

Full-speed processing may also be used, in this case data elements �ll each pipeline

stages, and we have double processing speed compared to the half-speed, however

we lose the sophisticated pipeline control, and all looped control-�ow capabilities.

Compared to the full-speed processing we lose speed at half-speed processing,

but because of the above-described properties (local wiring only, di�culties of

full-speed processing, etc.), the half-speed processing of the RACER architecture

is more e�ective than full-speed processing.

3.2.7 Half-speed mode pipeline timing

In half-speed mode the data only propagates between pipeline stages in a way

that it leaves every other stage empty. This allows the �exible and local control

of the data �ow. This feature could be implemented by semi-synchronized logic,

where both self timing state changes and clock driven state changes happen. As

a side e�ect of the self timing mechanism, each pipeline stage only listens to ev-

ery other clock cycle. This makes the pipeline much more robust against clock

phase variations between neighbor pipeline stages, since the stages are e�ectively

running at half clock speed. In certain designs where we enforce explicit data

stream synchronization in the program level, which makes program implementa-

tion much simpler, we can e�ectively tolerate random clock phase variations in

the half-speed mode pipeline, because of the self timing nature of the architec-

ture. Two simple pipeline stages connected serially is depicted in Figure 3.13, the

extra part compared to a simple full-speed pipeline is the feedback mechanism.
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The feedback propagates backwards compared to the direction of the data �ow,

pipeline control is implemented by this local feedback connection between every

pipeline stage.

Figure 3.13: Connection of two consecutive pipeline stages for half-speed mode.
The feedback plays an important role in controlling when the data propagates,
and it e�ectively enforces the half-speed operation.

Timing diagram of a single pipeline stage during half-speed operation, where

every other stage is �lled, is depicted in Figure 3.14.

1 2 3 4 5 6 1 2 3 4 5 6

Data Input

Presence Input

Data Output

Presence Output

Feedback Input

Feedback Output

Clock

Figure 3.14: Timing diagram of a single pipeline stage during normal operation.
It can be seen that data transfer speed is half of the clock speed because of the
half-speed operation.
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State Pipeline Register
number Storage

1 Empty waiting for data
2 Empty waiting for clock
3 Filled signaling feedback, data propagates to the output
4 Filled signaling data presence, waiting for feedback event
5 Clearing feedback event received
6 Clearing presence output and feedback output goes low

Figure 3.15: The pipeline control cycles through various states during the oper-
ation of the pipeline

Current state
Current inputs

Next state
Next outputs

CLK FI DPI DI FO DPO DO

6-1 X X 1 Data 2 0 0 X
2 rising edge X 1 Data 3-4-5 1 1 Data

3-4-5 x rising edge X X 6-1 0 0 X

FI Feedback Input
FO Feedback Output
DI Data Input
DO Data Output
DPI Data Presence Input
DPO Data Presence Output

Figure 3.16: The state table of a single pipeline stage for half-speed mode. The
state change only happens when the inputs trigger it, otherwise it remains the
same. The Data Input is copied to the Data Output, and is latched till it is
cleared by the rising edge on the Feedback Input.

The pipeline stage cycles through the states, which are depicted in Figure 3.15.

The states, which are separated by delay, are grouped together in one state, de-

picted in Figure 3.16. The separation of these sub-states is necessary to elim-

inate the hazards concerning the Presence Input and Presence Output signals.

The feedback signal coming from the next stage which allows it to return to the

empty state. The pipeline stage cycles between �lled and empty states, where the

clearing of the pipeline stage only happens when the next stage received the data,

and signals backwards using the Feedback. This ensures that during half-speed

operation each moving data is followed by an empty pipeline stage. If the prop-

agation of the data stops for any reason, this mechanism uses the empty spaces

to ensure that the whole pipeline stops in an orderly fashion.
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3.3 RACER programming

Unconditional program stream operators like forking and PHI functions can be

easily implemented by the processing elements (see Figure 3.10), input and output

MUXs, the half-speed mode further simpli�es the circuit design. A program

stream fork can be seen as a forking road, when the priority way is clogging the

data travels to the second possible way. The PHI function is the inverse situation

where data comes from more than one direction and data streams become one

stream. In conditional processing the forking and PHI function like operations

are governed by a condition calculated by the processing element's comparator

(or any other way, Boolean values are represented as �oating values). This can

be implemented by conditionally switching the input or output MUXs.

A computer program is processed on the RACER architecture as follows. A

message of a control unit or computational device includes the computer pro-

gram. In this message the code for MU (control instructions) and processing

tasks for RCPU (arithmetic operations) are included. This message is encoded

in a graph representation, which will be processed in accordance with the hard-

ware implementation of the architecture. The graph representation is a low level

general formulation of the program, which has not been mapped topologically to

the computing array yet. The ISRU is the module, which adds the appropriate

path structure to the program. This structure de�nes how the stream gets to the

RCPU, the route of the stream inside the RCPU and which memory modules are

used. This routing also depends on the structure of the computer program and

the routing of the other already running programs also.

While the program stream passes through the RCPU, the computing topol-

ogy is con�gured based on the instruction stream. In the RCPU, during the

programming the corresponding operations and the computational topology en-

coding parts are removed from the instruction stream. Therefore the instruction

stream slowly disappears and at the end of the instruction stream an activation

command indicates where the data stream begins. Like its name implies, the

activation signal activates each and every programmable part of the architecture

which it passes through. After activation, the entering data stream is processed

by the computing elements. The program stream may contain branches, in this
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case the programming of the streaming system is more complicated, because it

also had to branch, in order to reach each part of the streams. Di�erent type of

branches or their combinations are allowed. The following branches can be used:

• Copy branch: branch in the graph representation of the computer program.

• Calculation branch: Two di�erent cases are possible, depending on the di-

rection of the data-�ow. The �rst where an operation produces one output

from multiply inputs, or the second where an operation produces two out-

puts from a single input. Alternatively, these two cases can happen at

the same time, so the operation would produce many outputs from many

outputs. In these cases, the operation can only be completed if every in-

put is available and every output is free at the same time. As a results of

this constraint, every operation can implicitly used for synchronizing data

streams.

• Conditional branch: there are two cases as well. In the �rst case, data ele-

ments are accumulated from both two directions and the next transmitted

element is chosen according to a speci�c condition. In the other case, data

elements may be transferred into two directions and the path of each data

element is chosen according to an arithmetic condition.

• PHI / Fork Branch: in the case of PHI, data elements arrive from both

directions, they are merged by priority, or in an alternating way. In the

case of Fork, data elements can leave to two directions. Direction can be

chosen by priority (if both directions are free, the output direction can be

chosen in an alternating way).

3.3.1 Program example of RACER architecture

In Figure 3.17, the algorithm of Mandelbrot-set calculation can be seen im-

plemented on RACER computer architecture. The Mandelbrot-set consists of

those complex numbers in the complex plane, which, if substituted in the given

complex-valued recursive sequence, the result does not converge to in�nity. The
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Mandelbrot-set depicted in the complex plane is the well-known Mandelbrot frac-

tal. To draw the fractal in the x-y coordinate system, a complex arithmetic is

iterated in each pixel until in each pixel the absolute value of the complex number

exceeds a given threshold. The iteration number of the complex arithmetic in a

pixel de�nes the color of the given pixel. In order to have a �nite number of

iterations, a maximum iteration limit is used. The conventional C source code of

the computation of the Mandelbrot-set is as follows:

int mandelbrot ( double x , double y )
{

double z1 = 0 , z2 = 0 ;
int i t e r = 0 ;
double l en ;
do{

double a = z1 ∗ z1 − z2 ∗ z2 + x ;
double b = 2 ∗ z1 ∗ z2 + y ;
z1 = a ;
z2 = b ;
l en = z1 ∗ z1 + z2 ∗ z2 ;
i t e r++;

}whi l e ( i t e r < 200 and l en < 16 ) ;
r e turn i t e r ;

}

In Figure 3.17, the branches or logic operations are depicted by rectangles

and are implemented by processing elements. Depending on the design of the

processing elements, more than one logic operation can be implemented by one

processing element. In Figure 3.17, the branches implement the functionality of

PHI-type of branches, i.e. priority based program stream merge is implemented

by them. The feedback streams depicted by �lled triangles have priority in the

junctions. Without giving priority to particular feedback data streams, deadlock

occurs and the data streams would be waiting for each other. In data merging

junctions, data streams arriving from a triangle depicted branch has priority to

be processed while a stream arriving from the other branch has to be waiting.

