
RACER data stream based array processor and
algorithm implementation methods as well as their
applications for parallel, heterogeneous computing

architectures

Theses of the Ph.D. Dissertation

Ádám Rák

Scientific adviser:
György Cserey, Ph.D.

Pázmány Péter Catholic University
Faculty of Information Technology and Bionics

Budapest, 2014



2



1 Introduction and aim

In recent years a new direction has started in the world of com-
puting, which is based on increasing the number of cores and
execution units rather than the clock frequency of the proces-
sors. This trend is manifested in all of the network devices,
desktop computers and even in cell phones. The main reason
for this can be traced back to physical laws, as the miniaturiza-
tion of microchips and the increase of the clock frequency led
to a much too long communication time between the remote
parts of the processor. This delay is caused mostly by wiring
and metal connections of the chip. The further increase of the
clock frequency is therefore not only impeded by a limit deter-
mined by the silicon’s switching speed, but it also increases the
experienced value of the delay. Too much delay implicates more
fragmentation of the architecture into several execution units
and cores.

According to Moore’s law, the manufacturing cost of dig-
ital integrated electronics per transistor is becoming cheaper.
This will help the above mentioned direction further, as in a
well-designed multiprocessor system, the increase of the num-
ber of cores is a simple task. This way not only more and more
transistors, but more and more cores (or, raw computing power,
increasing at the same rate as defined in Moore’s law) are gained
for the same price.

This trend is lead by graphics processing unit (GPU), which
is achieved and even exceeded the number of 5760 cores per
microchip in 2014. These multi-core or many-core systems are
DSP, FPGA, CELL and GPU, but this trend encompasses the

3



embedded, multimedia processors too.
Besides the rapid development of the hardware, the question

arises how these architectures can be programmed efficiently.
Many-core processor systems show not only more variety than
traditional predecessors, but require fundamentally new pro-
gramming approach. In order to integrate as many cores as
possible in a processor unit, the computational units were sim-
plified as much as possible. Practically most of the results of the
last twenty years had been thrown away from single processor
core optimization. Which focused on a single processor core op-
timization. Thus the difference between a simple computational
unit, e.g. Floating-Point Unit, and a core with full functional-
ity is not clear. The functional differences between many-core
and traditional processors are illustrated by that if a strict se-
rial program has been executed on a many-core processor, then
the running time is often 100 times slower than running it on
a non-parallel CPU. The standard OpenCL programming lan-
guage has been created to program such a new parallel systems.
OpenCL is a low level C language, which pushes off the problem
of parallelization of the algorithms to the programmers.

The efficient implementation of an algorithm requires the
deep knowledge of the target architecture. Based on experi-
ences, this knowledge is necessary even while using OpenCL lan-
guage because the smallest optimization solutions can be speed
up the program by a few orders of magnitude. The problem
is even more complicated, because the manufacturer (NVIDIA,
AMD-ATI) changes its architecture in every year and fundamen-
tally redesigns it in every two years. Moreover it is common that
the manufacturer has difficulties to understand its own product

4



and exploit its advantages.
There is significant demand to have solutions that can au-

tomate the parallel implementation of algorithms with math-
ematically backed methods. This includes those methods too,
where implementing algorithms efficiently on a new architecture
is assisted by machine learning.

Considering these problems, my aim was to ana-
lyze the parallelization of general algorithm classes and
demonstrate my results and methods on a few difficult
algorithms.

The trend is obvious, the number of cores per processor will
increase exponentially in the next five-ten years. However, the
difference between each, following architectures is not only the
number of processors, but the changes of architectures. This
evolution leads not only to higher number of processing units,
but to the more efficient and optimized operation and also to
the increased computational power per area. If we examine the
parallel architectures, we find that the objective is to maximize
the general purpose computing power per unit area by employ-
ing trade-offs. These trade-offs and disadvantages at the most
common architectures are the following:

The difficulties of memory reading and writing of CPUs are
hidden by using traditional cache hierarchy. This solution, es-
pecially if we have more processor units, increases untenable the
ratio between chip area of cache memory and chip area of pure
computing. It is a good balance for the less computationally in-
tensive tasks, but quite wasteful in case of scientific or graphical
computations.

