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„As the biggest library if it is in disorder is not as useful as a small but well-arranged
one, so you may accumulate a vast amount of knowledge but it will be of far less value

than a much smaller amount if you have not thought it over for yourself.”
(Arthur Schopenhauer)
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Kivonat

Az elmúlt években megfigyelhető a többmagos architektúrák előtérbe kerülése. Ezen
új eszközökön sajnos gyakran már nem elég a hagyományos eljárások egyszerű használata,
új módszerekre, megoldásokra van szükség, mivel az eddigi mód -melynél a processzor
órajelét emelték- s az eljárás lépéseinek gyorsítását célozták megváltozott. Jelenleg a pro-
cesszáló egységek száma -melyek sokszor specializált egységek- emelkedik. Ezáltal felvetve
új mérnöki kérdéseket, tervezési szemléleteket, kiemelve a lokalitás precedenciáját, hiszen
napjainkban az egységek közti kommunikáció, mind fogyasztásban, mind a számítási
sebesség meghatározásában jelentős részét teszi ki a teljes algoritmusnak.

Az így megjelent sok processzoros architektúrák rengeteg esetben megmutatták
már hatékonyságukat, használhatóságukat. Számos topografikus eljárásban (legnagyobb
részben a képfeldolgozás terén) tapasztalhattuk hatékonyságukat s újszerűségüket, melyek
mind a lokalitás precedenciájának, elosztott s lokális kommunikációra épülő számításoknak
köszönhető.

A jelenlegi kihívások egyik legfontosabbja azonban nem az, hogy miképpen tudjuk
a már meglévő topografikus módszereket még hatékonyabb architektúrákon, opti-
mális körülmények között végrehajtani, hanem, hogy felismerjük azon problémákat és
lehetőségeket, melyek módosíthatóak, transzformálhatóak egy topografikus problémává, s
ezáltal könnyedén implementálhatóak egy ilyen újszerű architektúrán.

Dolgozatomban szeretném megmutatni, hogy egy véletlen minta elemeinek kiválasztása
hogyan befolyásolhatja különböző algoritmusok hatékonyságát. Valamint az algoritmu-
soktól eltekintve vizsgálnám két különböző szelekciós-mechanizmus a globális és lokális
szelekció által eredményezett mintasorozatok minőségét, változatosságát.

Ezt egyszerűsített modelleken keresztül hajtanám végre, mellyel igazolom a lokális
szelekció használhatóságát, s belátom, hogy ezen módszerrel helyettesíthető az algoritmu-
sok egy adott csoportjában a globális szelekció, valamint a lokális mintavételezés további
előnyös tulajdonságait is igazolom ezen modellben.

Dolgozatomban megpróbáltam általános szemszögből, a problémák reprezentációjától
függetlenül megközelíteni a sztochasztikus optimalizációt. Az optimalizáció kulcskérdésé-
nek, s dolgozatom központi lépésének a szelekciót tekintettem.

Bevezettem a biológia által inspirált, lokális szelekció fogalmát, s összevetettem a ha-
gyományosan használt globális eljárással. Az összevetést általánosnak tekinthető mod-

5

DOI:10.15774/PPKE.ITK.2012.002



elleken végeztem el, majd ezután igyekeztem ezen modellek apró módosításaival közelebb
kerülni néhány gyakorlati problémához.

Mutattam két (egy statikus és egy dinamikus) nem-topografikus algoritmust melyek
esetében a topografikus szemlélet jobban használható, melyet szimulációkkal is igazoltam.

Szimulációimat egy általam implementált celluláris sokprocesszoros virtuális architek-
túrán hajtottam végre.

A statikus eljárás, a genetikus algoritmus vizsgálatában három általános probléma:
az utazó ügynök, a hátizsák és az N-királynő probléma esetében is megmutattam,
hogy (bizonyos paraméterek esetében) a lokális mintavételezéssel gyorsabb konvergencia
sebességgel kaphatunk eredményt, mint a globális eljárásnál.

A szimulációkat a gyakorlatban is használt, Xenonv3 architektúrán is implementál-
tam, mely kihasználja az általam leírt topografikus módszerek egyik legnagyobb előnyét
párhuzamosíthatóságukat és skálázhatóságukat.

A dinamikus probléma esetében Rejtett Markov Modellek állapotbecslését vizsgáltam.
A probléma azért nehéz, mivel nem egy ismeretlen állapotot (optimumot) szeretnék bec-
sülni, lehető legjobban megközelíteni, mint a sztochasztikus optimalizációban általában,
hanem a markovi modell rejtett állapotait szeretnénk meghatározni, vagyis egy dinamikus,
időben változó állapotsorozatot, trajektóriát szeretnék megbecsülni nemlineáris megfi-
gyelések alapján. Ezen probléma esetében is három esettanulmányon keresztül mutattam
be az eljárás használhatóságát, hatékonyságát. Valamint itt is mind a szimulációs ered-
mények, mind a konkrét implementáció a Xenonv3 architektúrán megtalálható.

Dolgozatom második felében spinoszcillátorok szinkronizációjával foglalkoztam,
valamint megpróbáltam ezen szinkronizációs jelenségeket a számítási képességek szem-
szögéből is megközelíteni. Készítettem egy általános szimulátort mellyel különböző tí-
pusú spinoszcillátorok tetszőleges hálózata szimulálható. Analitikus megoldást adtam az
’in-plane’ oszcillációval rendelkező spinoszcillátorok differenciálegyenletének megoldására.
Valamint a harmonic balance és discribing function módszerek alkalmazásával megmutat-
tam, hogyan számítható ki egy ilyen elemekből készített tetszőleges hálózatban a külön-
böző oszcillátorok közötti fázisszög. Ezáltal egy leképezést adtam, hogy miképpen alakítja
át egy STO hálózat a bemenő, frekvencia-kódolt jelet a kimeneti, fáziskódolt jellé. Továbbá
megmutattam,hogy ezen fázisszög, hogyan függ a csatolás erősségétől és a bemenő áramtól
két oszcillátor esetén.
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Abstract

In this thesis I would like to examine how local topographic algorithms can be imple-
mented and used in practical problems. Nowadays in engineering one of the most chal-
lenging task is the design of topographic algorithms that can be executed on topographic
architectures.

As we have seen in the previous years the speed of Moore’s law is further decreasing
and the operating speed of processor has not increased significantly either. However the
number of transistors that can be manufactured on a silicon wafer is increasing further
and further. This creates a gap between high level/abstract algorithms and the many-core
architectures. We can not yield for higher processing speed has decreased but we can have
more parallel cores instead. Because of this phenomena in parallel algorithms on many-core
architectures the wire delay became the most determining factor instead of the gate delay.
The transfer of data between the cores can decrease the execution speed significantly. To
avoid this we have to process all the data locally, and avoid global communication as much
as possible. The only communication which is affordable in a fast, efficient way is the local
topographic data exchange.

It is extremely complicated and difficult to examine all the algorithms from this point of
view. The general theoretical investigation how general algorithms can be implemented on
many-core architectures is out of the scope of this dissertation. Because of the theoretical
complexity of many-core implementations I have selected only one type of algorithm:
selection mechanism in stochastic processes and examined how they can be implemented
in an efficient topographic way.

There are numerous different algorithms amongst the processes used in stochastic
optimization. I also have to note that sometimes not only the problem representation, but
also the algorithm itself depends on the problem (especially in case of different heuristic
improvements). But we can also see, that in almost every stochastic optimization tasks
there are common steps.

I have tried to see and describe these algorithms from a point of view which is rela-
tively independent from the problems itself. One of the key steps in this processes is the
selection step, when we have to generate a new sample from our current population. I have
introduced and examined the biologically inspired selection, and compared these methods
(in case of some problems) to some other algorithms containing global selection.
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I have tried to start these comparisons from a meta-level, where the program repre-
sentation is not important, to show that the selection has the same properties in general.
I have shown that in general the local selection can be considered as a generalized ver-
sion of the global selection. I have zoomed from this general problem to the more specific
problems, to show, that these can be used also not only in theory but also in practical
problems.

Later I will show two sample algorithms (widely used in practical problems, which are
originally non-topographic) in which case the topographic, cellular way of thinking works
better, than the general methods. I will also try to underline this theory by different
simulations.

These simulations were implemented on a virtual many core architecture.
The static algorithm (the genetic algorithm) was tested on three different problems on

the knapsack, N-queen and on the travelling salesman problem.
I have tested my version of the algorithm not only by simulations but I have also

implemented them on an existing chip on the Xenonv3 architecture, which exploits the
main characteristics of modern architectures namely the parallel procession, many core
execution, scalability and local, cellular connections between the cores.

In case of the dynamic version of the algorithm I describe how the topographic method
can be used for state estimation in case of Hidden Markov Models. This problem is more
complex than the previously described optimization, because our aim is not to find the
best parameters with numerous number of iterations, but to find a hidden state in every
iteration, to identify a trajectory of a process. This means that we have only a limited
number of steps for processing (usually only one) to identify a dynamically changing state.

Also in this case I have shown through three case studies how this algorithm can be
implemented and used, and I have also examined the efficiency of the implementations.
Also in this case I have examined the efficiency based on the simulations with the virtual
cellular machine, and also on the existing architecture, the Xenonv3 chip.

In the second part of my thesis I have examined how a cellular architecture can be
realized by spin torque oscillators. In this architecture all the computation is performed
by the physics of the oscillators and the interactions between the neighboring oscillators.
Other different interactions are unfeasible, because of the underlying physics. The results
a cellular architecture. I have investigated the synchronization of these oscillators, and
how they can be used for computation, where the information is not the charge (as it is
in the devices used nowadays), but the phase-shift between the neighboring, synchronized
oscillators. This results a non boolean, nanoscale device.

In the second part of this thesis I will show an architecture, which is inherently to-
pographic. This processor is made of Spin torque oscillators. The information exchange,
interaction between these oscillators happens through the magnetic field. Because of this
interaction only a cellular locally connected architecture is feasible.

To implement a processor we can not avoid to understand the behavior of spin torque
8
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oscillators. In the second part of this thesis I will describe how we can understand and
simplify the synchronization of weakly coupled oscillator networks.

I have implemented a simulator in C, Python and Matlab. With this program I man-
aged to investigate the behavior of the STO arrays in general. I have also calculated the
equilibrium of an STO with a closed formula and this way the behavior can be calculated,
without solving the differential equations.

Using the harmonic balance and the describing function technique I have shown, how
the behavior of the synchronized oscillation can be calculated in any arbitrary array. Apart
form the transient behavior, any phase shift, frequency and spin position can be examined
in any arbitrary array regardless the boundary condition, initial condition, or coupling
weights between the elements in the array.

I have also investigated more detailedly the case of two coupled oscillators. I have
calculated how the phase shift between the two synchronized oscillator depends on the
input current on the oscillators and on the coupling weight between the oscillators.
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Chapter 1

Introduction

One of the most interesting trend in computer engineering is how multi-parallel ar-
chitectures have been brought into focus in the previous decade. Moore’s law – implying
that the clock frequency of a processor can be doubled in every second year – is slowing
down continuously. Without increasing the clock speed, the obvious method to increase
our computational power is to multiply the number of the processing elements. If inventing
smarter or faster workers in a task proves to be infeasible, we are still capable of increas-
ing the sheer number of workers. Nowadays we are creating architectures specialized for
different tasks and further increasing the number of processing elements.

However, to exploit all the advantages of many-core devices it is not enough to use
our old algorithms designed for single core chips, we have to change the paradigm of cen-
tralized processing. We need new methods and new algorithms. After a certain threshold
the number of processing elements may be more than enough, but we still have to divide
the work amongst them optimally. The optimization of such a task raises new questions
in engineering, new points of view in algorithm design. These designs on many-core archi-
tectures underline the precedence of locality. These new topographic, many-core, cellular
devices have shown their usability and effectiveness in various tasks. From these solutions
we can see, that they can give new, effective solutions in case of topographic tasks (i.e
image processing), thanks to the precedence of the locality, and the division of the op-
erations based on local communication. Even on the most recent FPGAs data sharing
and the communication between the elements could consume more time than the actual
”processing”. Communication considering time and power consumption became one of the
main elements of an algorithm. Until this point this question was not investigated in a de-
tailed way, although this is one of the most important engineering problem of the following
decade.

The most important challenge is not further improving these existing methods on even
better architectures 1 , but to identify problem classes, tasks and possibilities when the
problems can be transformed into topographic algorithms and mapped on these cellular,

1however this is still a very challenging task of optimization
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many-core devices.
Unfortunately, the question of how to implement a proper algorithm on a many core

architecture is too general and can not be answered. In this dissertation I will investigate a
set of algorithms, Sequential Monte Carlo methods, and especially one, very important step
of such processes the stochastic local selection of elements. I will show the effectiveness of
randomly selected local elements and how they can affect the algorithms. I will investigate
this selection independently from the problem representations and compare the selected
sets with local and global selection regardless of the problems. I will do this through a
general, simplified model, which is based only on the local selection of elements. With this
model I will show that the local selection can be considered as a generalized version of the
global selection and also a generalization of those methods where there is no selection at
all.

Later in this dissertation I will show a few examples and algorithms how the local
selection can be used on many-core chips. I will investigate the problem also in case of a
dynamic environment, where the optimal state changes in time 2. I will show, how this
idea can be used in case of genetic algorithms and in particle filters.

With the genetic algorithm I will investigate three practical problems: the knapsack,
N-queen and the travelling salesman problem. I will investigate the particle filter problem
through commonly used benchmark models with one and three dimensional state spaces.

According to our current knowledge in physics after a certain point Moore’s law and the
downscaling of processors have to stop and they are hindered by the physical constraints
in the atomic scale. It is unfeasible to build transistors using only a few atoms. In the
second part of this dissertation I will investigate one possible architecture, considering in
general what main criteria we have to fulfill beyond Moore’s law and how a functioning
device can be implemented, where the processing elements are single atoms. I will give an
example of this device: an array of weakly coupled spin-torque oscillators and I will show
some examples of the capabilities of this network.

All the mentioned algorithms, figures and also a digital version of this document can
be found on the attached CD.

2state estimation of dynamic processes
15
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Chapter 2

Local and Global Selection
Mechanism

2.1 Random Sampling and Locality in Stochastic Optimiza-
tion

It is an interesting phenomenon, how limitless the freedom of thinking is. Maybe this
could be the biggest advantage and present of our life, that our imagination allows us
to create anything without time, space or any physical constraints. We can not feel the
difference between imagining 10 or one billion state variables.

However, when we have to implement an algorithm we have to obey physical rules,
constraints, because the functionality of our device is inherently bounded in time and
space. With only one processing unit we only have to solve the problem of time, the space
itself is not important 1.

In contrast, on a many-core architecture, even unwillingly, we have to consider how
the processing units are placed and connected. We have to consider the well-defined place
of implementation, we have to map our method onto a two dimensional wafer 2 and this
implies the precedence of locality and in the end – even if we have not considered this
before – our algorithm will be topographic, because it is bounded in a two dimensional
state space, where only local connections are allowed and efficient. 3

We can also observe locality and physical rules in nature. Every living creature is
bounded to its territory and they apply inherently the precedence of locality. We can see
that, in case of evolution, the improving of different generations depends on space, different
entities at different places found different obstacles to overcome and find different mates
to create new entities and generations. However, in most cases 4 the population itself is

1the placement of one element is indifferent
2We are not considering vertical integration for simplicity
3global connections are feasible as series of local connections
4not considering islands or physically separated animals, which would lead to island model genetic

algorithms (see [11])
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global. During the evolution of populations the information 5 can spread out to every
individual, but the selection and the comparison of the entities happens always locally.
This is quite similar to our architecture regarding that they are both bounded in space.

It is an interesting task in biology to compare two different species with different mating
customs, whether salmons or catfishes 6 have a better and more resistant gene-pool for
environmental changes. These are the main idea, why I have decided to investigate local
stochastic selection on many-core architectures.

One of the most commonly used operations in stochastic optimization is the selection
of a set of elements from our observed data that will 7 represent and preserve correctly
some important properties of the full cohort. This operation is a key step in almost every
stochastic algorithm that determines the set of elements our process will work with.

This sampling is random, because our models, observations, or our estimations are
stochastic. It is important to decide how we can select the best elements randomly from
a general set to ensure that the distribution of this element would be the ’best’ for us in
some sense. Of course the definition of the ’best set’ itself is especially difficult and a very
interesting question, however, it is impossible to investigate this question in full depth in
the present work.

This question will be even more interesting when it is applied to many-core architec-
tures, namely: how we can select the best set, meanwhile we would like to distribute our
effort amongst many elements uniformly. This problem is interesting in theory, but since
many-core architectures 8 have been brought to focus in the previous decade it has also a
large impact on the efficient solution of practical problems.

The problem in this form itself is too general and can not be investigated, because the
algorithm 9 depends on the problem representation and on the problem itself. For this
reason I have decided to avoid specifying the problem in this chapter and I will rather
create a general model that considers only the main, crucial steps of the algorithm and
those principles that are common in every solution, but also specific enough to contain
random set of elements and the selection of entities based on certain principles.

The idea of local selection itself was motivated by biological selection. I also wanted
to investigate, how biologically inspired computing 10 can help us in case of stochastic
optimization.

In many areas and applications we can witness how biology inspired algorithmic prin-
ciples can outperform other rivals. We can also see the wonders of biology: how mammals
and insects can solve difficult tasks in a simply brilliant way, that can not be solved by

5in this case a good genome or gene
6Salmons mate at the same place every year and the population gathers globally, meanwhile catfishes

select mating partners in their territory
7hopefully and according some heuristics or a priori information
8FPGAs, GPUs, CNNs
9or the optimized version of the algorithm

10the local selection and evolution of individuals
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thousands of engineers. In this section I would like to show how a simple example, what can
be observed in real life: evolution can inspire us during algorithm development (especially
in case of stochastic optimization) to build proper methods for many-core architectures.

In the literature we can find many articles examining the properties of global and
local selection from different aspects, however, these questions are raised by biologists and
philosophers, see [12]. 11. In those papers where we can identify the aspect of engineering
points of view, usually well specified, but special problems are examined based on this idea
([13], [14]) or sometimes some small classes or subsets of problems [15] without considering
generalization or architectural planning or implementations.

Since the literature of this area is not comprehensive and the published papers are
focusing on well-specified problems and not on algorithmic principles I have tried to find
a general framework of the problem. Going against the tendencies I have not selected a
specified problem to try to make general conclusions later on but I have tried to create a
general model of the problem, to formulate general statements and later on I have tried to
specialize, narrow down this model to practical problems without changing the main steps
of the algorithm. Keeping the algorithm in focus during the whole time and handling the
problem itself only as a tool, which is necessary to test our algorithm.

From an engineering point of view this comparison raises many questions. Which
method is more effective? In what sense can we measure efficiency? Which method is
faster, considering the number of iterations, or considering milliseconds? How we can di-
vide the processing optimally amongst the processing units? Is it better to handle all
entities of our sample together and we are creating a global order or applying a limit for
every processing unit we store only a subset of the sample, and only local interactions are
possible between the elements?

To investigate local constraints I have placed our processing elements in a homoge-
neous, rectangular grid. 12. The structure of this grid can be seen on Fig. 2.1, which is
the same as the structure of a CNN: a cellular network. A detailed description of the
CNN architecture can be found in Appendix A. According to our hopes it can be easily
seen that this can be mapped in a straightforward way on any multi-core system, like the
Xenon_v3 or an FPGA. A detailed desription of the Xenon architecture can be found at
Appendix B.

On first read one could think, that the local selection is much simpler 13, than the global
process, because we do not have to compare all the elements with each other and we do
not have to order all the elements. Although this is true, because we will order only smaller
sets in the population, and this will decrease the running speed. However, the algorithm
will be more complex: we will have an extra parameter, the just introduced locality, the

11These point of views are not better or worse, but regarding engineering aspects can not be compared
or used for algorithm development

12other grids with hexagonal or triangular positions could also be used, and especially heterogeneous
grids can create interesting behaviors [11]

13in implementation and also in efficiency
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Figure 2.1: On this figure we can see the spatial distribution of the processors and also
the interconnection between them. The locality in this case is defined by a neighborhood
radius r = 1, which means the neighbors are those cells, which are closer than one unit.
This neighborhood will define the communication between the elements and also how the
information is divided and spreads out through the network.

size of the smaller sets. Although it is true, that this will result a more complex algorithm,
and the theoretical investigation will be more difficult, but with this new parameter we did
not create something totally new and different. We have only widened the possibility and
the level of adaptation in our algorithm. If we set the neighborhood radius to a relatively
large number 14 , then we will get back our global method, when all the elements are
compared to each other and there is an interaction between any selected two elements.
Also, if we set the neighborhood radius to zero 15, there will be no information exchange
between the processing units, and we will get back the result when there is no selection at
all. These two extreme situations are interesting and used in practice, however for us (from
an engineering point of view) it is more challenging to examine with simulations the case
when the neighborhood radius is between these two extrema and to see how information
exchange can modify the local selection and the result of our algorithm.

Because the theoretical investigation of a general algorithm is problematic, I have de-
cided to create experiments with a general model about stochastic selection. My aim was
to create a framework that mimics all the properties of stochastic selection regarding prac-
tical problems, however it is general and in this sense independent from the representation
of the problem itself.

14larger than the maximal distance between any two elements in the grid
15we will deny all interactions
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2.2 General Model of Stochastic Selection

2.2.1 The Model

In this subsection I will describe a simple model that grasps the essence of stochastic
selection, without being to specific to have any connections with practical problems. I will
start my investigation with this model and later on I will specify this general model, to
show that it has a strong relation and can be applied in case of practical problems.

Examining stochastic selection and local searches in general we can identify that all
these algorithms have the following common steps:

In the beginning of the process a sufficiently large amount of random samples was cre-
ated by our previously given distribution. This distribution, if we do not use any problem
specific heuristics, is usually uniform or normal and covers the state space. I have to note
that the initial distribution should not play a crucial role in the algorithm, because the
convergence of the algorithm should hold for an arbitrary -random- initial population.

