
METHODS FOR THE ASSESSMENT OF
MULTINEURAL AND MULTIVARIATE
ACTIVITY PATTERNS AND SOME CNN
ARCHITECTURE IMPLEMENTATIONS

Ph.D. Dissertation

Viktor Gál

Supervisor:

József Hámori, D.Sc.

ordinary member of the HAS

Consulting adviser

Tamás Roska, D.Sc.
 ordinary member of the HAS

Analogical and Neural Computing
Systems Laboratory

Computer and Automation Institute
Hungarian Academy of Sciences

Faculty of Information Technology
Péter Pázmány Catholic University

Budapest, 2007

Acknowledgements

In the first place, I would like to thank my supervisors, Professor József Hámori, and Professor

Tamás Roska for their non-fading invaluable support. Their helpful guidance led me to the field

I was always dreaming about, the fascinating interdisciplinary field between biology and

engineering. It is a great privilege to be involved in the work of their exceptional research

groups.

I am very grateful to Prof. Ronald Tetzlaff for the year I could spend in his group at the

Applied Physics department of the Goethe University in Frankfurt am Main in a collaborative

work with PD Dr. Sonja Grün from the Max Planck Institute for Brain Research. The institute -

where I learned a lot about neurophysiology – is headed by the legendary icon of the modern

neurobiology Prof. Dr. Wolf Singer, whose encouraging words determined the direction of my

research.

Thanks to my research collaborators in the international LOCUST project: Dr. Claire Rind,

Prof. Ángel Rodríguez-Vázquez, Martti Soininen, Dr. Gustavo Liñán-Cembrano, Jorge Cuadri

Carvajo, Dr Richard Stafford and Dr. Matthias S. Keil.

It is hard to make a complete list of all those who I owe special thanks. I recall Dávid Bálya,

István Petrás, Ákos Zarándy, Zoltán Vidnyánszky, Barna Garay, Csaba Rekeczky, Gergely

Timár, László Orzó, István Szatmári, Mátyás Brendel, Károly László and the others whom I also

wish a good luck. I owe a lot to Ms Katalin Keserű for her practical and official aid.

1 Introduction ... 6

2 Cellular Neural Networks and the CNN Universal Machine .. 9

2.1 Description of the standard CNN..9

2.2 Analogic algorithms and the CNN Universal Machine ..11

3 Assessment of multiple neural activity patterns .. 14

3.1 Introduction: the temporal structure of the neural code ...16

3.2 Spike time perturbation method: bootstrap statistic for the assessment of the

temporal structure in the neural code..19

3.2.1 Multiple single cell recordings: the data ..19

3.2.2 Patterns to detect ...20

3.2.3 Statistical considerations...22

3.2.4 Generation of Surrogate Data ...26

3.2.5 Detection of near coincidences...30

3.2.6 Detection of higher order spatial-temporal patterns...31

3.2.7 Evaluation of the method..33

3.3 Generation of Surrogate Data via CNN-UM ...45

4 An Analogic implementation of the genetic algorithm... 51

4.1 Introduction ...51

4.2 Operation of a GA...52

4.2.1 Modifications ..54

4.3 Implementation details ...56

4.4 Evaluation and summary ...63

5 Collision Warning algorithms .. 64

5.1 Introduction ...65

5.2 A collision warning algorithm inspired by the locust visual system66

5.2.1 Introduction...66

5.2.2 An overview of the Rind Model...68

5.2.3 Biology inspired models ...71

5.2.4 Discussion ...82

5.2.5 System Tuning and Evaluation...83

5.2.6 Computational cost ...88

5.3 An analogic algorithm for parallel multiple collision prediction based on isotropic

diffusion ...88

5.3.1 Theoretical background ..88

5.3.2 Design and evaluation of the algorithm..93

6 Application ... 98

6.1 Analysis of spatial and temporal patterns in multiple single neuron recordings98

6.1.1 An example for multiple single neuron data and analysis ...98

6.2 Automotive application of the Collision warning system...100

6.2.1 System level integration and evaluation...103

6.3 Genetic Algorithm...106

7 References .. 111

1 Introduction

This doctoral work is dealing with three different multivariate pattern analysis problems, and

what encapsulates them into one work is the ‘analog’ and ‘logic’ (analogic) approach in their

background and their direct or indirect relation to neurobiology.

Cellular Nonlinear/Neural Network Universal Machine (CNN-UM) [Chua & Roska, 1993;

Roska & Chua, 1993; Chua & Roska, 2001] is the platform for practical implementations of the

analogic ideas: a brief mathematical introduction of this framework (in Section 2) is inevitable

because of the central role it plays in my thesis.

The structural organization of the Cellular Nonlinear/Neural Network Universal Machine

makes this computer an ideal tool to study multiple spatially ordered signal flows. CNN is a

locally connected array of nonlinear dynamical systems called cells [Chua & Yang, 1988]. It is

discrete in space but continuous in time. Its connections or couplings determine the dynamics of

the system. CNN provides a well-defined mathematical and a hardware feasible physical

framework to study the emergence of patterns encoded by the local interactions of identical

cells. The easy VLSI (Very Large Scale Integration) implementation of the cell array is the most

important advantage compared to other modeling frameworks.

 In the vast majority of considered applications the relative position of signals within that

array–defining possible local interactions–has undoubted significance. Although this principle is

the guideline in two of the topics covered by this dissertation, using CNN for the analysis of

multidimensional systems where no embedded spatial information is expected seems to be

unusual. Through the example of multiple neural activity data I try to show that problems with

spatially independent–or independently processed–signals can also be translated effectively to

the language of CNN.

7

One of the fundamental questions in neuroscience concerns the nature of the neural code:

how the information, or signal that one neuron communicates to others is embodied in its

biophysical processes. A basic controversy in investigations of this topic involves the rate-coding

hypothesis. This is roughly the hypothesis that the information conveyed by a neuron in a

sequence of action potentials (or spikes) is contained wholly in the local spiking frequency –

number of spikes which occur in coarse temporal intervals on the order of several tens or

hundreds of milliseconds [Singer, 1993, 1999; Singer et al 1997]. Alternatively, the temporal

coding hypothesis holds that the precise (e.g. up to msec) location of spikes – especially in

relation to spikes of other neurons belonging to one specific functional group - conveys

information.

The role of synchronous firing of visual neurons to bind together the responses to

components of an object is just such an attractive but controversial idea. Visual processing

initially breaks up the visual scene into isolated fragments that are detected by many individual

neurons in V1 and higher visual areas. Yet visual perception of objects somehow reassembles

the isolated fragments into complete objects. The problem of creating a unified percept from

the responses of many separate neurons is referred to as "the binding problem." In the early

1990s, a theoretical solution emerged from the work of Wolf Singer and others [Singer & Gray,

1995], who found that neurons responding to portions of the same object fired synchronous

action potentials. They suggested that correlated firing could be the mechanism for binding

together responses from multiple, dispersed neurons.

I describe statistical models for spike trains which bear on rate versus temporal coding

distinctions, and develop hypothesis tests for the purpose of relating the models to experimental

data. My goal is to develop definitions and methodology to assess the existence and nature of

fine temporal structure in the neural records using assumptions which are compatible with the

theoretical goals of neuroscience. Implementing these methods, beside the design of traditional

computational algorithm, I also considered the reformulation of the problem of spatially

independent signals enabling the much faster parallel computation.

In the second thesis I prove that effective CNN-UM implementation of a special ‘fine-

grained’ type genetic algorithm is feasible [Bálya & Gál, 2006]. A genetic algorithm (GA) is a

search technique to find approximate solutions to combinatorial optimization problems:

classical domains are characterized by fitness (optimization) functions with complex fitness

landscape (many local minima) on high dimensional data sets. Typical examples include

8

timetabling, scheduling problems, automated design, but here I show the suitability of binary

GA in connection with the analysis of multi-dimensional (multi-channel) neural activity data.

The last thesis group is dealing with collision prediction: analysis of situations when the

motion of an object could end up with a useful (for a predator) or disadvantageous (for a prey)

collision with the observer/sensor.

A growing body of evidence makes neurobiologists suppose that for some animals (and

humans) low-level monocular visual information alone is enough for a remarkable estimation of

the time left till an impending collision [Rind & Simmons, 1999], [Schiff & Detwiler, 1979]. Fast

calculation even in an unfamiliar environment may have a life-saving impact. The locust LGMD

neuron is evolutionary honed to detect potential collisions with predators and provide a collision

avoidance reaction. In Section 5 I show analogic collision avoidance systems partly derived from

the computer model of the locust visual system and demonstration of their suitability for use in

automotive situations as a means of detecting a collision. The basic building blocks of the

models are based on simple visual receptive field interactions implemented on CNN-UM [Gál et

al., 2004].

2 Cellular Neural Networks and the CNN

Universal Machine

2.1 Description of the standard CNN

According to the somewhat formal definitions, a standard cellular neural network is defined to

be a

(1) two-dimensional array of

(2) identical dynamic systems, called cells,

(3) with local interactions between the cells, and

(4) continuous valued state variables.

Cells are indexed by their row ()i and column ()j coordinates. The neighborhood N of a cell

(),i j is the finite set of indices (),k l for which the state of cell (),i j explicitly depends on the

set of cells () ()({ }, ,i k j l k l N+ + ∈ . The dynamic behavior of the CNN can be described by

the collection of single cell ordinary differential equations. A simple CNN cell has a single state

variable
ij

x , an input value
ij

u and an output
ij

y . The output
ij

y depends on the state variable

according to the nonlinear function

() ()
1

1 1
2

y x x x= − − + . (2.1)

The (normalized) first-order differential equation for the cell (),i j is defined as

() () (), , , , , ,

, ,

i j i j k l i k j l k l i k j l

k l N k l N

d
x t x t A y t B u z

dt
+ + + +

∈ ∈

= − + + +∑ ∑

10

The outputs (y) and inputs (u) of neighboring cells are coupled by means of weighted sums.

These ,k l
A and ,k l

B weights together with the bias z form the CNN cloning template (or simply

CNN template). A CNN cell is shown in Figure 1. The block diagram of signal flow in a CNN

cell is shown in Figure 2.

.

.

.

.

B-1,-1ui-1,j-1

B1,1ui+1,j+1 A1,1yi+1,j+1

A-1,-1yi-1,j-1

.

.

.

.

current sources controlled by

the inputs of surround cells

current sources controlled by

the outputs of surround cells

B0,0ui,j A0,0yi,j z

xi,j

R=1 C=1

yi,j

R=1 f(xi,j) {

1

1

-1

-1 xi,j

f(xi,j)

the standard output

nonlinearity

Figure 1 Realization of a CNN cell. Realization of a CNN cell. Diamond-shape symbols denote voltage-

controlled current sources injecting currents proportional to the indicated controlling voltage ,i k j l
u + +

or ,i k j l
y + + , except for the diamond indicated by ()

ij
f x which is a nonlinear voltage controlled

current source.

11

f(xij) ∫
+

+

+

-

xij(t) yij(t)

z

U
B u

k l i k j l

k l N

, ,

(,)

+ +
∈

∑

uij(t)

, ,

(,)

k l i k j l

k l N

A y + +
∈
∑

Y

dt

Figure 2 Signal flow in a CNN cell. Dashed arrows mark parallel data paths from the input and the output of

surrounding cells.

In order to fully specify the dynamics of the array, the boundary conditions have to be defined.

Cells along the edges of the array may see the value of cells on the opposite side of the array

(circular boundary), a fixed value (Dirichlet-boundary) or the value of mirrored cells (zero-flux

boundary). The choice of boundary condition can have a fundamental effect on the global

behavior of the array as it will be demonstrated in Section 5.3.

2.2 Analogic algorithms and the CNN Universal Machine

When used for image processing, the input and state of the CNN array is loaded with the image

data, and the result of CNN computation is the steady state after the transient of the network. If

each cell of the CNN array is equipped with programmable weight coefficients, analog and logic

memory units, logic operations can be defined between these logic memory units, and these

logic functions along with the templates become programmable, we arrive at the concept of the

CNN Universal Machine (CNN-UM) [Roska et al, 1993]. This (re)programmability makes the

CNN a real microprocessor, the first algorithmically programmable analogic (i.e., both analog and

logic) computer. In this framework, each particular CNN operation (analog transient

computation, or local logic operation) can be thought of as an analogic instruction of this

12

computer. This allows to store intermediate results of the processing, and to build up and run

complex image processing algorithms on a CNN chip using some control hardware.

In the course of CNN template and algorithm design, many useful specialized templates and

simple template combinations have been found, many of which are compiled in a CNN

Software Library [Roska et al., 1999]. These provide basic components of several standard image

processing techniques. Beyond that, analogic CNN algorithms may utilize a number of spatio-

temporal effects in their basic operations which can hardly be applied if conventional image

processing technology is used. These may be neurobiological receptive field effects[Gál et al.

2004], mathematical morphology or different PDE-based techniques.

GAPU

(global analogic programming unit)

 APR: analog program register

 LPR: logic program register

 SCR: switch configuration register

 GACU: global analog control unit

LCCU

LLU LAOU

L

L

M

L

A

M

CNN

core

circuitry

Figure 3. The structure of the CNN Universal Machine. The extended standard CNN cell has various

components providing for programmable array computing. LCCU: local communications and control unit, LAM:

local analog memory, LLM: local logic memory, LAOU: local analog output unit, LLU: local logic unit. The

LCCU receives the programming instructions (in each cell) from the global analogic programming unit (GAPU).

In Figure 3, the global architecture of a CNN-UM [Roska et al., 1999] and the local units added

to its cells are shown which provide for programmability and combination of intermediate

results in analog and logic operations. Intermediate results can be analog and binary, these can

be stored in local analog memories (LAMs) and local logic memories (LLMs) respectively. Pixel-

by-pixel arithmetic and logic is performed by the local analog output unit (LAOU) and a local

13

logic unit (LLU). A global analogic programming unit (GAPU) provides the central controlling

of the CNN computer. This unit contains

• registers for storing template values (analog program register - APR),

• control sequences for logic operations (local program register - LPR),

• a switch configuration register (SCR) to access the different functional units, and

• a global analog control unit (GACU) storing the instruction sequence of the main program.

3 Assessment of multiple neural activity patterns

First thesis

Assessment of temporal scale and patterns in multi-neuron recordings

I/a. Effective and biologically relevant surrogate data generation algorithm

development and characterization

I proposed a computationally effective method for the generation of surrogate data

from an original discretized bioelectric signal, typically multiple single neuron recordings.

Original spikes of the neurons are shifted randomly and independently back and forth

resulting in surrogate spike-trains. This method satisfies the most typical requirements

for surrogate data: it preserves the main structure of the individual neuron activity

records following changes in the firing rates (non-stationary) but disrupts fine

interdependence between them. The most important features to preserve:

•total number of spikes

•non-stationarity; even sudden, transient changes in frequency

The technique can take physiological relevance and accuracy assumptions into

account.

I studied and explained the role and possible significance of the parameters

controlling the surrogate generation, and I also showed adjustment methods for optimal

performance.

15

I/b. A bootstrap technique for finding and evaluating higher order temporal patterns

in multi neuron recordings

I introduced a statistic that can be evaluated on original multiple single neuron

recordings and their surrogates. The statistic calculates the frequency of all possible

synchrony patterns in the data.

 Calculating the bootstrap significance of pattern frequencies based on their empirical

distribution indicates if occurrence of a pattern is higher than expected by chance:

decision about rejection of 0H (there are only independent processes) can be based on

the statistical rank of the original statistic within the order statistics of bootstrap

distribution. I showed that manipulating the parameters of the surrogate generation

process one can

• define extra limits

• tell if the occurrence of a certain pattern is statistically significant, thus a

functional transient cell group is formed

• determine if there are transient formations of functional cell groups

I/c. Implementation of the surrogate data generation on CNN-UM: an analogic

approach

I found an effective solution for the CNN-UM architecture adaptation of the

surrogate data generation method described in the first part of the thesis. The original

algorithm is modified to be suitable for fast parallel computing. Emulating a certain type

of cellular automata (CA) by the CNN-UM I was able to generate good quality pseudo-

random patterns with controllable features that suit the needs of high throughput

surrogate data generation. The algorithm was tested on an industrial framework

embedding the ACE4k. Cellular Visual Microprocessor serving as a feasibility test-bed.

16

3.1 Introduction: the temporal structure of the neural code

In the last few decades the attention of neurophysiologists has been shifted from single-neuron

activity recordings to multi-cell studies. Although there are efficient analytical tools targeting

single-neuron and neuron pair activity problems (autocorrelogram, crosscorrelogram, peri-

stimulus time histogram (PSTH), Joint-PSTH etc. [Gerstein et al, 2001]), a great number of

questions remain unanswered until we observe several cells simultaneously. Current scientific

trends consider the information processing and transmission capacity of individual neuron cells

rather poor. The idea is that even simple pieces of information in our brain would be

represented by spatio-temporal activity patterns across a number of neurons.[Singer, 1993, 1999]

In other words, only cell-groups with coordinated activity are able to carry complex signals

effectively [Hebb, 1949].

There has been a long debate on the rate-coding (via individual cells)[Barlow, 1972; Barlow,

1992] versus temporal-coding (in terms of coordinated activity of functional groups of cells)

theories among numerous experts from different interdisciplinary fields. The central question is

whether precise relative timing of spikes matters: whether the precise temporal position of spike

times in spike-patterns matters in the functioning of the brain.

One method of investigation involves presenting a stimulus repeatedly to a subject,

measuring the neural response over many such presentations, and examining the resulting

empirical rate: the empirical frequency of firing as a function of time, relative to stimulus onset

(or for time-varying stimuli, relative to a fixed time in the stimulus presentation). If the neuron

was coding for the identity of stimulus and environmental context precisely in its spike

positions, one would expect that the rate would appear to be changing very rapidly: spikes are

laid down with great precision relative to each other. This is, for example, referred to as

temporal coding in [Abeles et al., 1993a], but its delectability depends on the width of the rate-

increase, on the number and complexity of induced correlated spikes and whether the patterns

are stimulus locked etc. [Pauluis & Baker, 2000; Roy et al., 2000; Gütig et al, 2001]. If, on the

other hand; the spikes are not laid down precisely, one would expect the empirical rate function

to be slow-varying, or flatter; this would be consistent with rate-coding.

How to explore and prove the existence of temporal patterns, or high relative (and not

stimulus locked) timing precision? The idea is that we should set a precision limit, and prove that

relative spike timing is more accurate than the limit we defined. For that end one can randomly

17

and independently shift each spike in a recorded train, using perturbations with a predefined

magnitude δ–e.g. δ=±5 milliseconds–, and compute the value of some statistic on the altered

train. Roughly, perturbing the spike times should have the effect of preserving only those

temporal structures with timing precision coarser than δ milliseconds. This leads to the

following strategy for assessing the existence of fine temporal structure: repeating the surrogate

generation process many times, one can create the bootstrap (sampling) distribution on the

value of the statistic for surrogates of the spike train, and then compare the value of the statistic

on the original, unchanged spike train. If the original statistic is then atypical with respect to the

surrogates (for example, if it lies in one of the tails of the sampling distribution), then one is led

to suspect that the presence of fine temporal structure is necessary to account for the observed

spike train. Specifically, one concludes that the data is incompatible with temporal patterns the

precision of which is coarser than δ millisecond.

What kind of estimator (statistic) should we choose for the method above? On the one hand,

observing even a few neurons produces so many patterns–combinations of different number of

spikes and inter-spike intervals across the cells–that makes computationally infeasible to detect

all repeating sequences.

On the other hand limiting our search to synchronized events can be a sensible approach for

a couple of reasons: firstly, this consumes moderate amount of computing power, secondly, that

sort of patterns have already known biological relevance. In contrast with complicated temporal

patterns, the theoretical significance and the neural mechanisms of keeping track and using of

coincident spikes by the brain have been studied thoroughly. As a very simple example,

synchronized firings of converging neurons facilitate the transmission of signals in the target cell

via temporal summation [Softky & Koch, 1993; Diesmann et al., 1999].

A more ambitious but well established hypothesis says that synchronized firings could be the

physical base of binding discrete pieces of information encoded by distinct cells but describing

the same entity [Engel et al., 1992; Roelfsema et al, 1996; Singer, 1993; Singer & Gray, 1995].

Synchronization requires a mechanism that precisely coordinates the timing of individual spikes

generated by neurons which transiently form functional cell assemblies [Abeles, 1991; Gerstein

et al., 1989; Palm, 1990; Singer, 1993; Sakurai, Y. 1996] and would behave otherwise more or

less independently. Our main interest is whether having only the output history of randomly

selected cells one could reveal the presence of such a coordinating force working in the

18

background, localize the neurons involved and prove possible significant interdependence

between them.