The constants are locally stored in the LMU of processing elements. Condi-

tional branches are marked by trapezoid symbols. In these conditional branches

a logic operation, the so-called loop termination criterion decides which way the
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Figure 3.17: The algorithm of the Mandelbrot-set calculation implemented on
RACER computer architecture. The branches or logic operations are depicted by
rectangles or squares and are implemented by processing elements. Depending
on the design of the processing elements, more than one logic operations can be
implemented by one processing element. The feedback streams depicted by �lled
triangles have priority in the junctions. Without giving priority of particular
feedback data streams deadlock occurs and the data streams would be waiting
for each other. In data merging junctions, a data stream arriving from a triangle
depicted branch has priority to be processed while a stream arriving from the
other branch has to be waiting.
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stream and its data elements will be transmitted. The calculated variables are

depicted at the inputs and the outputs of the branches. The values of x and y

variables of the pixels are initialized with the current coordinates of the pixels, for

the other variables the initial values are zero. The outputs provide the �nished

results to be transmitted to the MU. The MU organizes the data elements by their

coordinates, to be able to read out the image of Mandelbrot fractal continuously.

Some of the outputs are not required, since only the pixel coordinates and itera-

tion number are used later, therefore other information is discarded. The looping

data-�ow mechanism can be understood by observing the operations done on each

data element. In the Mandelbrot set each pixel is associated to a data element,

so each data element (pixel) spends as much as iterations inside the loop, as it

needs to determine the convergence. The convergence is determined by the exit

condition threshold, or reaching the maximal allowed iteration count. From the

viewpoint of a data element, every loop cycle is equivalent to every iteration of

the original serial implementation on the pixel. However we have more than one

data element in the loop at the same time, so we are parallel processing multiple

pixels.

The RACER implementation of the algorithm of Mandelbrot fractal demon-

strates that during computation the data elements are mixed up in the loop,

because the coordinate pairs stay for a di�erent length of time in the loop de-

pending on the number of their iterations. The coordinates of the pixel enter

the loop in order, but those that can be calculated sooner leave the loop sooner,

so these overtake the more slowly calculated pixel coordinate pairs. Since the

variance of processing the time of data elements is limited, the data elements

are locally reordered by the loop so it can be sorted real-time by the MU. The

example in Figure 3.17 also emphasizes the pipeline structure of the RACER ar-

chitecture: a lot of data elements are circulating in the loop overlapped in time

and all operations are executed in parallel. During the calculation of the fractal

the processing elements are almost always in operation, so the utilization of the

architecture is very good.

3.3.2 Simulation
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The Mandelbrot fractal algorithms has been also implemented by NVIDIA for

their GPUs. This implementation will serve as a reference for comparing the

results and the estimated speeds. The GPU was chosen as the speed reference

because this algorithm is very GPU friendly. Each pixel in the fractal is computed

independently, by a loop. The computation is an arithmetic iteration, which

does not use any global memory and only uses a few registers (less than 16).

The iteration counts are potentially di�erent at each point, but they strongly

correlate for the nearby pixels. The exceptions are the regions near the unstable

island, but during the benchmark the fractal was scaled in the usual way, which

reasonably minimizes this area. This ensures that iterations running in the same

SIMD �nish roughly at the same time. As a result, this algorithm very well

utilizes the available computing resources of the GPU, because most of the time

is spent on running arithmetics inside the loop.

A single Mandelbrot loop mapped to RACER consumes the following re-

sources:

Used Number available in a processing element Name

2 1 numeric compare
4 1 �oating point multiply
3 1 �oating point add
1 1 integer add
5 4 data-�ow branching
5 4 data-�ow merging
11 4 explicit synchronization

The algorithms �ts comfortably into a 4× 4 processing block, so it consumes

only 16 processing element maximum. The simulated program run at the ex-

pected speed, which averaged to 42 clock cycles / pixel in half-speed mode. The

arrival of the �rst processed pixel at the output happened after 181 clock cycles,

and the time di�erence between the last input pixel and the last output pixel was

442.

Because of the low routing requirements, this program can be mapped to ev-

ery processing block in the RCPU, so it can �ll up the whole 32× 32 array. If we

suppose that we are in half-speed mode and the clock frequency is 700MHz, and
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for every two clock cycles every processing element can execute a double preci-

sion Multiply-Add operation, then we can compare the benchmark to a reference

Mandelbrot implementation on Tesla C2050 GPU.

The chip area, power consumption and technology size estimations are taken

from the Considerations of VLSI implementation section, with the exception of

peak performance, because in order to assure fairness in this comparison, I as-

sumed that the processing elements contain the same double precision Mutiply-

Add arithmetic cores as the NVIDIA C2050. This ensures that the relative to

peak performance algorithmic e�ciency is comparable.

Arch. Mandelbrot Mandelbrot Technology Clock Peak double Chip Power
Arch. speed relative to peak speed size freq. performance area consumption

C2050 668Mpixel
s

1.3 Mpixel
GFLOP

40nm 1150MHz 512GFLOPS 529mm2 215W
RACER 1066Mpixel

s
1.5 Mpixel

GFLOP
65nm 700MHz 717GFLOPS 436mm2 330W

It is important to note that even the relatively little optimized Mandelbrot im-

plementation on the RACER outperforms the optimized reference CUDA imple-

mentation of the Mandelbrot fractal algorithms in peak relative metric. It means

that the resource utilization of the RACER architecture is better for Mandelbrot

algorithm than for the NVIDIA C2050, which is an important fact, because this

algorithm maps particularly well to the GPU architecture, which should make it

hard to beat.

3.4 Turing Completeness

There are several approaches to prove that the RACER architecture is Turing-

complete. The trivial approach is that the RACER architecture is Turing-complete

by de�nition because the MUs contain a control unit. This control unit is similar

to a traditional processor, which if given in�nite memory (and address space) can

simulate any Turing machine. One other approach is detailed in the subsection

below.

3.4.1 Implementing Conway's Game of Life

Conway's Game of Life is a well known Turing-complete cellular automaton,

which only uses local rules to describe the time evolution of the states. The
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states are represented by a 2D discrete binary grid. The next state of any cell on

this grid can be described by its current state, and states of cells in the Moore

neighborhood (3 × 3 neighborhood). Let N be the number of True cells in the

neighborhood, so N ∈ [0..8], x is the current state of the cell, y is the next state

of the cell. Then the rules are:

• if N < 2 then y := False

• if N = 2 then y := x

• if N = 3 then y := True

• if N > 3 then y := False

There are two parts of the RACER program implementing Conway's Game

of Life. The �rst is the neighborhood tiling depicted in Figure 3.19, which is

implemented by local delay elements and MU based stream delays and copies.

The second part is counting the True cells and the rules of the time evolution,

implemented by 7 adders, 3 comparators and 3 logic operations, as depicted in

Figure 3.18.

The 2D grid can be transferred from the memory in a row major order. In

this case the memory should create 3 delayed copies of the stream, each delayed

by a whole line, so each represents a consecutive line. The column delays in order

to obtain the whole 3 × 3 neighborhood can be done by local delays. This way

the processing cores can tile through the 2D grid e�ciently.

The processing cores, where the time evolution rules are executed, produce a

single stream as an output which contains the input to the next iteration in row

major order. This stream goes back to the memory, so it can be read out in three

replicated delayed streams in the next iteration.

In this algorithm we do not even use the ordering function of the memory, we

only read streams from multiple locations at once. This proves that the RACER

array processor is theoretically Turing-complete even if we do not consider the

advanced functionality of the MUs.
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Figure 3.18: The possible implementation of the Game of Life cellular automaton
rule processing is depicted in RACER graph representation.
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Figure 3.19: The local tiling for 3 × 3 neighborhood with delay elements on
RACER architecture is depicted. The delay chains receive three inputs from the
MUs corresponding to the three consecutive lines, and generate the whole 3 × 3
tile from it.
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3.5 Considerations of VLSI implementation

According to the available information about the latest AMDGPUmicro-architec-

ture, the Graphics Core Next (GCN), the area inside the cores is divided equally

between the computing cores, the memory and the control logic (not consider-

ing the texture units). My estimation of gate count is based on on-chip register

memory sizes, where the on-chip memory in gates is approximately the number of

cores × 100K. Coincidentally the IP core I have chosen (GRFPU-1 from Aero�ex

Gaisler) as a processing element equivalent for my estimation is also 100K gates

big. From this I can estimate that a single core together with control logic and

memory is about 300K gates.