We have an initial sample (sometimes called population) generated by normal distri-
bution in the N dimensional state space 16. We have to evaluate this initial population
based on the fitness of every element. The fitness function is a scalar function, that maps
the elements of the population to real numbers.

To avoid the over-representation of certain elements in the population, we will alter all
the weights randomly. Later on we will recombine elements of the population and mutate
them. This means, that based on a randomly driven function we will alter them (move,
perturb them in the state space). This perturbation is made by a deterministic φ function,
that maps state x, the state we would like to optimize and by random processes (γt.i),
which is the stochastic part of the optimization. 17

wt,i = φ(xt,i) + γt,i (2.1)

This weight, generated by the fitness function is the only element 18 that affect the
selected elements. To get rid of the problem representation, we will ignore everything in
the population, except these weights (w) in what follows.

w0,i ∼ N(0, σ1), i = 1 . . .K (2.2)

In the beginning we will create this K elements from independent samples. Intuitively
we have to preserve the best elements in the population. To preserve these elements we
have to create the next population randomly based on nothing but the fitness value of the
elements. This will ensure, that the elements with higher fitness will have a larger chance
to be a part of the next generation. This is called the selection step. However I also have to

16where N is the dimension of the problem
17here I use an additive noise, but this is not necessary
18apart from random Independent Identically Distributed (IID) variables
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note, that the best population is not necessarily a population containing only the clones of
the best element, “diversity” of the population may also be desirable. We will investigate
this problem later.

Here we have reached again the surface of the problem representation. We can see that
this equation contains the state x again. To avoid the problem representation, we have
to get rid of x. During the selection the state is not important for us, only the weight w
itself. This is the other simplification of this general model. Lets assume, that this operation
changes the weight by a normal additive noise. 19 This approximation that these operations
are represented as an additive normal noise can be justified: large changes happening with
low probability, and usually only small changes will occur during the mutation step. Also
if the change is stochastic, we can assume that a random change in the genome will as
likely increase its fitness as decrease it. This way we can concentrate only on the scalar
weight function:

wt+1,i = wt,i + ξt,i (2.3)

Where ξt,i ∼ N(0, σ2) are independent. We can try to investigate the performance of
local search based on this simple, general model and compare global and local selection.
As we can see from this state transition it can happen that during the algorithm we will
generate elements with negative weights (this problem can be avoided problem easily,
because one could compare the relation of the weights instead of the direct weight or add
a large sufficiently large constant to every weights). I chose zero as a minimal weight and
I set all the negative values to zero before every selection step.

2.2.2 Results

The parameters of the model applied were the following: σ1 = 10, σ2 = 3
To compare the global and local selection mechanism I have generated a sample with

K = 400 elements and these elements were placed on a 20 × 20 two-dimensional grid in
case of the local sampling. In every experiments I examined the 10th population 20 and I
have repeated every experiment 1000 time to reduce the noise of the simulations caused
by the stochastic nature of the processes.

After the 10th iteration I have selected the best element 21. The results of the global
selection as the average of 1000 simulations can be seen in Table 2.1

While in case of global selection the number of selected parameters were determined
directly by one, and only one parameter. In case of local selection we can set the neighbor-
hood radius, in which distance we will examine the elements in a region of a cell. Even if
it is not clear for the first read this is very similar to the parameter of the global selection.

19this is a generalization, but during stochastic optimization we generally use small perturbations in the
state space. The effect of this small perturbation can be assumed to be normal additive noise

20the population after 10 selection and mutation steps
21the element with the highest fitness weight
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Table 2.1: Results of the simple model for global selection
The first column shows the amount of preserved elements during the selection step in
percentage, The second column shows how many elements were selected during the se-
lection step. The last column shows the highest value of the fitness function w obtained
by this parameters. The fitness values were calculated as the average of 1000 independent
simulations, the higher values mean better results.

Selected percentage Selected elements Value of Fitness function
1 4 58.24
2.5 10 52.36
5 20 48.24
7.5 30 45.40
10 40 43.62
12.5 50 42.13
15 60 39.58
17.5 70 38.17
20 80 38.21
22.5 90 36.03
25 100 36.11
27.5 110 33.31
30 120 33.31
32.5 130 33.33
35 140 28.82
37.5 150 28.79
40 160 28.76
42.5 170 28.77
45 180 28.75
47.5 190 28.70
50 200 28.60
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Previously I have described, how we can derive the global selection from the local version.
If we observe this phenomena from an other point of view, it is even easier to realize the
similarity. Lets imagine that we have one extremely good element in our population, with
a very high weight . In the next step this element will be copied, cloned to the cells within
the previously given neighborhood radius r. This parameter r will determine, how cells will
see a good element: how visible it is and how it will be represented in the population. This
means an upper bound, how many times the best element can be copied in one iteration,
and in this sense this is very similar to the percentage of selected and preserved elements
in case of the global mechanism. 22

The result of the local selection mechanism can be seen in Table 2.2.

Table 2.2: Results of the simple model for local selection
The first column of the table contains the neighborhood radius r. The second column show
how many elements are in a set defined by r. The third column is to help expressing the
connection between the local and global selection mechanisms. This value can be calculated
from r and represents the number of disjoint squares that can be placed on the grid used in
the simulations. This means that in one step we will have at least this many independent
selections for the middle element of these squares. The last column shows the value of the
Fitness function (w, taken from 1000 independent simulations).
Neighborhood radius Selection from elements Disjoint squares Value of Fitness function

1 9 44.44 40.55
2 25 16 47.17
3 49 8.16 50.98
4 81 4.93 53.41
5 121 3.30 55.03
6 169 2.36 56.27
7 225 1.77 57.24
8 289 1.38 58.03
9 361 1.10 58.67
10 441 0.90 59.30
11 529 0.75 59.63
12 625 0.64 59.77
13 729 0.54 60.14
14 841 0.47 60.40
15 961 0.41 60.39

As it can be seen from the comparison of the results, the general model of stochastic
sampling with local sampling gives approximately the same results (for some parameters

22Of course we have to note, that the neighborhood radius will not only affect this property, it will also
increase the section of elements seen by two cells in proximity.
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even better) than the global selection. in case of neighborhood radius 9, the maximal
fitness value will be 58.67, we will have a similar value (58.24) with the global sampling
when we select only the best 4 elements in every population of 400 entities. When we set
the neighborhood radius to 1 23, the fitness function will be 40.55, which is relatively high
comparing the two different methods. 24

Based on this results we can think, that the local selection can substitute its global
counterpart, and the global algorithm is easily parallelizable and scalable and can be
mapped easily to many-core architectures. Meanwhile collecting and comparing all the
elements we would loose the biggest advantage of today’s architectures: parallelism.

I have to mention, that in case of stochastic optimization our goal is dual. On one
hand we would like to maximize the fitness value (we have investigated this scenario), on
the other hand we would like to achieve the most diverse population possible, to avoid the
local extrema in the state space and mutate our entities towards the global extremum.

Based on these properties I can state, that in case of the global selection, when we
preserved only the best 4 elements (58.24 fitness value) the diversity of the population
will be much lower than in case of the local selection. We can approximate this amount
based on the lower bound on this property in table 2.2. As we will see it later the actual
diversity is much larger. This would cause, that in case of a practical problem with many
local extrema the global selection mechanism would perform more poorly than its local
counterpart.

In this model local extrema do not occur, so the algorithm, in a sense, is trivial. For
this reason we consider a slightly more complex model in the next section.

However, this can not be examined by this simple model, because it is too general and
we can not add local extrema in it. Hence the the fitness function is linear.

2.3 A More Specific Model

2.3.1 Model

We have seen in the previous section, that the general model is not capable to reflect
one -the biggest and most serious- problem of local stochastic searches: the local extrema.
We have to add this crucial property into our model, without specializing it into practical
problems. We have to stay as general as possible. To do this we have to consider the
position of the elements in the state space in general, without creating a special state
space related to some specific model. To avoid the implementation of a specific state space
we can assume that every element in the state space will have a property p1, to stuck in a
local extremum 25 and with p0 it will not find local bounds around itself in the state-space.
This is of course again a generalization, because in case of a real problem, the state space

23and on every commonly used cellular architecture, this can be done easily
24considering that in case of the global method we would need a large global memory.
25which can be also global extremum
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is not homogeneous, and elements in different points will have different probabilities to
stuck in local extrema. But in this dissertation my scope is not to compare or classify
different state spaces, but to compare selection mechanisms, and this model is general but
useful enough to reveal one main aspects of local stochastic searches: the diversity of the
population. I also have to note that the other operations (recombination, mutation) are
the same for both the global and local version of the algorithm, so eventual better results
can only be explained by the selection mechanism.

We can also assume that elements close to each other will most likely be altered in
the same way: If an element will stuck in a local extremum, we can presume, that all the
elements around it will also stuck at the same place in the state space. Also if an element
can move/mutate toward a better solution (without getting stuck) all the surrounding
elements have the potential to move as well.

To achieve our goal we have to consider somehow the position of the elements in
the state space, without specifying the state space itself. If we can label the positions in
the state space we can calculate which elements will get stuck together. We also know
that when an element with a relatively high weight is selected and copied multiple times
there will be more identical elements (at the same position in the stat space) in the
next generation before the mutation operator is applied. Based on this I have divided
the elements into groups and each group is determined by the identity in the previous
generation it was copied from. The p0 and p1 probabilities are applied for every group and
they can determine whether a group can mutate (increase the weights of the elements) or
not (they stuck in a local extrema)

During the resampling step I divide the elements into groups αj , j = 1, . . .M according
to the previously described rules. Gj-s are binary random (Bernoulli) variables with values
zero or one. With p0 probability αj = 0 and with p1 = 1− p0 probability αj = 1.

Then for every i if wt,i ∈ Gj and αj = 0

wt+1,i = wt,i + ηt,i (2.4)

if wt,i ∈ Gj and αj = 1
wt+1,i = wt,i (2.5)

Where ηt,i ∼ N(0, σ2) are independent and Gj represents a group of the elements in
proximity.

Of course this model is a simplification of the position of the elements in the state
space, and I have to note that elements can be in proximity caused by the mutation step
as well, not only by the selection mechanism. The elements migrate in the state space and
perform stochastic walks and even without a selection mechanism every element should
visit all the points of the state space once in a while if the mutation factor is relatively
large and we have to note that this model is not considering this temporal ’moving’ of the
elements. However in case of a relatively large state space and if the distribution of the
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elements is uniform in this state space the effect of resampling step driving the elements
to the same places is much stronger.

2.3.2 Results

The parameters of the model were: σ1 = 10, σ2 = 3, p0 = 0.70, p1 = 1− p0 = 0.30
To compare the global and local selection mechanism I have generated a sample with

K = 400 elements, and these elements were placed on a 20 × 20 two-dimensional grid in
case of the local sampling. In every experiments I examined the 10th population 26 and I
have repeated every experiments 1000 time, to reduce the noise on the simulations caused
by the stochastic operators.

After the 10th iteration I have selected the best element 27. The results of both the
global and local selection as the average of 1000 experiments can be seen in Table 2.3 The
graphical interpretation of these results can be seen on figure 2.2.

These result are very important regarding the local selection. This model is the most
general, that is capable to represent the most challenging problem of local stochastic
optimization. Namely, when we would like to maximize (or minimize) a function we have
to have the most diverse set, and cover the whole state space to avoid all the local extrema
except the only global extremum.

We can derive two conclusions from the results: It can be seen that the local algorithm
outperforms its global counterpart. It can also be seen that the values of the fitness of
the local selection for different parameters have a concave shape. It is true, that the
extreme cases 28 are usually not efficient. This implies, that with the proper setting of the
neighborhood radius we can optimize the performance of the localized algorithm. We can
alter how the information spreads out through the processing elements and this way we
can set the exploitation/exploration ratio of the algorithm. This way we can set either our
aim is to maximize the fitness function and move towards the best value (case of global
interactions) or to maintain the most diverse population possible (no interaction at all).
In case of a specific problem we can set the best parameter considering the probability of
finding a local extrema. Setting this parameter to an optimal value we can solve practical
problems more easily and efficiently. Because this dissertation investigates primarily the
implementation and design of many-core algorithms, I stress the importance of the fact,
that the local selection mechanism can be easily parallelized and its execution time can
be decreased to a fraction of the execution time of the global method.

26the population after 10 selection and mutation steps
27the element with the highest fitness weight
28small local interactions or large ,global interactions affecting the whole population
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Figure 2.2: On this figure we can see the results of the local (red, continuous) and global
selection (blue, dashed) mechanism. The numbers on the X-axis are the parameters, in
every bracket the first is the neighborhood radius for the local method and the other is
the number of the selected elements for the global method. The experiments were done
with K = 400 elements. On the Y-axis we can see the fitness values, higher values mean
better solutions. It can also be seen that the values of the fitness of the local selection for
different parameters have a concave shape. This implies, that with the proper setting of
the neighborhood radius we can optimize the performance of our algorithm by picking out
the parameter value corresponding to the tip of this curve.
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Table 2.3: Results of the specific model for local and global selection
The first column of the table shows the neighborhood radius for local selection r. The
second column is the result of the local method , the maximal value of the fitness function
w (as an average of 1000 independent simulations). The third column is the result of
the global method The last column represents the parameter of the global selection, the
number of selected elements. As it can be seen the best result can be obtained with the
local method, however the comparison of the two methods for one parameter-setup is not
straightforward, because the parameters in the algorithms (the neighborhood radius and
the number of preserved elements) are different.

neighborhood radius fitness(L) fitness(G) selected elements
1 45.00 49.50 20
2 49.14 44.61 40
3 51.04 42.28 60
4 52.82 40.85 80
5 53.59 37.95 100
6 54.19 36.24 120
7 55.75 34.88 140
8 55.27 33.85 160
9 55.36 32.72 180
10 54.20 31.82 200
11 54.34 30.86 220
12 51.63 29.95 240
13 51.40 29.08 260
14 49.19 28.21 280
15 48.29 31.15 300
16 48.88 33.68 320
17 45.56 35.51 340
18 38.29 37.89 360
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Chapter 3

The Application of Stochastic
Local Search in Practical Problems

Based on the models shown in the previous chapter one can feel that the local stochastic
search can be used more efficiently 1 on many-core architectures than its global counter-
part. But this reasoning was based only on a theoretical model, which can be too general
and could have only a weak link to practical problems. A thorough theoretical investigation
can be done only by generalization, however, the problem is too complex to investigate
it in the scope of this dissertation. The previous steps were necessary to highlight the
utility of the method, but to stress out the application I have to show, that they can be
implemented on existing architectures and they can solve existing problems with the same
accuracy but with a decreasing running time. It could happen that, because of the gen-
erality of the problems, we have forgot some important detail, that can be observed only
in case of real problems. I will prove the applicability of the idea of the previous chapter
with two commonly investigated and important algorithms.

3.1 Genetic Algorithms

The first practical algorithm that uses the local search is the genetic algorithm and
this method is extremely closely related to the previously described models.

Numerous topographic and parallel algorithms have been described in previous years
that can exploit the high performance of multi-parallel, Cellular Neural Network (CNN)
architecture [1], [2]. These algorithms can be executed with an extraordinary speed; they
have been used in image-processing [16], for analyzing three-dimensional surfaces [17],
[3], for solving differential equations [18] or for various retina modeling tasks [19].

Genetic algorithms (GA) and their utility in practical problems have been introduced
1Determining the efficiency of an algorithm is an extremely difficult task because one can rank these

methods by many metrics: power consumption, running speed,accuracy, prices, area of the implemented
chip etc...In this dissertation efficiency is measured as a comparison of execution speed and accuracy on a
virtual machine and the Xenon_v3 architecture
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by John H. Holland in 1975, [20]. Since then these methods (with various alterations) have
been applied to a large class of problems. These heuristic search algorithms, inspired by
natural selection and evolutionary mechanisms, can provide solutions faster than exhaus-
tive search, and give better results than greedy algorithms.

It can be observed in biological networks and among organisms that mate selection and
genetic inheritance between generations happens locally, according to a topographic rule.
Genomes that are able to overcome the challenges of nature in a well-defined environment
(in the territory of the individual) can be inherited to the next generation, and spread out
in a diffuse-topographic way in the population.

Examining evolution and natural selection we can see that a parallel and topographic
approach is more realistic and similar to the original, motivating idea than the commonly
used “global”, non-topographic selection rules. This also refers to GAs, and a parallel
topographic implementation can outperform its “regular” single-core ancestors.

Favorable convergence speed of the cellular algorithm has been proved, and the utility
of these methods has been demonstrated theoretically in [21], but the ideal implementation
on the Cellular Neural Network Universal Machine (CNN-UM) 2, has not yet been studied
previously.

3.1.1 The Nonparalellized Genetic Algorithm

GAs are stochastic algorithms for search and optimization inspired by natural selection.
A more detailed description of the Genetic Algorithm can be found at Appendix C. Many
alterations and changes are known but the following four steps are the fingerprints that
determine genetic algorithms and they can be found in all variants and alterations.

• (1) Initialization of the populations

• (2) Fitness (weight) calculation for every genome

• (3) Selection and recombination

• (4) Mutation

Steps 2, 3, 4 are repeated until a previously given time constraint, or until the optimal
solution can be found 3.

I provide a brief description on these four steps that are relevant to my settings. A
more detailed description can be found in [22]

(1) Initialization of the population:
at this step we will create random 4 vectors with values, genomes according to the

problem representation.
2which is a true topographic mapping of the algorithm
3when the optimal solution can be identified based on the constraints
4usually uniformly distributed
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(2) Fitness (weight) calculation:
One has to calculate a fitness, weight value for every genome. This value represents a

distance between our solution candidate and an optimal solution in the state space. The
metric of the distance is based on problem dependent heuristics. Selecting an appropriate
metric is a key question, I base my choice on well-known, published suggestions.

(3/a) Selection of parents:
In case of the panmictic GA, selection is calculated globally, i.e. using all the genomes

generated in the previous step. We select the part of the genome we want to conserve and
inherit for the next generation, and replace unnecessary elements.

There are many different methods for the selection of the parents because of practical
considerations we have selected Stochastic Universal sampling [23]. With this method we
need only a relatively low amount of random numbers on the chip 5. The probability of
selecting a genome as a parent is proportional to its fitness value. This is one of the most
simple step in the algorithm for us and in this selection we can use all the theories and
simulation results from the previous chapter, since this is the most similar to stochastic
sampling.

(3/b) Recombination:
In this step we will recombine the genes of the selected parents and create a new entity

combining their properties. In the first case, we will choose one point in the genome, and
until this point all the genes will be inherited from one parent and after this point all the
genes will be copied from the other parent. Ideally, the offspring solution obtained through
the recombination is not identical to any of the parents, but contains combined building
blocks from both.

(4) Mutation:
Mutation performs a random jump in the state space in the neighborhood of a can-

didate solution. There exist many mutation variants, which usually affect one or more
loci 6 of the individual. The mutation randomly modifies a single solution whereas the
recombination acts on two or more parent chromosomes.

The pseudo-code of a GA based on the previous steps can be seen at Algorithm 1.
5which will be a bottleneck of the algorithm as we can see it in section 3.1.5
6genes or components
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Algorithm 1 Pseudo Code of the Genetic Algorithm using deterministic sampling Pa-
rameters PopsSize, MutFact, UsedPop, MaxIter are the following:

PopsSize: the size of the population, i.e. the number of genomes used in an iteration.
MutFact: mutation factor. The probability that a randomly selected gene will change its
value.
UsedPop: the ratio that determines how many elements will be stored in every iteration,
generation. The number of deleted elements is: PopsSize ∗ (1− UsedPop).
MaxIter: the number of maximal iterations. After theMaxIter-th iteration the algorithm
will stop regardless we have found the optimal solution or not.
Require: MutFact UsedPop PopsSize MaxIter

Ensure: gmin
gmin⇐ 1
Iter ⇐ 0
{/}/1- initialization
for i = 0 to PopSize do
for every gene in gi do
gene⇐ randomgene()

end for
end for
while Iter < MaxIter AND gmin 6= Fittnes(optimum) do
{/}/2- selection-ordering genes
for i = 0 to PopSize do
Order(gi, F ittnes(gi))

end for
gmin⇐ g0

{/}/3-recombination
for i = 0 to PopSize*UsedPop/2 do
for j = 0 to PopSize*UsedPop do
gnewj ⇐ recombine(gi∗2, gi∗2+1)

end for
end for
g ⇐ gnew

{/}/4- mutation
for i = 0 to PopSize do
for every gene in gi do
a⇐ randomnumber(0, 1)
if a < MutFact then
gene⇐ randomgene()

end if
end for

end for
Iter ⇐ Iter + 1

end while
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3.1.2 Cellular Version of the Genetic Algorithm

The panmictic genetic algorithm can not be effectively implemented on a parallel ar-
chitecture because for the selection step we need to collect fitness values from all the
genomes. All the other steps could be easily implemented on a fine-grained (single instruc-
tion multiple data) architecture, where every processing unit represents one genome.

I will use an altered version of GA, a two dimensional variant of the so-called cellular
genetic algorithm. The theory of these algorithms was introduced in [24], [25]. Here I
will implement a two-dimensional variant on an n × n array, where the radius of the
communicating neighborhoods can be set arbitrarily, by repeating the parent selection
step with one neighborhood radius. We can set the exploration/exploitation ratio with
this parameter, instead of using an n ×m grid and varying the n/m ratio, as in [26]. In
this method we will determine the parents locally, the selection of the fittest genomes and
the recombination is done in a topographic way, just like in the case of real organisms.

In an iteration every genome will select the fittest genomes in a neighborhood of radius
NeighSize, and these parents will create the gene pool of the respective genome for the
next generation. With this I can ensure parallel execution, and a prefect mapping to a
cellular architecture.

In this dissertation I will use only the simplest, but also most general variation of
cGA, using single point mutation and single point recombination between two parents
and selection based on Stochastic Universal Sampling [23] (This operations are described
in Appendix C). This contains all the important features from the implementation point
of view. This implementation can be used for solving other types of problems, and can be
adapted to improved versions of GAs.