Fig. 4. Activity timeline of 7 simulated neurons. From the seven cells neuron 1,4 and 6 tend to fire in synchrony

from time to time. Spikes are represented by the short vertical lines. The blue rectangles are the jitter-windows

within that spikes accepted to be coincident.

The task is not straightforward, since some incidental coincidences can be found when looking

at absolutely independently working neurons, and these have to be reliably differentiated from

observations where real functional cell groups emerge. The critical point is to define a threshold

after each experiment: a threshold in the number of detected coincidences–in fact a threshold

for each coincidence pattern–that is exceeded only (at 5% confidence level) when activities of

certain neurons are strongly coordinated, that is, the timing precision exceeds a certain limit.

Choosing the right value may depend on the (non-stationary) background firing frequencies of

the neurons involved, but some other parameters should also be considered.

One of these parameters is the level of tolerance towards the imprecision of the

synchronizing mechanisms, namely, the width of a time window within that spikes emerging

from distinct cells regarded to be coincident (“jitter”, see Fig. 4). Exact values for the parameters

are difficult to get, due to the fact that they are partly theoretical numbers, and the calculation

should be based upon a lot of recordings and analysis trying with different values.

Though a lot of promising attempts have been made (likelihood, frequency-domain and

information theory based methods, reverse correlation and Bayes' neural spike train decoding,

gravitational clustering) no widely accepted method has been developed for this computationally

demanding problem so far [Martignon et al., 1995; Grün et al,1999; Brown et al., 2004].

1.

4.

6.

time

19

3.2 Spike time perturbation method: bootstrap statistic for the

assessment of the temporal structure in the neural code

3.2.1 Multiple single cell recordings: the data

Although neurons are analog systems, here–like most large-scale modelers–we handle them as

tiny processors with binary output function: either they are active (discrete firings, spikes), or

silent; thus, their operation is represented by sequences of firings and inactive periods.

The spike activities of the observed neurons are recorded on a certain time scale. The first

step is to rescale/discretize them based on a sensible resolution, which is usually τ=1 msec.

Time discretization is implemented via ”exclusive binning”, thus each spike is sorted into time

bins: one bin represents a time window with a predefined width (τ), and its value is 1, if at least

one spike occurred during its respective time window, otherwise 0.

Accordingly, the activity of the th
i neuron of the observed cells in the th

k time bin–with

respect to a certain event used as reference–can be formulated as

()
())

())

1 if spike in k , k+1

 0 if no spike in k , k+1
is k

τ τ

τ τ

  
= 

 

 (3.1)

where τ defines the length of the time-window used for discretization. Including all of the

observed processes into one equation we can write:

()
()

()

1

2
()

N

s k

s k
k

s k

 
 
 =
 
 
  

s
�

 (3.2)

where ()i
s k is the spike activity function of time, i stands for the index of the respective

electrode (or neuron). Thus, from N electrodes we get N parallel binary trains [Cox & Isham,

1980], and these can build up a vector-process, where a vector-valued function ()ks represents

the (0,1) pattern of activity across the studied neurons at the thk time bin.

20

()ks at any k can take 2Nm = possible constellations of 0s and 1s (coincidence patterns).

cpθ will denote one specific pattern of the m possible constellations, where θ is an arbitrary

index { }1,..,mθ ∈ of the available patterns.

Fig. 5. Mapping multi-electrode recordings onto binary arrays.

Alternatively we can describe the processes by directly specifying the timings of each spikes in

the data. If there are iP spikes fired by the th
i neuron, the neuron’s activity is defined by a

vector
i

X with iP entries specifying its spike-times, respectively:

() () ()(): 1 , 2 , , ,
i i i i i i

x x x P x= ∈X … � (3.3)

where ()ix q specifies the time (time-bin index) of the th
q spike in the spike train of the th

i

neuron. Spike-times are expressed in time-bin indexes using the same resolution (and notation

for time) as in Eq. (3.1).

3.2.2 Patterns to detect

There is a lot of spatial-temporal activity patterns we are interested in [Dayhoff & Gerstein 1983;

Nadasdy et al., 1999], but there is much less we can analyze due to computational power limits.

Patterns like “there is a tendency that 11ms after a neuron 1 spike there is neuron 4 and neuron

5 coincident spike followed by neuron 2 activity after 3 ms” is extremely complex to find, since

computing all the possible combinations means combinatorial explosion. For this reason we are

going to limit our search for synchronous events or very simple spatial-temporal patterns.

Binary

processes

Recorded

activity
Train of

activity vectors

21

In our mathematical term a synchronous event is expressed by a binary activity vector (cell

column) that has more than one nonzero entry. The complexity ξ of such a pattern is defined by

the number of nonzero entries in the vector.

 We are also interested in less precise coincidences Figure 7, e.g. nonzero entries in

subsequent activity vectors (neighboring columns).

Figure 6 Precise synchronization patterns with complexity ξ=2 and ξ=3

Figure 7 Detecting inaccurate coincidences: enabling a jitter window with width of 3 ms we can explore less

accurate synchronization mechanisms

It is not rare, that the so called “capture” effect (a spike occurs in conjunction with a pattern by

chance), more complex patterns occur than the number of correlated processes may explain,

and some low complexity patterns remain undetected. To take all those low complexity patterns

into account, on should care about subpatterns of the detected patterns (see Figure 8).

ξ=3 ξ=4

ξ=2 ξ=3

22

Figure 8 Subpatterns: there are 3 complexity ξ=2 subpatterns of each pattern ξ=3

3.2.3 Statistical considerations

To test the hypothesis that there is fine temporal structure –coordinated activity- amongst the

neural processes, we define our null hypothesis, 0H , that there is only coarse temporal interplay

between the investigated neurons, and

• Starting from the N original spike trains 0 0

1 NX X… –the superscript zero(0) will refer to

the original, ‘recorded’ data–create J ‘surrogate’ data for each of the N neurons

(1 J

i iX X… for the th
i neuron) that are very similar to the original recorded activity in

terms of preserving the main structure of the individual neuron activity records but

disrupt fine interdependence between them

• define an appropriate statistic ()1 2g , , , NX X X… as a function of N processes for the

assessment of fine temporal interdependence in the data

• calculate the statistic for the original activities 0 0

1 NX X…

• calculate the statistic for each of the J surrogates 1 , 1j j

N
j J∀ ≤ ≤X X… of the N spike-

trains to create a sampling (bootstrap) distribution

• define a threshold value γ within the distribution for the rejection of 0H at α (=0.05)

significance level.

• based on the relation between the statistic ()0 0 0

1 2g , , , NX X X… of the original activity and γ

threshold make a statistical decision with significance p

ξ=2 ξ=3

23

Let ()1 2g , , , NX X X… a function of N discrete spike trains describing a relevant feature

(statistics) of the N parallel processes. In our work it will be a measure of synchrony, i.e., the

occurrence of a certain coincidence pattern within the interval we study. Selecting two parallel

processes (the and thf neurons with eP and fP spikes respectively) it can be written:

() ()()
1

g
eP

e f q e

q

x qπ
=

=∑X , X , (3.4)

and

()()
() ()

() ()

1

1

1 if min

0 if min

f

f

e f
p P

q e

e f
p P

x q x p w

x q
x q x p w

π
≤ ≤

≤ ≤

 − ≤


= 
− >



 (3.5)

where ()ex q and ()fx p specify the time-bin indexes of the th
q and th

p spikes of the th
e and

th
f neurons respectively (as in Eq. (3.3)), and w is the magnitude of inaccuracy we accept in the

definition of synchrony. qπ is the (0,1) indicator function of the coincidence event.

The method of surrogate data generation will be described later in this chapter, here we

define the th
j surrogate of the th

i neuron as a (random) u transformation of the original

activity:

()0j

i j iu=X X (3.6)

Then compute the synchrony measure for each surrogate data (typically J =1000):

()1 2g , , , ,1
j j j j

NZ j J= ≤ ≤X X X… (3.7)

and also for the original data

()0 0 0 0

1 2, , , NZ g= X X X… . (3.8)

If we rearrange the jZ statistics (from j =0 to j = J) according to their values in an increasing

order 1 2 1, , , JZ Z Z +… (the lower index introduced here denotes the rank order of the calculated

jZ statistics), a decision about 0H can be based on the statistical rank of the original 0Z within

24

the order statistics. The lower index β in 0
Zβ is the rank order of the calculated statistic of the

original data within the surrogate data set. Comparing β and J (the total number of

surrogates) one can define the statistical significance of 0Z :

1
1

1 1

J
p

J J

β β+ −
= − =

+ +
 (3.9)

720 740 760 780 800 820 840 860 880
0

10

20

30

40

50

60

70

80

90

Pattern ('11') counts

S
u

rr
o

g
a

te
 s

a
m

p
le

s
co

u
n

ts

Figure 9 Bootstrap statistic: blue bars describe the sampling distribution of the surrogate data. The distribution of

the synchrony counts within the samples is tabulated: the numbers of samples are presented as a function of the

coincidences they contain. Red arrow: the count of the synchrony in the original spike train located at the tail of

the distribution (p=0.006)

p is the estimated probability of rejecting the 0H –there is only coarse temporal interplay

between the neurons–when that hypothesis is true. Thus with increasing β (decreasing p) we

are getting more and more confident that the alternative hypothesis–precise temporal interplay

exists between the neurons– has to be accepted.

For statistical decision, we may define the maximum of the p value, and above that we accept

the 0H hypothesis: p >=α . Otherwise (p <α) we must reject the null hypotheses at α

significance level.

25

One can look at the other tail of the distribution at the opposite side as well: very low rank

order of 0
Zβ means that the feature we described by the statistic is much less frequent than that

of the 0H hypothesis suggests. Thus we can reject 0H and accept an alternative hypothesis: a

certain synchrony pattern is less frequent in the original data than we expected based on the

sampling distribution.

Following the terminology of S. Grün “unitary event analysis” method [Grün, 2002] we are

going to handle the cumulative probability from (3.9) as a measure for statistical significance of

the observed feature (here: joint spiking), calling it joint-p-value ()0 ,Z ′Ψ Z . ′Z is the bootstrap

sampling distribution calculated from surrogate data.

To enhance the visual resolution at the relevant low values for Ψ (or 1− Ψ), we choose a

modified logarithmic scaling as was done for the surprise measure in other studies [Grün, 2002,

Legendy, 1975; Palm, 1981; Legendy & Salcman, 1985; Palm, Aertsen, & Gerstein, 1988;

Aertsen, Gerstein, Habib, & Palm, 1989]. This transformation, the joint-surprise, which

approximates the conventional surprise measure for the relevant values of Ψ and yields a

continuous and differentiable function around Ψ =0.5:

()
1

logS
− Ψ 

Ψ =  
Ψ 

 (3.10)

For excessive coincidences, this function is dominated by the numerator Ψ ; for lacking

coincidences, it is dominated by the denominator 1− Ψ . Equation (3.10) is comparable to

measure significance on a dB scale and yields positive numbers for excessive coincidences (e.g.,

S =1 for Ψ =0.1, or S =2 for Ψ =0.01), negative numbers for lacking ones, while changing

sign at chance level Ψ =0.5 (see Table 1). S =1,2788 at the typical significance levelΨ =0.05.

On the basis of the joint surprise as a measure of significance, we now define unitary events

as the occurrence of those spike patterns cpθ in a given interval ∆ that can be found much

more often than expected by chance, or from the sampling distribution. To that end, we set a

threshold Sα on the joint-surprise measure and denote the occurrences of those cpθ for which

as unitary events. The arguments of ()0S Z , ′Z are pattern-dependent, consequently this test is

performed separately for each coincidence pattern cpθ within the interval ∆.

26

Ψ <0.5 (more than

expected)
S>0

Ψ =0.5 (according to

expectations)
S=0

Ψ >0.5 less than

expected
S<0

Table 1 Relation between the joint-surprise and joint-p-value

3.2.4 Generation of Surrogate Data

From the previous section it must be clear, that the aim of surrogate data generation from the

original data is to mimic “identical” or similar physiology experiments over and over again with

the constraint that the processes operating in the background are independent, or their

precision, or correlation in time is coarser than a predefined level. Thus the surrogate data must

follow the local spike frequency–and spike counts–of the original data with a certain precision

we define. Then the bootstrap statistic can make a decision whether the real neural processes

producing the recorded, original data operate on a finer or coarser time scale than the precision

at which the surrogates follow the original local frequencies.

We developed a computationally effective algorithm to perturb the exact timings of the

spikes in a local manner by an amount we can parameterize. The algorithm is based on a special

random walk process, where each spike can move one time-bin after each iteration with

probability µ (see Figure 10). In half of the iterations spikes may move forward and in the other

half backward.

The method respects some physiological constrains on spike intervals: spikes will not overlap

or cross each other, and depending on implementation details a certain refractory period can be

introduced.

Trying to formularize mathematically the algorithm we introduce a random variable d that is

sampled from the distribution:

27

() (,)p d I Iδ η δ= = (3.11)

where (,)Iη δ is the probability, that during a random walk, after I iterations the walker is at

distance δ from its origin considering the random walk process with µ step probability [Feller,

W. (1968)]:

()
() ()22

0.5 ,

(,) (2) 1
I vv

v I v

I I v
I

v v d

δδ

δ δ

η δ µ µ
− −−

≤ ≤ + ∈

−  
= −   

−  
∑

�

 (3.12)

Figure 10 Surrogate data generation: shifting randomly selected spikes forward and backward in turn. Green

arrows depict a shift with probability µ .

In our implementation, where during half of the iterations the spikes can move only in one

direction (thus the maximal value ofδ =I/2) equation (3.12) is modified according to:

() ()22

2,

2 2
(,) 1

I vv

v I v

I I
I

v v d

δδ

δ

η δ µ µ
− −−

≤ ≤ ∈

  
= −   

−  
∑

�

 (3.13)

provided there are no spikes in the ±I/2 neighborhood. If there are spikes close to each other,

the description of the distribution become increasingly complex. In Figure 11 and Figure 12 we

present the features and performance of the random walk process as a function of different

parameters.

S
U

R
R

O
G

A
T

E
S

1

Original spike

train

2

3

4

n

28

j

i
X , the th

j surrogate sample of the th
i neuron is created from the original 0

i
X (for notations

see Section 3.2.3) and from
iPD , that is a sequence of iP (number of spikes the th

i neuron

showed) random variables d :

()0 0 0 0

1 2(1) , (2) , , ()
i i

j

i i P i i i i P
x d x d x P d= + = + + +X X D … (3.14)

()
i1 2 P, ,

iP
d d d=D … (3.15)

Creating an appropriate amount (typically 1000 samples) of surrogate data the coincidence

patterns should be counted(see Figure 13) to create a sampling distribution.

Figure 11 Role of different parameters of the random walk. A The probability distribution of the walk distance of

shifted spikes from their original location after 6,12 and 18 iterations. The probability of shift by iterations:

µ =0.125 B as in A, for different values of µ , after 12 iterations. C The probability that a given coincident

pattern between 2 processes disappears after the random independent walk of the constituting spikes as a

function of the number of iterations: µ =0.125 . D The probability that a given coincident pattern between 2

processes disappears after the random independent walk of the constituting spikes as a function of step

probability (µ) after 12 iterations.

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

distance

p

6

12

18

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

distance

p

0.125

0.25

0.5

6 8 10 12 14 16 18
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

random walk iterations

p
_
d

is
r
u

p
t

0.1 0.2 0.3 0.4 0.5
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

probability of walk in a single iteration

p
_
d

is
r
u

p
t

A B

C D

29

Constellations of complexity higher than 2 in independent multiple parallel processes are

relatively rare. However, if they occur, they are very likely to be detected as false positives in data

sets of finite length [Roy et al., 2000]. In order to account for that, it is advisable to apply an

additional test at a meta-level, for example, by requiring a minimal absolute number of

occurrences of the high-complexity event. According to (3.13) and Figure 12 one can set such a

limit by varying the parameters of random walk: decreasing the walk probability µ , the

probability that a single synchrony pattern will not be disrupted is increasing.

1 2 3 4 5 6
0.7

0.75

0.8

0.85

0.9

0.95

1

synchrony counts

p
_

d
is

r
u

p
t

0.125

0.25

0.5

Figure 12 The probability that at least one coincident firing pattern between 2 processes disappears after the

random independent walk of the constituting spikes as a function of the total number of synchrony patterns in

the data. The different colors denotes three different step probabilities µ .

Figure 13 Creation of sampling distribution: original data consists of 2 dependent parallel processes, the

surrogates are generated from it via random spike shifts. The number of coincidences is decreased in each

surrogate comparing to the original train.

S
U

R
R

O
G

A
T

E
S

1

1

0

Original 2

Synchrony

countsl

30

3.2.5 Detection of near coincidences

Figure 14 Spike elongation for the detection of near coincidences

To detect coincidences on a broader time scale – searching for less accurate synchrony (jitter) –

spike representing pixels have to be elongated along the time-axis (see Figure 14). Thus, spikes

(of different neurons) close to each other will overlap in time which enables us to recognize

near-coincidences. The amount that spikes are expanded (el)is the function of the proposed jitter

window – the level of inaccuracy we accept. From Figure 14 it is not difficult to understand that

precise patterns are weighted stronger than less accurate ones in the analysis. When we apply

this technique, the subsequent processing steps should be adapted and tuned to the modified

input structure.

Figure 15 shows the integration of this spike elongation step into the coincidence pattern

analysis explained above.

Figure 15 Outlines of the algorithm

original spike

pattern counting

surrogate 1 surrogate 2 surrogate n

spike expandation

pattern counting

Comparison(<>=)

Decision (5% significance level)

spike expandation

31

3.2.6 Detection of higher order spatial-temporal patterns

Here I call the special constellations of spikes ‘higher order patterns’ where not only coincident

firings but the temporal order of spikes matters as well. Although I mentioned in the previous

sections that concerning more than two neurons assessment of all the possible higher order

patterns become increasingly complex in an exponential manner, there is a simple solution

within the framework of surrogate data generation to decide whether there is such a pattern

within a time window with a moderate width.

Figure 16 Higher order patterns: there is a clear tendency that spikes of neuron 4 are followed by spikes of

neuron 3 after 2msec

Hypothesis:

Coincidence patterns that are less frequent in the original data than in the surrogates are

suspicious to be part of a higher order pattern.

Proof:

To understand this idea we have to look into the mechanism of surrogate data generation.

Normally, if there are totally independent processes, then the independent perturbation of spike

times results in approximately equal number of pattern formation and destruction.

() ()formation destrucionp cp p cp=

In other words, concerning a pair of cells if there are j spots in the spike-trains where spike-

pairs (one from each neuron) are close to each other (within the maximum walk distance) to

form higher order patterns, existence of all possible patterns (all possible delays between the

spikes) have the same probability, provided the two cells fire independently. Denoting the

number of all possible delays with m , we probably find approximately j m events of all

patterns – including exact coincidence. Randomly shifting of the spikes will not change this even

distribution, the expected numbers for different patterns are j m still.

32

However, when there are excessive numbers of coincidence patterns due to highly correlated

activity – the distribution is biased towards coincidence patterns (Ncp –number of coincidence):

j m Ncp<

and

j m Nhp>

for higher order (other than coincidence) patterns hp . Random shift of the spikes will tend to

reverse the even distribution, so the expected numbers for different patterns will be j m again.

Thus the destruction will dominate over formation.

() ()formation destrucionp cp p cp<

 There are many more ways a (near) coincidence can be disrupted than created from spikes close

to each other. It is true provided that the jitter in the synchronous firings has even distribution

(there is no bias towards a certain spike order, but a symmetrical variance around precise

synchrony).

Provided, that there is a strong tendency that spikes of one neuron precede spikes of an other

neuron –that is there is a strong bias in the variation of the relative spike times across neurons –

the distribution is biased towards a specific higher order pattern hpθ :

j m Nhpθ<

and

j m Ncp>

Random shift of the spikes will tend to reverse the even distribution, so the expected numbers

for different patterns will be j m again. Thus the formation of coincidence patterns will

dominate over destruction:

() ()formation destrucionp cp p cp>

33

From the equations above it follows that in certain situations detection of higher order temporal

patterns is possible by the exploration of only coincident patterns: patterns that are less frequent

in the original data than in the surrogates are suspicious to be part of a higher order pattern.