If I assume that in the equivalent gate counting, every gate is made of 4

transistors, and the gates/transistors are spread evenly on the chip die, then I

can make a guess of the total transistor count of the chip: 2048 number of cores

in AMD Tahiti × 300K gates × 4 transistors/gates × 1.25 (+25 % texture unit)

× 1.33 (+33% other graphics oriented logic circuits) ≈ 4000 million transistors.

The actual transistor count of the AMD Tahiti is 4310 million, so this estimation

is roughly accurate.

If we exclude the strictly graphics oriented hardwares on this GPU (AMD

Tahiti) and consider only the computing parts of the cores, the surface ratio of

the computing cores is ≈ 33%. If we want to compare this to other architectures

we need to speculate from other values because these exact surface/gate ratios

are very rarely published. We know that the GFLOPS / area and GFLOPS/Watt

is one of the biggest for GPU if we only consider general purpose architectures.

Since the number of computing cores and peak performance is very closely related,

it is reasonable to state that the GPUs have one of the highest computing core

surface/gate ratios compared to other architectures.

The chosen processing element equivalent IP core was GRFPU-1 from Aero�ex

Gaisler, its size is 100K gates which is roughly equivalent to the size of the com-

puting core in AMD Tahiti. However, IP cores from smaller feature technologies

tend to be bigger due to bigger pipelines and higher frequencies, so my estimation,

where I have used 100K gates for 65nm and 90nm technologies is an overestima-

tion. However, the AMD Tahiti cores execute double precision only at 1
4
speed
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while the processing element does it at full speed, so for the comparison I have

limited the Processing Elements to 1
4
speed as well.

The GRFPU-1 is a fully featured single and double precision Floating Point

Unit. It is fully pipelined and it can do an operation for every clock cycles.

These operations include: add, subtract, multiply, divide, square-root, convert,

compare, move, abs, negate. It can also compute square root and divide paral-

lel to other operations. Unfortunately the add and multiply operations are not

pipelined together into a MAD or FMA operation but we can assume this capa-

bility because it does not increase the gate count signi�cantly. If we ignore the

divide and square root capability and assume it has the MAD/FMA operation

then this FPU is similar to the GPU compute cores, except it can operate in

double precision at full speed.

Each routing element contains:

• 4 pipeline stages (2 is the minimum, this is an overestimation)

• 32bit program memory for con�guring the routing element

• 4way bidirectional multiplexer

• control logic

• extra ampli�ers for the buses

My estimation for the number of gates of each routing element: 128 bit bus width

× 4 connections × 6 gates per DFF + 128 bit bus width × 16 gates per 4way

MUX + 32bit × 2 gates per program bit + 1024 gates for control logic + 128 bit

bus width × 4 connections × 2 ampli�er gates = 7232. If we use 3×3 topology for

routing elements we get about 4600 routing elements for 1024 cores, so we have

33M gates in the whole array inside the routing elements. This covers about 20%

of the surface. If we suppose that the routing element 1
3
is size of the Processing

element, then from the topology in Figure 3.7 we get 36% coverage, so Figure 3.7

obviously overestimates the size of the routing elements.

From these values I estimated the �nal chip sizes and the power consumptions

with Cadence InCyte Chip Estimator for 90nm and 65nm technologies. This chip

estimator assumed that I use regular clock distribution network where clocks are
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tightly controlled. This adds approximately 2M gates and 34W-81W (about 20%)

extra power to the estimation. For the RACER architecture, a much less tightly

controlled clock distribution network is su�cient, so this could be in theory sig-

ni�cantly reduced but estimating this reduction would need precise VLSI design

of the architecture.

Technology Clock Chip Total power Clock tree Double precision PE surface Routing element

feature size frequency surface consumption power speed ratio surface ratio

90nm 400MHz 561mm2 224W 42W 819GFLOPS 72% 21%
90nm 600MHz 564mm2 454W 81W 1229GFLOPS 72% 21%
65nm 500MHz 355mm2 226W 34W 1024GFLOPS 70% 21%
65nm 600MHz 369mm2 280W 46W 1229GFLOPS 67% 20%
65nm 700MHz 436mm2 330W 60W 1434GFLOPS 57% 17%

I have compared GPU peak performances to the estimated RACER peak

performances in order to highlight the possible performance gains coming from

the higher number of computing cores (Processing Elements).

GPU Technology Nearest estimation Single prec. Double prec. Power
name feature size feature size speedup speedup ratio

Radeon HD 2900XT 80nm 90nm 1.7× 6.9× 1.05
Radeon HD 4870 55nm 65nm 1.2× 1.5× 2.1
GeForce 8800 GTS 65nm 65nm 2.3× 4.6× 2.5

AMD GPUs have 33% of their surface covered by computing core, excluding

graphics speci�c modules. NVIDIA GPUs usually have lower ratios, or similar.

By estimation the RACER architecture coverage is between 57% and 72%, if

we consider using the same cores for Processing Elements, this translates to 2×
speedup, but at the cost of higher power consumption, because the surface is

better utilized.

3.6 Conclusions

Based on my research into parallelization of algorithms and many-core architec-

tures, I have designed a massively parallel scalable architecture called RACER.

This architecture aims to support the arbitrary scaling of the number of cores and

the closer integration of memory while providing good performance for less par-

allel algorithms also. In this architecture I rede�ned the job the memory, making
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it an integral part of the implemented algorithm, which allowed the processing

elements (cores) to be more specialized, and much more e�cient.

The RACER architecture includes a RCPU, MUs, PUs, RCU and ISRU. The

units of the architecture are connected to each other through the RCPU. The

RCPU processes the program stream, which consists of an instruction stream

and a data stream divided into data elements. The ISRU, which de�nes the in-

struction stream, can be integrated in RCPU, but in any case is still a separated

unit within the RACER architecture. The RCPU contains an array of blocks

of processing elements and each block is surrounded by data transfer elements.

Lateral processing elements are connected to the neighboring data transfer ele-

ments. Lateral processing elements are partly those which are physically located

on the edge of the array, secondly those processing elements through which the

data stream enters and leaves a block.

The computing power per unit area of multiprocessor architectures can be

estimated and compared. The RACER computer architecture provides hopefully

more computing power per unit area than the current GPU architectures based

on the following reasons:

• There is no cache memory in the RACER, which can cover up to 33% of

the chip surface of the GPU.

• There is no register-�le memory in the RACER, which can cover up to 17%

of the chip surface of the GPU.

• The connections between the processing elements are local in the RACER.

The connection layer can be overlapped with the other layers, therefore it

only needs little extra surface.

According to our calculations, even though using additional data routing el-

ements and ISRU the utilization of the surface of the RACER architecture is

signi�cantly more e�ective than GPU's.

The RACER computer architecture is well applicable for 3D visualization,

ethernet routing, cryptography, management of large databases, simulations and

scienti�c calculations. The RACER architecture is Turing-complete, which means
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that an arbitrary Turing machine can be implemented on the architecture. The

components of the RACER architecture can be integrated into a single integrated

circuit, and their parameters can be tuned on demand according to the develop-

ment of technology.

Based on Patent and Trademark Attorneys' prior art search, their o�cial

opinion declares that RACER computer architecture is new (the closest systems

are [56, 57]) and novel improvements are included.
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Chapter 4

The BRUSH Algorithm

In this Chapter a new algorithmic approach is presented, developed to evaluate

two-electron repulsion integrals based on contracted Gaussian basis functions in

a parallel way. This new algorithm scheme provides distinct SIMD (Single In-

struction Multiple Data) optimized paths which symbolically transforms integral

parameters into target integral algorithms. Contrary to the common solutions,

this method uses o�-line selection of the optimal path and o�-line code genera-

tion. This approach is optimized for GPUs, my measurements indicate that the

method gives a signi�cant improvement over the CPU-friendly PRISM algorithm.

The benchmark tests (evaluation of more than 108 integrals using the STO-3G

basis set) of our GPU (NVIDIA GTX 780) implementation showed up to 750-fold

speedup compared to a single core of Athlon II. X4 635 CPU.

4.1 Introduction

The direction of the development of information technologies shows that in the

next decade the trends will be determined by the exponential growth in the num-

ber of processors of parallel, many-core architectures [59, 58, 75]. The GPUs are

increasingly used in supercomputers and scienti�c computing [60]. In addition

to a large number of computing units of GPUs, its hierarchical memory struc-

ture also plays a prominent role in data processing and computing [58]. If the

algorithms of computational quantum chemistry could be implemented e�ciently

on already available parallel systems, the researchers would be able to simulate

88

DOI:10.15774/PPKE.ITK.2014.009



4.1 Introduction 89

larger molecules than could have been simulated before. My goal is to e�ciently

implement the two-electron integration task - which is the most computationally

intensive part of quantum chemistry calculations [61] - based on GPU to solve

general simulation problems.