Because heuristic improvements like [27] or [28] nearly always intervene at the stage of
mutation, fitness calculation or at other genome-dependent stages they can also be realized
in the topographically distributed, multi-parallel implementation on CNN architecture.

After this general description one could easily modify the global algorithm to have the
pseudo code of the cGA (the algorithm can be seen at Algorithm 2).

3.1.3 Three Practical Test Cases

For testing the algorithm, I have selected three typical, well documented problems:
the N -queen problem (see [29]) for N = 16,the knapsack problem ([30],[31], [32]) and the
travelling salesman problem ([33], [34], [35]).

These are fundamental problems from the field of combinatorial optimization. I have
to note that my aim is not to compare the genetic algorithm with other possible solutions
but to show the applicability of my implementation.
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Algorithm 2 Pseudo Code of Cellular Genetic Algorithm Parameters PopsSize,
MutFact, NeighSize, MaxIter are the following:

PopsSize: the size of the population, i.e. the number of genomes used in an iteration.
MutFact: mutation factor. The probability that a randomly selected gene will change its
value.
NeighSize: Neighborhood size. This parameter determines the size of neighborhood in
which the parents are searched. The larger value means more possible parent candidates.
Require: MutFact NeighSize PopsSize MaxIter

Ensure: gmin
gmin⇐ 1
Iter ⇐ 0
{1- initialization};
for i = 0toPopSize do
for every gene in gi do
gene⇐ randomgene()

end for
end for
while Iter < MaxIter AND gmin 6= 0 do
{2- weight calculation};
for i = 0toPopSize do
wi ⇐ CalcWeight(gi)

end for
{3- selection recombination};
for i = 0toPopSize do
for each neighbour in LocalNeighbourhood(gi, NeighSize, wi) do
Parent1, Parent2⇐ SelectParents(neighbour, wi)

end for
{recombination};
gnewi+j ⇐ recombine(Parent1, Parent2)

end for
g ⇐ gnew

{4- mutation};
for i = 0 to PopSize do
for every gene in gi do
a⇐ randomnumber(0, 1)
if a < MutFact then
gene⇐ randomgene()

end if
end for

end for
Iter ⇐ Iter + 1

end while
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The N-queen Problem

In the N -queen problem our task is to place N queens on an N ×N chessboard in an
arrangement where no two queens can attack each other 7. To put it differently: we have
to place the queens in such a way, that each of them has to be in different rows, columns
and diagonals.

The most widely used and most efficient representation of this problem is the following:
the positions of the queens are represented by an array containing N 8 elements. The i-th
element represents the queen in the i-th row, and its value represents the column in which
the queen can be found. This way the representation ensures that every queen will be in
different rows. The positioning in different columns is ensured whenever all the numbers
are different in the arrays, and this can be checked easily. Only the positioning with respect
to the diagonals is more difficult to detect and takes further checking during the weight
calculation.

With exhausting search we should check all the possible constellations 9 and the number
of good solutions is only 14, 772, 512 10. Finding a solution with exhaustive search or with
backtracking takes a lot of time.

For the N -queen problem the fitness is the number of those queens, which are attacking
each others 11. If a queen is able to attack more than one queen, its weight is calculated
multiple times.

The representation of the data is also easy on this architecture as the values can be
stored digitally. For the N -queen problem we have to store sixteen numbers with values
from 1 to 16, the position of one queen could be stored on 0.5 byte. The storage of 16
queens require a minimal of 8 bytes.

We decided to store the position of one queen on four bits, and thus one possible
arrangement can be stored on 8 bytes (64 bits).

The Knapsack Problem

The knapsack problem [36] is well-known from the field of combinatorial optimization:
we are given a set of items with different predefined properties and one global constraint for
every property. Our aim is to determine the number of each item to include in a collection
so that the total weight is less than or equal to a given limit and the total value is as large
as possible.

The number of properties 12 gives the dimension of the problem. For simplicity, here
we will discuss the one-dimensional problem where all the items have only one property 13.

7the moves of the queens are the same as regular chess moves
8in this case sixteen
91025 of them

10considering symmetry and eliminating symmetrical solutions only 1, 846, 955
11in the case of the optimal solution this number is zero
12also the number of constraints
13in this case weight
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The solution of multidimensional knapsack problems is analogous and straightforward, we
just have to check more constraints, one after the other. Apart from the relevant constraint,
every item has a value. Our aim is to maximize the value of selected items, while satisfying
all the constraints.

I have examined the bounded knapsack problem, where we have a limit for every
element 14.

The most common representation of this problem is the following: use a vector of size
N to store the objects 15. If the value of the i-th element is set to x in the vector, it means
that we have selected x pieces from the i-th element. After summing the properties for
every selected element we can easily check whether a constraint is satisfied or not and by
adding up the values of all the selected elements, we can easily calculate the value of our
selection.

For the knapsack problem fitness is the summed value of the selected items, if they
fulfill all the constraints. If there is an unsatisfied constraint then the weight is zero. In
case if this problem the fitness value of the optimal solution is unknown, our aim is to
maximize the fitness value itself.

The knapsack problem is an NP-complete problem and greedy algorithms do not work.
The knapsack problem I have used for simulations is the following: weights

are [100, 50, 45, 25, 20, 10, 15, 5, 22, 42, 50, 61, 71, 20, 78, 56] and values are represented as
[40, 35, 18, 17, 4, 10, 9, 2, 5, 7, 9, 5, 2, 50, 10, 3] and I have tested a bounded version, where
the limit for every element was 2.

The number of possible selections is 316 = 43046721. Finding the optimal solution
with exhaustive search required more than five hours on a regular CPU (intel T6670). The
optimal solution for weight limit 100 is with value 145.

In case of the bounded knapsack problem, we only have to store amount of the se-
lected elements. To store the chosen number for every element, I have required 2 bits. For
16 different elements the algorithm would require 32 bits, 4 bytes to store one possible
solution.

According to the chip parameters given in Appendix B, it is easily feasible to im-
plement a population with 1024 genomes. For one iteration with these parameters we
will need: 5 Bernoulli variables for recombination 32 Bernoulli variables for mutation al-
together 37 variables. To implement this we have to read one additional input-image in
every iteration.

With this data representation we can easily read, write, compare and switch data in
the population.

14usually we can select only one of each
15where N is the number of different elements

36

DOI:10.15774/PPKE.ITK.2012.002



The Travelling Salesman Problem

The Traveling salesman problem (TSP) is a well known NP-hard problem from the
field of stochastic optimization. This problem is one of the most intensively studied in
optimization [37].

TSP can be considered as a search of a Hamiltonian path in an undirected weighted
graph, where the sum of the edge’s lengths (weights) are minimal. The TSP has several
applications even in its purest formulation, such as planning and the manufacture of
microchips, it also appears as a sub-problem in many areas, such as DNA sequencing. Our
problem can be considered as a planning problem for a mobile robot, where the robot
has to choose the shortest path in an environment, visiting sixteen different objects in
sequence.

The distance matrix of the objects was the following:



0, 29, 82, 46, 68, 52, 72, 42, 51, 55, 29, 74, 23, 72, 46, 23
29, 0, 55, 46, 42, 43, 43, 23, 23, 31, 41, 51, 11, 52, 21, 53
82, 55, 0, 68, 46, 55, 23, 43, 41, 29, 79, 21, 64, 31, 51, 42
46, 46, 68, 0, 82, 15, 72, 31, 62, 42, 21, 51, 51, 43, 64, 28
68, 42, 46, 82, 0, 74, 23, 52, 21, 46, 82, 58, 46, 65, 23, 33
52, 43, 55, 15, 74, 0, 61, 23, 55, 31, 33, 37, 51, 29, 59, 17
72, 43, 23, 72, 23, 61, 0, 42, 23, 31, 77, 37, 51, 46, 33, 14
42, 23, 43, 31, 52, 23, 42, 0, 33, 15, 37, 33, 33, 31, 37, 36
51, 23, 41, 62, 21, 55, 23, 33, 0, 29, 62, 46, 29, 51, 11, 52
55, 31, 29, 42, 46, 31, 31, 15, 29, 0, 51, 21, 41, 23, 37, 43
29, 41, 79, 21, 82, 33, 77, 37, 62, 51, 0, 65, 42, 59, 61, 37
74, 51, 21, 51, 58, 37, 37, 33, 46, 21, 65, 0, 61, 11, 55, 12
23, 11, 64, 51, 46, 51, 51, 33, 29, 41, 42, 61, 0, 62, 23, 16
72, 52, 31, 43, 65, 29, 46, 31, 51, 23, 59, 11, 62, 0, 59, 51
46, 21, 51, 64, 23, 59, 33, 37, 11, 37, 61, 55, 23, 59, 0, 43
23, 53, 42, 28, 33, 17, 14, 36, 52, 43, 37, 12, 16, 51, 43, 0



(3.1)

In case of the TSP we have a vector, a solution candidate containing the order of
the visiting of the objects. So we have to store a a vector with 16 elements, each element
containing the objects ID, a value between 1 and 16. The storage of this vector will require
64 bits, 8 bytes.

In size the representation of this problem (in case of the stored values) is the same as
the 16-queen problem. Apart from the fitness calculation all the other parts will require
the same resources on the chip. In this case we will also need two additional input images.

The calculation of the fitness function of a solution candidate is: - the sum of the
weights of the edges, if all the cities are visited only once in the path - 1000 if any of the
cities is visited more than once in the path.
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The weight of the optimal solution for this distance matrix is 303.

3.1.4 Simulation Results on a Virtual Cellular Machine

Before the actual implementation I would like to show, that the theory described in
the previous section is right and it can be used in case of real life and implemented on
existing architecture.

I simulated a virtual version of the CNN-UM in order to test my algorithm on the
previously described test case. The simulated CNN-UM was a virtual machine containing
64 processing cores similarly to the Xenon architecture. The neighborhood radius of every
processor could be set to any arbitrary number. The core of the virtual machines were
able to execute regular CNN operations (templates), but also arithmetical and logical
operations as well. This way we could easily check the validity of the architecture, without
facing the difficulties of random number generation or the limited number of supported
operations in the cores.

As a measure of performance I used the average number of iterations until the best
entity reaches the previously known solution of the problem. I have repeated every setup
1, 000 times and calculated the average from as the result of these independent experi-
ments. I carried out the calculations for various parameter values (neighborhood radius,
mutation factor for single point mutation, population size) to find out optimal settings. I
identified the best combination for mutation factor/neighborhood radius parameters for
our test cases.

The qualitative measurement of this results is quite complex, because this kind of
convergence can be measured in more ways: On one hand we can measure the average
convergence speed 16. On the other hand, and this is a more practical consideration, we
can measure the average of the best element after a given number of iterations. In practice
we usually have a constraint about the execution time, also about the number of iterations
and our aim is to achieve the best result possible in this time.

I have made the simulations with the following parameters: 1024 elements were simu-
lated in every population in case of the N-queen and knapsack problem, this number was
2048 for the TSP. The initial distribution was generated according to uniform distribution
in the state space.

As a metric to the measurements I have used the average number of iterations until
the best entity will reach the optimal solution of the problem to measure the quality of a
parameter setup.

I have tried to identify the best mutation factor, and the best Neighborhood radius
parameters for every test case. As it can be seen from Table 3.1, 3.2, 3.3 the exploita-
tion/exploration ratio can be set by the tuning of this two parameters and larger neigh-
borhoods induce a higher level of implicit migration.

16the number of iterations in average until we will find the optimal solution
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Table 3.1: Average number of iterations for the 16-queen problem
The table contains the average number of iterations for the 16-queen problem for different
parameters as a function of the neighborhood radius and the mutation factor for single
point mutation. The results are obtained by taking the average of 1000 independent runs.
The columns represents different mutation factors while the rows are showing different
neighborhood radii. As it can be seen from this results (with these parameters) the best
convergence speed can be obtained with mutation factor 0.2 and neighborhood radius 3
and in this case the algorithm requires 52.23 iterations in average to find the optimal
solution.

N/pm 0.1 0.2 0.3 0.4 0.5 0.6

1 143.47 72.15 75.93 87.37 95.83 113.42
2 120.30 58.95 71.66 85.48 89.83 102.39
3 125.28 52.23 64.97 83.82 85.87 95.56
4 132.67 54.16 54.81 81.91 83.24 87.00
5 147.53 54.32 57.57 79.91 82.54 84.56
6 158.67 54.73 57.94 75.20 80.13 81.64

Table 3.2: Average number of iterations for the Knapsack problem
The table contains the average number of iterations for the Knapsack problem for different
parameters as a function of the neighborhood radius and the mutation factor for single
point mutation. The results are obtained by taking the average of 1000 independent runs.
The columns represents different mutation factors while the rows are showing different
neighborhood radii. As it can be seen from this results (with these parameters) the best
convergence speed can be obtained with mutation factor 0.4 and neighborhood radius 4
and in this case the algorithm requires 29.06 iterations in average to find the optimal
solution.

N/pm 0.1 0.2 0.3 0.4 0.5 0.6

1 162.14 104.26 87.74 56.73 61.59 70.64
2 154.22 92.59 80.69 37.02 58.68 52.70
3 148.85 85.25 61.63 35.80 41.70 40.06
4 140.39 76.52 54.46 29.06 34.14 42.17
5 138.91 68.31 46.93 33.07 38.24 43.83
6 133.12 62.39 51.76 38.35 42.88 45.32
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Table 3.3: Average number of iterations for the traveling salesman problem
The table contains the average number of iterations for the traveling salesman problem
for different parameters as a function of the neighborhood radius and the mutation factor
for single point mutation. The results are obtained by taking the average of 1000 indepen-
dent runs. The columns represents different mutation factors while the rows are showing
different neighborhood radii. As it can be seen from this results (with these parameters)
the best convergence speed can be obtained with mutation factor 0.7 and Neighborhood
radius 4and in this case the algorithm requires 129.20 iterations in average to find the
optimal solution.

N/pm 0.3 0.4 0.5 0.6 0.7 0.8

1 267.05 232.97 194.50 167.86 156.87 152.69
2 237.10 215.90 189.05 163.18 144.57 141.79
3 224.33 190.02 181.38 157.48 137.93 134.33
4 204.87 178.77 139.17 133.00 129.20 137.82
5 229.69 182.71 164.28 133.01 124.32 136.73
6 225.92 188.23 172.85 137.24 127.92 135.05

After identifying the best parameters, from a more theoretical point of view I have
examined the average fitness of the population for the best parameters.

As it can be seen in Figure 3.1 the average entity is getting closer and closer to the
optimal solution the value of its fitness is getting closer to the value of the solution, this
means that this setup and the virtual cellular UM is capable of solving this type of opti-
mization problems, which makes it a good architecture candidate in certain optimization
tasks. I have to note, that the fitness of the average entity will not reach the optimal
solution, hence the mutation and recombination operators, but the convergence of the tra-
jectories are easily detectable. The function of the fitness values is almost monotonic. More
experiments 17 would probably result a monotonic function. I do not think such a large
number of experiments is necessary because the improvement of the average population
can clearly be seen from the figures.

3.1.5 Implementation on the Xenon Architecture

After the quantitative measurements it can be seen that the algorithm is capable of
solving optimization problems, but for its applications on a real CNN-UM instead of a
virtual machine further examinations are needed. The theoretical solution is the same
in the case of the virtual machine and on an existing CNN chip, however in an actual
implementation we can benefit form the advantages of the CNN architecture like low
power consumption. To verify the results with measurements I have tested the performance
with the xenonv3 chip. A detailed description of the Xenon architecture can be found in

17possibly 10000 instead of 1000 measurements
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(a) N-queen (b) Knapsack (c) TSP

Figure 3.1: The images show the results of the cellular genetic algorithm for the 16-queen,
knapsack and TSP problems with the previously identified parameters. The blue line shows
the average fitness of the population, while the red line marks the fitness value of the best
entity in the population. On the X-axis the average number of iterations can be seen.

Appendix B.
I have selected the Xenon chip because I have already knew how it ca be programmed

and also because it is able to execute simple arithmetical and logical operations which
are extremely useful during the implementation of fitness calculation and the selection
operators.

The Xenon chip [38] is a two dimensional digital CNN architecture that combines
the advantages of cellular structures and bit-wise arithmetic/morphological units of the
CNN-UM model. It contains 64 digital processing units, each one of them operates with
100Mhz. The cores are also integrated with a 8× 8 focal plane sensor array [39] through
which the input can easily be uploaded directly to the memory of the processing cores.
This makes this device perfect for the implementation of the cellular genetic algorithm.
The schematic architecture of the Xenon chip can be seen on Figure 3.2.

Every processing unit has a relatively large (512 byte) memory that can be addressed
both bit-wise and byte-wise. This memory enables us to implement a multi-layered CNN,
where the different steps of the cGA can be executed in respective layers; for instance,
the fitness values of genomes can be calculated in the first layer. This value can be stored
there and sent forward as an input for the next layer, the parent selecting one (Figure
3.3).

On the Xenon chip every processing core contains an arithmetical and morphologi-
cal unit, with these units the necessary operations can easily be implemented. Since this
architecture was designed for image processing purposes, the available operations in the
arithmetic unit are restricted to addition, subtraction and multiplication. These are suf-
ficient for performing mutation, selection, recombination and they are usually enough for
fitness function calculation as well. However, to implement a problem with a more complex
fitness function 18 these operations could be implemented with successive approximation;

18containing division or square root calculation
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Figure 3.2: The schematic architecture of theXenon_v3 chip. The connection of the Xenon
cores can be seen on the left side of the image (the cores are noted as c and the connections
are represented by the lines). Every core contains an 8 × 8 focal plane sensor array, this
can be seen on the right side of the image. Apart from the sensors every core contains a
multiplexer, an analog-digital converter, an arithmetic logical unit, and a relatively large
memory implemented by SRAMs.

the execution of these elementary operations being relatively fast because of the eight bit
precision. The morphological unit is able to execute bit-wise logical operations 19. With
these one can easily select and alter bits in the genomes, resulting in a simple implemen-
tation for recombination and mutation. The Xenon chip is capable of operating with 30
giga operation per second (GOPS), which is an amazing performance considering its size
and power consumption 20.

In the sequel I will describe the main characteristics of my implementation and also
mention some general considerations about implementing cGA on the CNN-UM for arbi-
trary problems.

Initialization of the Population

Unfortunately, the CNN-UM lacks a simple, built-in random number generator since
these operations are usually not required for image processing. It is possible to generate
random numbers with CNN according to the state equations [40], however these methods
are time consuming and too complex to use as part of my algorithm. I generated the initial
population, along with the other necessary random numbers off-line, before the execution.
Because the distribution of the necessary random numbers is known, It is enough to upload
a sufficient amount of random numbers with uniform distribution.

19e.g. AND, OR, XOR, NOR. . .
20less than 20 mW approximately 5mW in average
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(a) Topographic implementation of
the steps of the algorithm

(b) The implementation on the different layers of a
CNN-UM

Figure 3.3: The image on the left represents the grid of the processors and the different
genomes of the population, each square represents one processor (one genome). The mag-
nified small set is the neighborhood of a given processor , which defines the calculations.
The grid structure represents how the information spreads out from processor to processor
by local neighborhoods. The topographic steps of the algorithm (listed in Sec. 3.1.2) are
also illustrated for a particular processor (marked as black). On the other image the map-
ping of the algorithm can be seen and how it is divided according to the different layers
in the CNN-UM. This method can be implemented on a 3 + P layered CNN, where P
represents the selected number of parents for each recombination. Without recombination
we select only one parent (P = 1) and the method can be implemented on a 4 layered
CNN architecture. In case of regular recombination with two parents P equals two and we
require 5 layers for the implementation. We will also need additional memory segments
to store the previously generated random numbers. The lines are representing operations
that can be done by nonlinear, multi-layered CNN templates, the dashed line is a selection,
that simply copy the values from the other layer, this can also be implemented easily and
efficiently on the Xenon_v3 architecture.

We have to load the values of the previously generated input image into the states of
the processing elements 21, according to the CNN state equation.

Calculation of the fitness function

We can calculate fitness values in another layer with an uncoupled non-linear CNN
template implementing the operation described at the problem representations. This value
represents a distance between our solution candidate and an optimal solution in the state
space. The metric of the distance is based on problem dependent heuristics. Selecting
an appropriate metric is a key question, I based my choices on well-known, published
suggestions.

On the general CNN architecture we have to store these values in a different layer; on
21into the bottom layer in case of a multi-layered CNN architecture
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the Xenon architecture we can store it in another segment of our memory.

Selection of the parents

For the selection step we do not need to order the values on the grid, we just have to
find local extrema 22. There are well-known, commonly used templates for local extremum
searches hence they can be implemented easily on the CNN architecture. To find both
parents with the best weights in a given neighborhood, first we have to find the best
parent with local maximum search, store its value, than lower its value on the original
image to a minimal value by masking, and then repeat the maximum search.

On a one-layered CNN we can not store the previously found parent candidates, how-
ever, on a multi-layer one, and also on the Xenon architecture, we can do it easily 23.

If the cGA requires neighborhoods with a radius larger than one we have to iterate the
local maximum search on a regular CNN architecture, however this can be done easily on
the Xenon chip, because each processor can reach the neighboring elements of every genome
in a 15×15 sized kernel. The CNN-UM has local connections only to the closest neighboring
cells but with repeated applications we can spread out the range of the extremum search.

The implementation of other parent-selecting mechanisms 24 is more complex, involving
random numbers which cannot be generated on-chip. So they need to be uploaded through
the sensor array. However, the resolution of this array is limited, and iterated uploads would
slow down the computations, it is advisable to use as few random numbers as possible.

Recombination – generating new genomes from the previously selected parents

The previously described operator: single-point recombination can be implemented by
randomly selecting bits from one or more parents. With a non-linear template this could
also be easily implemented on a multi-layered CNN.

On the Xenon architecture the parents can be selected by the morphological unit,
the only problem is again the uploading of random numbers. In this case we have to use
the previously generated random numbers from the input picture. Since the amount of
random numbers is strictly limited 25, I have chosen the implementation of single point
recombination, because for this method we will only need a small amount of random bits
with Bernoulli distribution (P (x = 0) = p, P (x = 1) = 1−p for some p > 0). If the length
of a genome is G bit, we require dlog2(G))e bits to encode the position of the recombination
using Bernoulli random variables.