3.2.7 Evaluation of the method

Stationary Data

Dependence of joint-Surprise on Physiological Parameters

Having derived the joint-surprise (see Eq. (3.10)) as a measure for statistical significance of joint

spiking events, we now investigate its performance with respect to various physiologically

relevant parameters: the firing rates of the neurons under consideration, the time resolution

(spike elongation length) chosen for the analysis, the rate of spike coincidences, their

coincidence accuracy (allowing the biological system some degree of noise), and the number of

neurons involved. To this end, we calibrate the performance of the joint-surprise by applying it

to appropriately designed sets of simulated data. As before, the control data sets consist of

independently generated Poisson trains of varying base rates. These are compared to different

data sets, containing additionally injected coincidences of varying complexities and coincidence

rates. Typically, the simulated data consisted of M=10 trials of 1000ms each and a time

resolution of h=1ms. The rates of the random Poisson trains were chosen to cover a

physiologically realistic range for cortical neurons-between 10 and 90Hz.

Influence of the Firing Rate.

To investigate the influence of the neurons’ firing rates, we studied two parallel spike trains

generated as independent Poisson processes, with both the same and constant rate. We varied

this rate from f=10 to f=90Hz in steps of 10Hz, in the presence of different constant injection

rates λc. Expectation values for the number of coincidences in the data set were estimated based

on surrogate data generation.

To visualize the effect of statistical fluctuations, we generated 10 data sets for each rate level.

Figure 18 shows that the empirical numbers of coincidences in the original data set indeed

match the mean of the bootstrap distribution assuming independence (S =0,Ψ =0.5), apart

from small statistical fluctuations. The number of coincidences exhibits a convex dependence on

background firing rate. The increase is quadratic, being the coefficient of the leading power.

34

Closely related to the probability of obtaining false positives (significant outcome in the

absence of excess coincidences) is the question of how precisely the distribution of equivalent

independent processes can be estimated when no coincidences are injected. We present an

analysis of the relation of significance level to the percentage of false positives obtained in

independent data sets later in this section.

Figure 17 shows the joint-surprise values corresponding to the original and surrogate pairs.

Without injected coincidences, the joint surprise fluctuates around 0, independent of the rate,

due to the fluctuations in the generated sampling distribution. Because we necessarily have

fluctuations in the surrogate samples the percentage of experiments in which the coincidence

count is significant may differ from the theoretical value determined by S . In the case of

injected coincident events, the measured and expected coincidence counts deviate from each

other, and the more so the higher the injection rate (see Figure 17 for λc=0.5, 1 and 2Hz). The

joint surprise declines hyperbolically with increasing background rate. At very low background

firing rate, the expected number of coincidences (mean of the sampling distribution) is

practically 0, while the number of measured coincidences remains considerable. Therefore, the

joint surprise obtains a large value.

For the injected coincident rate of λc=0.5Hz (Figure 17), the joint surprise falls below the

significance level of 0.05 (horizontal line in bottom graph) at a rate of about 60 Hz. For the

injected rate of λc=1Hz (Figure 17), this occurs only at a considerably higher background rate

(above 90Hz). At higher firing rates, more excess coincident events are needed to escape from

the statistically expected fluctuation range. Clearly, this behavior imposes a severe limit on the

detectability of excess coincidences at high firing rates. Before the expectation of the joint-

surprise falls below the significance threshold, some of the joint-surprise values obtained in the

individual experiments has already reached it (see deviation bars in Figure 17 A and C, 40Hz and

70Hz, respectively).

However, there is a broad range where fluctuations in the joint-surprise are well separated

from the significance threshold, and, hence, excess coincidences can reliably be detected. When

injected coincidences are present, the difference between the mean of bootstrap and actual

number of patterns increases linearly with ∆ (observed time-interval), while the width of the

bootstrap distribution increases with ∆ . Thus when data is long enough, excess coincidences

can always be detected.

35

Figure 17: Detection of coincident events under different firing-rate conditions. Simulated data from two parallel

processes were analyzed for the presence of coincident events. Realizations consisting of 100 trials, each of

duration 1000 ms, were generated with a time resolution of 1 ms. Rates of both processes were varied from 10 to

90Hz in steps of 10Hz. The experiment was repeated 10 times at each rate, to visualize statistical variations.

Coincident events, also generated by Poisson processes, were injected into each of the 10 data sets at one of three

coincidence rates (A,B: 0.5Hz, C,D: 1Hz E,F: 2Hz). Data were analyzed for the number of empirical occurrences

versus the sampling distribution from surrogates. The corresponding joint-surprise is shown in the left panels,

percent of trials with successful pattern detection in the right panels. Results for the 10 realizations per firing rate

are averaged together,. Horizontal red band in the panels indicate the significance threshold (S =1,2788

Ψ =0.05).

E F

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90
0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

10 20 30 40 50 60 70 80 90

%
 o

f
tr

ia
ls

C D

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90

A B

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

10 20 30 40 50 60 70 80 90

%
 o

f
tr

ia
ls

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

10 20 30 40 50 60 70 80 90

%
 o

f
tr

ia
ls

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90

36

Figure 18 The results of the control experiments without injected events.(for the interpretation see Figure 17).

Influence of spike elongation.

The time resolution of data acquisition in extra-cellular spike recordings is typically 1 ms or

better. There is recent experimental evidence from cross-correlation, joint peristimulus time

histogram JPSTH, and, particularly, from spike pattern analysis, that the timing accuracy of

spiking events that might be relevant for brain function can be as precise as 1-5 ms [Abeles et

al., 1993a; Riehle et al., 1997]. Similar suggestions come from modeling studies (Diesmann et al.,

1999). Here, we want to investigate whether, by choosing the spike elongation length el in that

time range, we may be able to detect coincidences with corresponding accuracy. Therefore, we

will first study the general influence of elongation on the outcome of joint-surprise analysis and

then address the effect of varying elongation size on the detection of coincidences with a finite

temporal jitter.

We generated a set of simulated data as before. While the rate of the independent processes

was maintained constant (f=20Hz), we injected additional coincident events at various rates.

Two examples for coincident rates of λc=0.5Hz and 1.0 Hz are shown in Figure 19; the control

set is shown in Figure 20. In the analysis, we gradually increased the elongation length from el=1

to el=7. This newly generated process formed the basis of our investigation.

Elongation increases the probability to observe an event in a time step, compared to the

original probability.

-1

0

1

2

3

4

5

10 20 30 40 50 60 70 80 90

S

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

10 20 30 40 50 60 70 80 90

%
 o

f
tr

ia
ls

37

Figure 19: Detection of coincident events using different spike elongation lengths el (or jitter window). Simulated

data from two parallel processes were analyzed for the presence of coincident events. Realizations consisting of

10 trials, each of duration 1000 ms, were generated with a time resolution of 1ms. Rates of both processes were

kept constant at 20Hz. Coincident events were injected at one of three coincidence rates (A,B: 0.5Hz, C,D: 1Hz

E,F: 2Hz). The experiment was repeated 10 times at each elongation length, to visualize statistical variations.

Elongation length was varied from 1 to 7 ms. Data were analyzed for the number of empirical occurrences versus

the sampling distribution from surrogates. The corresponding joint-surprise is shown in the left panels, percent

of trials with successful pattern detection in the right panels. Results for the 10 realizations per firing rate are

averaged together. Horizontal red band in the panels indicate the significance threshold (S =1,2788 Ψ =0.05).

E F

0

5

10

15

20

25

1 3 5 7

jitter window

S

C D

0

5

10

15

20

25

1 3 5 7

jitter window

S

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

1 3 5 7

%
 o

f
tr

ia
ls

A B

0

5

10

15

20

1 3 5 7
jitter window

S

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

1 3 5 7

j itter window

%
 o

f
tr

ia
ls

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

1 3 5 7

%
 o

f
tr

ia
ls

38

Figure 20 The results of the control experiments without injected events.(for the interpretation see Figure 19)

The dependence of the joint-surprise (see Figure 19) on the elongation size is similar to the

above-described dependence on the rate. In the absence of injected coincidences, S fluctuates

around 0 (see Figure 20). For injected coincidences, S decreases with increasing bin size. The

lower the injection rate is, the sooner S starts to decrease and the faster it decays: for λc=0.5Hz,

joint-surprise values start to fall below the 0.05 significance level at el=5-7 (see Figure 19), while

for λc=1Hz, significance is maintained even at el=7 (see Figure 19). The similarity between the

dependences of S on spike rate and on elongation size is not surprising, considering that

elongation has the net effect of an apparent increase in firing probability.

Detection of Near-Coincidences.

 In the next step, we investigate whether it is also possible to detect noisy (i.e., imprecise)

coincidences. This question arises naturally, since neurons are usually considered to exhibit some

degree of "noise" or uncertainty in the timing of their action potentials. Note, however, that the

degree of this temporal noise has long been questioned [Abeles, 1983] and is still under debate,

[Shadlen & Newsome, 1998; Diesmann et al., 1999]. While keeping both the independent

background rate and the injection rate constant, we increase the temporal jitter of the injected

near-coincident events stepwise from 0 to 5 ms, such that in each case, the difference in spike

times is uniformly distributed within the chosen jitter range. The question is whether, by

choosing an appropriate elongation length (el), we can improve the detection of such near-

coincident events. To this end, we analyze the simulated data with varying el sizes and for each

bin size compute the joint-surprise.

Figure 21 shows the results for a background rate of f=20Hz and a rate of injected near-

coincidences λc=2Hz. Each of the curves in Figure 21 represents data with a particular temporal

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 3 5 7

jitter window

S

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

1 3 5 7

%
 o

f
tr

ia
ls

39

jitter ν=0 to ν=6ms, analyzed with elongation length increasing from 1ms to 7ms. Values of S

are averages of 100 repetitions of the simulation experiment at constant parameters. Curves

representing temporal jitter ν=2-6ms raise with increasing el, up to el=5, and then fall with

different rates: the larger the temporal jitter the smaller the fall. That is at ν=5ms the value of S

will not drop significantly (compared to ν=3ms) when increasing el from 5 to 7 ms .

 Figure 21: Detection of near-coincidences for different degrees of coincidence precision. Two parallel spike

trains were generated with background rates f=30Hz the rate of the injected coincidences was λc=2Hz, for

∆=10000 time steps, h=1 ms. The temporal jitter of coincident events was varied from ν=0 to ν=6 time steps.

Each simulation was repeated 100 times, and data were analyzed for the number of observed coincidences by

varying the spike elongation size (jitter window) from el=1 to el=7, and compared to the bootstrap distribution

based on surrogate data. (A) Each curve shows the resulting average joint-surprise as a function of the el for a

given temporal jitter.

We can conclude that at elongation lengths larger than the coincidence accuracy, the rate at

which the number of excess coincidences grows drops, and the probability that an injected

coincidence is detected reaches saturation. Thus, S is decreasing again, because the bootstrap

width (standard deviation) is increasing. The comparison of different joint-surprise curves shows

that the higher the temporal jitter (i.e., the lower the coincidence accuracy) is, the lower the

joint-surprise is. Hence, for a given el, the number of near coincidences that can be detected

increases with decreasing temporal jitter.

Multiple Parallel Processes.

When the number of simultaneously observed neurons N is increased, the variety of

coincidence patterns grows strongly, due to the nonlinear increase in combinatorial possibilities.

Each complexity ξ (activity pattern with ξ spike and N- ξ non-spike entries) can occur in

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

1 3 5 7

jitter window

S

0

1

2

3

4

5

6

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7

jitter window
s
e
n

s
it

iv
it

y

0

1

2

3

4

5

6

A B

40

N
ϑ

ξ

 
=  
 

variations. On the other hand, the occurrence of higher-order constellations depends in a

nonlinear fashion on the rates. The probability for a pattern with complexity ξ to occur among

N neurons, all firing independently with probability p, is given by ()1
N

p p
ξξ −

− . For low firing

rates, constellations of high complexity are actually expected to occur rarely, so here the measure

of S could be subject of fluctuations. A solution to this problem is to collect more data for such

an experimental situation, where the discrete nature of the distribution is of less importance.

High ξ constellations, if occurring at all, are typically accompanied by high joint-surprise

values (see Figure 22). It is therefore not surprising that in simulations where we varied the

complexity of the injected coincidence patterns from ξ=2 to ξ=6 –while keeping the number of

processes (N=6), the background rate (f=20Hz) and the injection rate (λc=1Hz) constant–, all

coincidences of complexity ξ=3 and above were detected with high significance (see Figure 22).

For complexity ξ=2, the coincidence count is higher, because we get contributions from the

background rate which is rapidly vanishing for higher complexities.

Figure 22 Complexity of joint spike patterns. The background rate of the independent processes was f=20Hz,

and the injection rate was 1Hz (∆=100000ms, 10 repetitions). The number of processes was kept constant

(N=6), but the complexity of the injected coincidences was varied from 2 to 6. Thus, the pattern looked for was

[110000], [111000], and so on, respectively. The corresponding joint-surprise was very high except for complexity

ξ=2 (denoted by c2 in the figure).

When we increase the number of independent processes N (from 2 to 12), while keeping the

complexity of injected coincidences constant (ξ=2) the joint-surprise at the given firing rates is

0

5

10

15

20

25

c2 c3 c4 c5 c6

complexity

S

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

c2 c3 c4 c5

complexity

%
 o

f
tr

ia
ls

41

practically independent of N. There would be a small decrease in the number of occurrences of

this particular pattern, because with increasing N, more patterns containing the two spikes as a

subpattern become available, but our algorithm counts the subpatterns as well. Thus, this effect

does not affect the detectability of the injected coincidences at all.

We can conclude that to decide on the empirical relevance of coincidences of higher

complexities (ξ>=3), given a moderate amount of data, it is advisable to set additional criteria,

for example, by requiring a minimum absolute number of occurrences [Martignon & Vaadia,

1997; Martignon et al., 2000]: it is an inherent feature of the random walk process we tuned: we

use a quite low step probability which results in a high probability that spike will not move at all.

False Positives

Up to now, we have studied the sensitivity of our method by exploring under which conditions

excess coincident events are detectable. However, usually high sensitivity means low selectivity

(or specificity). Thus when we have a low fraction of false negatives one can suspect high

number of false positives. Thus, we have to establish conditions under which we reach a

compromise between a sufficient degree of sensitivity and an acceptable degree of specificity.

Therefore, we now analyze various sets of simulated data, with the combined requirement of

attaining a high level (90%) of detection (only 10% false negatives), while securing a low level

(10%) of false positives. As in the preceding sections, the simulations are described by

biologically relevant parameters, varied over a physiologically realistic regime. 100 independent

experiments were performed for each parameter value; from these, the percentage of

experiments that crossed a certain threshold level on the joint-surprise was evaluated. This

threshold level was varied in equidistant steps to cover the range of joint-surprise values

between -15 and +15.

Influence of the Number of Parallel Processes.

 Next, we varied the number of independent processes (from 3 to 12) while keeping the rates

constant (f=20Hz). For each number of processes, the fractions of false positives and false

negatives were evaluated at different threshold levels. We found that the fraction of false

positives increased with decreasing threshold and with the number of processes involved (Figure

23, middle). Moreover, the sensitivity for excess coincidences (shown for complexity ξ =2 at

coincidence rate of 1Hz in Figure 23, top panel) was independent of the number of processes.

The intersection range of the joint-surprise, necessary to obtain maximally 10% false positives

42

and maximally 10% false negatives, is shown in white in Figure 23 (bottom panel). Observe the

narrow band for selective and sensitive detection, dependent on the number of observed

processes. If more restrictive criteria (fewer false positives and/or fewer false negatives) are

adopted, the band becomes accordingly smaller (not shown here).

Influence of the Firing Rate.

 In the first step, we kept the number of independent processes constant (N = 2) and varied the

rate of the processes. We found that for constellations of ξ=2, the percentage of false positives

are practically independent of the background rates and has a linear relation to S threshold.

Figure 23 Sensitivity/specificity profile: white denotes min 90% correct as a function of Joint Surprise (S) and the

number of processes (N) involved. Upper part: sensitivity (fraction of true positives/all positives) Middle part:

selectivity (fraction of true negatives/all negatives) Bottom: combined performance: there is a secure white band

where both sensitivity and selectivity are in an acceptable range.

3

12

3

12

3

12

N

N

N

0 15 -15

S

43

Figure 24 Combined specificity/sensitivity profile. white area denotes min 90% true positives and 90% true

negatives at different joint surprise (S) levels. The number of processes (N) is varied from 10 to 90Hz.

By contrast, the sensitivity for detecting excess coincidences shows a clear dependence on

background rates. At low rates, it is very high, but it decreases-rapidly at first, more slowly later-

with increasing background rate (see Figure 24). At background rates above f=70Hz, the

threshold for detecting the injected events has decayed to about α =0.05. Combining these two

observations in a single graph, we obtain the intersection range of the joint-surprise, necessary to

obtain both maximally 10% false positives and minimally 90% sensitivity (the white area in

Figure 24 top). For low α , this region is bounded by an approximately straight vertical line at

α =0.05; the lower boundary of the permissible significance measure is approximately

independent of the background rate. The upper bound, however, is clearly curved: the threshold

needed for reliable detection decreases with increasing background rate, reaching a level of only

0.05 at f=60Hz. Thus, the higher the rate is, the narrower is the bandwidth of α -values

permissible to detect excess coincident events selectively and sensitively.

Detection of higher order spatial-temporal patterns

To test and evaluate the hypothesis we simulated data from two parallel processes and injected

higher order patterns with different inter-spike intervals: 1,2 3 and 4msecs between the spikes of

neuron 1 and neuron 2. Realizations consisting of 100 trials, each of duration 1000 ms, were

generated with a time resolution of 1 ms. Rates of both processes were kept constant at 20 Hz.

Higher order events were injected at different constant rates (A,B: 0.5 Hz, C,D: 1Hz E,F:2Hz).

The experiment was repeated 10 times at each inter-spike intervals, to visualize statistical

variations. Data were analyzed for the number of empirical occurrences versus the sampling

distribution from surrogates. The corresponding joint-surprise is shown in Figure 25. Results for

the 10 realizations per spike intervals are averaged together,. Horizontal red band in the panels

indicate the significance threshold (S =-1,2788 Ψ =0.95). Negative S values crossing the

threshold mean that coincident events occur less frequently than one could expect considering

10

50

90

Hz

44

the given background rates or looking at the bootstrap distribution of surrogates. Figure 25

shows that patterns of up to 3ms width can be recognized applying this principle.

-25

-20

-15

-10

-5

0

1 2 3 4

Spike interval in the higher order

pattern

S

Figure 25 Performance of the surrogate method for the detection of higher order patterns

Non-stationary Data

Until now, we have considered only the case of neurons firing at a stationary rate and with

stationary coincident activity among them. Physiological data, however, are usually not

stationary. Firing rates vary considerably as a function of time, particularly when the subject is

presented with adequate stimuli or is engaged in a behavioral task. A second type of non-

stationarity is that coincident firing itself may be non-stationary for example, by being time-

locked to a stimulus or behavioral event even if the rates of the neurons are constant (Vaadia et

al., 1995).

Figure 26 Non-stationary data: stepwise increase in background frequency. Influence of the injection rate of

dependent patterns on performance.

0

1

2

3

4

5

6

7

0 0.5 1,00 2,00

injection frequency

S

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 0.5 1,00 2,00

injection frequency

%
 o

f
tr

ia
ls

A

45

One non-stationary example is shown in the Application Chapter 6, here we present the

performance of the algorithm on stationary coincidence rates combined with stepwise increasing

background rates (10, 20, 30, 40, 50, 60, 70, 80, 90 Hz). Coincidences are injected at rate 0, 0.5,

1 an 2 Hz. The experiment with 100 trials(1000ms long each) was repeated 100 times. As we can

see (Figure 26) from the injection rate of coincidences λc=1Hz the method is quite robust on

non-stationary data as well.

3.3 Generation of Surrogate Data via CNN-UM

Our primary intention is to preserve the main structure of the individual neuron activity records

but disrupt fine interdependence between them. The most important features to preserve:

• total number of spikes
• non-stationarity; even sudden, transient changes in frequency

The key concept is explained in Section 3.2.4: repeatedly shifting single, randomly selected spikes

in the original trials against each other in the time domain (see Fig. 27). This will result in

independent random walk-like motions of the individual spikes.

Fig. 27. Surrogate data generation: shifting randomly selected spikes forward and backward in turn. Green arrows

depict a shift with a certain probability.

By means of this slight independent random modification we could destroy excess of

coincidences keeping the actual frequency unchanged.