The �rst GPU based implementations of quantum chemistry related to com-

putational tasks had signi�cant limitations in both accuracy and programming

di�culties of the technology [63, 62, 64]. Although the latest GPU architectures

can be programmed in a much more user-friendly way, moreover industrial stan-

dards are provided (CUDA, OpenCL) [65, 66], still, the e�cient programming

of GPUs still lacks deep knowledge of the detailed architecture and fundamen-

tally di�erent algorithm design. The existing industrial standard programming

interfaces (CUDA, OpenCL) were also used for quantum chemistry calculations

in recent years [67, 68, 69, 70, 71, 72, 73, 74], but there are still technical and

algorithmic problems with these approaches which researchers are unable to solve

code implementation over �f� orbital on GPU [81, 80]. I hope that these funda-

mental problems would be solved e�ectively with my approach.

In this Chapter, I propose a new meta-algorithm called BRUSH, and test it

on several di�erent molecules comparing my results between di�erent GPU and

CPU implementations.

In molecular integral evaluation over Gaussian basis functions, the recursive

algorithms [76, 77] play a central role, which trace back the problem to a large

number of elementary integral terms. Due to the unrolling of this recursive algo-

rithm, we can do a signi�cant optimization by algebraic simpli�cations on con-

tracted and un-contracted integrals. Moreover we can place the contraction step

not just between, but inside the integral transformation step, by using algebraic

transformations. While the atomic centers in the basis functions are di�erent in

every molecule, the Gaussian exponents only depend on the type of atom and

the basis set library [100]. It means that speci�c integral solvers can be compiled

for speci�c atom types and basis sets, which enables us to compute the Gaussian

exponent part of the solution o�-line, using constant substitution and propaga-

tion on the generated code. The only drawback is that we generate far too many

integral solvers, but we can mitigate this problem by only doing constant substi-

tution on contracted basis functions. Contraction is usually used on lower orbitals
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(s, p) [101], where the integral computation is much simpler, which means that

doing this o�-line optimization is computationally cheap. However we can choose

to optimize only the very often used con�gurations, so we can keep the amount

of compilation work under control.

It is a well known fact, that applying the contraction in the right place while

solving the integral can signi�cantly boost the computation speed of the heavily

contracted integrals [78]. The PRISM meta algorithm [78] uses this approach to

heuristically choose the best algorithm most suited to the given quartet to solve.

Unfortunately the PRISM algorithm is neither SIMD optimized and nor entirely

compatible with my GPU based approach.

BRUSH, based on Head-Gordon-Pople (HGP-) and McMurchie-Davidson (MD-

) PRISM [77, 82] algorithms, specially tailored for SIMD architectures and o�-line

unrolling of control structures. In my meta algorithm we apply similar paths to

HGP and MD integral solvers, sometimes mixes of the two. But in case of heavy

contraction, we can a�ord to analytically split the generated code parts to con-

traction variant and invariant parts, and place the contraction between them.

This way the code can be further optimized.

Another signi�cant di�erence is that because we are generating the unrolled

code o�-line, we can do all decisions about the optimal solution path o�-line. My

algorithm consists of main-paths, and sub-paths. Main-paths are split to sub-

paths where main-paths of the solution can be decided by simply looking at the

contracted and non-contracted parts of the integral quartet. It is generally hard

to choose the optimal sub-path that is why we compile all of them, and decide

after looking at the code complexity and memory usage of the code.

According to the measurements, my GPU algorithm in single precision run

on Nvidia GTX780 was over 700× faster than NWChem 6.3 [79] run on a single

core of Athlon II X4 635, and over 100× faster the NWChem 6.3 running on all

four cores of Intel i7-3820 (Sandy Bridge) processor.

This chapter is organized as it follows: Section 1 gives the introduction and

outlines the background of the problem. In Section 2, the basic notations and def-

initions are described. Section 3 provides the detailed description of the BRUSH

algorithm for two-electron integrals on GPU. In Section 4, the discussed bench-
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marks and my timing measurements are presented for di�erent molecules. Section

5 gives a brief summary of the conclusions.

4.2 Notations and de�nitions

In this Section, to overview the theoretical background and introducing our rep-

resentation, some of notations and de�nitions - used in references [83, 78, 82] -

were followed.

Let us de�ne an unnormalized primitive Cartesian Gaussian function in the

following manner

ϕak(r) = (rx − Ax)ax(ry − Ay)ay(rz − Az)aze−αk|r−A|
2

(4.1)

where a = (ax, ay, az) is the angular momentum vector, A is the position vector,

and αk is its exponent. The angular momentum can be calculated as a = (ax +

ay + az). Primitive functions are de�ned by primitive shells, and each shell is

constituted by a given center and a given exponent.

Contracted Cartesian Gaussian function is de�ned by the linear combination

of primitive functions

φa(r) =

KA∑
k=1

Dakϕak(r), (4.2)

where the contraction coe�cients are Dak and KA is the degree of contraction of

Φa.

The primitive four-center Gaussian electron repulsion integral is de�ned by

the following formula

[akbi|cmdn] =

∫
r1

∫
r2

ϕak(r1)ϕbl(r1)
1

|r1 − r2|
ϕcm(r2)ϕdn(r2)dr1dr2 (4.3)

Commonly this integral is denoted by [ab|cd] and the subscripts of the left-

side are expunged because of its particular interest. The contracted four-center

Gaussian electron repulsion integral is de�ned by the combination of Equation

(4.2) and Equation (4.3)
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(ab|cd) =

KA∑
kA

KB∑
kB

KC∑
kC

KD∑
kD

DakADbkBDckCDdkD [akAbkB |ckCdkD ] (4.4)

Ltot = (a+ b+ c+d) is de�ned as the total angular momentum of the electron

repulsion integral. Kbra = KAKB is the bra degree of contraction, Kket = KCKD

is the ket degree of contraction. Ktot = KbraKket is the total degree of contraction.

A new center P can be assigned to ϕa and ϕb primitive Gaussian functions,

and another center Q is analogously assigned to the primitive functions ϕc and

ϕd. Center P and center Q and their parameters ζ, GAB, UP and η, GCD, UQ
are de�ned in the following manner

ζ = α + β η = γ + δ (4.5)

GAB = e−
αβ
ζ
|A−B|2 GCD = e−

γδ
η
|C−D|2 (4.6)

UP = DADBGAB

(
π

ζ

) 3
2
(

1

2ζ

)a+b

UQ = DCDDGCD

(
π

η

) 3
2
(

1

2η

)c+d
(4.7)

P =
αA+ βB

ζ
Q =

γC+ δD

η
(4.8)

where ϕa, ϕb, ϕc and ϕd are centered at A, B, C and D, with angular momenta

a, b, c and d, with exponents α, β, γ and δ, and with contraction coe�cients DA,

DB, DC and DD.

Based on the previous interpretation of theory [83] the following equations are

de�ned for the computation of the class de�ned by Equation (4.4)

R = Q−P (4.9)

R2 = R2
x +R2

y +R2
z (4.10)

ϑ2 =
ζη

ζ + η
(4.11)

T = ϑ2R2 (4.12)

U = UPUQ (4.13)

[0](m) = Uϑ2m+1

√
2

π

∫ 1

0

t2me−Tt
2

dt (4.14)
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The representation of contraction unlike on Equation (4.4) can be separated

by Bra and Ket contractions like on Equations (4.15) and (4.16)

(bra|ket] =

Kbra∑
[bra|ket] (4.15)

(bra|ket) =

Kket∑
[bra|ket] (4.16)

However, as it was shown earlier [83], generalizing this approach by exponent

ratios can not be useful while simultaneous scaling of the uncontracted quantities

is included. Equations (4.17) and (4.18) explain this type of contraction as follows

a′b′p′(r] =

Kbra∑ (2α)a
′
(2β)b

′

(2ζ)p′
[r] (4.17)

[0)mc′d′q′ =

Kket∑ (2γ)c
′
(2δ)d

′

(2η)q′
[0](m) (4.18)

According to these generalizations on Equations (4.15), (4.16), (4.17) and

(4.18) we can formally handle the integral transformation steps and contraction

steps, and perhaps choose an optimal order. Our notation is closely based on this

generalized braket representation.