22maxima or minima according to the fitness function
23just like in the case of fitness function calculation
24e.g. Stochastic Tournament Selection or Remainder Stochastic Sampling
25unless two input pictures are uploaded, which would increase the execution time by another iteration
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Mutation

The only task during this step is to detect the eventual change of a selected gene. For
every gene we will need a Bernoulli random number to determine whether its value has
been altered or not. This can be done again by reading out bits from the input image,
one bit for every gene. I opted for the value dependent change of the gene, because this
implementation requires only G Bernoulli variables per genome.

As we can see from the above discussions, during the implementation the quantity
of random numbers used is a key factor and we have only one fast way to upload these
numbers during an iteration: using the sensor array. One iteration of my algorithm requires
G+ dlog2(G))e random variables, which has to be considered during the implementation.

If the representation of the problem were different and one input problem were not
enough, one could still execute the algorithm with multiple input images per iteration.
Because of the parallel execution one could still decrease running time, while having low
energy consumption. Hence in mobile low power applications with strict running time even
much more complex problems would be worth being implemented on a cellular architec-
ture.

Detecting the optimal solution

After we have implemented and executed the algorithm with a previously given itera-
tion number we arrive at an optimal or sub-optimal solution for the problem. But we will
have to find this on our cellular array by a global extremum search on the fitness function.
This is a key step, although strictly speaking it is not part of the cGA algorithm. We can
find the global extremum easily, by spreading out a local anisotrope maximum or mini-
mum search for one side of the array. This operation will find the extremum in every row,
after this with a vertical wave calculation we can find the exteremum in every column. In
the last column the extremum will be calculated from the previously detected extrema of
the rows. In this way the global minimum or maximum can be found easily, with O(

√
N)

operations, if the number of genomes is N and they are arranged in a
√
N ×

√
N grid.

When the optimal solution/fitness are unknown we can execute this global detection
after the last iteration. If the fitness of the optimal solution is known and we want to
detect a solution and terminate execution then we may use the global search after each
iteration.

With this data representation we can easily read, write, compare and switch data in
the population.

The performance and the optimal/suboptimal solutions were checked also on the real
architecture and they were identical to the simulated results.
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Table 3.4: The distribution of the total running time amongst the operations
The first row of the table describes how many elements were used during the solution of
the problems (16-queen, knapsack and traveling salesman). The next five rows contain the
required clock cycle for the given operations. At the selection row the number in brackets
represents the neighborhood radius which was used during the implementation (e.g 23600
(4) means that a neighborhood radius of 4 was used). At row “ Additional input image”
the number in brackets show the number of additional input images used (e.g 1824 (2)
means that two additional input images were processed in every iteration).

16-queen knapsack traveling salesman

Number of elements 1024 1024 2048
Calculation of fitness value 26832 3110 39640
Selection of two parents 18500 (5) 23600 (4) 23600 (4)

Crossover 5720 5720 5720
Mutation 192 192 192

Additional input image 1824 (2) 912 (1) 3648 (4)
Sum (clock cycle) 53068 33534 72800

Execution time of one iteration (µsec) 530 335 728
iterations/sec 1884 2982 1373

3.1.6 Performance Analysis

Because of the high performance of the chip the execution time of the actual imple-
mentation is hard to be measured in an accurate way. I have used the Xenon emulator and
the output of the compiler to determine the clock cycles needed for execution. This gives
us accurate measurements for the running times and also a code that can be executed on
the chip for quantitative measurements. The performance and the optimal/suboptimal so-
lutions were checked also on the real architecture and they were identical to the simulated
results.

According to the compiler results for the 16-queen problem for a population with 1024
elements one iteration takes 53068 clock cycles 26. With this performance we can execute
1884 iterations in one second. For this problem in average 83 iterations are enough to find
the optimal solution as we could see it from table 3.1. With 1884 iterations one can expect
that even much more difficult problems could be solved in less than a second.

For the knapsack problem with 1024 elements: 33534 clock cycles (335 µsec) per iter-
ation, which means 29821 iterations per second.

For the traveling salesman problem with 2048 entities in the population the algorithm
required 72800 clock cycles, which means 1373 iterations per second.

Table 3.4describes how running time was distributed amongst the operations.
26the cores on the Xenon chip are operating with 100 Mhz, this means 530 µsec per iteration
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It would be unfair to compare these results with non-parallel implementations of the
algorithms where one iteration takes seconds. Nevertheless I have to underline that using
the Xenon chip one can find an optimal solution in obviously less time, and also with less
power, than using a single core architecture like CPUs.

It is almost impossible to compare my results with the same test-cases and other
implementations on different chips, using hardware accelerations, because in most cases
the exact details of the optimization problems are not published entirely 27.

For the 16−queen completely the same problem can be found, hence the few parameters
in the problems, and it can be seen, that my algorithm, even comparing it to computer
clusters [41] 28 is lower. A heavily optimized C program implemented by Jeff Sommers
could solve the 16− queen in 23 seconds, which is much higher than the time required by
the Xenon implementation (0.045sec / 511 times speedup).

For the knapsack problem I could not find a recent reproducible experiment, with
hardware acceleration and parallelism, but again comparing my method on a slightly dif-
ferent problem (multidimensional knapsack problem [42]), my method still has usability,
because multidimensional knapsack problems were solved within seconds (the solutions of
the simplest test case in the article (with 6 items, 180 iterations, and a population of 250
elements) can be found in an average 0.92 or 4.21 seconds depending on the algorithm)
meanwhile my method was able to solve an almost identical problem with eight variables
within milliseconds and also from a theoretical point of view with less average iterations
(I have to note that the two problems were not exactly the same, however the algorithmic
steps for every knapsack problems are similar, and from the details it can be easily calcu-
lated, that the execution of one iteration is much faster on the Xenonv3 chip, meanwhile
the power consumption is still less than one thousand on the CNN architecture. Strictly
speaking, we have to add the consumption of the device that would generate the ran-
dom numbers, but such a device can be implemented from shift registers with low energy
consumption.

In case of he TSP, which is the most important problem from a practical point of view,
because it can be considered as a path planing task for a mobile robot comparing my
method with recent results [43], we can see, that my result gives the same quantitative
results as other simulations. A desired suboptimal solution could be reached in 50-100
iterations, with a population containing 20 entities and using fixed crossover and mutation
rate (without identifying the best values). From this point of view, considering the average
number of iterations my solution is similar in complexity to a practical path planning
problem.

Comparing my method with an other current result [44], which still does not contain
any implementation, only simulations on complex environments 29 100 and 80 iterations

27usually only the type and main characteristics of the problems are listed
28where power consumption is thousands of times more than in my case
29Indoor-like environment and Complex scattered environment - table 6 and table 5 in the cited article
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were used with a lower population to solve path planing tasks.
Considering this two examples and the fact that the exact test-cases are usually not

listed in articles, I can claim that even if my test-case was not based on a problem from
the field of mobile robotics, it has the same complexity, examining the average number of
iterations.

The comparison of my method with a hardware accelerated version [45] using a GPU
implementation, and a CPU+GPU implementation results that my method required less
execution time to solve a similar task. In the article they have examined many different
setup, for comparison I have selected the most similar, which was also a path planning
problem. They have used 100 iterations with fixed crossover and mutation probabilities
using the cooperative Island Model of evolutionary algorithm, and used the average of
only 50 experiments. The 100 iterations for a population with 1024 entities required 0.20
sec with GPU implementation and 0.19 sec with CPU-GPU implementation. We can not
say that the comparison of this two similar but different tasks, will give a fair result, or
that the comparison of two different architectures is possible, especially considering that
on the GPU implementation memory latency is one of the bottlenecks of the algorithm
30. In the article they did not measure the exact power consumption of the graphic card,
but according to the manufacturer, the NVIDIA GTX 280, consumes 310 watts 31. But
the execution of 100 iterations (of the problem) on the Xenon chip would require 93msec,
which means an almost 2.1 times speed up with an amazingly approximately 1500 times
lower power consumption, which can underline not only the utility of my implementa-
tion and the low power/high performance probabilities of the xenon cores, but also the
amazing architecture of the cellular neural networks, and its possibility to solving not only
image processing tasks, but also other topographic problems, like certain combinatorial
optimization problems.

3.2 The Applicability of Local Selection in cGAs on Multi-
parallel Architectures

Although results of these implementations are dependent on the particular problem and
on the given data representation, the general steps can be executed on a CNN architecture
in similar types of problems. In this way one can benefit from the immense multi-parallel
performance of the CNN chip that has been demonstrated in numerous other cases.

I hope that with this implementation we could exhibit a new, more abstract class of
algorithms: topographic development of different metaheuristics [46] that can be mapped
easily and with high performance on the different versions of the CNN-UM architecture.

These algorithms could be used in mobile applications where parameter optimization
is needed within strict time constraints and with a low energy consumption considering

30reading global memory incurs an additional 400 to 600 clock cycles
31this is the power consumption of the processor only,not counting the surrounding environment
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the advantages of the xenonv3 chip.
The number of elements simulated and tested on the virtual machine are enough to

solve complex optimization problems in practice. The virtual machine and the Xenon ar-
chitecture are both equivalents of the CNN-UM architecture, however the implementation
of nonlinear templates 32 and using neighborhood radii larger than one is not possible on
all the CNN architectures.

The topographic thinking and implementation of parallel, localized algorithm is getting
more and more important and popular. Within this new algorithm development the cellular
architectures are playing a key role, as it can be observed how the number of processors
are increasing on a chip in every year. I am happy, that I could present here my version
of the cellular genetic algorithm that can be mapped perfectly into a cellular machine,
keeping the convergence of the algorithm as it was evidenced by three different practical
test cases.

As it can be seen from the results larger neighborhoods induce a higher level of implicit
migration and with proper parameter settings the exploitation/exploration ratio can be
tuned to reach faster convergence speed.

32it is proven, that all nonlinear templates can be implemented as a series of linear templates
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Chapter 4

State Estimation of Hidden
Markov Models

As we have seen in the previous chapters, the many-core and cellular architectures
are offering brand new possibilities and also new challenges in algorithm development. In
the previous chapters I have shown how the local selection can be used in case of static
problems, when the optimal state (the solution) is constant in time and how it can be
implemented and mapped on many-core architectures. In this chapter I will introduce the
cellular particle filter (Pfilter, PF) to estimate the hidden state of Hidden Markov Models
(HMM) and how this algorithm can be mapped to modern cellular architectures.

In this chapter I will introduce Hidden Markov Models and methods that can be used
for state estimation. This entire chapter and the description of the theory were based on
the lecture notes of Ramon van Handel used at Princeton University [47]. I will also refer
to [48] and [49] for the relevant mathematical theory.

The applications of this kind of processes is extremely versatile, however they can be
divided into different subgroups:

• processes where the original state 1 can not be observed directly, only through distor-
tion and noise. E.g: the general channel model: In this case our aim is to approximate
X based on the values of Y .

• The other case is, when we would like to estimate and predict Y 2, however the
state transition of Y can not be seen or derived directly. Sometimes it is useful to
introduce a hidden value X in the background, which has a simple state transition
and also effects/determine the values of Y E.G: A stock process (Y ) can have difficult
dynamics, and usually we are interested in stock prices, however to introduce the
manufacturing process (X) will simplify the state transition and determine 3 also
the stock price.

1Xt that we would like to process or estimate
2the current and previous values can be observed
3with an additional noise
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In this dissertation I will examine the first case.

4.1 Filtering, Smoothing, Prediction

We can divide the main tasks and usual problems with HMMs into three different
subgroups, however in all cases our aim is to approximate the conditional probability of
the hidden state based on the observations:

P (X0X1...Xn ∈ S|Y0, Y1 . . . Yk) (4.1)

Our aim is always to maximize this value: identify the conditional distribution of the hidden
states. The three different problems depend on the values of n and k. 4 The problems can
be divided into three cases which are the following:

• filtering k = n

• smoothing k < n

• prediction k > n

In this dissertation I will introduce filtering (k = n) and I will work with this problem,
however all the other problems will raise similar questions and calculations.

To solve the problem we can derive a filtering equation (described in Appendix D). It is
proven that this equation gives the optimal solution of the problem the hidden trajectory
with the lowest mean square error based on the observation. Based on Appendix D the
filtering of HMMs can be done in theory and the equations are clear to maximize the con-
ditional expectation. Although there are different problem classes, with special dynamics,
where this calculation can be done relatively easily, in case of the general problem the
calculation of the integral in (10.9) is computationally expensive. Tn practice it can be
difficult to calculate the values in (10.9) and to obtain the results one has to calculate a
computationally expensive integration in equation (10.9).

In some worse cases this integration can not be calculated at all and we can only apply
different approximations.

4.1.1 The General Case

In the general case, covering many practical problems the state space can be infinite,
continuous and the state transition and observation are arbitrary and non-linear. In this
case we run into formidable computational difficulties when we wish to apply this technique
in practice to calculate the filtering recursion.

4Usually we calculate the conditional distribution because this is the best approximation in the L2

space. To minimize the error according to other metric we should calculate the conditional distribution
according to some other arbitrary function.
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The problem in this case is not only, that with certain problems the calculation of
the integral is extremely time consuming, but with the increase of the dimension of the
problem the computational need will increase exponentially. We will have to face the curse
of dimensionality (first described by Richard E. Bellman [50]) .In lower dimensions my so-
lution could work but the resources required by the algorithm are increasing exponentially
with the increase of the dimension.

The first solution that comes to our mind is to discretize the continuous state space to
avoid the continuous state space 5: this will lead to the usage of a finite grid to approximate
our integral, however this grid helps us to approximate the continuous state-space, but it
will not help to avoid the curse of dimensionality and the exponentially increasing need of
computation.

One can easily see, that a finite grid with uniform spatial resolution can not be approx-
imate efficiently all the possible state spaces. Certain parts of the state space has to be
approximated with high resolution and in some cases even a much lower resolution can be
satisfactory. We can use Monte Carlo methods to avoid unnecessary computation, because
it was used in many similar problems and with this method we can avoid the curse of
dimensionality. With random sampling we will still see, that not all of the used samples,
lets call them particles will be used. We will see that many of them will not approximate
our functional (when the observations are not identical). We will not need these samples
in our recursion anymore and we can throw them out from the cohort. One can intuitively
see, that it would be good to substitute these particles by other samples which were proved
to be useful according to the previous observations.

These methods are called particles filters with resampling.
In the following section I will describe these methods more detailedly.

4.2 Dynamical Optimization - Particle Filtering

Particle filtering is state-of-the-art method for the state estimation of non-linear
stochastic systems.

Sequential Monte Carlo methods were introduced for the computation of optimal state
estimates in non-linear and non-Gaussian state-space models where analytic solutions are
not available. They found applications in diverse areas such as navigation, tracking and
image processing, see e.g. [51] for a representative sample. More recently they have also
been applied in financial mathematics 6, see [52] and [53].

Here I examine particle filters with resampling 7, introduced in [54]. These were the
prototypes whose various modifications (see e.g. [55]) proved to be efficient tools for re-
cursive filtering. In this dissertation I will not deal with their variants or implementations

5forming the integration into summation
6e.g. to stochastic volatility models and to the computation of credit losses
7the so-called bootstrap filters or SIR filters
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but restrict ourselves to the simplest bootstrap filter and present a novel idea (initiated in
[4]) for their acceleration and parallelization while keeping the same level of accuracy (or
even doing better). This method can be applied to more complex versions of the particle
filter algorithms, too [5].

Studying particle filters is of particular interest for distributed computing as they
are inherently unsuitable for parallelization and hence pose considerable challenge. There
have been attempts into this direction, e.g. [56] or [57], the approach I propose differs
significantly from theirs.

The new algorithm presented here could be implemented on an array of processors
and, using parallelism and local communication, could greatly enhance computational
speed with similar (or even improved) precision.

4.2.1 Hidden Markov Model and Particle Filtering

It is often the case that (10.9) is difficult to calculate and q is not available in an
explicit form. Then, instead of the unfeasible numerical integration, one often resorts to
particle filters which provide an effective method for computing (10.9) and thus also

E[xt|yt, . . . , y1] =
∫

R
uµt(du).

There are various implementations of particle filters, but they usually contain the four
steps explained below. A more detailed description can be found in [55] or [52]. We will
simulate K particles whose trajectories follow the state dynamics but are subject to a
selection mechanism based on observations.

The Particle Filter algorithm consist of four steps:

• 0, Initialization

• 1, Error Calculation

• 2, Resampling

• 3, Iteration

At the first step we initialize the distribution. The initial distribution can be any
arbitrary distribution. The algorithm will converge with probability one apart from the
chosen distribution. Usually uniform distribution is used to ’cover’ the state-space as much
as possible. The elements of this initial distribution will form the set of particles where we
will make our measurements. This means we measure at random points in the state space.

At the previously defined random point we will calculate a probability 8 for each parti-
cle that the particle is an accurate representation of the system based on that observation.
This calculation can be done easily based on the model of the system and on the ob-
servation kernel. These likelihood values are usually called particle weights (or particle’s
importance weights).

8or proportional likelihood
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At the next step we normalize the particle weights.I have to note that this step is not
necessary from an engineering point of view ,however this ensures that this weights will
represents probabilities 9 and ease the formal mathematical description of the selection
step.

During the selection step (or usually called rasmpling) we resample the distribution of
the particles to get a new distribution. A particle is selected at a frequency proportional
to its importance weight. This is the key step of the algorithm because this can prevent
particle impoverishment and cause an efficient use of then random measures, particles.
This step is also closely related to stochastic selection, because we need to select the best
set of particles based on random variables. This operation is computationally expensive.
Generally every particle is compared to the others, or the weights of the particles ordered
by some algorithms, but none of these method can be implemented efficiently on a multi-
parallel architecture.

After the resampling step the new cohort of the particles are iterated according to the
Hidden Markov Model, than the Error Calculation and the Resampling step are iterated
during the trajectory.

A more detailed and more formal, mathematical description of the algorithm can be
found in Appendix D..

4.3 Cellular Particle Filter

The algorithm sketched in the previous section has the drawback that comes from the
resampling step, where all the weights/states of the particles has to be collected. This
makes the algorithm non-parallelizable and hence slow, especially when a large number
of particles need to be simulated (e.g. in the case of a high-dimensional state vector xt).
Simulations show that resampling usually consumes about 90% of the total computation
time on regular architectures.

I am now introducing an algorithm where the resampling step is based only on local
communication. I assume that each particle is represented by a processor 10 and these are
imagined to sit on a rectangular grid .

In this novel algorithm resampling of particle i is performed using information from
small sets Ni of particles only. Every particle i communicates with its |Ni| − 1 neigh-
boring/surrounding particles 11. When particles 12 are on a rectangular grid, a generic
processor (particle) will communicate with 8 neighbors, so |Ni| = 9 13. Just like in the
case of local selection, which was more detailedly described in the first chapter and the grid
of the processors can be seen on Fig. 2.1, similarly to the spatial distribution of the pro-

9their sum has to be zero
10i.e. I am using with a fine-grained architecture
11that can be reached, say, in one clock cycle
12represented by one processor each
13Those on the edges of the rectangle obviously communicate with less neighbors
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cessors in the previous chapters . Initialization, error calculation and iterations steps are
carried out in exactly the same way as described before, simultaneously in every processor.

The only, but crucial alteration takes places at Reasmpling: step 2. This modification
is extremely important, because it makes the algorithm parallelizable.

4.3.1 Resampling (step 2) in the cellular particle filter

We have seen in the previous chapter how the parallel local selection method can be
applied in computation to create a scalable, parallelizable algorithm where the selection
happens according to topographic rules. The Cellular Particle Filter method was inspired
by the previous results. Let’s us distribute the particles on a two-dimensional grid 14

and define local connections and interactions between the particles. This means that the
neighbors of the particles are defined and will not change during the algorithm. However
this placement will define the actual position, or indexing in the particles and has no
connection to their position in the state-space. A position of the particle in the state-
space will change during the algorithm, however its position on the grid is constant. This
constant placement will result a cellular structure of the particles and from this cellular
structure we can easily derive neighborhoods with different radii, just like it is on Figure
2.1.

Based on these neighborhoods one can calculate the sum of the weights for every
particle in its own neighborhood (this takes place in processor i based on the information
sent to it from processors in Ni):

W i
t =

∑
j∈Ni

r(Ejt ), (4.2)

and set the new weights hjt (i) := r(Ejt )/W i
t for j ∈ Ni.

Processor i will select a new particle from ξjt , j ∈ Ni using the weights hjt (i):

ξ̂it+1 = ξθi
t , (4.3)

where θi are independent, take values in Ni with distribution P (θi = j) = hjt (i), i =
1, . . . ,K and j ∈ Ni. Thus θi selects one of the particles from the neighborhood. The
“best” or “fittest” particles will hence be diffused gradually over the whole grid.

The other operations and steps of the algorithms are completely the same as they are
applied during the regular Particle Filter method.

Remark: Further advantages of the cellular particle filter are revealed after the previous
steps and calculations are carried out. At this point we have all the particles ξ̂iT suitably
distributed to approximate the distribution µT , but to get the desired result we have to
count the average of the states, see (10.17). This step is unavoidable, regardless of the
method used to generate ξiT .

14in general it can be also a higher dimensional grid
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Such a calculation can be done fast and easily on a cellular-like architecture or other
fine-grained parallel architectures [57]. One can start a ”horizontal” wave from the left
border of the grid, and spread it to the other end of the chip summing all the states,
producing an average at the right border. After this one can spread a similar ”vertical”
wave that will calculate the average in one of the corners. With this method the cal-
culation of (10.17) can be done in O(

√
N) steps, which is much better than the usual

O(N). This O(N) collection can be done even with O(log(N)) in case of a tree structured
topographic fine-grained architecture. However this would increase the average distance
between two randomly selected particle, and change the definition of neighborhoods, so I
did not investigate this possibility in the case of this algorithm.
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Chapter 5

Application of the Cellular
Particle Filter

I have selected a few models to examine the performace of the Particle Filter with
some test cases also to check the implementation on many core architecture.