For repeated random spike (pixel) selection within the framework of CNN-UM we need a

random binary pattern generator algorithm which works on the CNN-UM. An excellent method

S
U

R
R

O
G

A
T

E
S

1

Original

spike train

2

3

4

5

46

was proposed by Crounse and his colleges [Crounse et al., 1996]. Since CNN-UM can emulate

certain classes of cellular automata (CA) [Wolfram, 1994] they examined a subset of two-

dimensional binary CA rules, and found the following satisfactory:

(), 1, , 1 1, , 1 ,(1) () () () () ()i j i j i j i j i j i jc n c n c n c n c n c n+ + − −+ = + ⊕ ⊕ ⊕ (3.16)

where ⊕ stands for the exclusive-or logical operator, ci,j(n) is the (0,1) state of the cell with (i,j)

coordinates at step n. From that point CA refers to this specific operator throughout the

following sections and chapters. This irreversible rule works within the nearest neighborhood;

moreover, an iteration can easily be implemented by two templates and some local logical

operations on an ACE4K based system [Szatmári et al., 2000; Liñán G. et al. 2002]. Even when

one chooses a very simple, highly ordered initial condition (seed), the iterated application of the

rule drives the system quickly to a high entropy state. The behavior of the system was

thoroughly studied by the inventor, and passed a great number of statistical randomness tests:

the subsequently generated black&white images revealed regularity neither in space nor in time.

Such an image – in the following it is denoted by R.–consists of independently selected black

or white pixels. If the probability of a black pixel is p, then the logic operation between two Rs

results a new random image with black pixel probabilities: XOR: p, AND: p2, OR: 1-(1-p)2 = p

(2-p). Starting from a nearly arbitrary seeding image after a few (~100) iterations Eq.(3.16)

generates evenly distributed random patterns with p=0.5. In the following Ri denotes the logic

operation AND between i different random images, and the probability of having a black pixel

in a given position is a function of the required number of iterations of the CA rule (i.e., the

computational cost, see Figure 29):

()
1

2

i

p i
 

=  
 

 (3.17)

Given the above mentioned features it is reasonable to employ this CA as our pseudo-random

pixel selector. Ri can be applied as a mask (see Figure 28) with a predefined density of black

pixels: for our purpose it is typically 1/8 (p=0.125) which requires R3 as it can be seen in Figure

29. The quality of randomness could be even better if some of the subsequently (iteratively)

created patterns are ignored and only every second (or nth) pseudo-random images are used for

pixel-selection.

47

A possible way of usage: at every odd step only those spike-representing pixels are shifted to

the right (forward in time), whose neighbors to the right are silent (white) and these neighbors

are covered by the pixels in the actual random mask. The operation at even steps is basically the

same, except its direction is changed to backward.

The actual steps of our procedure are as follows: starting from an original segment of

recorded data (as seed) a couple of hundreds of CA iterations are executed according to

Eq.(3.16). From this point R3 samples from subsequent iterations will give properly distributed

pseudo-random binary arrays. The shift operation – with alternating directions – is masked by

the repeatedly generated random image, and following required number of spike elongation

operations the binary activity patterns should be counted in the newly formed surrogate data

(see Figure 30).

Figure 28 Randomly selecting spikes to shift forward in an array of 4 spike trains.

In that way the independent motion of individual pixels is not identical to but can be

approximated by a ‘random walk’ process. To limit the distance they can travel from their

starting point the input is reset to the original recordings after certain number of steps.

Array of randomly set bits Parallel spike trains

Spikes to move

48

Figure 29 Creating pseudo-random patterns. RPG: pseudo-random pattern generator unit. CA is the cellular

automata rule described by Eq (3.16).

Basically a 64X64 CNN can accommodate data with up to 64 msec duration, so switching

between the 64msec segments means a very high data transfer overhead. Although using the

periodic boundary condition with a meander-like arrangement this array can host up to 1024

samples of 4 neurons, it is still quite inefficient when processing data typically 105 samples long;

beside periodic boundary is not safe to use when analyzing non-stationary activity.

Seeding image

next pattern

CA

i:=i+1

i>100?

no

AND

yes

Pattern A

Pattern B

i:=1

CA

Pattern C

CA
AND Result Pattern

RPG CA

49

Figure 30 Flow chart of the algorithm. Figure 29 explains the operation of the pseudo-random pattern generator

(RPG).

Results

The tests–using the Candy CNN-UM simulation software package of the Aladdin development

system [Szatmári et al., 2002; Zarándy et al. 2003] and mathematical simulations on traditional

PC–show that the analogic approach can perform equally good as traditional implementations

of the surrogate data generation concerning short data segments. There were no significant

differences between the quality of the statistics based on the surrogate data generated by

standard conventional algorithms and created via the CNN-UM (experiments discussed in

Section 3.2.7 were used for comparison).

The speed of a single iteration of surrogate data creation on traditional serial computers is

not comparable to the ACE4K platform, especially in the fast DTCNN mode [Espejo et

original spike trains

next surrogate

next surrogate

next random pattern

next surrogate

next random pattern

next random pattern

RPG

RPG

RPG
SRL

SRR

SRL

SRL

SRR

next surrogate

SRR next random pattern

RPG

Enough

surrogate

no

CP

CP

CP

CP

CP

CP

yes

S
ta
ti
s
ti
c
a
l
d
e
c
is
io
n

Elongate spikes &

count patterns

Shift at random
locations to the
left or right

Random Pattern
Generator

50

al.,1998]. However, the size of the current CNN-UM implementations makes the analogic

computation ineffective mainly because of the communication overhead.

Table of the used templates:
Template name A B Z U X0

OR 2 1 1 P Q

AND 2 1 -1 P Q

DIF 2 -1 -1 P Q

shift_right 0 [1 0 0] 0 P 0

shift left 0 [0 0 1] 0 P 0

match001 1 [0 0 1] -0.5 P P

match100 1 [1 0 0] -0.5 P P

dilation 1 [1 1 1] 1.5 P P

CA1 1 0 0 0

0 1 -1

0 -1 0

-2.5 P P

CA2 1 0 0 0

0 -1 1

0 1 0

-0.5 P P

 51

4 An Analogic implementation of the genetic

algorithm

Second thesis:

Analogic implementation of a genetic algorithm

I took part in the development of an analogic method for an efficient implementation

of a special ‘fine-grained’ type genetic algorithm. Beside the design and parameterization

of the typical genetic algorithm operators a key issue was a scalable pseudorandom area

selection within a CNN-UM array: I defined the optimal parameters for the method

maximizing the probability that given an MxN array a single line can be selected

minimizing the computational requirements at the same time.

4.1 Introduction

A genetic algorithm (GA) is a search technique to find approximate solutions to combinatorial

optimization problems [Goldberg, 1989]. Genetic algorithms use techniques inspired by

evolutionary biology such as inheritance, mutation, natural selection, and recombination (or

crossover) [Mitchell, 1996]. A population of abstract representations (called chromosomes) of

candidate solutions (called individuals) evolves toward better solutions. Traditionally, solutions

are represented in binary as strings of 0s and 1s. The evolution starts from a population of

completely random individuals and happens in generations. In each generation, the fitness of the

whole population is evaluated; multiple individuals are selected, based on their fitness, from the

current population, modified (mutated and recombined) to form a new population, which

becomes current in the next iteration of the algorithm.

52

Genetic algorithms might be useful in problem domains that have a complex fitness

landscape as recombination is designed to move the population away from local minima that a

traditional hill climbing algorithm might get stuck in. Particularly appropriate problems for

genetic algorithms include timetabling, scheduling problems, automated design and I will show

that it can be effective in multi-dimensional (multi-channel) neural activity data analysis.

Parallel implementations of genetic algorithms come in two flavors. Coarse-grained parallel

genetic algorithms assume a population on each of the computer nodes and migration of

individuals among the nodes. Fine-grained parallel genetic algorithms assume an individual on

each processor node which acts with neighboring individuals for selection and reproduction

[Vose, 1999]. The presented algorithm is a special fine-grained implementation [Bálya & Gál,

2006].

4.2 Operation of a GA

An individual, or solution to the problem to be solved, is represented by a list of parameters,

called chromosome. The algorithm represents each chromosome as a bit string. Typically,

numeric parameters can be represented by integers, though it is possible to use floating point

representations. These bit strings represent the chromosomes and each bit can be represented as

a black or white pixel.

Initially several such chromosomes are randomly generated to form the first initial

population. The population can be stored in an image, where each row is an independent

chromosome.

During each successive generation, each chromosome is evaluated, and a value of fitness is

returned by a fitness function. It requires an external evaluation process and we do not address

the task specific fitness calculation question here. The fitness values are converted to a grayscale

image, where each pixel in a given row has the same darkness. The darkness is determined as

black is the best fitness value and the white as the least in the current population.

The next step is to create a second generation population of chromosomes, based on the

processes of selection and reproduction of selected individuals through genetic operators:

crossover and mutation. For each chromosome to be produced, a pair of parent chromosomes

is selected for breeding. Selection is biased towards elements of the initial generation which have

 53

better fitness, though it is usually not so biased that poorer elements have no chance to

participate, in order to prevent the population from converging too early to a sub-optimal or

local solution. There are several well-defined organism selection methods e.g. roulette wheel or

tournament selection.

Following selection, the crossover operation is performed upon the selected chromosomes.

Commonly, genetic algorithms have a probability of crossover, typically over 70%, which

encodes the probability that two selected organisms will actually breed. Organisms are

recombined by this probability. Crossover results in new child chromosomes, which are added

to the next generation population. The chromosomes of the parents are mixed during crossover,

typically by simply swapping a portion of the underlying data structure. This process is repeated

with different parent organisms until there are an appropriate number of candidate solutions in

the next generation population.

The next step is to mutate the newly created offspring. Typical genetic algorithms have a

fixed, very small probability of mutation around 1%. Based on this probability, the new

chromosome is randomly mutated, typically by flipping bits in the chromosome data structure.

The algorithm performs crossover and mutation at the bit level.

These processes ultimately result in the next generation population of chromosomes that is

different from the initial generation. Generally the average fitness will have increased by this

procedure for the population, since only the best organisms from the first generation are

selected for breeding. The entire process is repeated for this second generation: each organism is

evaluated, the fitness value for each organism is obtained, pairs are selected for breeding, a third

generation population is generated, etc.

This generational process is repeated until a termination condition has been reached.

Common terminating conditions are the combinations of these conditions:

• Fixed number of generations reached

• Allocated computation time reached

• An individual is found that satisfies minimum criteria

• The highest ranking individual's fitness is reaching or has reached a plateau such that

successive iterations do no longer produce better results

54

• Manual inspection

4.2.1 Modifications

The fine-grained parallel genetic algorithms place the chromosomes in a fixed point and only

neighboring chromosomes are used in selection and reproduction. It results an efficient

implementation on the locally connected CNN-UM because the chromosomes are in interaction

only at its nearest neighbors.

A slight, but very successful variant of the general process of constructing a new population

is to allow some of the better organisms from the current generation to carry over to the next,

unaltered. This strategy is known as elitist selection. Our algorithm must be elitist to ensure that

the well-performing chromosomes could have more offspring despite its fixed place and local

interactions.

Selection is clearly an important genetic operator, but opinion is divided over the importance

of crossover versus mutation. Some argue that crossover is the most important, while mutation

is only necessary to ensure that potential solutions are not lost. Others argue that crossover in a

largely uniform population only serves to propagate innovations originally found by mutation,

and in a non-uniform population crossover is nearly always equivalent to a very large mutation.

In our implementation this innovation-propagation by the crossover operator is especially

important because the chromosomes have fixed places.

Operating on dynamic data sets is difficult, as genomes begin to converge early on towards

solutions that may no longer be valid for later data. Several methods have been proposed to

remedy this by increasing genetic diversity somehow and preventing early convergence, either by

increasing the probability of mutation when the solution quality drops (called triggered

hypermutation), or by occasionally introducing entirely new, randomly generated elements into

the chromosome pool (called random immigrants). These additions can be implemented easily

by modifying a parameter or inserting a new chromosome in a random place.

We will follow a slightly different approach compared to the traditional approach and

generate a completely new set of chromosomes using crossover with 100% probability and a

small mutation probability. This intermediate population is merged with the old population to

form a new: if the fitness of a given chromosome is below the fitness of the intermediate one

the old chromosome is replaced with the new. Thus the selection is pair-based between the old

 55

and the new chromosomes and is not biased: poorer elements have chance to participate.

Actually all low fitness chromosomes have two possibilities to have an offspring.

Figure 31 Flowchart of the genetic algorithm

The pseudo-code of our fine-grained genetic algorithm:

� Create initial population

� Evaluate the chromosomes

� Repeat

� Apply crossover operator

� Apply mutation operator with small probability

� Evaluate the individual fitnesses of the chromosomes

Initial population

next population

next population

next population

crossover

Replace poor

performing

mutation

next population

Insert

immigrants

Best fitness

OK?

no

Eval

Eval

Eval

S
to
p
 yes

56

� Replace the poor-performing chromosomes

� Rarely insert random immigrants

� Until allocated time reached or other terminating condition is fulfilled

4.3 Implementation details

The mapping of individuals are straightforward, its chromosomes are composed of bits, which

are mapped as one row in an image. The fitness calculation should be implemented

independently. The crossover and mutation operations can be implemented parallel on the

CNN-UM platform. It needs a random binary pattern, which is available using a 2D cell-

automata template sequence. This uniform distribution should be transformed to reach the pre-

described probability, it can be done using local logic. The black pixels can be used for the

crossover through a mask image and for the mutation by the XOR operator. The replacement

of the poor-performing chromosomes in the population is implemented using spatial logic.

Constructing a pseudo-random image

The interesting part of the analogic mapping is the different set of operators. The most

important one is the creation of pseudo-random binary images. Such an image consists of

independently selected black or white pixels.

The CNN-UM can be programmed to be a random binary pattern generator. The method,

that was introduced in Section 3.3 can be used here as well. As I stated before, a cellular

automata rule introduced by Eq. (3.16) can easily be implemented by four templates and the

iterated application of the rule drives the system quickly to a high entropy state.

It was shown in Section 3.3 that in Ri–denoting the logic operation AND between i different

random images–the probability of having a black pixel in a given position is a function of the

required number of iterations of the CA rule (i.e., the computational cost): ()0.5
i

p = .

The creation of an initial population is simply to select R as a new population P. Computational

cost is 4 local operations.

 57

Crossover operator

The recombination creates a new chromosome C from two parent chromosomes A and B.

In our fine-grained parallel implementation, the order of the three chromosomes in the

population is ACB in consecutive rows.

Figure 32 Crossing over. A block is defined by two randomly selected columns (indicated by red arrows): the

segment of the new chromosome C within that block is constructed from chromosome A and the segments

outside are inherited from chromosome B.

A possible method could be to define a given pixel in C so that to select it from A if R on the

same position is black else from B. Although it is easy to implement, the method destroys the

‘evolved local-solution blocks’ so it results poor-performance according to the genetic algorithm

theory. In our implementation, the new chromosome C is constructed by selecting two random

columns with uniform probability, and within the block limited by the two columns the pixels

from chromosome A is used else from chromosome B (see Figure 32). Below an analogic

algorithm is defined that could transform R to one column black with the rest columns white in

an effective way. In that case the position of the black column will follow uniform distribution

because no spatial information is used to determine it.

Pseudo-random column selection

One possible method selects a random column by searching for a rare pattern (target pattern) in

a random pattern image. The probability to have a white column with exactly k black pixels (see

Figure 35):

Pr = 1- [1 – (N+1-k) p
k
 (1-p)

(N-k)
]

 M
(4.1)

where N is the number of columns (size of chromosomes), M is the number of rows (size of the

population) and in an Ri (AND operators between R random patterns) generated image the p

probability has the form: ()0.5
i

p = (for the notations see pseudo-random pattern generation in

A

C

B

58

Section 3.3. As a solution, the first column having the target pattern (column with a single black

pixel) can be selected (see Figure 35).

Figure 33 Pr–probability of finding one or more columns with k=1,2 or 3 black pixels– relative to i (number of

required iterations for random pattern generation). The size of the CNN array is fixed at N = 100, M = 100.

There is an optimum i and k parameter pair Pr value is dramatically decreasing as k is increased.

The computational cost of the random column selection is proportional to the number of the

required random images: i. Because N and M are given by the task only the structure of the

target pattern (parameter k) remains to tune so that the pattern emerges once in an image (but

not more frequently) at a low computational cost. Thus Pr (probability of having the target

pattern) should be high while keeping i (required random images) low. Surprisingly k=1 gives

the best result, because when k > 1 Pr is small so the complete procedure should be repeated so

doubling i. Figure 33 shows Pr relative to i by fixed N and M: as one can see there is an

optimum i and the related Pr value is drastically shrinking as k is increased. Table 2 shows that at

k=1 and N=M=2n i can always be chosen to have Pr nearly one. For example: 5 random images

are enough for a 128x128 array to have a rare pattern (k=1) with 99.99% probability.

Array size Required random images Success probability
n = 2, 3 i = n Pr > 88.82%
n = 4, 5 i = n-1 Pr > 99.35%
n = 6,7,8,9 i = n-2 Pr > 98.94%
9 < n < 21 i = n-3 Pr > 93.19%
n > 20 i = n-4 Pr > 97.7%

Table 2 Number of random images required as a function of the array size. Size of the array is defined as

N=M=2n.

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1

P
ro

ba
bi
lit
y
(P

r)

Number of iterations(i)

k=1

k=2

k=3

 59

A random column is selected twice for the start and end of the crossover. The same crossing

points are used for all new chromosomes in a given iteration. A horizontal masked shadow

creates the crossover mask image M that is used as a separator between two shifted population

images. The result is an intermediate population C. A schematic representation of these steps is

shown in Figure 34.

Figure 34 Crossing over. A block of columns is selected based on two random column selection within two

pseudo-random images (‘start of block’ and ‘end of block’). Within the image representing the current population

the selected block is shifted downwards and the remaining columns upwards resulting in a ‘crossing over’

between the rows representing chromosomes.

Population
(P)

Pseudo-random
image 1 (R)

Pseudo-random
image 2 (R)

selected
column 1

selected
column 2

Intermediate
population

(C)

Mask (M)

60

M = hor_shadow(select_col Ri) masked with select_col Ri .
C = (M AND (shift_up P)) OR (NOT M AND (shift_down P))

where, select_col A:
 B = ccd (match010 A)
 B = shift_right(match001 B) DIF shift_left(match101 B)
 B = hor_shadow B

if GW(B) than restart with A = Ri
output = ver_shadow(A AND B)

Another method for selecting a column is to find the column with the most black pixels (see

Figure 35). In this case only one random image is enough. The probability that the column

containing the maximum number of black pixels in the random image is unique (there are no

more columns having the same number of black pixels) could be about 80%, otherwise the

column with the minimal black pixels is selected. The probability that either the column with the

maximum black pixels or the minimum black pixels can be selected is shown in Figure 36. An

extensive simulation (10000 random images) gave the data for the curve. For example having a

128x128 random array the probability to a unique column is selected about 96% and its average

computational cost is 7.8 propagating and 13.6 local operations vs. with the pattern method 7

propagating and 60 local operations.

Figure 35 Pseudo-random column selection. Based on a pseudo-random image pattern matching method would

select a column that contains a specific rare pattern; e.g. column with exactly one black pixel (third column), the

‘maximum’ searching method chooses the 6th column with the most black pixels.

This method changes the pseudo-code of the crossover operation only by giving a new selection
method:
where, select_col A: (i=1)

in cycle A = (v1 A) AND (v2 A)

A = A DIF (ver_erosion (hor_shadow A))

Method2
(maximum)

Method1
(pattern matching)

 61

B = match101 (ccd A)

If GW(B) output = A

Output = (NOT A) DIF (ver_erosion (hor_shadow NOT A))

0.75

0.8

0.85

0.9

0.95

1

4 8 16 32 64 128 256 512

Figure 36 The probability of having a unique maximum or minimum column in a random image R (i =1) relative

to the size of the array N = M. The curve is determined by extensive simulation (10000 cases per points).

Mutation operator

The mutation operator flips a certain percent of the bits in the new chromosome. Its

implementation is an exclusive or with a random image. The random image is constructed

depending on the mutation probability (see Figure 37). Computational cost is 21 local operations

by 1%.

C = R
j
 XOR C (4.2)

Figure 37 Probability that a certain pixel is black as a function of the number of pseudo-random images used. Pr

is display in a logarithmic scale.

lo
g
P
r

Number of iterations(i)

k=2

2 4 6 8 10

-7

-6

-5

-4

-3

-2

-1

62

Selection

Selection equals replacing poor-performing individuals with new chromosomes. The fitness

values are converted to a grayscale image, where each pixel in a given row has the same

darkness. The darkness is determined as black is the best fitness value and the white as the least

in the current population. The grayscale fitness images Fs are compared to create a mask image

indicating the rows of the poor-performing chromosomes. Computational cost is 5 local

operations

M = threshold F1 with bias map F2
P = (P AND M) OR (C AND NOT M)

Immigrants operator

Select a random row with very small probability and replace it with the same row in R. A

random row can be selected as a random column in the crossover operation using the pattern

matching method with k>1. The replacement is implemented as during selection. The two

probabilities can be merged so the immigrants and row selection is determined in one step.