In the following I brie�y review the MD and HGP algorithms, which serve the

base of the new methods, outlined in this article. Here I present only the most

important features, the reader is referred to references [77, 82] for further details.

4.2.1 McMurchie-Davidson (MD) algorithm

[0](m)(0 ≤ m ≤ (a + b + c + d)) is given as a set, it was presented in [82, 83]

and also by MD, that a recurrence relation (noted as RR) can be used, forming

[r](0 ≤ r ≤ Ltot) electron integral repulsion set. With the same sign, the set of [r]

is equal to the electron integral repulsion set which is de�ned by [p|q] representing

the electrostatic integration between two, P and Q primitive Hermite functions.

The P centered function is called p-bra, and symbolized by [p|. Respectively, the
Q centered function is called q-ket, and symbolized by |q]. By MD and [82, 83]

it was presented, that using recurrence relations [p|q] can be bra-transformed to

[ab|q] and [ab|q] can be ket-transformed to an appropriate [ab|cd].
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This algorithm allows more e�cient contraction placement and recurrence re-

lations than the classical Obara-Saika because the recurrence relations in Equa-

tions (4.19) and (4.20) are respectively left and right contraction invariant. And

the order of Equations (4.19) and (4.20) is a degree of freedom which can used to

further optimize the computation. The recurrence relation in Equation (4.25) is a

trivial transformation and it does not increase the complexity of the computation

at all. The last recurrence relation in Equation (4.26) can only be done on prim-

itives because the virtual R center is contraction variant, that is, the complexity

of this recurrence relation is quadratic only at �rst glance, in fact, the number of

resulting [0] brakets is proportional to the angular moment r.

[(a+ 1i)bp| ≡ pi [ab (p− 1i)|+ (Pi − Ai) [abp|+ 1

2ζ
[ab (p+ 1i)| (4.19)

|(c+ 1i)dq] ≡ qi |cd (q− 1i)] + (Qi − Ci) |cdq] +
1

2η
|cd (q+ 1i)] (4.20)

It should be noted that we can obtain the Equation (4.20) from (cbad) mir-

roring the Equation (4.19), so here we are only talking about three symmetrically

irreducible recurrence relations in this algorithm. Similar recurrence relations

could also be generated for [a (b+ 1i)p| on Equation (4.23) and |c (d+ 1i)q]

Equation (4.24) by (badc) mirroring. We can remove the explicit dependence

of P and Q center from the Equation (4.20) and Equation (4.19) by using the

Equation (4.8). This way we would obtain the following recurrence relations:

[(a+ 1i)bp| ≡ pi [ab (p− 1i)|+ (Bi − Ai)
2β

2ζ
[abp|+ 1

2ζ
[ab (p+ 1i)| (4.21)

|(c+ 1i)dq] ≡ qi |cd (q− 1i)] + (Di − Ci)
2δ

2η
|cdq] +

1

2η
|cd (q+ 1i)] (4.22)

[a (b+ 1i)p| ≡ pi [ab (p− 1i)| − (Bi − Ai)
2α

2ζ
[abp|+ 1

2ζ
[ab (p+ 1i)| (4.23)

|c (d+ 1i)q] ≡ qi |cd (q− 1i)]− (Di − Ci)
2γ

2η
|cdq] +

1

2η
|cd (q+ 1i)] (4.24)

[p|q] ≡ (−1)q [p+ q] (4.25)

[r+ 1i]
(m) ≡ Ri [r]

(m+1) − (ri) [r− 1i](m+1) (4.26)
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This algorithm can be converted into the MD-PRISM by converting the re-

currence relations and contraction steps into a PRISM graph, as depicted on

Figure 4.1.

4.2.2 Head-Gordon-Pople (HGP) algorithm

This algorithm uses two vertical recurrence relations in Equations (4.27) and

(4.28), these two recurrence relations are special because they do not change the

sum of the angular momenta and they also do not use any gaussian exponents.

As a result of this, Equations (4.27) and (4.28) are contraction invariant, and we

are also free to choose their order. This is very e�cient because the reduced form

[m0|n0] implies a much more simple recurrence relation in Equation (4.29) when

converting it to [00|00], for in this way, the signi�cant part of the computation

is being done outside the contraction.

|c (d+ 1i)) ≡ |(c+ 1i)d) + (Ci −Di) |cd) (4.27)

(a (b+ 1i)| ≡ ((a+ 1i)b|+ (Ai −Bi) (ab| (4.28)

[m0| (n+ 1i)0] ≡ mi

2η
[(m− 1i)0|n0] +

ni
2η

[m0| (n− 1i)0]

−2ζ

2η
[(m+ 1i)0|n0]−

[
2β

2η
(Ai −Bi) +

2δ

2η
(Ci −Di)

]
[m0|n0]

(4.29)

This algorithm can be converted into the HGP-PRISM by converting the

recurrence relations and contraction steps into a PRISM graph, as depicted on

Figure 4.2.

4.2.3 Generalized braket representation

Our generalized braket representation is based on the one proposed by Gill et al.

in [78].

[0](m) := [00|00](m) :=

0 0 0
0 0 0
0 0 0

∣∣∣∣∣∣
0 0 0 0
0 0 0
0 0 0 0

(m)

(4.30)
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Figure 4.1: MD PRISM algorithm consists of a set of interrelated pathways from
shell-pair data to the desired brakets. It consist of the McMurchie-Davidson re-
currence relations and contraction steps. Every possible path from the shell-pair
data to the (ab|cd) braket format represents a possible solution of the integral
problem. Depending on the degree of contractions and the angular moments walk-
ing di�erent paths can result in di�erent run-times. The PRISM meta algorithm
tries to the �nd the ideal path.
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Figure 4.2: HGP PRISM algorithm consists of a set of interrelated pathways from
shell-pair data to the desired brakets. It consist of the Head-Gordon-Pople reuc-
crence relations and contraction steps. Every possible path from the shell-pair
data to the (ab|cd) braket format represents a possible solution of the integral
problem. Depending on the degree of contractions and the angular moments walk-
ing di�erent paths can result in di�erent run-times. The PRISM meta algorithm
tries to the �nd the ideal path.
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 a b p
a′ b′ p′

a∗ b∗ c∗

∣∣∣∣∣∣
c d q r
c′ d′ q′

e∗ f∗ g∗ r∗

(m)

:=

a b p
0 0 0
0 0 0

∣∣∣∣∣∣
c d q r
0 0 0
0 0 0 0

(m)

·

(B−A)a
∗ · (C−D)b

∗ · (D−B)c
∗ · (C−A)e

∗ · (D−A)f
∗ · (C−B)g

∗ · (R)r
∗·

(2α)a
′
(2β)b

′

(2ζ)p′
· (2γ)c

′
(2δ)d

′

(2η)q′
·

(4.31)

The symmetrically irreducible recurrence relations of the McMurchie-Davidson

algorithm written in our general braket representation are depicted on Equa-

tions (4.32), (4.33) and (4.34). Where Equation (4.32) corresponds to Equa-

tion (4.21), Equation (4.33) corresponds to Equation (4.25), and respectively,

Equation (4.34) corresponds to Equation (4.26):

a + 1i b p
a′ b′ p′

a∗ b∗ c∗

∣∣∣∣∣∣ ≡ pi

 a b p− 1i

a′ b′ p′

a∗ b∗ c∗

∣∣∣∣∣∣+

 a b p
a′ b′ + 1 p′ + 1

a∗ + 1i b∗ c∗

∣∣∣∣∣∣+

 a b p + 1i

a′ b′ p′ + 1
a∗ b∗ c∗

∣∣∣∣∣∣
(4.32)0 0 p

a′ b′ p′

a∗ b∗ c∗

∣∣∣∣∣∣
0 0 q 0
c′ d′ q′

e∗ f∗ g∗ r∗

(m)

≡

0 0 0
a′ b′ p′

a∗ b∗ c∗

∣∣∣∣∣∣
0 0 0 p + q
c′ d′ q′

e∗ f∗ g∗ r∗

(m)

(4.33)

0 0 0
a′ b′ p′

a∗ b∗ c∗

∣∣∣∣∣∣
0 0 0 r + 1i

c′ d′ q′

e∗ f∗ g∗ r∗

(m)

≡

0 0 0
a′ b′ p′

a∗ b∗ c∗

∣∣∣∣∣∣
0 0 0 r
c′ d′ q′

e∗ f∗ g∗ r∗ + 1i

(m+1)

− ri

0 0 0
a′ b′ p′

a∗ b∗ c∗

∣∣∣∣∣∣
0 0 0 r− 1i

c′ d′ q′

e∗ f∗ g∗ r∗

(m+1)

(4.34)

4.3 BRUSH algorithm for two-electron integrals

on GPU

In this Section the branches of the meta algorithm are summarized. I distinguish

eight di�erent cases which are pictured in Figure 4.3 in merged form. Some of the
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paths follow the part of the PRISM algorithm, but they are expanded in compile

time. The cases are separated by the number and the place of the contractions in

the quartets. For sample, (cx|xx) symbolizes a quartet where the �rst function

is contracted and the other three functions are not contracted. All the cases are

grouped in eight sets based on the symmetry of the integral.