5.1 Models

I tested the new algorithm on three commonly used benchmark models, well described
in other papers, e.g. [55]. All represent non-linear systems with continuous state spaces,
which makes the state estimation difficult since the Kalman filter is not applicable.

The first model I consider is described by the following equations:

xt+1 = xt
2 + 25xt

1 + x2
t

+ 8 cos(1.2t) + nt, (5.1)

yt = x2
t

20 + ut, (5.2)

where xt is the (unobserved) state of the system and yt is its noisy observation; nt and ut
are Gaussian IID sequences, independent of each other. In the simulations below I took
nt ∼ N(0, 10), ut ∼ N(0, 1).

With the same variables the second model can be written as:

xt+1 = 0.9(xt + 0.2x3
t ) + nt, (5.3)

yt = xt + ut, (5.4)

this time I took nt ∼ N(0, 0.1) and ut ∼ N(0, 0.05).
I cannot help mentioning one serious problem about the system described in (5.3)

and (5.4). The stability of this model is not ensured, this can be seen easily from the
state equation. However, during the simulation this occurred only with about 0.06% of
the trajectories. I ignored these samples, and substituted them with stable ones.
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Even these previously introduced benchmark models can justify the usage of my
method, however the equations that describe real problems are usually more complex,
containing more dimension. To validate my approach in the case of real life problems, I
wanted to test it with a more complex system-model.

To prove this I created a general 3 dimensional model, that can be described as the
following:

Xt+1 =


x1
t+1

x2
t+1

x3
t+1

 = AXt + C

‖Xt‖
+ ηt+1, (5.5)

Where:
Xt is the three dimensional state vector and ‖Xt‖ notes the length of the vector.

A =


0.4875 −0.0375 0.1875
−0.0375 0.4875 −0.1875
0.1875 −0.1875 0.7125


is a stable matrix,

C =


1
5
10


and

ηt =


η1
t

η2
t

η3
t


is a three dimensional IID sequence where ηt is with law N(0, 10).

The observations can be calculated as:

Yt+1 =


y1
t+1

y2
t+1

y3
t+1

 = Xt + µt+1, (5.6)

Where µ is a three dimensional IID sequence where µt is with law N(0, 2).
In both cases I aimed at estimating the current state from past observations, i.e. at

computing the conditional expectations E[xt|yt−1, . . . , y1] using (10.17).
The algorithms I compared were the particle filter with resampling ( also known as

bootstrap filter, see section Appendix D); the new cellular variant of it in section 4.3
and the method of Miodrag Bolic [58], which is an other quasi-parallelized version of the
bootstrap filter.
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5.2 Results

I have implemented virtual machines on a simple dual-core processor PC 1 to measure
the performance and the accuray of the algorithms. The virtual machine could physically
be realized as a square 2 array of appropriate processors. Ideally, the number of processors
should coincide with the number of particles to be simulated.

The tests were carried out and averaged on 1000 different simulated trajectories of
(xt, yt) with t = 0, . . . , 100. I took as a measure of error the sum of the squared differences 3

between the true trajectories and their estimated counterparts generated by the respective
algorithms.

The test runs were also carried out on an existing digital cellular neural network type
(CNN) architecture: the emulated version of the Xenon-v3 chip, see [59] and [60]. A more
detailed description about the Xenon chip can be found in section 3.1.5. Although this chip
is designed for image processing purposes, and can process data only with 8-bit accuracy,
the given two examples shows, that this still gives comparable performance thanks to
the robustness of the algorithm, compared to other methods. This chip also misses the
ability to generate pseudo-random numbers, so they were pre-created off-line and uploaded
with the input. It also misses complex operations like square-root or division calculation,
however these operations can be done fast enough using approximations.

The error rates of these different implementations can be seen in Table 5.1 for the
model described by (5.1) and (5.2). The results for the model of (5.3) and (5.4) are in
Table 5.2. The results of the three dimensional (5.5) can be seen in Table 5.3.

As it can bee seen from the results the new algorithm 4 outperforms all the other
variants for these models.

The main advantage of this method is that if it were realized on an array of processors
with a suitable computing capacity then its speed would not depend on the number of
particles while it would provide an even better accuracy 5. The number of particles is
limited only by the architecture of the chip 6. Calculations of individual particles can be
done separately in a parallel way and the information can be locally distributed amongst
the cellular connections for the censoring step.

The runtime of the above calculations is given in Table 5.4 7.
It can be seen that with a small number of particles the calculation of the ”regu-

lar” particle filter method takes less time. Let us not forget, however, that the presented
runtimes for cellular particle filter are those of emulations, performed on a single core. Dis-

1intel T6570
2or rectangular
3mean square error, MSE
4with certain parameters
5however existing Xenon chips are not developed enough to compare them with general purpose pro-

cessors
6by the number of processors
7the time measurements are basically the same for all the models
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Table 5.1: Results of the first model with different approaches:
The first column contains the number of the particles, the rest contains the mean-square
errors of the previously mentioned methods (in order from left to right: ”distributed resam-
pling algorithm with non-proportional allocation and local exchange” (Bolic); the ”clas-
sical” particle filter (PFilter), the simulation of the localized particle filter on a 32-bit
architecture (Cellular PFilter); the results of the localized particle filter on the Xenon
architecture (Xenon_v3) with 8 bit precision)

Number of Particles Bolic PFilter Cellular PFilter Xenon_v3
16 87.43 66.42 77.38 90.59
36 75.75 55.44 61.61 71.70
49 67.55 53.66 57.17 68.56
64 64.41 52.56 54.65 66.44
81 61.02 51.65 53.00 65.04
100 59.14 50.98 51.58 64.42
144 56.31 50.51 49.69 63.39
225 53.83 50.01 48.44 62.16
400 51.82 49.49 47.61 62.14
625 51.09 49.16 47.08 62.11
900 50.60 49.13 47.01 62.10

Table 5.2: Results of the second model with different approaches:
The first column contains the number of the particles, the rest contains the mean-square
errors of the previously mentioned methods (in order from left to right: ”distributed resam-
pling algorithm with non-proportional allocation and local exchange” (Bolic); the ”clas-
sical” particle filter (PFilter), the simulation of the localized particle filter on a 32-bit
architecture (Cellular PFilter); the results of the localized particle filter on the Xenon
architecture (Xenon_v3))

Number of Particles Bolic PFilter Cellular PFilter Xenon_v3
16 1.120 0.618 0.584 0.659
36 0.888 0.564 0.538 0.582
49 0.835 0.557 0.529 0.570
64 0.797 0.550 0.522 0.562
81 0.785 0.547 0.518 0.554
100 0.762 0.545 0.516 0.551
144 0.706 0.542 0.511 0.5467
225 0.702 0.539 0.508 0.5442
400 0.701 0.538 0.505 0.5440
625 0.693 0.537 0.504 0.5440
900 0.680 0.536 0.502 0.5438
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Table 5.3: Result of the three dimensional model with different approaches:
The columns from left to right are the following: number of particles, error of the regular
particle filter, error of the cellular particle filter method (with neighborhood radius one).

Number of Particles PFilter Cellular PFilter
16 467.354 188.073
36 341.610 162.397
49 299.706 156.643
64 263.921 152.800
81 237.344 150.416
100 208.303 148.110
144 177.035 145.360
225 148.766 143.131
400 116.007 141.152
625 103.033 140.115
900 93.9301 139.353
1225 88.482 138.967
1600 85.614 138.730
2500 81.689 138.276
4096 78.104 137.973

Table 5.4: The running times of different particle filter algorithms on different architec-
tures:
The first column contains the number of the particles (NumP), the second column (T
PFR) contains the estimation time (in seconds) for 100 steps for one trajectory with the
”regular” particle filter, the third column (T LPF) contains the same time for the new
particle filter emulated on a regular architecture, without any parallelization (running the
algorithm on a coarse-grained architecture with K cores the processing time would be
approximately decreased to TLPF/K, because the algorithm is fully parallelizable). The
fifth (T XEN) contains the run-time of the algorithm if it were implemented on a real
Xenon chip (Using the same code on the device independently of the number of particles
and increasing only the number of cores used). According to the compiler of the chip,
one step of the calculation could be done with 1248 clock cycles, which is approximately
120ms, so proceeding through 100 steps would take about 12 seconds.

NumP T PFR T NEW T PFR/NEW T XEN T PFR/XEN
36 0.143 0.215 0.67 12 0.01
100 0.421 0.615 0.68 12 0.04
225 0.901 1.330 0.68 12 0.08
4096 16.417 24.495 0.67 12 1.37
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tributing the calculations amongst more processing units on an appropriate fine-grained
architecture (FPGA, GPU) would lead to significant speed gain.

This new method outperforms ”regular” particle filter in tasks where high number of
particles should be used, because the processing time is independent from the number of
particles, it depends only on the architecture. The estimation of a quite complex system
8 requires an increased number of particles to preserve the accuracy, and this is the most
serious drawback of the original particle filter algorithm. That’s why I have also included
the case of 4096 particles in table 5.4. Such large numbers may become necessary when
the state xt is high-dimensional 9. The present paper is about highlighting the novelty
of the algorithm, real-life multi-dimensional models will be subject of my future research.
Nonetheless one can see that even on the emulator 10 a runtime comparable to the original
algorithm can be observed 11. This shows that, in the case of a large number of particles,
the cellular algorithm is worth implementing.

I also have to underline that the Xenon chip was not designed for state approximation.
With a special-purpose processor containing all the necessary operations in an optimized
form the processing time in column four of table 5.4 could be decreased drastically.

5.3 Setting the Speed of Information Propagation

Further observing the trajectories, it can be seen (especially in case of the third model,
Table 5.3), that average approximation of the new method is fine, but when the model
moves ’quickly’ – especially when the gradient is changing sign – approximation slows
down, because the local spreading of the information takes time. This can be seen from
the comparison of the size of the neighborhood and the increasing size of the whole grid.
To avoid this, we have to increase the speed of how the information (the weights and the
“good” states) can be spread out on the grid.

This can be done easily by increasing the neighborhood of a given processor, for exam-
ple, communicating with 24 neighbors instead of only 9. One has to be careful here, not
to increase it too much, because in this way we would get back to the ’regular’ method
where information is propagated to all particles.

After this observation it is easy to create a new modified version of the previously
described algorithm, where we can set the size of the surrounding neighborhood of every
particle.

This is just one simple alteration in (4.2). Let us introduce a constant s, denoting the
neighborhood size.

W i
t =

∑
j∈Ni(s)

r(Ejt ), (5.7)

8especially in several dimensions
9see e.g. [61] where a real-life example requires a 27 dimensional state vector

10where there are no actual parallel chips
11especially with high number of particles
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Table 5.5: Results of the three dimensional model with different neighborhood radii using
a three dimensional grid
This table shows the error rates for the 3-dimensional model I considered (it is just a
coincidence that both the grid and the system have the same dimension here). The first
column contains the number of particles, the following four columns represent the number
of resamplings applied when s = 1, 2, 3, 4.

Number of Particles Neigh size 1 Neigh size 2 Neigh size 3 Neigh size 4
64 127.046 121.145 123.461 -
216 111.830 88.793 88.645 89.213
343 108.174 83.678 80.947 80.854
512 106.143 80.460 75.260 75.343
729 104.441 78.565 72.355 71.947
1000 103.329 77.407 70.584 68.849
1728 101.603 75.626 68.573 66.103
3375 100.167 74.059 67.021 64.287
8000 98.882 72.833 65.767 63.125
15625 97.830 72.220 64.211 62.743

where Ni(s) is the set of processors in a neighborhood of processor i which has radius s.
This tiny modification makes my method applicable in case of more complex systems,

and all the previously mentioned advantages remain. The running time will stay low, even
on a conventional (single-core) architecture.

The error rates can be seen in Table 5.5: with the increase of neighborhoods this
algorithm can outperform the regular method, preserving the parallelizabilty, and low
running time. For instance, the error of the common particle filter with 4096 particles is
higher than cellular version using only 1600 particles and neighborhood radius s = 4.

The actual physical realization of larger neighborhoods may be problematic, hence
another remedy for slow information propagation is suggested in section 5.5

As we can see from the results my method works better if the number of particles is
relatively low, but this is not the case in real-life problems. When we want to ensure a
previously given error level, we have to use a high number of particles, and in this case,
the previously described method gives worse results than the ’regular’ particle filter. This
shows that increasing the number of particles will not be enough.

As it can be seen with the increase of neighborhoods this algorithm can outperform the
regular method, preserving the parallelizabilty, and low running time. An other remedy
for slow information propagation is suggested in section 5.5
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Figure 5.1: An example to demonstrate the accuracy of the regular Particle filter method
and the grid based approach. The original series can be seen as red, and the approximated
state by the Cellular Particle filter is marked with the green line and by the regular Pfilter
is marked by light blue. As it can be seen, the approximation is extremely good and much
better tahn the approximation of the regular Pfilter algorithm. On the x-axis we can see
the iterations (from 0 to 100) and on the y-axis the value of the hidden state is shown.

5.4 Diversity of the particles - The Reason for a Lower Error
Rate

As we could see in the first model given by (5.1) and (5.2), my method gives lower
error rate (as an extra to parallelization and less running time). To identify the cause of
this improvement, I analyzed a case where the error of the grid-based approach is almost
half as low as in case of the original algorithm (This trajectory and its estimations can be
seen on Figure 5.1).

I used 400 particles, and the results gave mean square error 97 in case of the original
particle filter and 49 in case of the grid-based method.

To examine the root of this improvement I have checked the particles in a narrow band
around the true state of the system. At each time step I calculated the number of particles
in ε distance from the estimated series.

I took ε = 0.3, this can be considered as a small value, because from the previous
results in section 5.2 we can see that the states are oscillating between ±30.

With this choice I got that the number of particles close to the solution is 4118 for
the ’regular method’, and 3932 for the grid-based method. So here we can not see much
difference. (The comparison of the number of particles in ε distance from the hidden state
for both methods can be seen on Figure 5.2)

If we alter the previous measurement and count only the particles in different states,
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Figure 5.2: In this Figure we can see the number of particles in ε (0.3) distance from the
hidden state for the regular method with blue and for the cellular version red. On the
x-axis we can see the iterations (from 0 to 100) and on the y-axis the number of particles
is shown. We can see, that in average the two solutions are close, however the regular
method has more ’peaks’.

we can measure the diversity of our estimation. Since the process is stochastic, one can
expect that a good solution is not only close to the real state, but also contains a lot of
different particles: in this way we can have a substantial diversity that makes the algorithm
able to follow random changes, and even after a wrong estimation helps to “find the way
back” to the true hidden state and decrease the error again.

In this case the number of different particles in ε distance was: 645 for the regular
method and 1170 for the grid based method, which means almost twice as many types of
particles, and they are all close to the good solution. So they will form a better estimation
when the weighted average (10.17) is calculated. (The comparison of the different number
of particles in ε distance from the hidden state for both methods can be seen on Figure
5.3)

As it can be seen, the wrong estimations 12 are rare for the novel method because of
the diffusion on the grid keeps more particles in different states ’alive’.

Figures 5.2 and 5.3 explain how particle diversity can enhance estimations, but I also
have to show that this phenomenon can be observed in general, not only in case of a few
particular trajectories.

The average number of ’close’ particles and different particles for 1000 trajectories can
be seen in Table 5.6: there is no remarkable difference between the number of particles that
are close to the real state, however, the diversity amongst the particles is greatly increased

12where the algorithm loses track of the state
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Figure 5.3: In this Figure we can see the number of different particles in ±0.3 distance for
the same trajectory as in Figure 5.2. Red is the grid based method , blue is the original
method. Comparing this image with Figure 5.2 one can explain the reason for the lower
error rate of CPF easily.

Table 5.6: The table shows the average diversity increase of the particles for model
(5.1),(5.2) for 1000 trajectories.The first column shows the total number of particles during
the whole estimation (100 steps), 100 times more, than the used number of particles at
one step. The second column shows the particles inside the given (±0.3) distance for the
common particle filter, the third column is the same for the cellular version. The fourth
and fifth columns shows the number of different particles inside the given corridor for the
two methods.

Num of Part Inside PFR Inside CPF Different PFR Different CPF
1600 86.316 141.147 23.611 46.085
3600 246.123 331.78 54.381 107.58
4900 355.57 458.132 74.995 146.503
6400 500.074 600.766 99.729 192.65
8100 655.967 764.91 126.101 243.893
10000 844.41 946.337 158.067 301.202
14400 1278.998 1373.54 229.656 435.701
22500 2085.942 2153.456 362.832 682.617
40000 3887.569 3849.08 654.209 1213.158
62500 6183.828 6025.491 1020.445 1899.218
90000 9009.938 8709.272 1473.049 2740.171
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by my method. This helps the tracking of swift changes of trajectories and provides a
certain type of resilience.

5.5 Another Possible Solution to Improve Information
Propagation

Increased neighborhoods (see section 5.3) are easy to handle in an emulation, but are
hard to be actually implemented on a real architecture because processing units are usually
not wired with enough interconnections to create large neighborhoods. In FPGA designing
and in new trends of processor development local connections are preferred.

With a neat trick – repeating the resampling step – the propagation of the information
can be accelerated. It takes only a short time to collect all particles from the neighboring
processors, in a few clock cycles they can be escalated into the centers of the neighborhoods.
Hence I propose, instead of increasing the neighborhood radius of particles, to perform
resampling (just as it was described in equation (4.2)) s times at each iteration of the
cellular particle filter algorithm. This procedure can be imagined as equivalent to an
iterative increase of neighborhoods 13.

The results obtained for the three-dimensional model (5.5) are shown in Table 5.7:
resampling four times on a 35 × 35 grid (i.e. 1225 particles) is just as accurate as the
regular method on 4096 particles and my method preserves its parallel features.

Table 5.7: Result of the three dimensional model with iterative resampling
The first column contains the radius of the neighborhood (Neigh); s in (5.7). (1-means the
previously mentioned localized Particle Filter ref. -higher radius means increased neigh-
bourhood localized particle filter ref) Than the other columns are the following, from left
to right: error with 25× 25, 30× 30, 35× 35, 40× 40 particles.
Number of resamplings Err CPF (25) Err CPF (30) Err CPF (35) Err CPF (40)

1 140.019 139.420 138.951 138.707
2 102.264 101.415 100.826 100.423
3 87.907 86.637 85.955 85.449
4 80.993 79.448 78.715 77.947
5 77.171 75.388 74.398 73.605
6 74.730 72.982 71.725 71.045
7 73.512 71.412 70.094 69.260
8 72.662 70.438 68.899 68.026
9 72.491 69.769 68.234 67.196
10 72.292 69.367 67.683 66.640

Even more efficient solutions can be found using architectures where the processing
13expanding its size step by step from 1 to s

67

DOI:10.15774/PPKE.ITK.2012.002



units are organized in a higher dimensional topographical grid. A higher dimensional grid
naturally brings about the improvement of neighborhood sizes. This method can be useful
when we have difficult calculations, and the system is implemented on an actual computer
grid. Grids can be easily transformed into 3 or even higher dimensional hypercubes, because
the neighborhoods are determined by the network topology.

Let us first have a look at Table 5.3 in section 5.2 above. By performing further
simulations one can check that the saturation point of the regular method is at the error
level 78, one cannot go below this by further increasing the number of particles. It is quite
astonishing that in case of iterative resampling the error rate (see results in Table 5.7) can
reach 66, so this solution can be ideal when we want to make extremely precise estimations
and we have fairly large processing source or processing time.

I also have to underline that all the experiments in this section were performed by
emulations on a single core. Even in this case 14 this novel method can be successfully
applied. But using a dual-, quad-, or many-core architecture, and distributing the calcula-
tions among the cores 15, the running time can be divided approximately by the number of
cores. I have in mind fine-grained architectures such as some advanced versions of existing
cellular neural networks.

5.6 Distribution of the Particles

In the previous sections I have shown the utility of this new, novel method by several
examples. It turned out that, by suitably tuning the neighborhood radius, we may even
outperform the standard bootstrap filter the “regular” method with global resampling in
certain cases, when the measure of performance is the error of the estimation of the hidden
state.

In practical problems in most cases we are interested in the approximation of the hidden
state, and the distribution of the particles is less important for us. From a theoretical
point of view, however, it is natural to ask whether my localized particle filter converges
to the right conditional distribution. The convergence of the original (bootstrap) method
was rigorously shown under suitable assumptions (see [62], [63], [64], [65]). My cellular
resampling mechanism seems rather complex to be investigated analytically, so I have to
leave this for future work.

In the present section I would like to point out the localized filter can be regarded as a
certain generalized version of known methods. Moreover, I have performed specific exper-
iments indicating that the filter converges, just like the bootstrap method. This provides
further support that the localized filter can be recommended for practical problems.

The distribution of the particles on an infinite state-space can not be calculated (ex-
cept some very particular cases), only discretized approximations can be used. So I have

14without its main advantage of parallelism
15which can be done easily, because the algorithm is scalable
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examined a problem with finite state-space. Such problems are not too interesting in prac-
tice, because all the necessary probabilities can be calculated by simple algebra (using the
Baum equation for hidden Markov chains). They are ideal, however, for testing whether
the method is biased or not.

I considered a hidden Markov model on a finite state space with a finite read-out space.
The table below refers to test runs with a concrete, fixed model. I have investigated

the problem with many other parameter specifications 16 and the results were always the
same.

This discrete model had six states {0, 1, 2, 3, 4, 5} and I have taken a transition matrix
with positive entries, i.e. all the states could be reached directly from all the other states.
When the state was x, observations took the values {x − 1, x, x + 1} (modulo 6) with
positive probabilities 17.

For every parameter setup, I have calculated the error as the average of results for
1000 distinct, randomly generated observation sequences. My purpose was to investigate
the distribution of the particles. I used the bootstrap method as ‘benchmark’ and compared
the new method to this. The metric of the comparison was the following: I have calculated
the number of particles in every state at a fixed time instant 18. I looked at the number
of particles in each of the 6 states in the bootstrap filter and noted the difference between
this number and the number of particles in the same state for the localized filter. I added
up these differences along the six states and divided this by the total number of particles.