Computational cost by 1‰ is 2 propagating and 32 local operations.

 A = Ri
B = ccd((match011 A) DIF (match111 A))

 B = shift_right(match001 B) DIF shift_left(match101 B)
 M = hor_shadow B

P = (R AND M) OR (P AND NOT M)

Figure 38 Immigrants operator.: random selection of a row. Probability that a certain pattern (k > 1) emerges in

one of the rows is plotted against the number of pseudo-random images used creating Ri. N = 200, M = 1

2 4 6 8 10 12 14

0.001

0.002

0.003

0.004

Number of iterations(i)

P
r

 63

4.4 Evaluation and summary

We implemented the algorithm by the Candy CNN-UM simulation software package of the

Aladdin development system [Szatmári et al., 2002; Zarándy et al., 2003] using the templates

shown in Table 3.

Evaluation involved typical test functions with complex fitness landscape (Banana, Camel,

Rastrigin, Griewangk, Easom, Ackley) and I also examined the suitability of analogic binary GA

in connection with the analysis of multi-dimensional (multi-channel) neural activity data in

comparison with classical implementations of the GA (GAOT MATLAB toolbox [Houck et al.,

1995]).

Tests showed that the analogic approach performs equally well or even better as its classical

counterpart: both methodology find global minima after similar number of iterations. However,

implementation of the analogic GA on CNN-UM hardware platforms would mean a much

more efficient solution in terms of computation time. Detailed evaluation of the main test can

be found in section 6.3.

Template name A B Z U X0

OR 2 1 1 P Q

AND 2 1 -1 P Q

DIF 2 -1 -1 P Q

masked hor_shadow [1.5 1.8 0] -1.2 0 P Q

hor_shadow [2 3 2] 0 3 0 P

shift_right 0 [1 0 0] 0 P 0

Ccd [1 2 –1] 0 0 P P

ver_shadow [2 3 0]
T
 0 3 0 P

ver_erosion 0 [0 1 1]
 T

 -2 P 0

v1 1 [0 1 1]
T
 1 P P

v2 1 [1 –1 0]
 T

 1 P P

Match001 1 [0 0 1] -0.5 P P

Match011 1 [0 1 1] -1.5 P P

Match101 1 [1 0 1] -1.5 P P

Match101 1 [1 1 1] -2.5 P P

threshold (biased) 2 0 P 0 Q

Table 3 Used templates

5 Collision Warning algorithms

Third thesis

Bio-inspired and analogic collision warning algorithms

III/a. Collision warning algorithm inspired by the locust visual system

I took part in the design of a biologically inspired collision prediction algorithm based

on the visual system of the locust. I modified and completed the model to match the

requirements of robust operation in real-world car driving situations. We implemented

the algorithm on a real-time visual computing system and I adjusted and tested its

sensitivity/specificity parameters in real driving scenarios. The system can differentiate

between a limited number of object classes according to the need of robust collision

warning: the method prevents typical road signs to initiate false collision warnings and

recognizes pedestrians and vehicles on an impending collision course, and warn reliably

the driver 0.5-1 sec before the actual collision, with negligible amount of false alarms.

III/b. An analogic algorithm for parallel multiple collision prediction based on

isotropic diffusion.

I designed a monocular collision warning method that efficiently approximates and

can report on the so called time-to-contact variables belonging to different objects. Thus

multiple separate warning signals are delivered in a parallel manner.

Beside typical analogic image processing operations the method requires an efficient

implementation of ‘isotropic diffusion’. Thus, it is an excellent candidate for

implementation on CNN-UM computers equipped with locally switchable - mask

controlled- resistive grid feature.

 65

5.1 Introduction

Predicting dangerous or advantageous situations has similar importance for animals and for

machines. One of these situations is when the motion of an object could end up with a useful

(for a predator) or disadvantageous (for a prey) collision with the observer/sensor. A growing

body of evidence makes neurobiologists suppose that for some animals (and humans) low-level

monocular visual information alone is enough for a remarkable estimation of the time left till an

impending collision [Schiff & Detwiler, 1979; Rind & Bramwell, 1996; Rind & Simmons, 1999].

Fast calculation even in an unfamiliar environment may have a life-saving impact. According to

recent theories, calculation can be based upon only two optical variables of looming objects,

ensuring the relative context-insensitivity of the process [Sun & Frost, 1998; Laurent &

Gabbiani,1998, Gál & Roska, 2000]. Precise information about the size (diameter) of the

two-dimensional projection of the object and the rate of its expansion are enough to predict the

so called time-to-collision (TTC), provided that the motion is at a constant speed.

Figure 39 Image of an object approaching a sensor’s lens on a direct collison coarse. r,rp radius of the object and

its corresponding image. s(t) is the distance between the object and the lens t secs before collision, approach

speed is a constant v.

There is a law well known in optical geometry:

()
()

()

,
p

rs t

f r t
=

ϕ

ϕ
, (5.1)

f

rp(t)

r

v

s(t)

(),
p

r tϕ

ϕ

t=0

()r ϕ

ϕ

66

and

()s t vt= −
 (5.2)

Plugging (5.2) into (5.1) we get:

()
() ()

()1 1,
p r

fr fr
r t t k t

vt v

− −= = =
− −

ϕ ϕ
ϕ ϕ

 (5.3)

The derivative of the function above is the speed of the projected image’s edges at the image

plane:

() () 2, ()p edge rr t v k t
−= = −� ϕ ϕ

 (5.4)

Thus we get the so called time-to-contact (τ):

()
()

,

,

p

p

r t
t

r t
= = −
�

ϕ
τ

ϕ
 (5.5)

so the ratio between the diameter and the rate of its expansion is equal to the time left to a direct

collision.

Although not directly, but a number of monocular collision warning systems make use of the

principles of the time-to-contact estimation [Shi, 1996]. Here we propose two such algorithms.

One has a biologically relevant origin: it is based on the locust’s visual system, and its robustness

is tested in real-world car driving situations. The background of the other method is purely

computational approach, and has the advantage of monitoring more than one objects

5.2 A collision warning algorithm inspired by the locust visual system

5.2.1 Introduction

The locust LGMD neuron is evolutionary honed to detect potential collisions with predators

and provide a collision avoidance reaction. This thesis presents computer models of the LGMD

neuron and tests their suitability for use in automotive situations as a means of detecting a

collision. Models respond well to colliding objects and are mainly successful in eliminating non

colliding objects. Modifications, including low-level object classification and the incorporation of

 67

the fly EMD-like neuron [Harris et al. 1999; Harrison, 2000] for detection of translating objects

are presented in the application chapter.

Locusts are known to detect looming objects via a large neuron in the brain called the Lobula

Giant Movement Detector (LGMD) [Rind & Bramwell, 1996]. This neuron is tightly tuned to

only respond to objects on a direct collision course and also appears to be tuned to only avoid

objects of a certain size and approach velocity, such as avian predators. Any object present in an

image will subtend an angle on the eye. Looming objects are characterized by the way the

diameter (or angle subtended) changes with time; when far away the increase of angle is low but

as the object approaches the increase in the angle is higher with a maximum during the final

stages of the approach (Figure 40). The increase in the angle subtended on the eye looks similar

to an exponential function, but is mathematically quite distinct(5.3). The LGMD receives

excitation from a large number of afferents, which are arranged retinotopically, with

neighbouring afferents associated with those of neighbouring photoreceptors in the eye.

Excitation is passed down these afferents in the form of an action potential (spike) or, more

commonly, a graded potential (voltage). The number of excited afferents depends on the angle

of the object subtended on the eye, thus when a looming object approaches the excitation to the

LGMD increase rapidly as the object comes closer. Non-colliding objects do not show the same

increase in excitation (Figure 40) and as such are unlikely to trigger avoidance reactions.

Figure 40 The increase in the diameter on the eye by an approaching object on direct and non direct collision

courses. Data is for a black sphere moving towards the eye at 25 mm/s on a direct collision course or at 0, 1.75,

3.50, 5.25 or 7.00 degrees away from a direct collision course. B Single cell recordings from the LGMD neuron

of the locust during presentation of an approaching object

Time (s)

0.5

1

1.5

0 1 2

0

A B

68

The underlying principle of the LGMD is relatively simple; indeed it would be possible to

calculate the increase in size of an object to determine if it was on a direct collision course. Such

an approach, however, requires the detection and segmentation of the approaching object from

an often complex background of other moving objects. There are no robust solutions for such

tasks but I am going to present an algorithm in the following section which uses that kind of

information – this is the base of my IIa thesis. The LGMD provides several methods to help

eliminate responses to non approaching objects which are both cognitively and computationally

simple [reviewed by Rind et al., 2003]. The best studied of these methods are lateral inhibition

between afferents pre-synaptic to the LGMD and feed forward inhibition, post-synaptic to the

LGMD.

We review what is known of the biology of the locust LGMD and details about further

modifications that have been made to create models inspired by the locust LGMD.

5.2.2 An overview of the Rind Model

 The LGMD and associated Descending Contralateral Movement Detector (DCMD) neurons in

the locust and cockroach have been the subject of much research over the past 40 years [Rind

and Simmons, 1999; Rind et al., 2003]. During this time extrapolations of the input architecture

were made and basic computer models of this architecture were tested: e.g. [Edwards, 1982;

Pinter, 1983; 1984]. Simmons and Rind [1992] discovered that the neuron showed a distinct

preference for looming objects, these being objects moving towards the eye of the locust, with a

constant velocity. Further electrophysiological recordings suggested the response of the neuron

was tightly tuned to objects on a collision trajectory and did not respond in the same manner to

objects on a near miss trajectory [Judge and Rind, 1997]. A computer model of the locust

LGMD was produced by Rind and Bramwell [1996] which produced similar results to looming

stimuli as found in the electrophysiological data from the locust. The complexity of the model

was increased and was coupled with a mobile robot to obtain and process data in real time

[Blanchard et al., 2000]. This experiment showed collision avoidance to real stimuli, albeit in a

simplified environment. The proposed structure of the LGMD and its inputs as proposed by

Rind et al. are outlined in Figure 41.

Light is captured by the photoreceptors and converted to electrical charge. This is passed to a

range of retinotopically arranged neurons. The ‘E’ units pass excitation to the ‘S’ units directly.

They also pass excitation to the ‘I’ units. The excitation is converted to inhibition at the synapse

 69

between the ‘E’ and ‘I’ units and inhibition is passed to the nearest neighbouring ‘S’ unit with a

delay of one timestep and the next nearest neighbouring ‘S’ unit with a delay of two timesteps.

At each ‘S’ unit the excitation is subtracted from inhibition and any remaining excitation is

summed on the LGMD. In addition the total excitation of the photoreceptors is summed by the

‘F’ unit and if a threshold value is reached the output of the LGMD is inhibited. The LGMD

output is either expressed as a graded potential (voltage) or as spikes, and collision avoidance

behaviors are determined by this response. The interaction of the spreading excitation over the

inputs of the LGMD due to a looming object, and the inhibition of the ‘I’ units (herein lateral

inhibition), creates a critical race [Simmons & Rind, 1992]. If the object is on a direct collision

course, the spread of excitation over time is less than the spread of lateral inhibition until the

object is close to the eye, then excitation wins the race and passes to the LGMD causing an

avoidance reaction.

Figure 41 The LGMD neuron and input architecture as described by Rind et al. Light is captured in the

photoreceptors (Layer 1) and is passed to excitatory ‘E’ units and inhibitory ‘I’ units (Layer 2). Interactions take

place at the ‘S’ units (Layer 3) before the ‘S’ units are summed by the LGMD (Layer 4). See text for further

details including the role of feed forward inhibition.

 Objects not on a direct collision course are less likely to have the spread of excitation

exceeding that of lateral inhibition and provide less excitation to the LGMD. Lateral inhibition

can also help to suppress the background of an image, as background movements generally do

not generate excitation which exceeds the range of lateral inhibition. The inhibition by the ‘F’

unit (feed-forward inhibition) responds to large scale changes in the image, for example changes

in overall contrast of the image as might be encountered if flying from sunlight into shade or

E

I

S

LGMD

Photoreceptors

P Lateral inhibition

Feedforward inhibition

70

vice versa. It is thought to be triggered during the final stages of an approach by a looming

object, however, its response is delayed so LGMD activity continues until after the point of

collision. When an object recedes from the eye, on an otherwise identical trajectory, the locust

will only show a short burst of activity from the LGMD, this is thought to be due to the delay of

the feed forward inhibition. This process provides a useful mechanism to distinguish between

approaching and receding objects. Work on collision sensors using the artificial LGMD network

has proved successful [Rind et al., 2003], however, no direct attempt has been made to study the

network in the types of environments encountered in automotive applications.

Bellow I describe modified biological models of the neuron layers which were the starting point

of all other computational models. It was shown that the analogic implementation of the neuron

models is feasible at different complexity levels [Gál et al., 2004].

ON-OFF neurons

OFF-units were the first stage in the original Rind et al. model. We substituted this stage by

ON-OFF units. The membrane potential of an ON-OFF-cell at position (i, j) at time t is

described by the state variable pij (t). The respective dynamics is governed by:

() () () () () ()1
ij leak rest ij ij ex ij ij in ij

p t g V p L t E p L t E p= − + − + − −� (5.6)

gleak is the leakage conductance (or decay constant) which describes the total passive ion flow

through the cell membrane. Vrest is the resting potential (or leakage reversal potential) which the

cell will adopt if it does not receive any input. Eex and Ein are the excitatory and inhibitory

synaptic batteries, respectively, which confine a cell's dynamic range between Ein and Eex (as long

as Vrest is in the range of Ein ,Eex). The On-Off units replace the single-contrast-polarity P-units

in the original Rind et al. model. Input into the On-Off units is provided by luminance values

L(t) and L(t-1).

Lateral Inhibition by Explicit Delay

This mechanism is according to Rind et al. [Blanchard et al., 2000] :

() () ()ij leak rest ij ij ex ij
w t g V w p E w= − + −� � (5.7)

Originally, P-unit activation excites inhibitory I-units. Here ON-OFF unit activity pij is fed into

inhibitory interneurons characterized by membrane potential wij. Lateral inhibition is

 71

implemented by convolving the response of an inhibitory neuron wij with a nearest-

neighborhood kernel K1 and a next-nearest-neighborhood kernel K2:

() () ()1 21 2ij ij iju t w t K w t K= − ⊗ + − ⊗� � (5.8)

where the convolution K1 and K2 are Gaussian-weighted kernels.

Excitatory neurons

Excitatory neurons replace the S-units of the Rind et al. model. Excitatory neurons receive direct

excitatory input from ON-OFF-cells, whereas in the Rind et al. model E-units are interposed

between P-units and S-units. Excitatory neurons with membrane potential vij are defined as

() () () () ()ij leak rest ij ex ij ex ij in ij in ij
v t g V v p E v u t E vβ β= − + − + −� � � (5.9)

where βex and βin are gain factors (or synaptic weights).

The LGMD neuron

The LGMD neuron integrates the activity of all excitatory units according to:

,

n

ij

i j

vε =∑ � (5.10)

In contrast to the Rind et al. model, the present model of the LGMD neuron does not receive

feed forward inhibition. The LGMD dynamics obeys:

() () ()()leak rest ex exl t g V l t E lγ ε= − + −� (5.11)

where γex is a gain factor and l is the membrane potential.

5.2.3 Biology inspired models

There are a lot of derived models based on the Rind model and the one described above. After

exhaustive evaluation two models were selected to implement for test in real traffic situations.

There are a lot of differences, modifications comparing to the original structure, like none of the

input afferents produce spikes; all are simple graded potential neurons, more suitable for

implementation in analogue VLSI chips. Also the feed forward inhibition has been removed

from all of the models, and replaced by more effective solutions. Finally the ‘E’ units in the Rind

et al. model have been replaced by On-Off units. These investigate changes in the contrast over

72

time. In the following models the On Off response is captured within the framework of the

LGMD.

Description of the implemented BSC Model

The basic building blocks of this model are based on simple visual receptive field interactions

and neuron models like those implemented on CNN-UM [Gál et al., 2004]. It is aimed to

increase the complexity of the LGMD network by adding a new summing layer immediately

pre-synaptic to the LGMD. It also aimed to provide a detailed decision making process to

decide when a collision was about to occur based on the neurobiology of escape behavior of the

locust. The architecture of the model is shown in Figure 42.

As in the previous models the photoreceptors obtain a luminance value for a given point in

space at a given time. The On Off units simply subtract the photoreceptor value at time t-1

from that at time t. As above, if there is no change in luminance the value of the On-Off unit is

zero, although there is no persistence of membrane potential in this model. Excitation is passed

though the layers of the model in both light and dark pathways until the separate pathways

combine in the block sum cells. Inhibition is triggered by the On-Off pathway spreading from

the position of the excited On-Off unit to all the effected retinotopical nearest neighbors inside

one timestep.

Photoreceptors

Lateral inhibition

Summing Cells

Block Sum Cells

Sum of 6 x 8 Summing Cells

LGMD

Block Sum Cell from

other 6 x 8 block of

Summing Cells

Feed Forward

Inhibition Cell

Excitation is

summed from

all photo-

receptors

Figure 42 The block summing cells model

 73

The excitation interacted with inhibition on the ‘S’ units. The ‘S’ units were then summed in

blocks of 10 x 10 onto a retinotopically arranged grid of 15 x 10 block sum cells. The result was

full wave rectified before the block sum cells were summed onto the LGMD. The purpose of

the block sum cells is to provide an antagonistic effect of light on and light off responses within

a small spatial area, yet allow both pathways to contribute to the LGMD response is separated

by a larger distance. This phenomenon occurs in the locusts’ neural pathway [Simmons and

Rind, 1992] and has clear advantages to automotive applications. The antagonistic effect over

small spatial scales allows excitation caused by minor vibrations or turns of the car to be

reduced. This can be explained by considering a vertical black line on a white background. If the

car slightly turns or the black line appears to move to the left or right then there will be

excitation caused by a light off response where the black line now appears and excitation caused

by a light on response where the line previously was. These responses are likely to be present

within the same block sum cell and the combination of positive light on and negative light off

responses will produce only a little, if any excitation. If these separate pathways are maintained

over the whole of the field of view then problems can occur. Approaching objects can appear

lighter than some sections of the background (e.g. dark road surfaces) but darker than other

sections of the background (e.g. light sky) creating little net excitation once the pathways are

combined. Block sum cells allow excitation from both the light on and light off pathways to

contribute to the LGMD activity and detect the moving object. In this model, as in the locust,

the LGMD produces spikes if the membrane potential exceeds a threshold value. If this

threshold is exceeded the membrane potential also falls to zero. The threshold is determined in

2 ways. Firstly no spikes are produced if the membrane potential is lower than a fixed threshold.

If background scenes are complicated, however, more excitation passed through the processing

of the On-Off, inhibition and block sum cell units. This could cause spikes to be generated in

response to non colliding objects. In this case the threshold is raised by sampling the LGMD

membrane potential at a selection of previous time steps, the mean value of these samples is

raised by a small and is set as the LGMD threshold. If four or more spikes are produced within

five timesteps then a collision is considered to be detected.

Formal description

Movement contrast

Movement contrast C(i,j,t) is computed by subtracting at each position (i,j),a previous

luminance value L(i,j,t-f) from the current one L(i,j,t)

74

() () ()ftjiLtjiLtjic −−= ,,,,,, (5.12)

where 0 < i < 100 is the row index, 0 < j < 150 is the column index, t are discrete time steps

according to the frame rate(e.g. t=1,2,3 … denote 40, 80, 120 … msec at 25frames/second), and

f is an adaptable parameter denoting the time interval between the compared luminance values:









≥

<−

=

50)(1

50)(10/))(60(

tvfor

tvfortv

f

 (5.13)

where v is the speed of the vehicle in km/h.

Figure 43 Impact of changing of the interframe interval on the time of collision warning. The time resolution

(maximal framerate) itself is preserved: increasing frame intervals make earlier collisoin warning possible: Though

their amplitudes are decreasing the threat level curves are shifted backwards

The explanation why we need this adaptivity parameter is that at lower speeds or relatively

high frame rates the change between two subsequent frames are too small, so the growing image

of approaching objects can not activate proper amount of On/Off cells for triggering alarm

signals only when they are so close that the accident is inevitable (see Section “Optical

constraints on motion detectability” later in this Chapter). For this reason it would be sensible to

analyse the difference between the actual image and the nth preceding frame (see Figure 43): e.g.

framet is compared to framet-3 framet-1 to framet-4 etc. This is not “decimation” since the frame

rate (and the available amount of information) is preserved: every single frame is analysed. The

method requires a frame buffer which can store so many frames as the comparison requires

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69

Frame1

Frame2

Frame4

Frame6

Framet
Framet Framet-1

Framet-1 Framet-2
Framet-2 Framet-3

Framet-3 Framet-4
Framet-4 Framet-5

Framet-5Framet
Framet Framet-1

Framet-1 Framet-2
Framet-2 Framet-3

Framet-3 Framet-4
Framet-4 Framet-5

Framet-5

 75

adapted to the speed of the car. At lower speeds the buffer and the distance between the frames

to compare should be increased.