Figure 4.3: The structure of the BRUSH meta algorithm. All possible paths
are merged together into a graph. The algorithm includes the MD-PRISM and
HGP-PRISM transformation steps along with my symbolic transformation steps.
The left CL and right CR contraction steps are depicted in the Figure. In the
branches for partially uncontracted brakets the contraction step is missing, since
it is a trivial identity transformation.

Case 1: set of (xx|xx) type integrals, where there are no contractions, the

algorithm has the following integral rules:

(ab|cd) = [ab|cd]→ [ab|q]→ [p|q]→ [r]→ [0](m) (4.35)
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this is similar to the solution of MD-PRISM algorithm in the case of non-contracted

integrals [78] where Equations (4.21) (4.22) (4.23) (4.24) (4.25) are used.

Case 2: set of (cc|cc) type integrals, where all the functions are contracted,

the Br1a path of the algorithm has the following integral rules:

(ab|cd)→ (m0|n0)→ (.ci.)→ (.li.]→ [.ni.]→ [0](m) (4.36)

and Br1b has the integral rules:

(ab|cd)→ (m0|n0)→ (.ci.)→ [.ri.)→ [.ni.]→ [0](m) (4.37)

where (m0|n0) is solved by following the steps of the HGP-PRISM algorithm

(Obara-Saika rule) assuming that there are no contractions according to Equa-

tion (4.29). After we have obtained this result we multiply out the (left or right)

contraction invariant parts and insert a contraction (left or right) and next we

multiply out the (right or left) contraction invariant parts from the remaining

part and insert a contraction (right or left). The order of the sides is based on

the size of the contraction. This is symbolized in Figure 4.3. with two branches,

where [.ni.] means non invariant part, (.li.] means the left invariant part, [.ri.)

means the right invariant part, and (.ci.) is the invariant part. Where brackets

change from �(� to � [� the contraction steps are inserted (CL and CR). The special

distinction from the normal bra-ket notation is important for these transforma-

tion steps (.ci.)(.li.][.ri.)[.ni.] because they have no physical interpretation, they

are purely symbolic transformations on the generalized braket representation.

Case 3: set of (cc|xx) type integrals, where left functions are contracted,

the algorithm computes two di�erent branches (Br3a and Br3b) and chooses the

better one. Br3a has the following integral rules:

(ab|cd) = (ab|cd]→ (m0|n0]→ (m0|q]→ [m0|q]→ [p|q]→ [r]→ [0](m)

(4.38)

Br3b has the following integral rules:

(ab|cd) = (ab|cd]→ (m0|n0]→ (.ci.] = (.li.]→ [.ni.]→ [0](m) (4.39)
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where (m0|n0) is solved by following the steps of the HGP-PRISM algorithm

(Obara-Saika rule) assuming that there are no contractions. After we have ob-

tained this result we multiply out the left contraction invariant parts and insert

a left contraction in a similar way as it is described in Case 2.

Case 4: set of (xx|cc) type integrals, where right functions are contracted,

the algorithm computes two di�erent branches (Br4a and Br4b) and chooses the

better one. The Br4a and Br4b paths are (cd|ab) mirrored versions of the Br3a

and Br3b respectively. They also have the same heuristics.

Case 5: set of (cx|cx) or (xc|xc) or (xc|cx) or (cx|xc) type integrals, where

one of the functions from both sides is contracted, the algorithm computes two

di�erent branches (Br5a and Br5b) and chooses the better one. Br5a has the

following integral rules:

(ab|cd)→ (m0|n0)→ (m0|n0]→ (m0|q]→ [m0|q]→ [p|q]→ [r]→ [0](m)

(4.40)

Br5b has the following integral rules:

(ab|cd)→ (m0|n0)→ [m0|n0)→ [p|n0)→ [p|n0]→ [p|q]→ [r]→ [0](m)

(4.41)

Case 6: set of (cx|xx) or (xc|xx) type integrals, where one of the functions

from left side is contracted, the algorithm computes two di�erent branches (Br6a

and Br6b) and chooses the better one. Br6a has the following integral rules:

(ab|cd)→ (m0|n0)→ [m0|n0)→ [p|n0)→ [p|n0]→ [p|q]→ [r]→ [0](m)

(4.42)

Br6b has the following integral rules:

(ab|cd)→ (m0|n0)→ (.ci.)→ [.ri.)→ [.ni.]→ [0](m) (4.43)

where (m0|n0) is solved by following the steps of the HGP-PRISM algorithm

(Obara-Saika rule) assuming that there are no contractions. After we have ob-

tained this result we multiply out the left contraction invariant parts and insert

a left contraction in a similar way as it is described in Case 2.

Case 7: set of (xx|cx) or (xx|xc) type integrals, where one of the functions

from right side is contracted, the algorithm computes two di�erent branches (Br7a
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and Br7b) and chooses the better one. The Br7a and Br7b paths are (cd|ab)

mirrored versions of the Br6a and Br6b respectively. They also have the same

heuristics.

Case 8: set of (cc|xc) or (cc|cx) or (xc|cc) or (cx|cc) type of integrals,

based on the high number of contraction the algorithm is practically the same as

at Case 2.

We are more e�cient than the unrolled PRISM, because we exploit the op-

portunities arisen from unrolling. These extra solution paths are closely related

to the naming, because my recursion rules look more chaotic, so instead they look

more like a brush than a prism, hence the naming.

4.4 Measurements

I have applied two integrator implementations as our CPU speed references,

NWchem and Libint, and MRCCsoftwares were tested for validating the pre-

cision. I have used a relatively new CPU, the Intel i7-3820 3.6GHz and a few

years older AMD Athlon II X4, as our speed references, where I have completed

my measurements on a single core. We can assume that these problems scale lin-

early with the number of cores in CPUs, but are not a�ected by HyperThreading,

because the �oating point calculations bene�t very little from HyperThreading

in this particular case, and these calculations are almost exclusively done on the

�oating point units.

There were four compiler back-ends developed for my GPU integrator: OpenCL,

CUDA-C, CUDA-PTX, NVIDIA-assembly called BRUSH-OCL, BRUSH-C, BRUSH-

PTX, BRUSH-ASM respectively. For higher than �p� angular moments or big

contracted basis functions neither AMD nor NVIDIA software could compile

OpenCL or CUDA-C. However it was only compiling for the STO-3G basis

set. The CUDA-PTX generated codes fared a little better, but caused prob-

lems for compiling the whole cc-pVdz basis set with �d� angular moments. Only

the BRUSH-ASM back-end where I output NVIDIA assembly code and assemble

it into a CUDA binary was able to compile the whole cc-pVdz basis set. I have

chosen to introduce only the STO-3G basis-set measurements because the stable

code is yet to be �nished for �d� angular moments and above.
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It is important to note that our OpenCL back-end, the BRUSH-OCL, was

largely unoptimized, because the vendor supplied compiler was only able to com-

pile it by cutting the optimization time. Consequently the BRUSH-OCL mea-

surements were signi�cantly suboptimal, but it still performed well due to the

high computation power of the hardware. On the AMD HD7970 GPU hardware

we were forced to use only the BRUSH-OCL back-end because we have yet to

complete our AMD GPU machine code compiler.

Above a certain complexity (angular moment and contraction size, (dd|dd))

the run-time and the memory usage of the NVIDIA and AMD compilers are

unpractical. The cause of this behaviour is that, algorithms up to the complexity

O(n3) are favoured in compiler because of their e�ciency, where n is the number

of instructions in the function body. This is true for middle-end optimizations,

and the register allocator too. The code sizes for BRUSH on GPUs can easily

grow more than millions of instructions, so standard compilers are unable to

process them. The code transformations and optimizations used for compiling the

output of BRUSH in the BRUSH-ASM, are limited in time and space complexity

to O(n · log(n)).