I have also compared the distribution between two test runs with the bootstrap method
(i.e. the regular method with global resampling). As the model is stochastic there is always
a small difference between the distribution of the particles between two distinct test runs. I
have then compared the number of particles in different states between the regular method
with global resampling and my method with local resampling. The results can be seen in
Table 5.8.

As it can be seen my method can be considered as an intermediate step between the
particle filter without resampling (“0-radius neighborhood resampling”) and the bootstrap
filter (with global resampling). By choosing the neighborhood one can introduce various
degrees of information propagation speed in the grid. It can be seen from the results that,
when the neighborhood radius is large, the performance of the local resampling is similar
to that of global resampling. When the neighborhood radius is smaller we are closer in
performance to the filter without resampling, which is also a valid method, but it performs
poorly due to particle impoverishment.

Our new parameter is the neighborhood size (s) which determines the information
propagation speed among distant particles. If this is small, the information propagates
slowly, and the diversity of the particles will be large, but they will converge/‘move’ slowly

16randomly chosen
17that were chosen randomly before the test runs
18after the 100th observation
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Table 5.8: In the table above the ratio of the discrepancy (i.e. the number of particles in
different states in the two compared methods) and of the total number of particles can be
seen, each column representing different size of population (100, 400, 1089, 1600). The first
row is a comparison between the regular method with global resampling and the particle
filter without resampling. The next five rows are comparisons between the global method
and the cellular method with different radii of neighborhoods (1-5). The last row contains
the average difference between two distinct test runs created with global resampling. I
have also measured the variance for every value in the table, and the variance is low e.g.:
0.03 for the comparison of the global method and my method with a neighborhood radius
of 5 with 400 particles (Global-Neigh5).

Neighborhood radius P100 P400 P1089 P1600
Global-Neigh0 0.1294827 0.149382114 0.3453219324 0.454483990
Global-Neigh1 0.0754324 0.048415175 0.0384909734 0.036523678
Global-Neigh2 0.0521779 0.026664575 0.0175635996 0.024453972
Global-Neigh3 0.0478223 0.0236077 0.014340433 0.0144483921
Global-Neigh4 0.0466132 0.02275205 0.0144327502 0.0125891234
Global-Neigh5 0.0462745 0.02252605 0.013946832 0.011498632
Global-Global 0.0436323 0.021722355 0.0131806792 0.011053025

to the direction of the hidden state. If the neighborhood size (s) is large our filter is closer
to global resampling and we will move towards the global state faster 19, but the diversity
of the particles will be lower. I refer, however, to section 5.4 so as to stress out that the
localized filters still maintain a much greater degree of diversity than the bootstrap filter.

We have already seen in previous examples 20, by setting neighborhood size (s) in an
optimal way, we may find solutions that are more accurate than the ones one can obtain
from the bootstrap filter and knowing the model this calculation can be done off-line,

5.7 The Applicability of Cellular Particle Filter in Practical
Problems

My method operates with parallelism and local interactions. Better approximations
could be reached than with the usual particle filter and the runtime can be decreased
drastically when the method is implemented on an appropriate processor array. The algo-
rithm takes advantage of the structure of cellular neural networks, see [66] and [67].

The present study shows, that this algorithm – implemented on cellular architecture
like the Xenonv3 or on a more specific locally coupled chip network – could provide a
solution to many problems where the state of a complex system should be estimated with

19and will converge to the true distribution
20especially in section 5.5
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high accuracy within a very strict time limit, e.g. when estimating the position of an
aircraft.

This method shows that with the proper parameters (number of particles, neighbor-
hood size), one can create an extremely good balance between information preserving (to
avoid particle impoverishment), and information spreading (to create good estimations).
The optimal parameters can be easily found with a few simulations for a known model.
With this method one can outperform the regular particle filters, ensuring a lower mean
square error; we can make our estimations faster or achieve better estimation with the
same temporal resolution.

The algorithm can be used even in case of regular single-core architectures, but they
are inherently designed for multi-core, parallel architectures with local, cellular intercon-
nections.

As it can be seen in chapter 2, 3, 4 and 5 the idea of local, topographic selection can be
applied not only in theoretical models, but also in the solution of practical problems. In
certain cases -with optimized parameters- the local method can even outperform its global
counterparts The examples in these chapters are case studies only, because it would be
unfeasible to examine these broad set of problems in only one dissertation. But hopefully
these case studies could be enough to show and stress out (based on the general models)
that the statements can be applied in practice as well. I hope, the case studies listed in
these chapter can encourage the readers and other engineers to implement topographic
algorithms to solve different practical tasks from the field of stochastic optimization.

The models investigated in this chapter are comparable in complexity with practical
problems. Practical problems in mobile environments are usually using system with around
1000 particles [68]. This reasons the applicability of my method in practical problems.
Some problems (especially) in financial mathematics could require even more particles
because the noise of the model is and the required accuracy is higher. However the power
consumption and the size of the architecture is usally not an issue in these problems.

The virtual machine and the Xenon architecture are both equivalents of the CNN-UM
architecure, however the implementation of nonlinear templates 21 and using neighbour-
hood raddi larger than one is not possible on all the CNN architectures. Since my method
is easily scalable it could be used also on computer clusters FPGAs or GPUs [6] and a
higher number of applied particles will not change any operations used in the algorithm.

21it is proven, that all nonlinear templates can be implemented as a series of linear templates
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Chapter 6

Dynamics of Spin Torque
Oscillators

In this chapter I will describe the basic dynamics of “spin torque nano-oscillators”
(STOs).

It has been experimentally demonstrated that, under certain conditions of applied
field and current density, a spin-polarized DC current induces a steady precession of the
magnetization at GHz frequencies, i.e. the magnetic precession is converted into micro-
wave electrical signals. I will refer to these nonlinear oscillators as STOs. They emit at
frequencies which depend on field and dc current, and can present very narrow frequency
line-widths.

This chapter and the theoretical description is based on the book of Russek and Rip-
pard and a more detailed description can be found in [69].

6.1 Spin Torque nano-Oscillator

Spintronics is an emerging technology having its origins from ferromag-
net/superconductor tunneling experiments and initial experiments on magnetic tunnel
junctions by Julliere in the 1970s.

Spin-polarized current can be generated easily by passing the current through a ferro-
magnetic material. Spintorque oscillation was first predicted by John Slonczewski and Luc
Berger in 1996 ([70], [71]). They have derived, that under certain conditions a sustained
oscillation of the magnetization can occur at microwave frequencies. The conditions to
sustain such oscillations are the following:

-the spacer layers between the magnetic layers has to be thin, less than 50 nanometers,
so that spins do not depolarize as they go from one layer to another

-the device has to be sufficiently small (smaller than 100 nanometers) so that the
amount of spin momentum transported by the electron current is a significant fraction of
the angular momentum of the magnetic element
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Figure 6.1: Schematic of a spin device, electrons are spin polarized. The oscillation is given
by M. The layers of the device are (from top): free oscillating layer, nanomagnetic spacer,
pinned ferromagnetic layer (’fixed layer’). The tree forces acting on the magnetic field are
listed and their directions are showed by vectors: precession, dumping, spin-torque. Also
the directions of the three components (x,y,z) are listed.

-there has to be sufficient nonlinearities in the configuration to stabilize the precessional
orbits of the oscillation.

These structures are commonly referred to as spin-torque oscillators, spin-transfer os-
cillators, or spin- transfer nano-oscillators (STNOs). The inner structure of such a device
can be seen on Fig. 6.1.

These microwave oscillations in magnetic multilayers were first measured by Tsoi ([72],
[73]) in 1998 and 2000.

As we can see from its origins spintronic is a current field of science. The advantages
of spin-transfer oscillators are that they are highly tunable by current and magnetic field,
they are among the smallest microwave oscillators yet developed, they are relatively easy
to fabricate in large quantities 1, they are compatible with standard silicon processing, and
they operate over a broad temperature range. STOs are closely related to giant magnetore-
sistance and tunneling magnetoresistance devices that have been developed for magnetic
recording read heads and magnetic random access memory. However physical challenges
still remain before widespread applications of STNOs will be possible. These challenges
include increasing the output power of these devices (consult [74]). Based on these advan-
tages and disadvantages I think that the examination of the dynamics of these oscillators
are extremely important. Recently, this phenomenon has been the subject of extensive
experimental and theoretical studies.

1however the manufacturing of the readout circuits are difficult and complex
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In this chapter I consider a simple model 2 (taken from [75], [7]) that describes one
nano-particle (permalloy) with a spin-polarized current.

First I have to introduce some parameters:

• the geometry of the device is described by the vector

N = (Nx, Ny, Nz)T (6.1)

The transpose of a vector is denoted by (·)T . The elements of N vector define the
ratios of the state space according to each other, i.e. Nx + Ny + Nz = 1 has to be
fulfilled. In the following I assume: Nz > Nx, Nx = Ny describes a cylindric disc
having Nx = 0.2 and Nz = 0.6;

• the polarization of the spin is described by the vector S = (Sx, Sy, Sz)T . Without
losing any generality, I consider S = [0, 0, 1]T (the opposite case would be Sz = −1,
i.e. the vector of the spin points to the opposite direction);

• the spin is defined by the vector

M(t) = (Mx(t),My(t),Mz(t))T (6.2)

To simplify the notation3 I denote M(t) by M = (Mx,My,Mz)T . The length of the
vector M(t) has to be equal to 1, i.e. the following relation holds4

M2
x(t) +M2

y (t) +M2
z (t) = 1, ∀t (6.3)

• the magnetic field H can be defined in terms of the vectors M and N as follows:

H = −Ms


NxMx

NyMy

NzMz

 (6.4)

where Ms is a parameter related to the saturation magnetization of the material.
Permalloy is characterized by Ms = 8.6 · 105. It is worth pointing out that H is not
needed directly, because it is a function of M, i.e. (6.4) may yield a more compact
form useful to understand the physical properties of the system.

The equations of the motion of the spin torque nano-oscillator turn out to be:

dM
dt

= γ(M×H)− γαM× (M×H)− γAM× (M× S) (6.5)

2created by Prof. Wolfgang Porod’s group in Notre Dame
3Time dependency is explicitly reported if it is needed.
4This can be derived by the equations and also by the physics of the system.
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where × denotes the cross product between the vectors, A is the normalized current5 and
the physical constants γ (gyro-magnetic ratio) and α (magnetic efficiency) are physical
parameters with values γ = 2.21 · 105 and α = 8 · 10−3, respectively.

The first term in (6.5) is the precession of the system, the second one denotes the
damping and the last is spin torque caused by the current A.

Equation (6.5) is completely defined with initial conditions M(0). Equation (6.3) im-
plies we have to select a unit-vector in space. For the sake of simplicity, I have decided to
determine M(0) by two angles as follows 6: φ and θ;

Mx(0) = cos(φ) sin(θ)
My(0) = sin(φ) sin(θ)
Mz(0) = cos(θ)
Oscillations of actual STO are in the GHz range, so I can consider a time scale in ns

(i.e. in numerical simulations time is meant in the ns units).
Fig. 6.2 shows oscillations, obtained by means of numerical simulations, in STOs de-

scribed by of (6.5).

Figure 6.2: Oscillations in the GHz region of two STOs (6.5) with the same parameters
but with different initial conditions (noted with red and blue curves). As it can be observer
both oscillators have sinusoidal waveforms. The first components Mx(t) is just displayed
on this figure. The y axis shows the magnitude of the Mx(t) component.

6.2 Spin Torque nano-Oscillator arrays

Electron currents in magnetic multilayer devices can transport angular momentum
from one magnetic layer to another, thereby exerting a torque on the local magnetization.
The interaction among STOs occurs by means of the magnetic field. This can be modeled
by modifying H given in (6.4) as follows

5This is a number proportional to the current of the oscillator and not the actual current itself (for
instance A = 100 corresponds to 1mA).

6this ensures that the length of the vector is 1
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Heff = −Hi + Gj (6.6)

= −Ms


NxMxi

NyMyi

NzMzi

+Ms


CjxMxj

CjyMyj

CjzMzj


where the first term is the magnetic field of the ith STO (i.e. Hi =
Ms(NxMxi, NyMyi, NzMzi)T ) and the second addendum describes the influence of the
jth STO on the magnetic field of the ith STO. This influence is defined by the vector
Cj = (Cjx, Cjy , Cjz)T .

Using Heff in (6.5), I obtain the following model describing the dynamics of one–
dimensional STO arrays (i = 1, . . . , N):

dMi

dt
= γ(Mi ×Hi)

− γαMi × (Mi ×Hi)

− γAMi × (Mi × S)

+
N∑
j=1

γ(Mi ×Gj)

−
N∑
j=1

γαMi × (Mi ×Gj) (6.7)
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Chapter 7

The phase equation of
Synchronized network of Spin
oscillators

7.0.1 Dynamical properties of STO

In order to unfold the dynamical properties of (6.5) it is useful to write the equations
of each component of M(t):

dMx

dt
= My [MzγMs(Ny −Nz)]

+Mx

[
γαMs(Nz −Nx)M2

z − γAMz

]
(7.1)

dMy

dt
= Mx [MzγMs(Nz −Nx)]

+My

[
γαMs(Nz −Ny)M2

z − γAMz

]
(7.2)

dMz

dt
= γ(MxHy −MyHx)

−γα(Mx
2Hz +My

2Hz −MxMzHx −MyMzHy)

−γA(x2 + y2) (7.3)

It can be seen easily that cylindrical geometry, i.e. N such that Nz > Nx, Nx = Ny,
makes possible further simplification in (7.1)–(7.3). In addition, the constrain (6.3) implies
that the last equation (7.3) can be replaced with the following algebraic conditionMz(t) =√

1−M2
x(t)−M2

y (t).
Simulations reveal that trajectories of (7.1)–(7.3) converge toward a plane1 defined by

Mz = const. This can be easily shown by investigating the equilibria of (7.3). Substituting
the magnetic vector H (given in (6.4)) in the equation (7.3), the following equation is
obtained:

1With cylindric geometry the third component Mz(t) always converges toward a constant value.
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dMz

dt
= F (Mz) = Ms(MxMyNy −MxMyNx)

− αMsMz

[
(Nx −Nz)Mx

2 + (Ny −Nz)My
2
]

− A(Mx
2 +My

2) (7.4)

The first addendum of the equation above is zero, because we have Nx = Ny, i.e.
cylindric geometry. Replacing (Nx − Nz) with (Ny − Nz) (as Nx = Ny), we can collect
M2
x +M2

y = 1−M2
z in the second term. Thereby, (7.4) becomes

dMz

dt
= F (Mz) = (−αMs(Nx −Nz)Mz −A)

(
1−Mz

2) (7.5)

Defining the parameters δ = Nz −Nx = Nz −Ny, the only equilibrium M∗z is obtained
by imposing F (Mz) = 0

M∗z = − A

αMs(Nx −Nz)
= A

αMs δ
(7.6)

It is worth observing that M∗z = ±1 are trivial equilibria corresponding to no oscilla-
tions.

For the case under consideration (α = 8 · 10−3, Ms = 8.6 · 105, Nx = 0.2 and Nz = 0.6)

M∗z = 0.363

which matches the numerical simulations (see Figs. 7.1 and 7.2).

Figure 7.1: The evolution of Mz(t) of two STOs with the same parameters but with
different initial conditions (noted with red and blue curves). As it can be observer Mz(t)
converges to a fixed point M∗z .

It can be seen that
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Figure 7.2: The magnetization precession vector M(t) of two STOs with the same parame-
ters but with different initial conditions (noted with red and blue curves). M(t) converges
toward a plane defined by M∗z .

• M∗z depends on the geometry of the cylinder, the material and the current of the
STO

• M∗z increases linearly by increasing the current A

• M∗z is the only stable equilibrium point of (7.5)

F (Mz)
dMz

|M∗
z

= αMsδ(1−M∗z ) < 0 (7.7)

We can also introduce the parameters M̃z = Mz/Ms and η = γMs to describe the
equations (7.1)–(7.3) in a more compact form:

dMx(t)
dt

= My [Mzη(−δ)] +Mx

[
αηδM2

z − ηAM̃z

]
(7.8)

dMy(t)
dt

= Mx [Mzηδ] +My

[
αηδM2

z − ηAM̃z

]
(7.9)

Mz(t)2 = 1−
[
Mx(t)2 +My(t)2

]
(7.10)

Equations (7.8)–(7.9) allow us to identify the amplitude and the frequency of the
oscillations when z(t) approaches z∗.

7.0.2 Frequency and amplitude of the oscillation

Substituting M∗z in (7.8)–(7.9), the simplified equations governing the evolution of
Mx(t) and My(t) on the plane Mz(t) = M∗z result to be:
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dMx(t)
dt

= C2Mx − C1My (7.11)

dMy(t)
dt

= C1Mx + C2My (7.12)

where C1 = ηM∗z δ and C2 = η(αδM∗z 2−AM̃z
∗). These two equations represent a dumped

harmonic oscillator on the plane Mz(t) = M∗z . The constrain M2
x +M2

y +M2
z = 1 implies

that the trajectory of the STO, described by (7.1)–(7.3), approaches a limit cycle on the
plane Mz(t) = M∗z (see Fig. 7.3). The angular frequency of the limit cycle is defined by
C1, that is ω = C1. As a consequence the angular frequency ω is

ω = γ A

α
= 2.76 · 109Hz = 2.76GHz (7.13)

In addition, it can be easily seen that the amplitude of the oscillations for Mx(t) and
My(t) (denoted as B) is

B =
√

(1−M∗z 2)

It follows that the steady state behavior of Mx(t) can be written as

Mx(t) = B sin(ωt); (7.14)

Figure 7.3: Limit-cycle on the plane Mz(t) = M∗z , i.e. steady state behavior of a STO
when Mz approaches the equilibrium M∗z .

7.1 Spin Torque nano-Oscillator arrays

The interaction among STOs occurs by means of the magnetic field. This can be
modeled by modifying H given in (6.4) as follows
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Heff = −Hi + Gj (7.15)

= −Ms


NxMxi

NyMyi

NzMzi

+Ms


CjxMxj

CjyMyj

CjzMzj


where the first term is the magnetic field of the ith STO (i.e. Hi =
Ms(NxMxi, NyMyi, NzMzi)T ) and the second addendum describes the influence of the
jth STO on the magnetic field of the ith STO. This influence is defined by the vector
Cj = (Cjx, Cjy , Cjz)T .

Using Heff in (6.5), I obtain the following model describing the dynamics of one–
dimensional STO arrays (i = 1, . . . , N):

dMi

dt
= γ(Mi ×Hi)

− γαMi × (Mi ×Hi)

− γAMi × (Mi × S)

+
N∑
j=1

γ(Mi ×Gj)

−
N∑
j=1

γαMi × (Mi ×Gj) (7.16)

Considering local (cellular), space-invariant coupling Gj can be written as:

Gj = Ms

C−
x Mxi−1

C−
y Myi−1

C−
z Mzi−1

+Ms

C0
xMxi

C0
yMyi

C0
zMzi

+Ms

C+
x Mxi+1

C+
y Myi+1

C+
z Mzi+1

 (7.17)

The middle part in the equation (the self coupling of a STO) is always zero, because
Mi ×Mi = 0 for every Mi.

Considering the space-invariant coupling I simplify the notation as follows: C+ = r =
(rx, ry, rz)T (the coupling from the ith STO to its right neighbor) and C− = l = (lx, ly, lz)T

(the coupling from the ith STO to its left neighbor), i.e.

Gj = Ms


lxMxi−1

lyMyi−1

lzMzi−1

+Ms


rxMxi+1

ryMyi+1

rzMzi+1

 (7.18)

With these notations and expanding Hi and G, we get the following equations (gov-
erning the evolution of the components of Mi):
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dMxi
dt = −ηδMyiMzi + αηδMxiMzi

2 − cAMziMxi+
+ηrzMyiMzi+1 − ηryMziMyi+1

−ηαryMxiMyiMyi+1 − ηαrzMxiMziMzi+1

+ηαrxMyi
2Mxi+1 + ηαrxMzi

2Mxi+1

+ηlzMyiMzi−1 − ηlyMziMyi−1

−ηαlyMxiMyiMyi−1 − ηαlzMxiMziMzi−1

+ηαlxMyi
2Mxi−1 + ηαlxMzi

2Mxi−1

(7.19)

dMyi
dt = ηδMxiMzi + αηδMyiMzi

2 − cAMziMyi+
+ηrxMziMxi+1 − ηrzMxiMzi+1

−ηαrxMxiMyiMxi+1 − ηαrzMyiMziMzi+1

+ηαryMxi
2Myi+1 + ηαryMzi

2Myi+1

+ηlxMziMxi−1 − ηlzMxiMzi−1

−ηαlxMxiMyiMxi−1 − ηαlzMyiMziMzi−1

+ηαlyMxi
2Myi−1 + ηαlyMzi

2Myi−1

(7.20)

dMzi
dt = −αηδMzi(Mxi

2 +Myi
2) + cA(Mxi

2 +Myi
2)

+ηryMxiMyi+1 − ηrxMyiMxi+1

−ηαryMyiMziMyi+1 − ηαrxMxiMziMxi+1

+ηαrzMyi
2Mzi+1 + ηαrzMxi

2Mzi+1

+ηlyMxiMyi−1 − ηlxMyiMxi−1

−ηαlyMyiMziMyi−1 − ηαlxMxiMziMxi−1

+ηαlzMyi
2Mzi−1 + ηαlzMxi

2Mzi−1

(7.21)

In every equations the first rows describe the dynamics of the ithoscillator, whereas the
remaining rows take into account the couplings. As it can be seen the first two equations
are symmetrical for Mx and My.

In the following wI consider couplings involving onlyMz(t) in order to derive qualitative
properties of STO arrays.

7.1.1 Cellular STO arrays with interactions in Mz(t) only

I focus on a simplified STO array model with couplings given by (7.18) such that

rx = lx = ry = ly = 0 (7.22)

Using condition (6.3), equation (7.21) becomes (for i = 1, . . . , N):

dMzi
dt = (−αηδMzi + cA+

ηαrzMzi+1 + ηαlzMzi+1)(1−Mzi
2)

(7.23)

The condition (7.22) implies that the equations above do not depend on Mx or My,
i.e. they can be studied separately from (7.19)–(7.20).