After full wave rectification, contrast values C(i,j,t) are in the range:

0 ≤ L(i,j) ≤ 255 (5.14)

Inhibition.

Inhibitory activity I(i,j,t) is given by the change in contrast generated by spatial filtering, and

summing full wave rectified contrasts,

() () ())(2,,1,,,, twKtjiCtjiCtjiI ⋅⊗−−−= (5.15)

where K(p,q) is a 3x3 convolution kernel with values 1 at nearest-neighbor positions. w(t) are

empirically defined, state-dependent weight defined later in this section. w is initialized with

75.0)(0 =tw . Inhibition I(i,j,t) is rounded before interacting with summing cells.

Summing cells.

The output of summing cells S(i,j,t) represents the outcome of the race excitation vs. inhibition:

() () ()tjiItjiCtjiS ,,,,,, −= (5.16)

Block summing cells.

Let B(p,q) designate a set of indices selecting a block of 10 x 10 summing cells from mxn block

(in this implementation m=10 rows and n=15 columns), where the set of rows are defined by:

{(p-1)10+1, (p-1)10+2,..., 10p-1,10p} (5.17)

and the set of columns:

{(q-1)10+1, (q-1)10+2,...,10q-1,10q} (5.18)

Block summing cells(BSC) integrate summing cell activities within their corresponding block:

() ()
()()

∑ ∑
=

+−=

=

+−=

=
pi

pi

qj

qj

tjiStqpB
10

1110

10

1110

,,,, (5.19)

76

LGMD response.

Output of the summing cells is integrated to compute the net excitation

()∑
=
=

=
=

=
nq
mp

q
p

tqpBscalete

,

1
,1

1 ,,)((5.20)

where scale1 scales e(t) down to the range [0,255]

Raw LGMD state.

The state variable l(t) corresponding to the neuronal membrane potential of the lobula giant

movement detector (LGMD):

)2()1()()(321 −⋅+−⋅+⋅= tlLGMDcoefftlLGMDcoeffteLGMDcoefftl (5.21)

 LGMDcoeff s are adjustable parameters, initially set to:

1.0

19.0

71.0

3

2

1

=

=

=

LGMDcoeff

LGMDcoeff

LGMDcoeff

The coefficients have always normalized values:

1321 =++ LGMDcoeffLGMDcoeffLGMDcoeff

When a spike is detected, then l is subjected to reset:

0)2(;0)1(;0)(=−=−= tltltl .

Threshold computation.

Threshold computation involves a second LGMD variable)(2 tl :

)2()1()()(232212 −⋅+−⋅+⋅= tlLGMDcoefftlLGMDcoeffteLGMDcoefftl (5.22)

No reset takes place with)(2 tl , as opposed to)(tl . From l2, a raw threshold T(t) is computed

according to:

)14()10()5()(232221 −⋅+−⋅+−⋅= tlfThreshcoeftlfThreshcoeftlfThreshcoeftT

 77

Threshcoeffs are adjustable parameters, initially set to:

1.0

8.0

1.0

3

2

1

=

=

=

fThreshcoef

fThreshcoef

fThreshcoef

The coefficients have always normalized values:

1321 =++ fThreshcoeffThreshcoeffThreshcoef

The actual threshold W(t) is then computed from)(2 tl :

{ } loadthreshoverhfixedthrestTtW +=),(max)((5.23)

where threshoverload is also an adjustable bias shifting the actual threshold with a fixed value

(initial value: 10), and fixedthresh is a fixed minimum threshold value.

Spiking generator.

Let L(t) ∈ [0,1] be the output of the LGMD.









≤

>

=

)()(0

)()(1

)(

tWtlfor

tWtlfor

tL (5.24)

 After firing a spike, the end of the LGMD response history is reset to zero:

0)2(;0)1(;0)(=−=−= tltltl (5.25)

 Otherwise, no reset takes place and l(t) keeps its original value.

Level of threat.

The model runs through a set of discrete states. These states are defined by the specific values of

L(t). Let n(t) be the number of spikes fired in an observation interval:

)4()3()2()1()()(−+−+−+−+= tLtLtLtLtLtn (5.26)

4)(≥tn indicates a high probability of an impending collision.

78

w(t), the actual inhibitory coefficient is selected by n(t) from a set of adjustable parameters

according to the table bellow:

Level of threat = n(t) Name of the adjustable parameter Default value

0 Inh_coeff1 10/18

1 Inh_coeff2 0

2 Inh_coeff1 10/18

3 Inh_coeff3 19/18

4 Inh_coeff4 7/18

5 Inh_coeff5 19/18

Table 4 Inhibitory weights w(t) as a function of spike count

Formal description of the Simplified Model (SM)

The simplified model is defined by a couple of modifications of the optimal model.

L
t
 Lt-1

 L
t-2

 L
t-3

C(t) D(t)

I

S(t)

e(t) Sum

w(t)

turn(t)

+

speed(t)

+

L
t-4

L
t-5

v(t)

W(t)

l(t)

L(t)

n(t)

DANGER

Figure 44. Simplified diagram of the implemented algorithm. For the symbols see the model description above.

 79

Inhibition.

First, inhibition is replaced by

() () ()))()((,,)(1,,,, tspeedtturntjiCtwtjiCtjiI +⋅+−= (5.27)

Thus, "lateral inhibition" is substituted by "inhibition" with no spread of activity between

neighbours. As a second modification the inhibitory weights w(t) were slightly scaled up (factor

1.1).

)(tturn is a coefficient defined by the actual wheel angle(angle(t) in degree):









≤

>

=

highturntangleforhighturntangle

highturntanglefor

tturn

)(/)(

)(1

)((5.28)

The position of the wheel (exceeding highturn threshold) can suppress the activity of the

summing cells through the term ())(,, tturntjiC ⋅ avoiding false alarms induced by the huge

optic flow induced by turning. Default value for highturn: 10 degree.

)(tspeed is a coefficient defined by the actual speed (v(t) in km/h):









≤

>

=

lowspeedtvfor

lowspeedtvfor

tspeed

)(1

)(0

)((5.29)

Bellow lowspeed the alarm system is suppressed: when the vehicle is not moving, or moving

very slowly, other objects can come extremely close and cross the field of view safely.

Summing cells

The output of summing cells S(i,j,t) represents the outcome of the race between excitation vs.

inhibition are rectified:

() () (){ }0,,,,,max,, tjiItjiCtjiS −= (5.30)

Block summing cells

The block summing cells layer is comletely removed from this model.

80

LGMD response

Output of the summing cells is integrated to compute the net excitation

()∑
=
=

=
=

=
150

,100

1
,1

2 ,,)(
j
i

j
i

tjiSscalete (5.31)

where 2scale scales e(t) down to the range [0,255]

Threshold computation is separated from the state of LGMD cells l1(t):

)()()()(22312212 ttlfThreshcoefttlfThreshcoeftefThreshcoeftl −⋅+−⋅+⋅=
 (5.32)

{ } loadthreshoverhfixedthrestltW +=),(max)(2 (5.33)

When a spike is detected, then l is subjected to repolarization:

;_)1()1(;_)()(coeffrepolarizetltlcoeffrepolarizetltl ⋅−=−⋅= (5.34)

Inhibitory coefficients w(t), the actual inhibitory coefficient is selected by n(t) from a set of

adjustable parameters according to the table bellow:

Level of threat = n(t) Name of the adjustable parameter Default value

0 Inh_coeff1 10/16

1 Inh_coeff2 0

2 Inh_coeff1 10/16

3 Inh_coeff3 19/16

4 Inh_coeff4 7/16

5 Inh_coeff5 19/16

Table 5 Inhibitory weights w(t) as a function of spike count

In Figure 45 the time course of the activation of different parts of the model: the observer is

approaching a car with sudden break. As a result of the competition between LGMD and

LGMD threshold –levels are crossing several times- a number of spikes are generated

consecutively.

 81

Figure 45 Time course of the activation of different layers of the model: the observer is approaching a car with

sudden break.

Optical constraints on motion detectability

Provided that we have focal plane sensor and the width of the array is 7mm experience shows

that we need a camera lens with a focal length of 25mm or shorter to have a proper view angle

for monitoring the traffic in front of us.

The focal length and the sensor pitch (=70µm) defines the optical resolution of the system.

The optical resolution imposes constraints upon the extent of change between subsequent

frames to be above the detection threshold.

We’ve made a series of measurements and calculations to determine the required minimal

relative speed of approaching vehicles causing detectable change between subsequent images:

This parameter is a function of distance and frame rate. The chart below (Figure 46) shows the

minimal speed of a car (width=2m) to be detected at different distances and frame rates. E.g. at

a typical 25 frames/sec rate a car 15m away from the sensor has to approach the observer with

60km/h at least to cause detectable change between two subsequent frames.

82

Detectable speed

0

200

400

600

800

1000

2.
5

7.
5

12
.5

17
.5

22
.5

27
.5

32
.5

37
.5

42
.5

47
.5

52
.5

57
.5

62
.5

Distance(m)

S
p

e
e
d

(k
m

/h
)

25fps

100fps

1fps

Figure 46 Required minimal speed of approaching vehicles that is necessary for a robust detection at different

distances and frame rates.

This can be a serious issue making the implementation of adaptable interframe interval really

important (see Eq. (5.13)).

5.2.4 Discussion

The models clearly show that the simple, biologically inspired design of the locust LGMD is

useful in the detection of collisions in automotive situations. The main benefits of the LGMD

are that there is no need to identify objects, their approach speeds or their angles of trajectory,

all of which can be computationally expensive. The only data required is the luminance values of

the photoreceptors over a period of time. The downside of the biologically inspired approach is

that the locust LGMD has evolved to respond with a collision avoidance reaction in a certain

situation. This is thought to be the approach of a small (~ 7 cm diameter), fast moving (~ 5

m/s) predator whilst in flight. In addition this reaction occurs only a short time before the

collision would have occurred (~ 100ms). The differences in the colliding objects speed and size,

slower refresh rates of images and lower temporal frequencies of the LGMD and the need to

detect collisions sooner in automotive situations, due to the comparative sluggish reactions of a

car, present challenges with the model design. In a locust the feed forward inhibition can be

triggered by large, fast moving translating objects to suppress false collision alerts. Because of

the size and speed of cars and the slower rate of growth of larger approaching objects no

distinction can be made between an approaching object and a translating car using the feed

forward mechanism. In addition the smaller sizes of road markings such as zebra crossings as

compared to cars create a faster rate of growth near to the point of collision with the car. Even

though they are not on a direct collision course with the sensor the excitation caused by the

markings can be similar to that caused by a colliding car. Clearly the locust LGMD has not

 83

evolved to cope with large objects such as cars or to deal with road markings. This has resulted

in the need to adapt the models to cope with these situations. To some extent this has been

achieved through the use of the EMD to suppress translating and rotational stimuli; however

other components to distinguish road lines are the most important supplements (see below and

in Section 6.2, at application details).

In general translatory movement only triggers false collision detection alarms when the car is

stationary or moving at very low speeds (< 5 km/h), as once moving beyond these speeds the

translating object is a sufficient distance away, unless on a collision course, to allow lateral

inhibition to cope with the translatory movement. Information on the speed of the car is used to

suppress the responses of the collision detection alarm if the car is stationary or moving very

slowly. In addition information combining the turning radius of the car and speed is also used to

determine if the car is turning a very tight corner, which can also trigger false alarms and the

alarm can again be suppressed in these situations. The work on the biological models was

focused in two areas, and their implementation can be found in Section 6.2.

Firstly it was focused on mechanisms to differentiate between colliding objects, such as

people, cars and non colliding objects such as road lines. This unit looks at the spatial patterns

of excitation found in the biologically filtered image. Analysis of these patterns is able to

determine what the object is and trigger the appropriate collision warning or avoidance action.

For example, road lines will suppress the response of the LGMD causing no action to be taken

where as detection of people or cars moving across the field of view, which are a potential

collision threat, may provide an early warning audible alarm so drivers can take action to avoid

the collision. Finally unavoidable collisions may be detected where actions such as pre-

tensioning seatbelts or applying brakes could be triggered. Using the spatial patterns of the

biologically filtered images will require considerably lower computational power than analysing

unfiltered images and allow decisions of the type of threat to be made much faster.

5.2.5 System Tuning and Evaluation

The models were tuned and tested either by automotive video sequences or in real traffic

environments. Images were taken at 25 frames per second with a spatial resolution of 150 x 100

pixels as defined by the sensor of our test bed. Commonly occurring automotive sequences

along with collisions with full size model cars and people were captured and analyzed with the

models. Real situation counterparts were tested at the VOLVO Car Company test drive area.

84

Image sequences involved actual collisions with a balloon car, and near miss with a person and

other vehicles. Models were required to trigger collision alarm at least 0.5sec before the

impending collision in sequences and situations that were classed as collisions or near hits- this

area characterizes the sensitivity of the algorithms, while the selectivity is defined by other

sequences that were required not to trigger the collision alarm.

Figure 47 Typical snapshots of test sequences Black arrows indicate unambiguous collision threats with

different objects and persons.

 85

NO Collision threat Speed Original BSC AI IFI120 AI+ IFI120

1 unambiguous fast 520 520 840 720

2 unambiguous fast 520 600 920 840

3 unambiguous fast 520 520 1200 1200

4 unambiguous fast 80 80 80 80

5 unambiguous fast -40 -40 480 -240

6 high slow 880 920 880 880

7 high slow 1080 1080 1080 1080

8 no threat slow N N N N

9 ambiguous slow N Alarm alarm alarm

10 no threat turning false alarm false alarm false alarm false alarm

11 no threat slow N N false alarm N

12 no threat slow N N N N

13 ambiguous slow alarm Alarm alarm alarm

14 no threat fast false alarm false alarm false alarm False alarm

15 no threat turn false alarm false alarm false alarm False alarm

16 No threat fast, turn N N N N

17 No threat turn false alarm N false alarm false alarm

18 No threat fast false alarm false alarm false alarm false alarm

Table 6 An example of the evaluation tables: different video sequences processed by different versions of the

BSC model. Numbers show the time in milliseconds by which the alarm signals precede the actual collisions. AI:

denotes a model with space variant asymmetric inhibition; not explained in this thesis. IFI120: interframe interval

is 120msec; AI+IFI120: interframe interval is 120msec+space variant asymmetric inhibition; N: no alarm signal

was triggered; “-“ denotes that the corresponding sequence was not tested by the specific model

Real traffic automotive situations

After giving examples of the behavior of the model in different situations we give the summary

of tests in Table 7.

Figure 48 shows the that first the speed and the deceleration was low and thus it did not

produced significant danger level.

The next figure, Figure 49Figure 49, shows a hard breaking at 20 km/h speed. It can be seen

that a significant threat is signaled just before the driver started to break.

86

 Input

50 100 150

20

40

60

80

0 50 100 150
0

20

40

60

80

Speed

0 50 100 150
-30

-20

-10

0

10

20

30
Threat

0 50 100 150
-300

-200

-100

0

100

200

300
Angle

Figure 48.Low speed, soft breaking.

 Input

50 100 150

20

40

60

80

0 50 100 150
0

20

40

60

80

Speed

0 50 100 150
-30

-20

-10

0

10

20

30
Threat

0 50 100 150
-30

-20

-10

0

10

20

30
From Right
Object

Figure 49. Low speed hard breaking.

The next figure shows that a negative threat is produced when departing from a car.

 Input

50 100 150

20

40

60

80

0 5 10 15 20 25
-30

-20

-10

0

10

20

30
From Left Object

0 5 10 15 20 25
-30

-20

-10

0

10

20

30
Threat

0 5 10 15 20 25
-30

-20

-10

0

10

20

30
From Right
Object

Figure 50. Departing backward from the standing car.

 87

Shadow

The shadows produces false alarms because the expansion of shadow produced patterns

produces virtual objects. To cancel this we implemented a simple object classification algorithm

described later in the Chapter Applications.

 Input

50 100 150

20

40

60

80

0 50 100 150
-30

-20

-10

0

10

20

30
From Left Object

0 50 100 150
-30

-20

-10

0

10

20

30
Threat

0 50 100 150
-30

-20

-10

0

10

20

30
From Right
Object

Figure 51. Shadow.

Balloon Car 100%

Real Car (optional)

100% at low speed

Over 20km/h can not be tested

well

Pedestrian test

• Left

• Right

50-100%

Depending on the and distance

background

Pedestrian test

during turning
100%

Drive around

to see general behavior
One false alarms/5 minutes

Table 7 Evaluation of sensitivity and selectivity of the locust system

88

5.2.6 Computational cost

For the details of the hardware platform we measured the performance see the Application

chapter, section 6.2. The most time consuming part is the motion estimation. All of the

computing is less than 7ms. There is still enough time frame for additional high level recognition

tasks. It is around 30 ms considering 25 fps processing.

Image size 152×96

Optimised Locust model 44 µs

Original Locust model 188 µs

Noise Filtering 3.4 µs

Motion estimation 4.63 ms

Selectivity enhancement

alg.
33 µs

Cycle time, excluding IO

and sensor readings
6.65ms

Cycle time changes with sensor integration time. Maximal cycle time is 40ms that

corresponds to 25 fps.

5.3 An analogic algorithm for parallel multiple collision prediction

based on isotropic diffusion

The model described in the previous section is not using the knowledge in Eq. (5.5): when an

observer has exact information about the growing diameter (and not only the rate of growing) of

the projected image of an approaching object , one can calculate the exact time-to-contact. This

requires robust, good quality image segmentation, where individual objects can reliably be

identified. Although this is a prerequisite that is really difficult to fulfill, we have studied the

possibility to compute more precise TTC provided we have black and white images of

approaching objects after a correct segmentation.

5.3.1 Theoretical background

Here we are going to expand equation (5.5) to show that information about the area of the

objects are enough for further calculations.

 89

Area of a static object:

()
2

2

0

1

2
A r d= ∫

π

ϕ ϕ (5.35)

Figure 52 Area of a 2D object. For the notations see Figure 39

Area of an approaching object using Eq (5.3):

() () ()() ()
2 2 2

2
2 1 2 2 2

0 0 0

1 1 1
,

2 2 2
p p r r aA t r t d k t d t k d k t

− − −= = = =∫ ∫ ∫
π π π

ϕ ϕ ϕ ϕ ϕ ϕ

 (5.36)

Its derivative:

() 32p aA t k t
−= −� (5.37)

()
()

1

2

p

p

A t
t

A t
= −

�
 (5.38)

And similarly to (5.5) we define time-to-contact (τ) as:

()
()

2
p

p

A t
t

A t
= − = −

�
τ (5.39)

So our problem is solved as far as we can tell the ratio between the area and the rate of change

in the area of an object.

Starting from an image sequence of an approaching object the difference between subsequent

frames gives us the actual rate of change in the area in the form of a black ring(see Figure 53).

The comparison of the area of that ring (change between frames) and the white hole –the area

of the object – can be done with the help of space-limited isotropic diffusion (see Figure 54).

Reaching its equilibrium state the level of the grey within the area of the object will be

proportional to the ratio between the initial number of black and white pixels.

(),
p

r tϕ

ϕ

90

Framen
Framen

DifferenceDifference

Framen-1
Framen-1

ThresholdThreshold

ClosingClosing HoleFillHoleFill

RecallRecall

Framen
Framen

DifferenceDifference

Framen-1
Framen-1

ThresholdThreshold

ClosingClosing HoleFillHoleFill

RecallRecall

Figure 53 Identification and segmentation of an approaching object: the area and the change in the area between

two consequtive frames are shown in the last column

The diffusion equation formula [Kimia & Siddiqi, 1996]:

0 0

d
I x t cdiv grad I x t I x t I x

dt
(,) [((,))] , (,) ()= =
� � � �

 (5.40)

where I x t(,)
�

 is the image intensity (0I x()
�

 is the original image), the vector x
�
= [ξ η]

represents the spatial coordinates, the time variable t can also be interpreted as the scaling

parameter and c is the thermal conductivity. As pointed out by Witkin[1983], convolution of the

original signal with Gaussians at each scale is equivalent to solving the heat equation (5.40) with

the original signal as initial condition (0I x t G I x(,) * ()σ=
� �

 where G is a Gaussian kernel with

2 t()σ variance.