I have done most of the GPU measurements in single precision, and one in

double precision. It was throughly investigated [75, 80, 96, 61] that using a single

precision integrator is appropriate even for large molecules to converge the SCF

procedure to near optimum, and later into the SCF iterations the double/mixed

precision could be enabled, only using it for a few iterations to achieve chemical

precision.

It should be noted that the speed di�erence between single and double preci-

sion is only ×5.5, while the the theoretical peak di�erence of the hardware is ×4.

This is a good result, because these computations tend to su�er from register

pressure, which doubled as our register sizes doubled. However, neither of these

two potential bottlenecks multiplied to ×8, bur rather, only multiplied to ×5.5.

The performance of Libint integrator, using the vertical recurrence relations

on Equations (4.27), (4.28) and (4.29), was found to be similar to NWchem in

non-vectorized mode, so it was not included it in the table of measurements.

I have done my measurements on several di�erent GPGPU graphics cards, so

the trend of improvement can also be seen. I have depicted the used software or
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software module in case of my BRUSH algorithm, the hardware, the integration

time, and the relative speedup to the AMD Athlon II X4 processor. I have also

measured the precision of the ground state energy computed from these values

by an SCF algorithm. The relative precision is practically the ratio of the ground

state energy and the energy error. The absolute precision is the magnitude of

the measured energy error compared to the reference sources: MRCC, Gaussian,

Molpro, NWChem.

I have summarized my measurements in Table 1, where each column con-

tains a measurement on a software and hardware environment across di�erent

molecules, and each row contains the results of a single molecule measurements

across di�erent environments. In the �rst row I depicted the most important

information about the environment, hardware details like the processor type and

frequency and if we have used only a single core for the measurement, or soft-

ware details like the name of software module, of the precision of the number

representation. In the �rst column we have the name of the molecule used in

the computations, or the chemical formula for long alkanes. We also have labels

for the absolute precision and relative precision. Where absolute precision means

di�erence of the computed and reference ground state energy values, the relative

precision is similar is the scaled version of the absolute precision with the energy

relative precision := Computed−Reference
Reference

. The �rst sub-row of a measurement row

depicts the integration time, where all integrals passing the Swartz screening were

computed. The second sub-row depicts the speedup relative of the single core of

Athlon II X4 635 desktop CPU.
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Hardware Athlon II X4 635 i7-3820 C2050 C2050 HD7970 GTX580 GTX780

Software NWchem 6.3 NWchem 6.3 BRUSH-PTX BRUSH-ASM BRUSH-OCL BRUSH-ASM BRUSH-PTX

Precision double double double single single single single

Frequency 1 core 2.9GHz 1 core 3.6GHz 1.15GHz 1.15GHz 1.05GHz 1.54GHz 1.72GHz

benzene <500ms <200ms 49ms 8.9ms 42ms 6.7ms 5.1ms

×1 ×2.5 ×10 ×56 ×11.9 ×72.4 ×98
abs. precision 10−6 Ha 10−6 Ha 10−6 Ha 10−5 Ha 10−5 Ha 10−5 Ha 10−5 Ha

rel. precision 10−9 Ha 10−9 Ha 10−10 Ha 10−8 Ha 10−8 Ha 10−8 Ha 10−8 Ha

superbenzene 22s 11s 746ms 167ms 240ms 111ms 77ms

coronene ×1 ×2 ×29 ×132 ×92 ×198 ×286
abs. precision 10−6 Ha 10−6 Ha 10−6 Ha 10−3 Ha 10−4 Ha 10−3 Ha 10−3 Ha

rel. precision 10−9 Ha 10−9 Ha 10−9 Ha 10−6 Ha 10−7 Ha 10−6 Ha 10−6 Ha

sucrose 30s 16s 643ms 115ms 470ms 80ms 67ms

×1 ×1.9 ×46 ×261 ×64 ×375 ×447
abs. precision 10−5 Ha 10−5 Ha 10−6 Ha 10−4 Ha 10−3 Ha 10−4 Ha 10−4 Ha

rel. precision 10−9 Ha 10−9 Ha 10−10 Ha 10−7 Ha 10−6 Ha 10−7 Ha 10−7 Ha

C30H62 37s 24s 572ms 105ms 175ms 70ms 52ms

×1 ×1.5 ×64 ×352 ×211 ×529 ×711
abs. precision 10−5 Ha 10−5 Ha 10−6 Ha 10−4 Ha 10−3 Ha 10−4 Ha 10−4 Ha

rel. precision 10−9 Ha 10−9 Ha 10−10 Ha 10−7 Ha 10−6 Ha 10−7 Ha 10−7 Ha

C60H122 173s 95s 2506ms 467ms 505ms 308ms 232ms

×1 ×1.8 ×69 ×370 ×343 ×562 ×746
abs. precision 10−5 Ha 10−5 Ha 10−6 Ha 10−3 Ha 10−3 Ha 10−3 Ha 10−3 Ha

rel. precision 10−9 Ha 10−9 Ha 10−10 Ha 10−7 Ha 10−6 Ha 10−7 Ha 10−7 Ha

C100H202 493s 264s 6979ms 1332ms 1100ms 870ms 655ms

×1 ×1.9 ×70 ×370 ×448 ×567 ×752
abs. precision 10−5 Ha 10−5 Ha 10−5 Ha 10−3 Ha 10−2 Ha 10−3 Ha 10−3 Ha

rel. precision 10−9 Ha 10−9 Ha 10−9 Ha 10−7 Ha 10−6 Ha 10−7 Ha 10−7 Ha

The NWchem software was chosen because of simplicity and because we can

easily measure the speed of its integrator, and it also provides information about

how many integrals passed the Swartz screening threshold. While the integral

screening is out of the scope of this dissertation, I have to mention that our

screening (Cauchy-Schwarz screening) was more conservative than the NWchem,

as a consequence, we have computed 20% more integrals on average, so the actual

speedup of our integrator is theoretically bigger than depicted.

Most modern computational chemistry programs utilize also advanced algo-

rithms to speed up the evaluation of long-range interactions. The most well

known of these is the Continuous Fast Multipole Method [84], however many

other techniques also exist, which makes it di�cult to compare directly the ef-

�ciency of the BRUSH algorithm with these. We are also working on the GPU

implementation of these methods.
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4.5 Conclusions

I have presented the PRISM-like meta algorithm BRUSH as a better choice for

GPU based two-electron integrators, given the set of constraints, because the

BRUSH algorithm is a superset of the HGP/MD-PRISM algorithms, but I have

also added GPU friendly optimizations, and more general integrals paths.

I have measured that the speedup of this calculation on GPUs, and for single

precision I have obtained 750× speedup compared to a single core of Athlon II X4

635 desktop processor which closely agrees with the best-case GPU versus CPU

speedup, which is in the range of ×50 - ×100, for all four cores of the mentioned

Athlon and Intel i7 processors.

It is easy to see why my approach to unroll the recursion and compute the

Gaussian exponents at compile time is advantageous on GPU architectures since

it allows us to stay mostly in register memory which is by far the fastest on the

GPU, on the other hand the huge amount of executable code is not much a hin-

dering factor because of the SIMD nature of this architecture, unlike for CPUs.

However it is very di�cult to determine why the BRUSH meta algorithm is faster

because I have obtained my algorithm by through benchmarking of various com-

binations of recurrence relations. In case of the compiler optimizations, as well

as using unrolling and Gaussian exponent (contraction) propagation, the compu-

tation time no longer simply depends on theoretical Flops and Mops counts.
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Chapter 5

Conclusions

The polyhedron based algorithm optimization formalism and method was pre-

sented in Chapter 2, which gave a theoretical basis to my work using GPUs, and

other many core architectures. This work centered on the formalism and dealing

with the data-�ow dependencies, which are critical in loop optimizations includ-

ing parallelization. Additionally, I have also advanced this topic by including

dynamic control-�ow structures into the previously static theory. This way we

can handle much more practical programming situations.

Based on my theoretical results I proposed an architecture named RACER in

Chapter 3, which eliminates many often occurring bottlenecks of parallelization.

Following the theory, described previously in Chapter 2, I came to conclusion

that memory operations, like sorting and searches, should be outsourced to the

memory. This approach allows the signi�cant increase of performance of the

memory operations while simultaneously making the processing elements of the

RACER processor to be much more simple and e�cient. As a result the RACER

architecture can implement more parallelism, allowing the e�cient implementa-

tion of a wider range of algorithms than in other GPU or CPU architectures. An

algorithm example is described to explain the process of the program running on

the architecture.