I introduce the following notation to write (7.21) in matrix form:
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• f(Mzi) = 1−Mzi
2 is a nonlinear-function of Mzi

• Mz = (Mz1,Mz2...MzN )T is the vector containing the variables Mzi of the ith STO

• diag(f(Mz)) is a diagonal matrix containing the following elements:

diag(f(Mz)) =
1−Mz1

2 0 ... 0
0 1−Mz2

2 ... 0
... ... ... ...

0 0 ... 1−MzN
2


• w = (A1, A2...AN )T is the vector containing the input current Ai of the ith STO

• P represents the coupling tridiagonal matrix

P =


−δ rz 0 ... 0 0
lz −δ rz ... 0 0
... ... ... ... ... ...

0 0 0 ... lz −δ


With these notations (7.23) for i = 1, . . . , N can be written as:

dMz
dt

= diag(f(Mz))(cw + ηαPMz) (7.24)

Using (7.24) one can investigate the equilibrium M∗
z.

The trivial equilibria M∗z i = ±1,∀i correspond to no oscillation in the STO array.
Other equilibrium points are obtained by

M∗
z = − γ

αη
P−1w (7.25)

Remark: The equation above can be easily generalized for two dimensional arrays of
STO having space-varying cellular architectures and fully connected architecture as well.

7.1.2 Cellular STO arrays with general interactions

I would like to examine synchronized oscillators in a network. In this case synchro-
nization means, that after a transient behavior every oscillator will reach a limit cycle and
they will oscillate with the same frequency and with arbitrary phase-shift compared to
each other.

From the simulations, we can see that under certain conditions the third component
converges to a fixed-point. I have to note the fixed point ofMzi as Ki. This fixed point can
be different for every oscillator, however the frequency of the synchronization is the same
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for every synchronized oscillator. (If Mz is not a constant, there is a small oscillation in
this component, however this oscillation is 2-3 orders smaller, than the oscillation of the
other components, so I approximated this as a constant. The magnitude of this oscillation
can be seen on Figure 7.2) In Section 7.0.2 we have also seen that the spin of the uncoupled
oscillators has a harmonic oscillation in two component, meanwhile the third component
is a constant.

Knowing that Ki is a fixed point of the Mz component of the ith oscillator I can
approximate the components of our system the following way: (because in this case the
motion of the spin vector can be modeled as a circular motion in the first and the second
components)
Mxi =

√
(1−Ki

2)cos(ωt+ φi),

Myi =
√

(1−Ki
2)sin(ωt+ φi)

Mzi = Ki

where ω is the frequency of the oscillation and φi is the phase shift between the reference
and the ith oscillator 2.

(Remark: I have selected this model based on the simulation, because I saw, that
even when there is a small difference between different fixed-points Ki and Ki+1 they will
oscillate with the same frequency, when the coupling is ’strong enough’ to compensate this
small difference, if I consider all the fixed-points the same, i will get a less accurate, but
much simpler model). However I will make this approximation, in case of two oscillators,
but in that case this approximation is more accurate, than in general.)

Furthermore with the following transformation we can have a simpler system of our
network: if we multiply Equation 7.20 by Mx and subtract this from Equation 7.19 mul-
tiplied by My we will have the following equation:

dMxi
dt Myi −

dMyi
dt Mxi =

−2ηδMyiMxiMzi + ηrziMzi+1(M2
xi

+M2
yi

)
−ηαryiMxiMyi+1(M2

xi
+M2

yi
+M2

zi
)

+ηαrxiMyiMxi+1(M2
xi

+M2
yi

+M2
zi

)
−ηrxiMziMxiMxi+1 − ηryiMziMyiMyi+1

(7.26)

Using my approximation, from this equation I can get, noting
√

(1−Ki
2) as Pi for

simpler notation.

Pi
2ω = −2ηδKiPi

2cos(ωt+ φi)sin(ωt+ φi)
+ηrziKjPi

2 − ηryKiPiPjsin(ωt+ φi)sin(ωt+ φj)
−ηαryiPiPjcos(ωt+ φi)sin(ωt+ φj)
+ηαrxiPiPjsin(ωt+ φi)cos(ωt+ φj)
−ηrxiKiPiPjcos(ωt+ φi)cos(ωt+ φj)

(7.27)

2we can select the reference oscillator arbitrary
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or in an other form:

Piω = −2ηδKiPi
sin(2ωt+2φi)−1

2

+ηrziKjPi − ηryKiPiPj
cos(φi−φj)−cos(2ωt+φi+φj)

2

−ηαryiPj
sin(2ωt+φi+φj)−sin(φi−φj)

2

+ηαrxiPj
sin(2ωt+φi+φj)+sin(φi−φj)

2

−ηrxiKiPiPj
cos(φi−φj)+cos(2ωt+φi+φj)

2

(7.28)

and using the Discribing function method on Equation 7.21, noting the phase shift
between oscillator i and j as θij :

αηδKiPi−cAiPi−ηαrziKjPi

ηPj

= sin(θij)(
−rxi−ryi

2 )
+cos(θij)αKi(

−rxi−ryi
2 )

(7.29)

As we can see from the previous two equations, the coupling of the third coordinate
does not depend on the phase-shift, it depends only on the coupling strength of the third
coordinate. This means, that this coupling will not effect the phase-shift between the
oscillators. As I have shown in Section 7.1.1 this coupling will change only the ’height’
of the planes of the limit-cycles (however I have to note, that the planes are depending
on the other variables too). With this coupling (in the Mz component) one can change
the heights of the planes independently from the phase shift, and the phase-shift will be
determined by the coupling in the two other components as it can be seen on Figure 7.1.2

7.2 When rx equals ry

If the coupling strength in the first two components are equal (rx = ry = rxy) we will
have the following simpler equations:

αηδKiPi−cAiMi−ηαrzKjPi

ηPj

= −rxysin(θij)
−rxycos(θij)αKi

(7.30)

and:

Piω = ηδKiPi + ηrzKjPi

−ηrxyKiPiPjcos(θij) + ηαrxyPjsin(θij)
(7.31)

If we would like to put these equations in a more compact form generally for N oscil-
lators we can introduce:

• P = (P1, P2...PN )′

• K = (K1,K2...KN )′

• Θ = (0, θ0−1...θ0−N )′
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(a) A1 (b) A2

(c) B1 (d) B2

Figure 7.4: On A1 we can see the initial fixed-point of the third component with some
arbitrary selected weights and inputs in the array. As it can be these fixed point are slightly
different fir every oscillator. On A2 the phase shift can be seen between the third and
the second oscillators. According to the theory described in Section 7.1.2 I have altered
the coupling strengths in the Mz components. As a result the fixed point of the third
components with my calculated weights can be seen on B1. As it can be observed the planes
of the oscillation are the same. Meanwhile I have changed the plane of oscillation using
different weight in the third component the phase shift between the oscillators remained
the same, as it is shown on B2.

• A = (A1, A2...AN )′

Where K is the vector of the fixed-point of the third component (P =
√

1−K2), Θ
is the vector of the phase-shifts between the oscillators. And we can introduce Rxy as
the matrix of the coupling strengths, using cellular (but heterogeneous) connections this
matrix will be a sparse matrix.

Rxy =


0 rxy1 0 ... 0 rxyN

rxy1 0 rxy2 ... 0 0
... ... ... ... ... ...

rxyN 0 0 ... rxyN−1 0

 (7.32)

We can also introduce an other coupling matrix for the third coordinate Rz. With this
notation the equations will be the following:
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ηαδK ◦P− cA ◦P− ηα(RzK) ◦P =
= −ηRxy(P ◦ sin(Θ))− ηα(Rxy(P ◦ (cosΘ))) ◦P

(7.33)

Pω = ηαK ◦P + η(RzK) ◦P
−ηRxy(P ◦ cos(Θ)) ◦P ◦K + ηαRxy(P ◦ sin(Θ))

(7.34)

where ◦ denotes the Hadamard product between two vectors.
This way we can have a system with 2N independent equations and 2N unknowns.

This way, with the numerical solution of equation 7.33 and 7.34 I can calculate the phase
between the oscillators, without the time consuming simulation of the differential equa-
tions.

Figure 7.5: In this image we can see the oscillations in every component, when the coupling
inMx andMy are different. As we can see the coupling in the third component is three-four
orders of magnitude smaller, than the oscillations in the first two components, this way
it’s elimination will not affect the results significantly, and with the solution of equations
7.33 and 7.34 I can get the same results as I have obtained by the simulations.

7.3 Two coupled oscillator

7.3.1 Coupling only in the Mz component

As a special case I have examined two STOs coupled only by Mz. The equilibrium is
determined by the following equation:

areM∗z 1

M∗z 2

 = − γ

αη

−δ 1
l

1
r −δ

A1

A2

 (7.35)

Given two different input current A1 and A2, the two uncoupled STOs have different
angular frequencies (see equation (7.13)). By exploiting the couplings lz and rz it is possible
to drive the STOs at the same angular frequency despite their different currents. This is
easily achieved by imposing M∗z 1 = M∗z 2, i.e. from the previous equation the following
condition is derived:
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A2
A1

=
1
r + δ
1
l + δ

(7.36)

I have tested this case of two coupled STOs also with the simulator and the measure-
ments of the simulations are matching the theoretical data.

Even in case of large STO arrays, it is possible to design the coupling matrix P (or
equivalently its inverse P−1) and the input currents w in such a way that the STOs
drop into different clusters. Each cluster results to be defined by the frequency of the
oscillations within a group. This may enhance the synchronization between oscillators in
the same groups and prevent the synchronization between oscillators in different groups.
Similarly, with the design of the matrix P I can create different clusters of STOs, with
different frequencies considering a cellular array with input (different currents) only on
the border cells, when the range of the inputs is known.

A simple example containing six STOs and their division into two groups can be seen
in Fig. 7.6. Fig. 7.7 shows the limit cycles associated to each cluster.

Figure 7.6: The Mz(t) variables of six different STOs converge into two different clusters.

7.3.2 General coupling of two Oscillators

I would like to investigate the general coupling of two STOs, especially the effect of
the input current and the coupling strength on the phase-shift after synchronization. As
we have seen previously it is enough to solve equations 7.33 and 7.34 two calculate every
parameters of an oscillator after the transient behavior. However these equations are not
good to design an array with given properties, because they do not reveal the dependency
of the phase-shifts on the input current. But as we can seen the input current can be found
only in equation 7.33. If I substitute the proper parameters in this equation for the case
of two, generally coupled oscillator we will have the following equations:
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Figure 7.7: The two different limit cycles of the M vector can be seen according to the
designed clusters. After transient time, the Mz(t) variables of six different STOs converge
into two different groups, i.e. the STOs synchronize in two clusters having different angular
frequencies.

Figure 7.8: The dependency of the phase-shift based on the current. As it can be seen the
dependency of the phase-shift is linear with respect to the change of the current difference
between the oscillators.
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Figure 7.9: The dependency of the phase-shift based on the coupling strength. I have
ignored the case when the coupling strength is zero. As it can be seen the dependency of
the phase-shift is hyperbolic.

αηδK1P1 − cA1P1 − ηαrzK1P1 =
sin(θ)rxyηP2 + cos(θ)rxyαηK2P1

(7.37)

Because θij = −θji, for the other oscillator I can write:

αηδK2P2 − cA2P2 − ηαrzK2P2 =
−sin(θ)rxyηP1 + cos(θ)rxyαηK1P2

(7.38)

Since, with an oscillation with a common frequency the planes of oscillation is close
to each other I can approximate K1 = K2 as K and P1 = P2 as P Noting the difference
of the input current on the two oscillators as A2 − A1 = A∆ and subtract equation 7.3.2
from 7.3.2. We will have:

θ = asin( A∆
2rxyMs

) (7.39)

Since A∆
2rxyMs

is between ±0.1 according to the physical parameters and the sinus func-
tion is quasi-linear on this interval, I can also write:

θ = A∆
2rxyMs

(7.40)

This way I can examine the phase-shift as a function of the coupling strength and
the input current, this equation is also suitable to design phase shift for previously given
coupling strengths and/or input currents [8]. As it can be seen on Figure 7.3.2 and 7.3.2
the phase-shift depends linearly on the input current and hyperbolically on the coupling
weight.
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7.4 Applications of spin torque oscillators

In this section I will show two simple examples, how a two dimensional cellular array
of spin torque oscillators based on the dynamics described in equation (7.33) and (7.34)
can be used for edge and change detection.

I can easily define a mapping between the pixel intensities of the image and the input
currents of the oscillators. This way the input current of every oscillator will be propor-
tional to the intensity of a pixel on a two dimensional grayscale image. Using (7.33) and
(7.34) I can calculate the coupling weights in the array in a way, that after the synchro-
nization of the array (when all oscillators are synchronized), the phase shifts between the
oscillators will depend only on the input current differences between neighboring oscilla-
tors.

Although the differential equations in Chapter 6 and 7 do not contain noise and their
investigation was done without considering a stochastic part, the simulations in this chap-
ter were examined with noise in the differential equation and also when the parameters of
the oscillators were altered by a stochastic noise. This results were qualitatively the same
with or without the noise, however the quantitative investigation of the noise is out of the
scope of this dissertation and requires further simulations.

However there are many open questions about the feasibility and applicability of spin
devices the development of spin-torque nano devices is constantly in progress. Although
the largest network implemented contains only 5 coupled spin-torque oscillators and it is
not feasible to implement devices with 16× 16 oscillators, and create architectures useful
in solving practical problems, the coupling models and the macro-models of the oscillators
will remain the same even for larger networks. These smaller networks and preliminary
results can confirm the applicability of spin-torque dynamics in computation and with
simulations I can check how larger networks (even with 64×64 or more oscillators ) would
operate. This investigation can give a boost to the design of spin devices and hopefully
the physical and engineering problems of implementing large networks of oscillators will
be overcame in the following years.

7.4.1 Application example: edge detection

Using this coupling I can detect the color differences between neighboring oscillators.
With the tuning of the coupling weights I can also adjust the level how the phase shift will
depend on the intensity differences and also on the spatial density of intensity differences.
This means I can detect intensity changes on images considering not only the differences
in values but spatial changes as well. This gives possibility to perform edge detection on
grayscale images and considering the spatial changes I can implement horizontal or vertical
edge detection as well. A simple example of this task can be seen on Fig. 7.10

The computation can be done with the usage of STOs exclusively: without using any
CMOS logic or non nano-devices.
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(a) Input (b) Intermediate
result

(c) Thresholded
output

(d) Horizontal
edge detection

Figure 7.10: We can see the input image on the upper left figure. On figure (b) we can see
an intermediate result, the synchronization of the oscillators. I have selected the first (most
upper left oscillator as a reference) the pseudo colors are reflecting the phase shifts between
the oscillators, the blue oscillators are synchronized in phase with the first oscillator. The
red oscillators have a phase-shift around 12 degrees. On figure (c) we can see a thresholded
version of figure (b). On the last image we can see a different spatial coupling, which detects
the horizontal edges only.

7.4.2 Application example: spatial change detection

In case of object detection 3 and in general tasks of image processing, one extremely
important question is the handling of noise. In case of object detection/classification not
only the the intensity of the noise will determine the output, but also the topography of
the noise: a group of low level noises in close proximity could be an object, because one
can presume that the appearance of the noise at different pixels is independent from each
other. Because of this phenomena we will have to process not only the intensity differences
but also the topology of different intensities at the same times. Based on equation (7.33)
and (7.34) I have designed a simple array, which is taking account both values with one
computation: the output is determined not only by the difference level, but also how far the
dissonant pixels are. The sensitivity of the network can be tuned by the coupling weights.
By decreasing the weights the amount of intensity difference will be more determining, and
by increasing the weights the effect of the pixels in proximity will be more determining,
and the computation will consider the topology of the objects. Different outputs of this
array can be seen on Figure 7.11 with different coupling weights.

As it can be seen this way the network sensitivity to the noise can be set. And it can
be set according to the change level and according to the distance. Based on this example
a cellular array of spin oscillators could be used for noise reduction, filtering, change
detection or edge detection in image processing tasks. The implementation of change
detection for grayscale images is straightforward when the input current is proportional
to the color intensity.

Based on this example and the equations, a cellular array of spin oscillators could be
3even in case of binary object
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(a) Input (b) Output 1 (c) Output 2 (d) Output 3

Figure 7.11: We can see the input image on the upper left figure, and on the other figures
the outputs with different coupling weights are shown. The weights were 0.01, 0.003 and
0.0004. As it can be seen with weights 0.01 the differences were calculated based on
individual pixels, and objects with are of one pixel are considered as noise. With weights
0.003 the to objects in the bottom are considered as one object, white pixels with area of 1
are considered as noise. With weights 0.0004 all the three objects on the left are considered
as one object.

used for noise reduction, filtering, change detection or edge detection in image processing
tasks. The implementation of change detection for grayscale images is straightforward
when the input current is proportional to the color intensity. Oscillatory behavior could
be used also in associative memories as it was shown for general oscillators in [76], [9].
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Chapter 8

Summary

8.1 Methods used in the experiments

Unfortunately stochastic sampling is too complex to create a thorough theoretical
examination and estimate bounds how an implementation would perform on a many-core
architecture. Also the number of existing architectures is tremendous, this way it is almost
impossible to create theories covering every architecture and problems.

To avoid this, I have introduced a general model of the stochastic optimization, which
is able to mimic all the important characteristics. These models reveal different properties
of stochastic optimization in different depths.

I have expanded these models to practical problems to show they are capable of sim-
ulating practical problems, too, apart from the theoretical results. Through this I have
linked the general models to some practical problems and case studies. I have shown
through several case studies (similarly to how it is usually done in the literature) how
cellular implementations and topographic algorithms can be used in practice.

I have selected two algorithms to measure the performance of the cellular implemen-
tation. The stochastic sampling plays a crucial role in both of the methods. These two
problems are the genetic algorithm and the particle filter algorithm. The test problems for
the genetic algorithm were the N-Queen, Knapsack and Travelling Salesman problems. All
of these are NP-hard, and general problems, and they can be extended to various practical
problems.

To average out the randomness in the algorithms I have repeated all the experiments
at least 1000 times, this way I can have reliable results. I have also measured the variance
between the 1000 averages and it could be neglected.

Apart from this the most important part of the experiments was the architecture.
Because the commercial computers are usually not many-cores and the existing many-core
architectures show extreme diversity regarding the basic architecture (FPGAs, GPUs) I
have implemented a virtual cellular machine, that mimics all the important characteristics.
In this architecture the processing units are placed on a two-dimensional rectangular grid.
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This architecture and the measurements were implemented in Python.
I also wanted to measure the results on an existing chip and architecture. I chose the

Xenonv3 device, because I have had some experience about its capabilities and program-
ming. The programming of the device can be done in Assembly language.

The other part of this dissertation, the investigation of the synchronization of Spin-
torque oscillators contains mostly theoretical results for this reason the necessary devices,
simulation and experiments was limited. But it is always a useful extension to support the-
oretical results by simulations and/or measurements. This was the reason why I have cre-
ated a general simulator, which is capable to simulate the behavior of arbitrary STO arrays
with various parameters. The implementation was done in MATLAB, C and PYTHON
languages. The topography of the STO array can be arbitrary: we can simulate even glob-
ally coupled (in spite of the underlying physics is unfeasible) arrays. I have received the
macro-model of the oscillators from physicists from the University in Notre Dame.

This simulator was a useful tool to test the two computational case-studies of STO
array and the theoretical results in simulations (even if there were no possibilities to
measure them in practice with an actual device).

8.2 New scientific results

1. Thesis:

1.1. Thesis:

I have investigated through general models, how the biology-motivated, localized
stochastic selection affect the diversity and the quality of the generated sets. I have shown
that by selecting optimal parameters (neighborhood radius, mutation factor) the quality of
the generated sets (in case of the general models) is comparable to the quality of the global
selection method, meanwhile the localized method can easily mapped into a many-core
architecture and fits perfectly on multi-parallel, cellular devices, this way it can be executed
with significant speedup. I have shown a way, how a non-topographic algorithm -stochastic
selection- can be transformed into a topographic problem, and in what kind of advantages
this can result.

I have introduced, the biology-inspired, localized selection and I have compared it
to its original, global counterpart through two general (and some problem dependent)
models. I have done the comparison through general models, and from these models I
have specified some practical problems by modifying the characteristics of these models.
These general models are able to mimic the most important characteristics of stochastic
selection. Through them I have shown, how the localized selection can substitute its global
counterpart, and I have shown through simulations and measurement how the information
propagation speed amongst elements in the selected set depends on the tuning of the
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neighborhood radius.
I have also shown, that the localized version is not a brand new, completely different

method, it can be considered as a generalization of the global method, where we can set the
speed of information propagation amongst the elements through the neighborhood radius.
(If the neighborhood radius is larger than the maximal distance between any two selected
elements, we will have the same algorithm as the global method; and if the neighborhood
radius is set to zero we will implement the original simple Monte Carlo method, where
there are no selection mechanism at all.)

I have also investigated, how the neighborhood radius can affect the diversity of a
set and the distribution of the weights of the selected elements (exploitation/exploration
ratio): this phenomena can be seen on Fig. 2.2.

1.2. Thesis:

I described general rules and guidelines about mapping the cellular genetic algorithm
on a CNN architecture. I have also implemented this modified, cellular version of
algorithm on a general virtual machine and an existing cellular, many-core system: on
the Xenonv3, CNN chip. I have measured the efficiency of this implementation through
simulations and measurements.