 91

Figure 54 Area limited (masked) isotropic diffusion: subsequent samples from left to rigth starting from two

different images. The ratio between the black rings and white holes are encoded in the grey level of the

equilibrium state.

Using an eight-neighbor discretization of the Laplacian in 2D with the notation Iij(t) = I(i∆ξ, j∆η,

t) and setting ∆ξ = ∆η =1 (∆ is the difference operator) we obtain:

()

(

)

2 2

2 2

i 1j 1 ij 1 i 1j 1 ij 1 ij 1

i 1j 1 i 1j i 1j 1 ij

d I t I t
I t c

dt

1
c I t I t I t I t I t

8

I t I t I t cI t

(, ,) (, ,)
(, ,)

() () () () ()

() () () ()

− − − + − − +

+ − + + +

∂ ξ η ∂ ξ η
ξ η = +

∂ξ ∂η

+ + + + +
≈

+ + + −

…
 (5.41)

The heat equation can be directly mapped onto the CNN array resulting in the following simple

template:

0 125 0 125 0 125

A 0 125 0 0 125 B 0 z 0

0 125 0 125 0 125

. . .

. . , ,

. . .

 
 = = = 
  

 (5.42)

(5.42) first appeared in the original paper laying the groundwork of the CNN theory [Chua &

Yang, 1988], in which the remarkable similarity between the spatially discretized PDEs and the

nonlinear ODEs governing the CNN array was first pointed out. Since then, CNN approach

has been discussed for solving various types of PDEs [Roska et al, 1993,1995; Gobovic &

Zaghloul, 1994; Kozek et al., 1995; Kozek & Roska 1996], namely for Laplace, Poisson,

Burger's, Navier-Stokes and some reaction-diffusion type equations.

92

To confine the diffusion to a predefined subspace, pixels not belonging to this subspace

should be inactivated by masking. Strict zero-flux boundary conditions are required for the

active pixels along the border of the masks – they must not interact with inactive cells at all.

That means active cells must be cut from passives, or passives have to be isopotential(not

feasible if there are two active neighbors with different potentials). The corresponding modified

CNN equation (for eight direction diffusion) can be written as:

() () ()
() ()

()
i k j l

i j i j

k l N
k 0 l 0 p q N

p 0 q 0

m i p j q y td
x t m i j x t

dt m i p j q

,

, ,

,
, ,

,

,
,

,

+ +

∈
≠ ≠ ∈

≠ ≠

 
 + +
 = − +
 + +
 
 

∑
∑

 (5.43)

where () { }m i j 0 1, ,∈ is the space-variant mask, or indicator function defining pixel (i,j) to be

active or inactive.

Concerning feasibility of implementation, we show the diffusion operation on a resistive grid,

since technically this is quite simple to build, , and the Q-Eye (AnaFocus) focal-plane processor

with QCIF resolution has a very similar function implemented.

The state equation of a resistive grid:

()
() ()

() ()()i k j l i j i k j l

i j i j i k j l i j

k l N k l Ni j i k j l
k 0 l 0 k 0 l 0

p t p t md
p t m p t p t

dt r r

, , ,

, , , ,

, ,, , ,
, ,

+ + + +

+ +
∈ ∈+ +

≠ ≠ ≠ ≠

−
= = −∑ ∑ (5.44)

Where pi,j is the potential at the grid point (i,j), N is the set of point coordinates defining the

neighborhood and r(i,j,p,q) is the resistance between points (i,j) and (p,q). The indicator function

() { }m i j 0 1, ,∈ defines that a grid point (i,j) is active(connected) or there is a break in the wires.

Concerning space invariant r we can write:

() () ()i p j q i k j l

i j i j i j i k j l

p q N k l N
p 0 q 0 k 0 l 0

m md
p t m p t p t

dt r r

, ,

, , , ,

, ,
, ,

+ + + +

+ +
∈ ∈

≠ ≠ ≠ ≠

 
 = − +
 
  

∑ ∑ , (5.45)

or

 93

() () ()

i j i p j q

p q N
p 0 q 0 i k j l

i j i j i k j l

k l N i p j q
k 0 l 0 p q N

p 0 q 0

m m

md
p t p t p t

dt r m

, ,

,
, ,

, , ,

, ,
, ,

,

+ +
∈

≠ ≠ + +

+ +
∈ + +

≠ ≠ ∈
≠ ≠

 
 
 = − +
 
 
 

∑

∑
∑

 (5.46)

So we have got an equivalent state equation to (5.43) at equilibrium:

() () ()i k j l

i j e i j i j e i k j l e

k l N i p j q
k 0 l 0 p q N

p 0 q 0

md
p t 0 m p t p t

dt m

,

, , , ,

, ,
, ,

,

+ +

+ +
∈ + +

≠ ≠ ∈
≠ ≠

 
 
 = = − +
 
 
 

∑
∑

 (5.47)

And at equilibrium the potential is the average of the initial potentials:

()
()

k M l N

k l k l 0

k 1 l 1

i j e k M l N i j

k l

k 1 l 1

m p t

p t i j m 1

m

,

, ,

,

, , ,

,

,

, ,

= =

= =

= =

= =

= ∀ =
∑

∑
,

5.3.2 Design and evaluation of the algorithm

The flowchart of the algorithm from preprocessing till collision warning is shown in Figure 57.

Preparation steps work as a filter: they remove objects not growing in a concentric manner. (see

Figure 53). Finally we have got concentric contours: the contour itself represents the rate of

change between frames nk and nk+1, that is:

k 1 k k 1 kA A A,+ +∆ = −

We can approximate TTC from (5.39) via:

()
() 1,

2 2 k

k k

A t A
t

A t A +

= − = − = −
∆�

τ (5.48)

Figure 55 Area definitions in subsequent images of an approaching object

1kA +kA

, 1k kA +∆

94

And that is the approximation isotropic diffusion (reaching its equilibrium state) calculates for

us: (see Figure 55) creating a ‘warning level map’(see Figure 56):

1,

,

1

k k

i j

k

A
x

A

+

+

∆
= , (5.49)

where xi,j is the state of a cell belonging to the approaching object’s image. To get (5.48) from

(5.49):

,

1

1 k
i j

k

A
x

A +

− = , (5.50)

, 1, 1,1

, 1

1
i j k k k kk

i j k k k

x A AA

x A A A

+ ++

+

− ∆ ∆
= = (5.51)

Figure 56 Warning level map and selection of the objects close enough to collision by a simple threshold

operation

Thus τ can be approximated by:

(), ,

1,

2 2 1k
i j i j

k k

A
x x

A +

= − = −
∆

τ (5.52)

This calculation is necessary for setting the threshold level of warning, afterwards direct

evaluation of the warning level maps by threshold is possible to make collision/no collision

decisions.

For testing purpose we simulated the approach of 3 distinct objects with different sizes and

speeds (arbitrary units: time in frames, size in sensor density). According to the simulation

parameters collision would happen at the 21st frame. Following diffusion operation the gray

 95

levels of the pixels in the warning map belonging to the individual objects are shown in Figure

58. In Figure 59 the transformed levels are shown according to (5.52). The figures show quasi-

linearity in the last 5-6 frames and excellent match between the expectation and real values.

Another test with a video-footage recorded by a camera fixed to a 6 wheeled robot-car is

presented in Figure 60.

Figure 57 Flowchart of the diffusion based collision warning algorithm

Framet Framet-i

NOTA_AND

D

HoleFiller

Filled NOTA_AND

Mask

Closing

Difference

Mark

A

B

RECALL

NOTA_AND

A

B

Selected Diff Mask

Warning map Threshold Decision Map

GLOBAL OR

A B

Warning signal

96

10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

frames

g
r
a
y

 l
e
v

e
l

v=500, size=200

v=500, size=400

v=1000, size=200

Figure 58 Test on simulated data. Approaching of 3 distinct objects are simulated with different sizes and speeds

(arbitrary units). According to the simulation parameters collision happens at the 21st frame. Following diffusion

operation the gray levels of the pixels belonging to the individual objects are shown.

10 12 14 16 18 20
0

1

2

3

4

5

6

7

frames

e
x

p
e
c
te

d
 t

im
e
 t

o
 c

o
ll

is
io

n

v=500, size=200

v=500, size=400

v=1000, size=200

Figure 59 Test on simulated data (same data as in Figure 58). Expected time to collision is calculated by

In Figure 60 we present a test of the algorithm: a video footage of approaching disc pattern was

recorded and analyzed. Here we show the actual counts of pixels belonging to the object and to

the difference between subsequent frames.

 97

Figure 60 Experimentally recorded video footage and simulation of the diffusion based collision warning

algorithm A The test vehicle and scenario B Segmented, preprocessed snapshots from the video: difference

between subsequent frames are shown in the bottom row. D The size of the area and difference is shown in

pixels as a function of time E Ratio between the area and the difference are shown as a function of time

0

0.2

0.4

0.6

0.8

1

1.2

1.2 1.03 0.87 0.7 0.53

Time to contact

A
re

a
/I

n
c
re

a
s
e

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1.2 1.03 0.87 0.7 0.53

Time to contact

p
ix

e
ls

Area

Increase

A

B

C

D

6 Application

6.1 Analysis of spatial and temporal patterns in multiple single neuron

recordings

The most trivial place of the statistical methods described here is at the offline analysis of

simultaneous multi-electrode single-unit recording studies.

In the preparation phase expensive and time consuming studies can benefit from quasi real-

time validation of the proper experimental setup. For example, before chronic implantation of

electrodes in the scull the experimenter would like to see if the localization of the electrodes are

optimal: whether the sites at they measure give rise to synchronization patterns expectedly.

Considering some future applications real-time processing and evaluation will be the

minimum requirement: prediction and detection of epileptic seizures via intracranial electrodes

are one of the task the generation and analysis of surrogate data may help.

Finally, the data exploration technique proposed in the thesis above has an ambitious – but

not unrealistic – goal: recognition of important activity patterns seems to be a crucial step on the

way of decoding the language of neurons, what in turn can ultimately be a synonym of “reading

the mind”. A fast, intelligent and reliable communication with the nervous system is the basis

for advanced human-machine interfaces: on one hand, online translation of activity patterns may

serve as a control signal for the actuators. On the other hand, sensory prosthesis have to “talk”

to specific brain areas by means of sensible patterns.

6.1.1 An example for multiple single neuron data and analysis

One example is shown here: I studied multiple single-cell recordings from mammalian retinal

ganglion-cells. The data was registered in the Friedrich Miescher Institute for Biomedical

Research (Basel, Switzerland) by David Balya. In the experiment, a number of retinal cells

 99

(mostly ganglions) were stimulated by different video-sequences and their parallel activity were

recorded by an 8x8 multi-electrode matrix: density was 200 microns, 2.2mikron/1 pixel. The

recording session lasting 12 second was repeated four times with the same video footage. After

spike sorting and discretization of spike times 20 channels were analyzed here. All the 220

possible patterns have been searched for and tested for significance (see Figure 61).

A number of stimulus-locked and stimulus timing independent high order synchrony

patterns were recognized and analyzed that traditional pair-wise correlation techniques could not

detect. Evaluating the time scale of the non-stimulus locked patterns suggest that the accuracy of

the coordination of certain retinal cells are in the milliseconds range. An example for ξ=3

pattern is shown in Figure 61. This particular pattern was found to be significant in every

sessions, but none of its subcomponents of complexity two– this was validated by simple cross-

correlation technique. Interestingly the pattern ξ=4 surrounded by the blue rectangle was not

recognized to be significant, perhaps because there is a general coarse increase in firing rates

around the pattern – thus the probability of the formation of that kind of pattern is increased.

Figure 61 Rasterplot of high complexity patterns: pattern (ξ=3) indicated by red arrow found to be significant in

every session of the experiment, while the pattern with higher complexity (ξ=4) is not recognized as significant.

Finally I simulated 10 sessions of stationary independent data with the same spiking frequences

and length as in the experimental data. A sort of cross-validation of what we have found that

analyzing it with the same parameters as the original no significant patterns could be detected.

Signific

ant
Not

significant

100

6.2 Automotive application of the Collision warning system

Within the framework of an international project in a broad cooperation we have built and

tested the proposed collision prediction system in a personal car. Figure 62 presents the

communication path between a Volvo XC90, the Compact Vision System and a PC.

RS232
Angle
Speed

yaw

TCP/IP
Images

parameters

CAN
Can

messages
Angle
Speed

Yaw, etc

HCI

CVS

CAN-RS232
bridge

XC90

Figure 62 Locust inspired collision warning system is interfaced with a personal car

The Compact Vision System is a modification of the Bi-i intelligent camera specialized in image

processing, which is the product of AnaLogic Computers (www.analogic-computers.com). It

comes with software environment. This means SDK and API and configuration tools. CVS is

not only the workhorse of the algorithmic experiments, but also the test bed of the LOCUST

Vision Chip. Beside the LOCUST simplified model other functional units are integrated as well

to get a robust, adaptive collision warning module (see Figure 63).

 101

Figure 63 Structure of the complex integrated collision warning system

Motion Estimator

The motion estimation is based on the standard block matching method. It takes a block of

pixels and compares it to displaced blocks in a certain neighborhood if the center pixel of the

block to find the most probable displacement of the pixel neighborhood. Comparison is

computed by taking the absolute difference for each pixel pair between two blocks and then

summing the absolute value of the differences. The minimal difference between the reference

and the displaced blocks gives the motion of a pixel. This is done for every second pixel in the

image. This means resolution decrease, but this is acceptable.

The motion estimation yields two images. They are the two

component of the motion vector for each pixel of the original

image. The motion images are nonlinearly blurred. That means

the blurring occurs only where the image is not zero (gray level

127).

As a final step the pixels of each motion images are averaged,

yielding the two components of the general motion vector of the image. This estimates the self

motion of the camera in the projected 2D coordinate frame.

Motion

estimat.

MotionX MotionY

Blurring

Nonlinear

Blurring

Driving

Parameters

CAR

LGMD

Object

recognition

Motion

estimation

* * *

PC

Speed/angle

Overall threat

level

Left/Right/Center

danger

Is there

a bump?

–

– &

LVC

Region

processing

102

Object classifier

A very simple but robust object classifier is defined and implemented to minimize the number

of false alarms. It also makes possible to choose very low warning thresholds –enhancing the

sensitivity while keeping selectivity- for the LGMD. The classifier uses elementary statistics of

the activation patterns in the summation layer.: these are the means and deviations of the

activities in the columns and rows of the array(see Figure 64). The subsystem classify a pattern

as ‘to be avoided’ objects (pedestrian, car) or ‘don’t care’ (road signs, shadows) etc.

Figure 64 Object classifier using elementary statistical features of the activations in the S layer of the model.

Multiple field of view processing

To enhance the selectivity to objects moving into different directions, we divided the image into

four regions (Figure 65).

1. Upper left region

In this area moving objects are declared dangerous if they move to the right.

2. Upper right region

In this area moving objects are declared dangerous if they move to the left.

3. Center left region and Center right region (3-4.)

In this region motion is dangerous if in the left part the object moves to the left and

in the right half the object moves to the right.

7.1/ ≥COLROWR5.0/ ≤COLROWR

5.0≥COLt

75.0≥ROWt

5≥COLR

8≤ROWR

?

ROW

COL
ROWCOL

t

t
R =/

COL

COL
COL

Std

Mean
t =

COL

COL
COL

Mean

Max
R =

ROW

ROW
ROW

Std

Mean
t =

ROW

ROW
ROW

Mean

Max
R =

 103

In each area the horizontal motion activity (i.e. the horizontal component of optic flow) is

summed separately and average danger level is computed for regions 1., 2., and 3-4. These levels

give additional threat information of objects coming form the left or right and objects being on

direct collision course.

4 287 3438

1 2

3 4

Figure 65 Multiple regions.

6.2.1 System level integration and evaluation

The whole system was fixed into a XC90 Volvo. The CVS was placed behind the windshield, in

the middle (Figure 66). Power was provided by the car electrical system.

A CAN-RS232 bridge was connected to the CAN bus of the car and to the RS232 connector of

the CVS. It also receives power from the car. A laptop was connected through Ethernet cable to

the CVS to control the processing and display the warning.

Figure 66 The CVS mounted in the XC90

104

The system uses data on speed and angle of the car. This makes it possible to reduce false alarms

and to use speed sensitive Locust model and threat estimation. Obviously this is very important

since the danger level of a situation differs very much when e.g. the car is standing or

approaches slowly the zebra crossing and a pedestrian is crossing it.

Event historyEvent historyEvent history

Threat level
& object
Yellow & Red
means danger

Threat levelThreat level

& object & object

Yellow Yellow && RedRed

means dangermeans danger

ParametersParametersParameters

Object symbolObject symbolObject symbol
DirectionDirectionDirection

SettingsSettingsSettings

Event historyEvent historyEvent history

Threat level
& object
Yellow & Red
means danger

Threat levelThreat level

& object & object

Yellow Yellow && RedRed

means dangermeans danger

ParametersParametersParameters

Object symbolObject symbolObject symbol
DirectionDirectionDirection

SettingsSettingsSettings

Figure 67 Control Panel of the warning system

Traffic situations and behavior

A number of typical driving situations were tested. The control interface (Figure 67) made it

possible to tune and optimize the parameters online. Concerning sensitivity, the system

(primarily the locust module) behavior was excellent: crossing pedestrians within a specific

sensible range and cars on direct collision course always triggered alarm signals. However, we

can not be fully satisfied with the specificity of the algorithm: to avoid false alarms in every 5

minutes during everyday driving situations requires a lot more investment in the development of

object classifiers.

 105

Figure 68 Crossing pedestrian gets too close to the car

Figure 69 Left panel: walking pedestrian is on the border of acceptable range (medium level warn). Right panel:

breaking in front of the car, almost collision.

106

6.3 Genetic Algorithm

As I pointed out in Section 4 typical application domains of genetic algorithms include

timetabling, scheduling problems, automated design, but here I test the performance and

examine the suitability of analogic binary GA in connection with the analysis of multi-

dimensional (multi-channel) neural activity data, namely fMRI data. Nevertheless, the principles

could be very similar in multichannel EEG recordings.

Over the past two decades, a variety of different BOLD (blood oxygenation dependent)

functional Magnetic Resonance Imaging (fMRI) experiments have been done in order to

understand the human brain activity pattern when doing some certain task. By recording the

activity pattern of human brain as images of 3D voxels, it is possible to visualize the picture of

the pattern, find statistical differences in bran activity during different tasks, and a more

challenge problem is to train a classifier on the recorded data so as to predict cognitive states

given any of the pattern [Haxby et al., 2001]: such as whether the human subject is reading a

sentence or looking at a picture, or whether the subject is reading an ambiguous or non-

ambiguous sentence, etc. (Probably too ambitious, but popular names for the process are

‘decoding’ and ‘mind-reading’.) Machine Learning is a most powerful approach to train the

classifier and then use the classifier to discriminate between different cognitive states.

Learning this series of brain data have many challenges, one of which is the extremely sparse

noisy data with high dimensional features. This would cause the over-fitting problem for the

classifier. Hence it is necessary to apply some feature selection method to make learning

tractable and prevent over-fitting due to spurious correlations. The objective of feature selection

is three-fold: improving the prediction performance (both sensitivity and selectivity) of the

predictors, providing faster and more cost-effective predictors, and providing a better

understanding of the underlying process that generated the data. There are a number of generic

feature construction/selection/reduction methods, including univariate (voxel-wise) and

multivariate statistics; clustering; basic linear transforms of the input variables (PCA/SVD, ICA);

more sophisticated linear transforms like spectral transforms (Fourier, Hadamard), wavelet

transforms or convolutions of kernels; and applying simple functions to subsets of variables, like

products to create monomials[Isabelle & Andre, 2003].

According to univariate voxel selection methods one can select out the voxels that,

considered individually, do the best job of discriminating between the conditions of interest

 107

[Haxby et al., 2001; Polyn, S.M. et al., 2005]. Indeed, any univariate statistic used in conventional

fMRI analysis can be used for feature selection. The main concern with univariate feature

selection methods is that, even with a liberal threshold, it is possible that these methods are

discarding voxels that (when taken in aggregate) would have provided useful information about

the experimental conditions. We can avoid this problem if we replace univariate feature selection

methods with multivariate feature selection methods that evaluate sets of voxels, based on the

informativeness of patterns of activity expressed over those voxels. A challenge faced by this

approach is that (because of combinatorial explosion issues) the space of voxel sets is much too

large to search exhaustively. This issue can be addressed by constraining the search to sets of

spatially adjacent voxels [Kriegeskorte et al., 2006], by adding voxels to the set one a time to

maximize (a teach step) the multivariate goodness of the current voxel set, or perhaps using

genetic algorithms to search through a number of evolutions of randomly initialized sets of

voxels – and this is the method we explore here.