DSP: digital signal processor. These devices are very simi-

5



lar to CPUs, the difference is mainly between their parameters.
DSPs are designed for running signal processing algorithms ef-
ficiently (FFT, matrix-vector operations) with low power con-
sumption and competitive price. The chip area (ie. the cost
of manufacturing) is much smaller than CPUs’, because of the
above reasons, DSPs has less cache memory. Therefore the sys-
tem memory access patterns of DSPs is more restricted if we
want to exploit the available bandwidth.

The vector based SIMD (single instruction multiply data)
architecture of GPUs (graphical processing unit) introduces a
very strong constraint on the implementation of threads. In a
workgroup every thread has to do the same operation on dif-
ferent data, reading the data from adjacent memory. Therefore
both the memory bandwidth and computing resource utilization
of the silicon area are very high. But working with this archi-
tecture the programmer has to solve the efficient use of memory,
contrary to the CPU, this system does not hide the architecture
details and does not solve the related problems.

Cell BE (cell broadband engine): this is a hybrid architec-
ture, which includes a classic PowerPC CPU processor con-
nected to SPUs (synergistic processing units). The SPUs are
very simplified vector processing units, which have relatively
large local memory on chip. The programmers are responsible
to solve even every tiny technical problems, from the appro-
priate feeding of the pipeline to organize the internal logic of
the memory operations. This device has only indirect memory
access via the local memory.

FPGA (field programmable gate array): On this architec-
ture, arbitrary logic circuit can be implemented within certain

6



broad limits. Usually the implemented circuit is relatively effi-
cient, since the desired circuit is realized physically on the FPGA
by connecting on-chip switches. Consequently the logic circuits
of the FPGA can be adapted directly to the given task, there-
fore this architecture can exploit most efficiently the available
processing units. However the cost of this enormous flexibility
is the low density of the processing units on the chip surface,
since the switching circuits and universal wiring need large chip
area.

Systolic Array: this classical topological array processor ar-
chitecture contains effectively only execution (computing) units,
adder and multiplier circuits, which are usually solve some linear
algebra operations in parallel. Its applicability is very limited,
because its topology is specific for the executed algorithm. This
architecture does not contain neither memory architecture, nor
program control structure. These units should be provided by
another system. The flexibility is sacrificed for efficiency, since
the computing units utilized almost 100 percentage during op-
eration and the surface of the silicon chip contains effectively
only computing units.

CNN (cellular nonlinear/neural networks): this architecture
is efficient at using local image processing operations (low res-
olution image processing algorithms on grayscale images) with
extremely high speed and low power consumption. Every pixel
is associated to a processing unit, the process is analog and there
is only a very little analog memory. Accessing the global mem-
ory compared to the internal speed is very slow and also needs
the digitalization of the pixels. This architecture is optimized
for 2D topological computations with low memory.

7



Considering these problems, my aim was to design
a computational architecture (RACER architecture),
which is not limited by the disadvantages of the pre-
vious parallel architectures, Turing complete and fully
general algorithms can be implemented efficiently on
it, moreover its performance per area is maximized as
much as possible.

2 Methods used in the experiments

In the course of my work, instruments of numerous disciplines
were applied. One of the most important of these is the theory of
automatic parallelization. In case of automatic parallelization
loop structures, which can be reformulated in a parallel way,
are identified in the implemented algorithm. The loop struc-
tures are usually described by polyhedral representation, where
the static loop structure is represented in a multi-dimensional
discrete space and converted to the desired shape by affine geo-
metric transformations. I supplemented this theory to work the
dynamic control structures too. For the representation I used
data-flow and control-flow description of the program, which
enable the efficient automatic management and optimization of
the code. I have learned the internal operation of the two cur-
rently most popular open source compilers (GCC, LLVM) and
the optimization algorithms they use.