Chapter 4 presents a new algorithmic approach developed to evaluate two-

electron repulsion integrals based on contracted Gaussian basis functions in a

parallel way. This approach utilizes my earlier theoretical results in a practical

way, and experience from developing low level compiler systems. I show in bench-

107
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marks that signi�cant speed improvements can be achieved by my optimization

approach.
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Summary

5.1 Methods used in the experiments

In the course of my work, instruments of numerous disciplines were

applied. One of the most important of these is the theory of automatic

parallelization. In case of automatic parallelization loop structures,

which can be reformulated in a parallel way, are identi�ed in the im-

plemented algorithm. The loop structures are usually described by

polyhedral representation, where the static loop structure is repre-

sented in a multi-dimensional discrete space and converted to the de-

sired shape by a�ne geometric transformations. I supplemented this

theory to work the dynamic control structures too. For the represen-

tation I used data-�ow and control-�ow description of the program,

which enable the e�cient automatic management and optimization

of the code. I have learned the internal operation of the two cur-

rently most popular open source compilers (GCC, LLVM) and the

optimization algorithms they use.

It was necessary to study in detail the following most widely used

general-purpose programmable GPU architectures:

• NVIDIA GeForce8

• NVIDIA Fermi

• NVIDIA Kepler

• AMD(ATI) R800(Evergreen)

• AMD(ATI) R900(NI Cayman)

DOI:10.15774/PPKE.ITK.2014.009



5.1 Methods used in the experiments 110

• AMD(ATI) R1000(Southern Islands GCN)

For the AMD architectures, the manufacturer provided to me the

documentation of the machine code, the detailed structure of the ar-

chitectures and also the general-purpose hardware-level programming.

In the case of NVIDIA, the architecture dependent information was

collected by disassembly and careful measurements.

While designing the RACER architecture, I used general engineering

design methods of digital processors, such as pipeline design, digi-

tal synthesis, H-fractal clock routing method, resonant network and

asynchronous network. During the construction, I tried to use as

much existing IP-core modules as possible. I combined my experience

of implementing complex algorithms on GPU (e.g. video compression,

sparse-matrix algebra) with the local data processing methods of ar-

ray processors and systolic arrays. I got acquainted with the operation

of the processor memory communication and the limitation of mem-

ory circuits. The elimination of these limitations plays an important

role in the RACER architecture. I have learned e�cient simulation

methods of digital circuits and their high-level design in VHDL and

Verilog languages.

My results are in use in a GPU optimized quantum chemistry software

computing the two electron integrals. I have implemented a special-

ized compiler software for achieve the massive parallelism and GPU

optimized program code. This compiler is able to expand the integrals

symbolically, in this reduction the following algorithms were taken as

a basis:

• Boys

• Pople-Hehre

• Obara-Saika-Schlegel

• Head-Gordon-Pople

• McMurchie-Davidson
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• MD-PRISM, HGP-PRISM

While understanding these algorithms, I became acquainted with the

details of mathematical methods of numerical quantum chemistry, in

particular with the computation of two electron integrals of Gaus-

sian basis and the mathematical method of the general bra-ket. I

have learned the methods which use the integrals for calculating the

electrostatic potentials:

• Self Consistent Field : SCF-HF

• Density Function Theory : DFT-KS

• Moller-Plesset Perturbation Theory : MPPT

• Con�guration Integration : CI

• Coupled Cluster computation : CC

5.2 New scienti�c results

1. Thesis: I showed that in case of programming many-core architec-

tures, besides classical static polyhedral representation, dynamic poly-

hedral loops and dynamic control structures can be represented by poly-

hedrons. In the case of dynamical polyhedrons, I showed and gave a

formalism how to manage memory access patterns. I de�ned those

algorithm classes, which can be managed e�ciently with my proposed

methods. [7, 8, 9]

I proposed a new mathematical formalism for the high-level manipula-

tion of the dynamical control structures of the programs. I reduced the

dynamical control structures to in�nite static structures with speci�c

dynamical dependences. The in�nite limits are necessary, because the
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dynamic limits are parametric in compilation time therefore they can

be overestimated by in�nity. Dependencies can be dynamic, which

makes necessary to execute the parallelization in runtime. Thus, in

this theory, the scheduling is the part of program execution, and this

process determines that which computations where and when are ex-

ecuted. The theory is demonstrated by the parts of my H.264 video

encoder implementation.

2. Thesis: I designed a new data stream based parallel computing ar-

chitecture (RACER), in which the tasks are distributed between the

memory and processing units more e�ciently than in previous ar-

chitectures. For this achievement, the parallelism is extended to the

memory as well. [14]

I designed the modules of RACER data stream driven computational

architecture. Both the program and data streams pass through the

array processor. The program stream forms the appropriate struc-

ture which processes the following data stream. The control of the

data stream processing can be dynamic too including branches, loops,

merges and forks. The connected memory system is also a very im-

portant part of the architecture, which contrary to the conventional

memory, contains computing elements too, in particular the compari-

son arithmetic units. Thus, appropriate algorithm dependent ordering

of the data can be achieved, which provides continuous data feed of

the array processor.

2.1. I showed that due to the simplicity and locality of

the control electronics and wiring, in case of the realization of

VLSI, the 57-72 percent of the chip area is used by arithmetic

processing units. Implementing RACER architecture, one of
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the highest arithmetic density could be reached compared to

available GPU architectures.

I have chosen GRFPU-1 IP core from Aero�ex Gaisler for processing

elements. In my estimations I have used 100K gates in one core for

65nm and 90nm technologies. I have estimated the number of gates

of the routing elements also, which covers about 20 percent of the sur-

face. From these values I estimated the �nal chip sizes and the power

consumptions with Cadence InCyte Chip Estimator. I have compared

GPU peak performances to the estimated RACER peak performances

in order to highlight the possible performance gains coming from the

higher number of computing cores. By estimation the RACER ar-

chitecture's surface covered by computing cores is between 57 and 72

percent of the chip area.

2.2. I showed that Mandelbrot and Conway's Game of

Life algorithms can be implemented on the RACER archi-

tecture, while RACER remains a general architecture. With

the implemented applications I demonstrated the function-

ality of the architecture and proved that the architecture is

Turing complete.

I designed an possible hardware implementation and I proved the

viability of the RACER architecture in simulations. I applied low

level simulations where the input is the graph representation of the

control and data �ows. Thus, the proper functioning of the algorithms

can be veri�ed on the proposed RACER architecture.

3. Thesis: I utilized my techniques for accelerating the computation

of two-electron integrals in quantum chemistry algorithms in particu-

lar to the compatibility of the single-instruction-multiply-data (SIMD)
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architecture. I designed a meta algorithm (BRUSH) for GPUs, which

assigns the optimal computational path for each Gaussian two electron

integral. I showed that in the case of special contractions, the constant

substitution and propagation is e�cient on these architectures. [12, 1]

I designed and implemented a specialized compiler for computing two-

electron integrals of quantum chemistry methods. This compiler al-

lows the e�cient exploitation of parallel SIMD architectures. In quan-

tum chemistry, the most important numerical problem is the calcula-

tion of two-electron integrals. The input of my compiler is the actual

integral problem, which is unfolded in compiling time contrary to the

previous methods. All the dynamic control operations are executed

during compilation. The optimal computational paths are calculated

and chosen beforehand. The hardware speci�c machine code is gen-

erated from the received computational graph which contains a huge

number of arithmetic operations. While I designed this transforma-

tion I paid special attention to the exploitation of the properties of the

architecture. For example, the usage of multi-level memory structure

to store temporary values, or the optimization of parallel processing

of the SIMD cores.

5.3 Examples for application

My work and its theoretical results were motivated by practical uti-

lization. The presented algorithms provide solutions for problems in

real application domains.

The results of the �rst thesis group assist compilation of algorithms

on many-core architectures (GPU, FPGA).

My second thesis group presents an architecture which has excellent

computational performance in many di�erent �elds. These applica-

tions including but not limited to: 3D graphics rendering, raytrac-
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ing, computation on unstructured grid, computer games, dealing with

large databases and all problems which can be solved e�ciently on

GPU.

In the third thesis group, an algorithm was presented which can be

used for general purpose applications. The GPU acceleration of quan-

tum chemical calculations can assist the synthetic molecule design by

signi�cantly reducing the running time.
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