Beside testing of the analogic GA we introduced in section 4, we study its performance at

selecting features (voxels) without any transformation from the original brain image data as the

input for the classifiers to achieve best reconstruction of the data and be most efficient for

making predictions.

Data for our example is taken from visual attention experiments carried out in the MR

Research Center of the Szentagothai J. Knowledge Center - Semmelweis University. An fMRI

scan produces a three-dimensional image related to the human subject’s brain activity every 3

seconds. The aim and details of the experiment are beyond the scope of this work; here I

explain what is necessary for understanding the role of the genetic algorithm in the analysis. The

experiment consists of blocks of trials: ‘active’ blocks having 5 consecutive trials (3 seconds

long) in them or 15 seconds long rest periods. In each active block subjects have to fixate at the

centre and watch the same (or very similar) stimuli: coherently moving dots within a circular

aperture and a parallel ‘RSVP task’ – rapid serial visual presentation of different letters – in the

centre of the aperture. During 10 letters appeared after each other for a couple of milliseconds,

two consecutive coherent dot motion interval are displayed within the 3 seconds of a trial.

In half of the blocks subjects are told to attend the RSVP task and indicate if letter X appears

between the rapidly changing letters. In the other half they have to select the faster between the

two intervals of dot motion ignoring the letters.

108

After normalization (percent signal change) the data was segmented and partitioned voxel-

wise in two groups according to the tasks and aligned to the onset of the blocks. BOLD

response amplitudes 6 and 9sec after stimulus onset was selected and averaged for each trial in

each voxel. From this point BOLD response of the trials can be characterized by a single vector:

the length of the vector (dimensionality) is defined by the total number of voxels (see Figure 70).

Figure 70 Feature vector built on activation pattern of voxels from different parts of the brain

For this analysis only voxels belonging to the primary visual area (V1) were selected based on

an independent ‘retinotopic mapping’ experiment.

Each of the 6 subject’s V1 visual areas contain approximately 500 voxels: thus initially the

trials labeled either as coherent motion or rsvp trials are characterized by 500 elements feature

vectors. The plan is that a linear classifier – popular choice are logistic regression and linear

discriminant analysis (LDA)- should be trained on a randomly selected training set of BOLD

activity vectors to discriminate between the two types of trials. The performance of the trained

classifier is assessed on a test set of trials not taking part in the teaching process at all. The whole

process is repeated over selecting the test set from the data via leave-one-out approach.

Before testing voxels are selected (the dimension of the vectors are reduced) by different

types of selection for comparison purpose.

The method based on univariate statistics handled the voxels individually, and sorted them

according to there ANOVA statistics reflecting the discrimination power between the two

conditions within the training set. LDA discrimination performance was tested with different

 109

number of voxels: only with the first, the first two, first three etc. up to the first 50 ANOVA

ordered voxels. In that way the best group was selected and the LDA was evaluated on the test

set.

Inherent and seamless representation of selected and ignored voxels by binary genetic

algorithms enables their simple and effective integration into this framework. We compared a

classical implementation of GA (GAOT MATLAB toolbox [Houck et al., 1995]) to its analogic

counterpart. After random population initialization – defining random voxel sets – every set is

evaluated by LDA. Thus the GA fitness function takes the performance of the classification

accuracy of LDA with the given voxel set on the training trials. After 200 evolution iterations

the best individual -voxel group- is selected and the LDA classifies the test set after teaching on

the trainng set. Table 8 summarizes the results of the analysis on the data of 6 subjects.

Performance

on training

set(%) ± std

deviation

Performance

on test set

Average

number of

selected voxels

ANOVA 85± 9 68± 9 40

GA 88 ± 4 69± 9 31

Analogic GA 89 ± 4 70± 9 31

Table 8 Comparison of different voxel selection methods

Our ‘analogic’ GA performs significantly better than the univariate approach both on the

training (t=8,83, p<0,001) and on the test set (t=5,41, p=0,002). Although the difference is

small (2-4 percent), so within this context its actual application value is doubtful, this clearly

shows that the proposed genetic algorithm do not stuck in local minima with lower performance

than the solutions of the univariate method. It improves the accuracy for LDA and Logistic

Regression Classifier, and it produced better accuracy as the other classical GA on the training

set (t=6,83, p=0,001): actually the performance on training is the better indicator of the

110

optimization power from a mathematical point of view; the test performance highly depends on

the quality of the data and the generalization power of the classifier.

7 References

 [The ALADDIN System, http://www.analogic-computers.com/

Abeles M. (1983). The quantification and graphic display of correlations among three spike trains. IEEE

Trans. Biomed. Eng., 30, 236-239.

Abeles M. (1991). Corticonics: Neural circuits of the cerebral cortex. Cambridge: Cambridge University

Press.

Abeles M., Bergman H., Margalit E. & Vaadia E. (1993a). Spatiotemporal firing patterns in the frontal

cortex of behaving monkeys. J. Neurophysiol., 70(4), 1629-1638.

Abeles M., Vaadia E., Prut Y., Haalman I., & Slovin H. (1993b). Dynamics of neuronal interactions in the

frontal cortex of behaving monkeys. Conc. Neurosci., 4(2),131-158.

Aertsen A., & Arndt M. (1993c). Response synchronization in the visual cortex. Curr. Op. Neurobiol., 3,

586-594.

ALADDIN: Analogic CNN Visual Microprocessor Application Environment, Analogic Computers Ltd.

Homepage: http://www.analogic-computers.com

Bálya D. and Gál V. (2006) Analogic Implementation of the Genetic Algorithm in Proc. of the 10th

IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA 2006),

Istambul

Barlow H. (1992). Single cells versus neuronal assemblies. In A. Aertsen & V. Braitenberg (Eds.),

Information processing in the cortex (pp.169-173). Berlin: Springer-Verlag.

Barlow H. B. (1972). Single units and sensation: A neuron doctrine for perceptual psychology?

Perception, 1, 371-394.

Blanchard M., Rind F.C. & Verschure P.F.M.J. (2000) Collision avoidance using a model of the locust

LGMD neuron. Robotics and Autonomous Systems, 30, 17-38.

Brown E.N., Kass R.E., Mitra P. P. (2004). Multiple neural spike train data analysis: state-of-the-art and

future challenges. Nat Neurosci. 7(5):456-61.

112

Chua L. O. and Yang L. (1988) Cellular Neural Networks: Theory, IEEE Trans. on Circuits and

Systems, Vol. 35, pp. 1257-1272.

Chua L. O., & Roska T. (1993). The CNN Paradigm. IEEE Trans. on Circuits and Systems, Vol. 40,

pp.147-156.

Chua L. and Roska T. (2001). Cellular Neural Networks and Visual Computing - Foundations and

applications. Cambridge University Press, ISBN: 0521652472.

Cox D. R., & Isham V. (1980). Point processes. London: Chapman and Hall.

Crounse K.R., Yang T., Chua L.O. (1996). Pseudo-Random Sequence Generation Using the CNN

Universal Machine with Application to Cryptography. Proceedings of IEEE Int.Workshop on

Cellular Neural Networks and Their Applications,(CNNA ’96),pp.133-138,Sevilla.

Dayhoff, J. E., & Gerstein, G. L. (1983). Favored patterns in spike trains. 11. Application. J.

Neurophysiol., 49(6),1349-1363.

Diesmann, M., Gewaltig, M.O. & Aertsen, A. (1999). Conditions for stable propagation of synchronous

spiking in cortical neural networks. Nature, 402, 529-533.

Edwards D.H. (1982). The cockroach DCMD neuron. II, Dynamics of response habituation and

convergence of spectral inputs. Journal of Experimental Biology. 99, 91-107.

Engel, A. K., Körig P., Schilleri T. B. & Singer W. (1992). Temporal coding in the visual cortex: New

vistas on integration in the nervous system. TINS, 15(6), 218-226.

Espejo S., R. Dominguez-Castro, Linan G. & Rodriguez-Vazquez A. (1998) A 64x64 CNN Universal

Chip with Analog and Digital I/O. Proc. 5th IEEE Int. Conf. on Elec., Circ. and Sys., 203-206

(Lisboa).

Feller, W. (1968). An introduction to probability theory and its applications. (Vol. 1, 3rd ed.). New York:

Wiley.

Gál V., Hámori J., Roska T., Bálya D., Borostyánkői Zs., Brendel M., Lotz K., Négyessy L., Orzó L.,

Petrás I., Rekeczky Cs, Takács J., Venetiáner P., Vidnyánszky Z. & Zarándy Á. (2004) Receptive

Field Atlas and Related CNN Models. International Journal of Bifurcation and Chaos (IJBC), Vol.

14(2),pp. 551–584.

Gál V., Roska T. (2000). Collision Prediction via the CNN Universal Machine. Int. Workshop on Cellular

Neural Networks and Their Applications (CNNA 2000), Catania, Italy, pp 105-110.

Gál V., Grün S. & Tetzlaff R. (2002) Analyzing Multidimensional Neural Activity via CNN-UM. Proc.

of the 7th IEEE Int. Workshop on CNN and their Applications

 113

Gál V., Grün S. & Tetzlaff R. (2003) Analysis of Multidimensional Neural Activity via CNN-UM.

International Journal of Neural Systems, Vol. 13, No. 6 pp. 479-487

Gerstein G.L. and Kirkland K.L. (2001). Neural assemblies: technical issues, analysis, and modeling.

Neural Networks, 14 ,589

Gerstein G. L., Bedenbaugh P. & Aertsen A. (1989). Neuronal assemblies. IEEE Trans. Biomed. Eng.,

36,4-14.

Gobovic D. & Zaghloul M. E. (1994). Analog Cellular Neural Network with Application to Partial

Differential Equations. Proceedings of International Symposium on Circuits and Systems ISCAS

'94, Vol. 6, pp. 359-362, London.

Goldberg David E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Kluwer

Academic Publishers, Boston, MA.

Grün S., M. Diesmann and A. Aertsen (2002). Unitary events in multiple single-neuron spiking activity:

II. Nonstationary data, Neural Comput., 14(1), 81-119.

Grün S., M. Diesmann and A. Aertsen(2002). Unitary events in multiple single-neuron spiking activity: I.

Detection and significance. Neural Comput., 14(1), 43-80

Grün S., Diesmann M., Grammorrt F., Riehle A., & Aertsen A. (1999). Detecting unitary events without

discretization of time. J. Neurosc. Methods., 94, 67-79.

Gutig R, Aertsen A, Rotter S. (2002). Statistical significance of coincident spikes: count-based versus rate-

based statistics. Neural Comput. 14(1):121-53.

Harris R.A., O’Carroll D.C. & Laughlin S.B., (1999). Adaptation and the temporal delay filter of fly

motion detectors. Vision Research. 39, 2603-2613.

Harrison R.R. (2000). An analog VLSI motion sensor based on the fly visual system. Ph.D. thesis:

California Institute of Technology, California, USA.

Haxby, J.V., Gobbini M.I., Furey M.L., Ishai A., SchoutenJ.L. & Pietrini P. (2001) Distributed and

overlapping representationsof faces and objects in ventral temporal cortex. Science 293, 2425–

2429

Hebb, D. O. (1949). Organization of behavior. A neurophysiological theory. New York: Wiley.

Houck C., Joines J., Kay M. (1995). A Genetic Algorithm for Function Optimization: A Matlab

Implementation. NCSU-IE TR 95-09, 1995.

Isabelle G. Andre E. (2003). An Introduction to Variable and Feature Selection. Journal of Machine

Learning Research 3, 1157-1182.

114

Judge S.J. & Rind F.C. (1997). The locust DCMD, a movement detecting neuron tightly tuned to

collision trajectories. Journal of Experimental Biology. 200, 2209-2216.

Kimia B. B. & Siddiqi K. (1996), “Geometric Heat Equation and Nonlinear Diffusion of Shapes and

Images”, Computer Vision and Image Understanding, 64(3), 305-322.

Kozek T. & Roska T. (1996). A double time-scale CNN for solving 2-D Navier-Stokes equations.

International Journal of Circuit Theory and Applications, Vol. 24, pp. 49-56.

Kozek T., Chua L. O., Roska T., Wolf D., Tetzlaff R., Puffer F. & Lotz K. (1995). Simulating Nonlinear

Waves and Partial Differential Equations via CNN - Part II: Typical Examples", IEEE Trans. on

Circuits and Systems, Vol. 42, No. 10, pp. 816-821.

Kriegeskorte, N., Goebel R. & Bandettini P. (2006) Information-based functional brain mapping. Proc.

Natl. Acad. Sci. U. S. A. 103, 3863–3868.

Laurent G. and Gabbiani F. (1998). Collision-avoidance: nature’s many solutions. Nature Neuroscience,

Vol.1, pp. 261-263.

Legendy, C. R. (1975). Three principles of brain function and structure. Intern. J. Neurosci., 6(5), 237-

254.

Legendy, C.R., & Salcman, M. (1985). Bursts and recurrences of bursts in the spike trains of

spontaneously active striate cortex neurons. J. Neurophysiol., 53(4), 926-939.

Liñán G., Espejo S., Dominguez-Castro R. & Rodríguez-Vázquez A. (2002). ACE4k: an Analog I/O

64x64 Visual Microprocessor Chip with 7-bit Analog Accuracy, International Journal of Circuit

Theory and Applications, Vol.30, pp.89-116.

Martignon L., Deco G., Laskey K., Diamond M., Freiwald W. & Vaadia E. (2000). Neural coding:

Higher-order temporal patterns in the neurostatistics of cell assemblies. Neural Comp., 12, 2621-

2653.

Martignon L, Laskey K., Deco G., & Vaadia E. (1997). Learning exact patterns of quasi-synchronization

among spiking neurons from data on multi-unit recordings. In M. Jordan & M. Mozer (Eds.),

Advances in information processing systems, 9 (pp. 145-151). Cambridge, MA: MIT Press.

Martignon L., von Hasseln H., Grün S., Aertsen A., & Palm G. (1995). Detecting higher-order

interactions among the spiking events in a group of neurons. Biol. Cybern., 73,69-81.

Mitchell M., (1996). An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA.

Nadasdy Z., Hirase H., Czurko A., Csicsvari J., & Buzsaki G. (1999). Replay and time compression of

recurring spike sequences in the hippocampus. J. Neurosci., 19(21), 9497-9507.

 115

Palm, G. (1981). Evidence, information and surprise. Biol. Cybern., 42, 57-68. Palm, G. (1990). Cell

assemblies as a guidline for brain reseach. Conc. Neurosci., 1,133-148.

Palm G., Aertsen A., & Gerstein G. L. (1988). On the significance of correlations among neuronal spike

trains. Biol. Cybern., 59,1-11.

Palm, G. (1990). Cell assemblies as a guideline for brain reseach. Conc. Neurosci. 1, 133-148.

Pauluis Q. & Baker, S. N. (2000). An accurate measure of the instantaneous discharge probability, with

application to unitary joint-event analysis. Neural Comp., 12(3), 647-669.

Pinter R.B, (1983) Product term nonlinear lateral inhibition enhances visual selectivity for small objects or

edges. Journal of Theoretical Biology. 100, 525-531.

Pinter, R.B., (1984). Adaptation of receptive field spatial organisation via multiplicative lateral inhibition.

Journal of Theoretical Biology. 110, 435-444.

Polyn S.M., Natu V.S., Cohen J.D. & Norman K.A. (2005) Category-specific cortical activity precedes

recall during memory search. Science 310, 1963–1966

Riehle, A., Grün S, Diesmann M., & Aertsen A. (1997). Spike synchronization and rate modulation

differentially involved in motor cortical function. Science, 278,1950-1953.

Rind F.C. & Bramwell D.I. (1996). Neural network based on the input organisation of an identified

neuron signalling impending collision. Journal of Neurophysiology, 75, 967-984.

Rind F. C. & Simmons P.J. (1992). Orthopteran DCMD neuron: a reevaluation of responses to moving

objects. I. Selective approaches to approaching objects. J. Neurophysiol. 68: 1654–1666.

Rind F.C., Simmons P.,J. (1999). Seeing what is coming: building collision-sensitive neurons. Trends in

Neuroscience, Vol. 22, pp. 215-220.

Roelfsema P., Engel A., Körig P. & Singer W. (1996). The role of neuronal synchronization in response

selection: A biologically plausible theory of structured representations in the visual cortex. J. Cogn.

Neurosci., 8(6), 603¬625.

Roska T. & Chua L. O.(1993). The CNN Universal Machine: an Analogic Array Computer. IEEE

Trans. on Circuits and Systems, Vol. 40, pp. 163-173.

Roska T., Wolf D., Kozek T., Tetzlaff R. & Chua L. O. (1993) Solving Partial Differential Equations by

CNN. in Proceedings of European Conference on Circuit Theory and Design ECCTD '93, pp.

1477-1482, Davos.

Roska T., Zarándy Á., Zöld S., Földesy P. & Szolgay P. (1999). The Computational Infrastructure of

Analogic CNN Computing - Part I: The CNN-UM Chip Prototyping System. IEEE Trans. on

Circuits and Systems I: Vol. 46, No.2, pp. 261-268.

116

Roska T. Kék L., Nemes L. & Zarándy Á. (1999). CNN Software Library (Templates, subroutines, and

Algorithms) Version 8.1 , Computer and Automation Institute of the Hungarian Academy of

Sciences, Budapest

Roska T., Chua L. O., Wolf D., Kozek T., Tetzlaff R., & Puffer F.(1995). Simulating Nonlinear Waves

and Partial Differential Equations via CNN - Part I: Basic Techniques. IEEE Trans. on Circuits

and Systems, Vol. 42, No. 10, pp. 807-815.

Roy A., Steinmetz P. & Niebur E. (2000). Rate limitations of unitary event analysis. Neural Comp., 12,

2063-2082.

Schiff W. & Detwiler M.L. (1979). Information used in judging impending collision. Perception, Vol.8,

pp. 647-658.

Shadlen M. N. & Newsome W. T. (1998). The variable discharge of cortical neurons: Implications for

connectivity, computation, and information coding. J. Neurosci., 18(10),3870-3896.

Shi B. (1996). Second order CNN Arrays for Estimation of Time-to-Contact. Proc. CNNA-96, pp. 427-

432., Seville, Spain.

Simmons P. J. & Rind F. C. (1992) Orthopteran DCMD neuron: a reevaluation of the of responses to

moving objects. II. Critical cues for detecting approaching DCMD. objects. J. Neurophysiol. 68:

1667–1682.

Singer W. (1993). Synchronization of cortical activity and its putative role in information processing and

learning. Annu. Rev. Physiol., 55,349-374.

Singer W. (1999). Neural synchrony: A versatile code for the definition of relations. Neuron, 24,49-65.

Singer, W., & Gray, C. (1995). Visual feature integration and the temporal correlation hypothesis. Annu.

Rev. of Neurosci, 18, 555-586.

Singer W., Engel A.K., Kreiter A. K., Munk M. H. J., Neuenschwander S. & Roelfsema P. R. (1997).

Neuronal assemblies: necessity, signature and detectability. Trends in Cognitive Sciences, 1(7), 252-

261.

Softky W. R. & Koch C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal

integration of random EPSPS. T Neurosci., 13, 334-350.

Sun H. & Frost B.J. (1998). Computation of different optical variables of looming objects in pigeon

nucleus rotundus neurons. Nature Neuroscience Vol.1, pp. 296-303.

Szatmári I., Földesy P., Rekeczky Cs. & Zarándy Á. (2002). Image Processing Library for the Aladdin

Visual Computer. Pro-ceedings of the CNNA-2002 Frankfurt, Germany.

 117

Szatmári, I., Zarándy Á., Földesy P. and Kék L. (2000). An analogic CNN engine board with the 64x64

analog I/O CNN-UM Chip," Proc. IEEE International Symposium on Circuits and Systems, 2,

124-127

Vaadia E., Haalman I, Abeles M., Bergman H., Pict Y, Slovin H., & Aertsen A. (1995). Dynamics of

neuronal interactions in monkey cortex in relation to behavioural events. Nature, 373(6514), 515-

518.

Vose M.D. (1999), The Simple Genetic Algorithm: Foundations and Theory, MIT Press, Cambridge,

MA.

Witkin A. (1983). Scale-Space Filtering. Int. Joint Conference Artificial Intelligence, Karlsruhe, West

Germany, pp. 1019-1021.

Wolfram S.(1994). Cellular Automata and Complexity. Westview press, Member of the Perseus Books

Group.

Zarándy A, Rekeczky Cs, Földesy P. & Szatmári I. (2003) The New Framework of Applications - The

Aladdin System. J. of Circuits, Systems, and Computers (JCSC), Vol 12(6)