It was necessary to study in detail the following most widely
used general-purpose programmable GPU architectures:

• NVIDIA GeForce8

8



• NVIDIA Fermi

• NVIDIA Kepler

• AMD(ATI) R800(Evergreen)

• AMD(ATI) R900(NI Cayman)

• AMD(ATI) R1000(Southern Islands GCN)

For the AMD architectures, the manufacturer provided to
me the documentation of the machine code, the detailed struc-
ture of the architectures and also the general-purpose hardware-
level programming. In the case of NVIDIA, the architecture de-
pendent information was collected by disassembly and careful
measurements.

While designing the RACER architecture, I used general en-
gineering design methods of digital processors, such as pipeline
design, digital synthesis, H-fractal clock routing method, reso-
nant network and asynchronous network. During the construc-
tion, I tried to use as much existing IP-core modules as possible.
I combined my experience of implementing complex algorithms
on GPU (e.g. video compression, sparse-matrix algebra) with
the local data processing methods of array processors and sys-
tolic arrays. I got acquainted with the operation of the processor
memory communication and the limitation of memory circuits.
The elimination of these limitations plays an important role in
the RACER architecture. I have learned efficient simulation
methods of digital circuits and their high-level design in VHDL
and Verilog languages.

9



My results are in use in a GPU optimized quantum chemistry
software computing the two electron integrals. I have imple-
mented a specialized compiler software for achieve the massive
parallelism and GPU optimized program code. This compiler is
able to expand the integrals symbolically, in this reduction the
following algorithms were taken as a basis:

• Boys

• Pople-Hehre

• Obara-Saika-Schlegel

• Head-Gordon-Pople

• McMurchie-Davidson

• MD-PRISM, HGP-PRISM

While understanding these algorithms, I became acquainted
with the details of mathematical methods of numerical quantum
chemistry, in particular with the computation of two electron
integrals of Gaussian basis and the mathematical method of
the general bra-ket. I have learned the methods which use the
integrals for calculating the electrostatic potentials:

• Self Consistent Field : SCF-HF

• Density Function Theory : DFT-KS

• Moller-Plesset Perturbation Theory : MPPT

10



• Configuration Integration : CI

• Coupled Cluster computation : CC

11



3 New scientific results

1. Thesis: I showed that in case of programming many-core
architectures, besides classical static polyhedral representation,
dynamic polyhedral loops and dynamic control structures can be
represented by polyhedrons. In the case of dynamical polyhe-
drons, I showed and gave a formalism how to manage memory
access patterns. I defined those algorithm classes, which can be
managed efficiently with my proposed methods. [7, 8, 9]

I proposed a new mathematical formalism for the high-level
manipulation of the dynamical control structures of the pro-
grams. I reduced the dynamical control structures to infinite
static structures with specific dynamical dependences. The in-
finite limits are necessary, because the dynamic limits are para-
metric in compilation time therefore they can be overestimated
by infinity. Dependencies can be dynamic, which makes nec-
essary to execute the parallelization in runtime. Thus, in this
theory, the scheduling is the part of program execution, and this
process determines that which computations where and when
are executed. The theory is demonstrated by the parts of my
H.264 video encoder implementation.

2. Thesis: I designed a new data stream based parallel com-
puting architecture (RACER), in which the tasks are distributed
between the memory and processing units more efficiently than
in previous architectures. For this achievement, the parallelism
is extended to the memory as well. [14]

I designed the modules of RACER data stream driven com-

12



putational architecture. Both the program and data streams
pass through the array processor. The program stream forms
the appropriate structure which processes the following data
stream. The control of the data stream processing can be dy-
namic too including branches, loops, merges and forks. The con-
nected memory system is also a very important part of the ar-
chitecture, which contrary to the conventional memory, contains
computing elements too, in particular the comparison arith-
metic units. Thus, appropriate algorithm dependent ordering
of the data can be achieved, which provides continuous data
feed of the array processor.

2.1. I showed that due to the simplicity and locality
of the control electronics and wiring, in case of the
realization of VLSI, the 57-72 percent of the chip
area is used by arithmetic processing units. Imple-
menting RACER architecture, one of the highest
arithmetic density could be reached compared to
available GPU architectures.

I have chosen GRFPU-1 IP core from Aeroflex Gaisler for
processing elements. In my estimations I have used 100K gates
in one core for 65nm and 90nm technologies. I have estimated
the number of gates of the routing elements also, which covers
about 20 percent of the surface. From these values I estimated
the final chip sizes and the power consumptions with Cadence
InCyte Chip Estimator. I have compared GPU peak perfor-
mances to the estimated RACER peak performances in order
to highlight the possible performance gains coming from the
higher number of computing cores. By estimation the RACER

13



architecture’s surface covered by computing cores is between 57
and 72 percent of the chip area.

2.2. I showed that Mandelbrot and Conway’s Game
of Life algorithms can be implemented on the RACER
architecture, while RACER remains a general ar-
chitecture. With the implemented applications I
demonstrated the functionality of the architecture
and proved that the architecture is Turing com-
plete.

I designed an possible hardware implementation and I proved
the viability of the RACER architecture in simulations. I ap-
plied low level simulations where the input is the graph rep-
resentation of the control and data flows. Thus, the proper
functioning of the algorithms can be verified on the proposed
RACER architecture.

3. Thesis: I utilized my techniques for accelerating the com-
putation of two-electron integrals in quantum chemistry algo-
rithms in particular to the compatibility of the single-instruction-
multiply-data (SIMD) architecture. I designed a meta algorithm
(BRUSH) for GPUs, which assigns the optimal computational
path for each Gaussian two electron integral. I showed that in
the case of special contractions, the constant substitution and
propagation is efficient on these architectures. [12, 1]

I designed and implemented a specialized compiler for com-
puting two-electron integrals of quantum chemistry methods.
This compiler allows the efficient exploitation of parallel SIMD
architectures. In quantum chemistry, the most important nu-

14



merical problem is the calculation of two-electron integrals. The
input of my compiler is the actual integral problem, which is
unfolded in compiling time contrary to the previous methods.
All the dynamic control operations are executed during com-
pilation. The optimal computational paths are calculated and
chosen beforehand. The hardware specific machine code is gen-
erated from the received computational graph which contains
a huge number of arithmetic operations. While I designed this
transformation I paid special attention to the exploitation of
the properties of the architecture. For example, the usage of
multi-level memory structure to store temporary values, or the
optimization of parallel processing of the SIMD cores.

4 Application of the results

My work and its theoretical results were motivated by practi-
cal utilization. The presented algorithms provide solutions for
problems in real application domains.

The results of the first thesis group assist compilation of
algorithms on many-core architectures (GPU, FPGA).

My second thesis group presents an architecture which has
excellent computational performance in many different fields.
These applications including but not limited to: 3D graphics
rendering, raytracing, computation on unstructured grid, com-
puter games, dealing with large databases and all problems
which can be solved efficiently on GPU.

In the third thesis group, an algorithm was presented which
can be used for general purpose applications. The GPU acceler-

15



ation of quantum chemical calculations can assist the synthetic
molecule design by significantly reducing the running time.

5 Acknowledgements

I thank Interdisciplinary Technical Sciences Doctoral School
of Pázmány Péter Catholic University, Faculty of Information
Technology and Bionics, and its senior masters, Professor Dr.
Tamás Roska, and Professor Dr. Péter Szolgay for the encour-
agement and advisement during my studies.

I would like to thank György Cserey, for his support, en-
couragement, advices and inspiration.

I thank my colleagues for their advices and with whom I
could discuss all my ideas: Gergely Balázs Soós, Gergely Feld-
hoffer,

Ákos Tar, József Veres, Balázs Jákli, Norbert Sárkány, Gábor
Tornai, Miklós Koller, István Reguly, Csaba Józsa, András Horváth,
Attila Stubendek, Domonkos Gergely, Mihály Radványi, Tamás
Fülöp, Tamás Zsedrovits, Csaba Nemes and Gaurav Gandhi.

I thank Vida Tivadarné her patience and devoted work to
make the administrative issues much easier, the help of PPCU’s
dean’s office and the help of academic and financial department.

The support of grants Nos. TÁMOP-4.2.1/B-11/2-KMR-
2011-0002 and TÁMOP-4.2.2/B-10/1-2010-0014 are gratefully
acknowledged.

I am grateful to Anna for providing her friendship and our
discussions even her always busy schedule.

16



I am very grateful to my mother and father and to my whole
family who always believed in me and supported me in all pos-
sible ways.

6 Publications

6.1 The author’s journal publications

[1] A. Rák and G. Cserey, “The BRUSH algorithm for two-
electron integrals on GPU,” MATCH Communications in
Mathematical and in Computer Chemistry, 2014. submitted.

[2] A. Rák and G. Cserey, “Macromodeling of the memristor in
SPICE,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 29, no. 4, pp. 632–636,
2010.

[3] A. Rák, G. Gandhi, and G. Cserey, “Chua’s circuit topology
evolution using genetic algorithm,” International Journal of
Bifurcation and Chaos, vol. 20, no. 3, pp. 687–696, 2010.

[4] G. B. Soós, A. Rák, J. Veres, and G. Cserey, “GPU boosted
CNN simulator library for graphical flow based programma-
bility,” EURASIP Journal on Advances in Signal Processing,
2009. Article ID 930619, 11 pages doi:10.1155/2009/930619.

[5] A. Rák, G. B. Soós, and G. Cserey, “Stochastic bitstream
based CNN and its implementation on FPGA,” Interna-

17



tional Journal of Circuit Theory and Applications, vol. 37,
no. 4, pp. 587–612, 2009.

6.2 The author’s international conference pub-
lications

[6] G. Cserey, A. Rák, B. Jákli, and T. Prodromakis, “Cel-
lular neural networks with memristive cell devices,” in Pro-
ceedings of 17th IEEE International Conference on Electron-
ics, Circuits, and Systems, ICECS 2010, (Athens, Greece),
pp. 938–941, Dec. 2010.

[7] A. Rák, G. Feldhoffer, G. B. Soós, and G. Cserey, “Stan-
dard C++ Compiling to GPU with Lambda Functions,”
in Proceedings of 2010 International Symposium on Nonlin-
ear Theory and its Applications (NOLTA 2010), (Krakow,
Poland), 2010.

[8] A. Rák, G. Feldhoffer, G. B. Soós, and G. Cserey,
“Standard c++ compiling to GPU,” in 3rd HUNGARIAN-
SINGAPOREAN WORKSHOP on SYSTEMS BIOLOGY
and COMMUNICATION SYSTEMS, (Budapest, Hungary),
2010.

[9] A. Rák, G. Feldhoffer, G. B. Soós, and G. Cserey, “CPU-
GPU hybrid compiling for general purpose: Case studies,”

18



in Proceedings of 12th International Workshop on Cellu-
lar Neural Networks and their Applications, CNNA 2010,
(Berkeley, USA), Feb. 2010.

[10] G. J. Tornai, G. Cserey, and A. Rák, “Spatial-temporal
level set algorithms on CNN-UM,” in Proceedings of 2008 In-
ternational Symposium on Nonlinear Theory and its Appli-
cations, NOLTA 2008, (Budapest, Hungary), pp. 696–699,
2008.

[11] G. B. Soós, A. Rák, J. Veres, and G. Cserey, “GPU
powered CNN simulator (SIMCNN) with graphical flow
based programmability,” in Proceedings of 11th Interna-
tional Workshop on Cellular Neural Networks and their Ap-
plications, CNNA 2008, (Santiago de Compostela, Spain),
pp. 163–168, 2008. Cited: 2.

6.3 The author’s other publications

[12] A. Rák, and Feldhoffer, G., and Soós, G.B. and Höltzl, T.,
and Oroszi, B. and Cserey, György, “Eljárás és rendszer in-
tegrál kiszámı́tásának párhuzamos architektúra szálára való
leképezésére.” Hungarian and PCT patent, 2012. 2013.

[13] G. Cserey and A. Rák, “High accuracy time-to-digital con-
verter on FPGA.” Hungarian patent, 2009.

19



[14] A. Rák and G. Cserey, “Számı́tógépes architektúra és fel-
dolgozási eljárás.” Hungarian patent, 2012.

[15] A. Rák, G. Cserey, and B. Jákli, “Eszköz és eljárás mért
jel időbeliségének meghatározására.” PCT patent, 2013.

20