I have shown through three different case studies (the N-queen, the Knapsack and the
Travelling salesman problem), how a CNN implementation of the genetic algorithm can
solve difficult optimization problems in an efficient and elegant way with power consump-
tion in the milliwatt range. The implementation gives a possibility to execute one iteration
of the genetic algorithm in milliseconds (for the exact problems: 1884, 2982, 1373 iterations
per second could be executed for the N-queen, Knapsack and Travelling salesman prob-
lems) on the Xenonv3 architecture. This execution times are orders of magnitudes better
than other current results. I have compared these times with similar current results. In
case of the Knapsack problem the fastest current result, what I have found for a problem
with same complexity needed 0.92 second, which is much larger and would not be fair to
be compared with the speed of the CNN implementation. In case of the Traveling Sales-
man problem I have compared my method with a CPU-GPU implementation, where the
execution time was 0.20 seconds, meanwhile the power consumption of the GPU-card they
have used (an NVIDIA GTX 280) is 310 W , not considering the additional consumption
of the computer and this can not be compared to the power consumption of the CNN
chip, which consumed less then 5 milliwatts and the execution time was 93 milliseconds.
This shows that a two-times speed up could be reached meanwhile the power consump-
tion remained 1500 times lower than the CPU-GPU implementation. This shows, how
this implementation could be useful in tasks where complex optimization tasks have to
be solved with lower power consumption within a strict time limit like in case of naviga-
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tion, speech-processing, parameter optimization or in case of other problems generated by
mobile devices.

Apart from the implementation I have describe a general method, how a cellular genetic
algorithm can be implemented on a multi-layered CNN architecture. This description can
give help and hints to implement the algorithm on other similar devices. The sketch of the
general implementation divided into different steps and layers can be seen on Fig 3.3.

1.3. Thesis:

I have shown how the localized selection mechanism can be used in case of a dynamic
state estimator: in the particle filter algorithm. I have introduced the Cellular Particle
Filter algorithm. I have implemented the algorithm on a virtual cellular machine and also
on an existing architecture, the Xenonv3 chip.

Also in the case of this problem I have investigated three case studies, to show how
the algorithm can be implemented and utilized. Also the simulation results and the real
measurements on theXenonv3 architecture were examined. I have shown in case of Hidden
Markov models, how the cellular algorithm can be used for state estimation, even in
problems when neither the Kalman-filter nor the Baum-equation can be applied, because
our state-transition is non-linear and the stat-space is continuous (or infinite). I have shown
that this algorithm approximates well not only the expected value of the hidden state, but
also the distribution of hidden states as well, this can be used later on to approximate
probabilities and conditional expectations as well. I have shown through commonly used
case studies that the cellular version can be implemented with a faster execution speed,
it is easily scalable and with the proper setting of the parameters we can approximate
the hidden state with a lower error rate. I have also shown through the same case studies
the reason behind this lower error rate: I have measured that in the cellular, topographic
method the diversity of the particles is higher than in the global method, (meanwhile the
approximation is the same) because the information propagates amongst the particles in
a cellular, local way.

Some example results can be seen in Table 5.1, for a commonly used model. As it can
be seen from the results in case of certain parameters, the error of the cellular method is
lower (especially, if the umber of the particles is relatively high).

2. Thesis:

2.1. Thesis:

I gave an analytic solution, a closed formula to calculate the equilibrium of the
oscillation of the differential equation of spin torque oscillators. Thanks to this solution
the equilibrium of the oscillation can be calculated as a function of the geometry, input
current and magnetic permeability of the oscillator, without the time-consuming numerical
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simulation of the differential equation.

The simple macro-model of spin-torque oscillators can be be described as:

dM
dt

= γ(M×H)− γαM× (M×H)− γAM× (M× S) (8.1)

Where M is the spin-vector, H is the magnetic field, S is the direction of the input cur-
rent, A is the strength of the input current × notes the cross product between the vectors,
γ and α are physical constants,the gyromagnetic-constant and the magnetic efficiency.

From this equation I have derived the fix-point of the third component of M (Mz),
which determines the plane of the oscillation:

M∗z = − A

αMs(Nx −Nz)
= A

αMs δ
(8.2)

Where N = (Nx, Ny, Nz)T is a vector determining the geometry of the oscillator, with
the following constraints: δ = Nz −Nx = Nz −Ny.

From this the oscillation can be reduced to a simple harmonic, circular motion, with
the following parameters:

The frequency of the oscillation:

ω = γ A

α
(8.3)

The amplitude of the oscillation:

B =
√

(1−M∗z 2) (8.4)

I have checked these result with the simulator, and the results match the analytical
solutions.

Because from an engineering point of view we are interested in only the equilibrium
and not at all in the transient states, this analytic solution can be a huge help in the
investigation of spin-torque oscillators, because thanks to this solution there is no need
for the time-consuming numerical simulation of the oscillations, we can derive them easily
and efficiently by a closed formula.

2.2. Thesis:

I created a mapping between a current-coded input and the phase-coded output of a
cellular STO array. I gave an approximation with the help of the “harmonic Balance
technique” to the phase-shift of synchronized,weakly coupled STOs in a general network.
I have shown that, when the coupling strength in the x and y components are the same,
this method is an exact solution and not an approximation. And even when the coupling
strength in the two components are different the error of the approximation is four orders
smaller, than the error of the amplitude of the spin. With the help of this method the phase
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shifts in a general network of oscillators can be calculated, without solving a difficult and
complex differential equation system. We can calculate the phase shifts by solving only an
algebraic equation system. With the help of these equations I have given an example how
an architecture can be built, when the processing elements are small oscillators, consisting
only a few atoms (or only one), and I have also given two simple examples which kind of
topographic calculations can be done by such a device.

The connection, and this way the synchronization between weakly coupled spin torque
oscillators happens through the magnetic filed:

Heff = −Hi + Gj (8.5)

= −Ms


NxMxi

NyMyi

NzMzi

+Ms


CjxMxj

CjyMyj

CjzMzj


Where the coupling strength between oscillators i and j is determined by the vector

C. And from this the effective magnetic field can be calculated: Heff .
The approximation of any general network of STOs can be done by these equations, I

have obtained with the usage of spectral techniques ( “Harmonic Balance” and “Describing
Function”) on the differential equation system. This way we can easily calculate the phase-
shift between synchronized oscillators.

We can introduce the following vectors:

• P = (P1, P2...PN )′

• K = (K1,K2...KN )′

• Θ = (0, θ0−1...θ0−N )′

• A = (A1, A2...AN )′

Where K contains the plane of oscillations, also the fixed-point in the third component,
A is the strength of the input current of the oscillators and (P =

√
1−K2) and Θ is the

relative phase difference between the oscillators.
Rxy is the coupling matrix in x and y components, and similarly Rz is the coupling

weights in the third component.
The equation system obtained with this notation:

ηαδK ◦P− cA ◦P− ηα(RzK) ◦P =
= −ηRxy(P ◦ sin(Θ))− ηα(Rxy(P ◦ (cosΘ))) ◦P

(8.6)

Pω = ηαK ◦P + η(RzK) ◦P
−ηRxy(P ◦ cos(Θ)) ◦P ◦K + ηαRxy(P ◦ sin(Θ))

(8.7)
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I have shown, that if the coupling strengths in the Cx and Cy components are equal, the
previous equation system is an exact solution of the phase shift defined by the differential
equation system of the STOs. Also when the coupling strength are not equal in the two
components a minor oscillation will appear in the third, z component, but the magnitude
of this oscillation is four orders smaller as the amplitude of the oscillations in the two
other components.

I have also derived the simpler form of the previous equation system for only two
oscillators:

θ = asin( A∆
2rMs

), (8.8)

where A∆ is the different between the input current on the two oscillators, r is the
coupling weight between the oscillators (which is proportional to the distance between the
oscillators), Ms is a physical constant, the magnetic saturation.

From this equation in can be seen, that the phase shift between the oscillators depends
linearly from the input current difference, and hyperbolically from the distance between
the oscillators.

Based on these equations I have designed and simulated two examples, showing how
the an cellular network of STOs can be used for computation. One example is a simple
grayscale edge detection on two-dimensional input images. The other example is a more
complex spatial-difference detection where not only the pixel differences but also the spa-
tial distribution of the distances are considered during the difference calculation. This
preliminary examples are showing how an STO network could be used for noise filtering
and object segmentation.

8.3 Application of the results

The examples shown in the dissertation clearly highlight the main characteristics of the
stochastic selection. We can claim that they are generally valid. Because of this, the meth-
ods and implementations are also valid, and the cellular, localized selection can be used
as a substitution of the global method. Considering this, my method as an example can
also help to show, how a non-topographic problem can be transformed into a topographic
one, and how it can be solved by topographic algorithms on topographic architectures.

Not only the general method on the virtual machine, but also the implementation on
the Xenonv3 architecture can help to solve optimization problems. This way the com-
monly used (mostly in image processing tasks) CNN chips can also applied in tasks where
parameter optimizations and/or state estimations are required. These topographic algo-
rithm are ideal, where complex problems have to be solve with strict time limits and low
power consumption. The extremely good low power consumption of the Xenonv3 (under
20mW) could be ideal in mobile application such as robotics, mobile-communication or
navigation.
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Also not only the implementation can be applied and useful, but the similar implemen-
tation of these (or related) algorithms on other devices and architectures can be crucial
e.g: implementation on FPGA-s or GPU-s.

The architectures described in the second part of the dissertation could be useful in
designing computers with extremely low power consumption. These simple computational
models can be extended in cases where the storing essence of the information is the spin
and not the charge. The cores of these architectures are feasible even when only a few atoms
are used, this makes them as a true alternative for Beyond Moore’s low computation. The
analytic solution of the differential equation system could help the investigation of spin-
torque oscillators. Apart from the theoretical results I have shown through two simple
examples how an STO array can be used for simple computational problems. Although
these networks are not feasible in these days because of the physical constraints, but I
hope in the future I can measure the dynamics of STOs in practice and the development
of STO devices it could speed up the process since only the equation system has to be
solved instead of simulating a complex differential equation system.

In the dissertation I wanted to show, how obtaining the topographic constraints can
modify the algorithm development, and what we can do to avoid these limitations, also
how this limits can help to solve non-topographic problems. I hope in this way topographic
thinking, and considering two dimensional constraints and the precedence of locality can
help in the solution of new problem classes and in their mapping on many-core architec-
tures as well.
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Chapter 9

Conclusion

In this dissertation I have shown through general models, how local selection can be ap-
plied instead of the global selection mechanism. I have shown, that the local selection is not
a completely different or specialized algorithm, but a more generalized version of the global
process, where by setting the neighborhood radius optimally the exploitation/exploration
ratio of stochastic optimization can be set. In case of the case studies I have examined how
the neighborhood radius can tune the speed of information propagation. This can result
more diverse cohorts, helping us to avoid local extrema, which is one of the most serious
problems in stochastic optimization.

The dissertation also shows how these general models can be applied in practice. In
case of the practical problems I have considered how this method can be implemented
on existing CNN chips and also I have shown a sample implementation on the Xenonv3
architecture.

I examined the idea of local selection mechanisms in two practical algorithms: in the
genetic algorithm and also with the particle filter algorithm. In both cases I have pointed
out how easily this method is parallelizable and scalable. This means that in case of
difficult problems we do not have to alter our method our increase the processing speed,
the addition of extra computing cores – what can be done easily– is enough.

Later on it would be useful to examine other problems, problem classes which can
be mapped ideally on topographic many-core architectures. I would also like to use this
method in practice, there are promising problems from the field of tracking, navigation
and speech processing. Mobile applications with strict time constraint could be the best
environment, because the low power consumption and high computational power of the
CNN chip could result optimal implementation of such algorithms. It would be also useful
to enhance the current implementation in those parts which are not ideal because of the
design of the Xenonv3 architecture. Implementation on other architectures like FPGA,
GPU implementations could be also useful in case of complex problems from the field of
financial mathematics.

In the second part of this thesis I have also investigated special topographic architec-
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tures. I briefly describe, how topographic architectures can be applied beyond Moore’s law.
I have shown a simple example how spin (the magnetization vector of a nano-device) can
be used instead of the charge as a unit to store information dynamically. I have shown who
the steady-state frequency and plane of oscillation of an STO can be calculated analyti-
cally from the differential equation system. I have done an approximation about a general
coupled network of STOs, with this giving a mapping between the frequency-encoded
input and the phaseshift-encoded output of an STO array.

I have examined how the phase shift between two oscillators depend on the input
current difference and the coupling weight. these equations can be used to design simple
coupling of oscillatory network.

I have shown through two examples how these methods can be used in practice. I have
calculated and simulated two different networks for topographic, image processing tasks:
one for simple edge detection and one for a complex spatial change detection.

In this dissertation I wanted two show, how we have to consider topographic constraints
during algorithm development. What we can do to avoid these constraints, and also how
they can help us to design topographic algorithms to solve even non-topographic problems.
In the following year topographic thinking and topographic algorithm will be extremely
important, because on the nanoscale only cellular, local couplings are feasible in an efficient
way.
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Chapter 10

Appendix

Appendix A CNN summary

This section is based on the more detailed description of Tamás Roska and Leon Chua
[77]. The images were also taken from their book.

Cellular nonlinear/nanoscale/neural networks (CNNs) are built of parallel process-
ing structures with nonlinear dynamic units (cells) arranged topographically in a single
or multi-layer regular grid. The connectivity of each processor is local in space. The pro-
gramming (and the computation ) of the network is done by defining the local interactions.
These programming operators are called templates.

The time-evolution of the analog transient, “driven” by the template operator and
the cell dynamics, represents the elementary computation in CNN (results can be defined
both in equilibrium or non-equilibrium states of the network). The standard CNN equation
contains only first order cells placed on one layer of a regular grid and the interconnection
pattern is linear.

A cellular wave computer architecture that includes CNN dynamics as its main in-
struction, is the CNN Universal Machine (CNN-UM). The CNN-UM makes it possible
to efficiently combine analog array operations with local logic. Since the reprogramming
time is approximately equal to the settling time of a non-propagating analog operation it
is capable of executing complex analogic (analog and logic) algorithms. To ensure stored
programmability, a global programming unit is added to the array and for an efficient reuse
of intermediate results, each computing cell is extended by local memories. In addition to
local storage, every cell might be equipped with local sensors and additional circuitry to
perform cell-wise analog and logical operations.

Using the CNN-UM we are able to design and run analog and logic CNN wave algo-
rithms. It is known that CNN-UM is universal as a Turing Machine andwe as a nonlinear
operator. Therefore many problems can be solved by this machine.

Its structure suggests using it for image processing in numerous applications. Beyond
the classical image processing there are a lots of new methods of solving problems based
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on partial differential equations which need huge computational power. Most of these kind
of problems can be transformed into CNN algorithm too.

Another important scope is the biological modeling. The researchers found in early
times that CNN can be used for modeling some parts of the human visual system, mainly
the outer retina. Recently, a multilayer, multichannel retina model has been developed
[78]. Because of the simple structure of CNN, it is realizable in real hardware.

Standard CNN Dynamics

The cellular nonlinear network (CNN) is a locally connected, analog processor array
which has two or more dimensions. A standard CNN architecture consists of an M ×
N rectangular array of cells C(i, j) with Cartesian coordinate (i, j)i = 1..M, j = 1..N
(Figure 10.1)

Figure 10.1: MxN representation of CNN structure
MxN representation of CNN structure.

The sphere of influence, Sr(i, j), of radius of r of cell C(i, j) is defined to be the set of
all neighboring cells satisfying the following property:

Sr(i, j) =
{
C(k.l)| max

1≤k≤M,1≤l≤N
{|k − i| , |l − j|} ≤ r

}
(10.1)

where r is a positive integer.

CNN Templates

The state of a cell depends on interconnection weights between the cell and its neigh-
bors. These parameters are expressed in the form of the template:
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A =


ai−1j−1 ai−1j ai−1j+1

aij−1 ai1j aij+1

ai+1j−1 ai+1j ai+1j+1

B =


bi−1j−1 bi−1j bi−1j+1

bij−1 bi1j bij+1

bi+1j−1 bi+1j bi+1j+1

 z = zij (10.2)

A template has two main parts, a feedforward and feedback matrixes. These parts
are called A and B templates. The z on Equation (10.2) is the offset (bias) term. In
the simplest case the template is given by 19 numbers, 9 feedback, 9 feedforward and
one bias terms. This 19 number template is an elementary operation of CNN-UM and
codes a complex spatial-temporal dynamics. An analogical algorithm might contain some
templates and logical operations. The following differential equation system describes the
dynamics of the network:

Cx
dvxij (t)
dt

= − 1
Rx

vxij (t) +
∑

C(k,l)∈Sr(i,j)
Aij;klvykl

(t)+

∑
C(k,l)∈Sr(i,j)

Bij;klvukl
(t) + zij

vyij (t) = f(vxij (t)) = 1/2(
∣∣∣vxij (t) + 1

∣∣∣− ∣∣∣vxij (t)− 1
∣∣∣),

i = 1,M ; j = 1, N

(10.3)

The figure of the given function can be seen on Figure 10.2. This is called standard
nonlinearity.

Figure 10.2: The output characteristic function of a CNN cell.

In the case where the values of Aij;kl; Bij;kl do not depend on i and j, the template is
space invariant. In most cases the value of the offset current does not depends on space
zij = z. Because of the regular 2D shape of the CNN, the value of a cell can be represent
by a pixel of a picture. This gray-scale value can be between white (-1) to black (1).
Sometimes we use fixed state mask whose values allow or permit the change of the values
of their cells. 3D CNN networks can connect like layers and this gives multi-layer CNN
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networks. Its differential equation is similar to Eq. (10.3):

Cxm
dvxmij (t)

dt
= − 1

Rxm
vxmij (t)+

P∑
n=1

(
∑

C(k,l)∈Sr(i,j)
Amn;ij;klvynkl

(t) +
∑

C(k,l)∈Sr(i,j)
Bmn;ij;klvunkl

(t)) + zmij

(10.4)

where p is the number of layers, m is the current layer, and Amn and Bmn give the
connection between n and m layers. For the solution of a given example, we have to give
the input U , x(0) initial state and the templates with the algorithm. The result is Y after
running the transient. In most cases we can work with predefined templates.

CNN Universal Machine

The CNN Universal Machine (CNN-UM) is based on a CNN. The architecture of and
extended CNN-UM cell can be seen on Figure 10.3. This is the first programmable analog
processor array computer with own language and operation system whose VLSI implemen-
tation has same computing power as a supercomputer in image processing applications
[66]. The extended universal cells of CNN-UM are controlled by global analogic program-
ming unit (GAPU), which has analog and logic parts: global analog program register,
global logic program register, switch configuration register and global analogic control
unit. Every cell has analog and logical memories as well.

Figure 10.3: The architecture of a CNN Universal Machine cell

Appendix B Xenon Architecture

The Xenon_v3 chip [38] is a 3D integrated scalable focal-plane processor array based
on digital CNN technology. The chip contains 8×8 cells, processing cores. The chip contains
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On-chip sensors made by Indium-Gallium-Arsenide and each cell is prepared to process
an 8× 8 pixel array1. Altogether the chip can execute computations on a 64× 64 image.
The Neighboring cells are directly interconnected which gives the possibility to read from
the memory of the neighboring cells/cores in one clock cycle. This Gives the possibility to
implement operations based on large kernels (even 15 × 15 efficiently). The structure of
the Xenon chip can be seen on Figure 10.4.

Figure 10.4: The schematic architecture of the Xenon_v3 chip. The connection of the
Xenon cores can be seen on the left side of the image (the cores are noted as c and
the connections are represented by the lines). Every core contains an 8 × 8 focal plane
sensor array, this can be seen on the right side of the image. Apart from the sensors every
core contains a multiplexer, an analog-digital converter, an arithmetic logical unit, and a
relatively large memory implemented by SRAMs.

The processing cells/cores can be operated by a 100Mhz core clock. Every processing
unit has a relatively large (512 byte) memory that can be addressed both bit-wise and
byte-wise and both signed and unsigned values can be handled in the data path. The
structure of the processing cells can be seen on Figure 10.5.

Each of the cores has a digital arithmetic core that is capable of solving simple arith-
metical tasks by 16 bit precision like: addition, subtraction, multiplication, comparison,
absolute value calculation, barrel shifting. The arithmetic unit contains a 9× 9-bit signed
hardware multiplier, a 24-bit accumulator and 8-bit general purpose registers. The struc-
ture of the arithmetic unit can be seen on Figure 10.6.

Each core has also a dedicated morphology unit, which can process 8 elements (8 pixels)
in a parallel way. The morphological unit is able to execute bit-wise logical operations like:
AND, OR, XOR, NOR. . . . The structure of the morphological unit can be seen on Figure

1this amount is scalable
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Figure 10.5: The schematic architecture of a Xenon_v3 core.

Figure 10.6: The structure of the arithmetic unit of a Xenon core
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10.7.

Figure 10.7: The structure of the morphological unit of a Xenon core

The cores are also integrated with a 8×8 InGaAs/InP diode focal plane sensor array [39]
with 1 nAmp to 1 uAmp range integration type diode interface through which the input
can easily be uploaded directly to the memory of the processing cores.

The Program scheduler of the chip contains a 1024 instructions deep FIFO (with stall,
standby, full-empty flags). The chip contains approximately 600,000 transistor (40% for
logic, 40% for memory, 20% for digital analog conversion). The size of the chip is 0.23mm2

with (5× 5mm2 die size). The chip was manufactured with UMC 0.18 micron technology.
The peak power consumption of the chip is between 20 − 100mW . The Input/Output
speed of the chip is 32 bit at 80MHz. The device designed for on-chip image acquisition
and preprocessing, local adaptation (masking based on image content) and Pixel-wise
operations (absolute value calculation, gamma correction, squaring).

Some example operation which can be implemented in an efficient way on the device:
linear convolution (filtering up to 15 × 15 kernel), nonlinear operations (like: grayscale
morphology, median, other rank-order filters, anisotropic diffusion) binary morphology
(dilation, erosion, skeleton (up to 15× 15 kernel)).

The Xenon chip is capable of operating with 30 giga operation per second (GOPS),
which is an amazing performance considering its size and power consumption 2. Which
makes it ideal not only for image processing but also to solve optimization task in mobile
environments.

2less than 20 mW approximately 5mW in average
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Appendix C Genetic Algorithm

This section is based on [22], [24] and [79].
Genetic algorithm (GA) is a heuristical search method that mimics natural evolu-

tion. This heuristic is routinely used to generate useful solutions to optimization and
search problems. Genetic algorithms can generate solutions to optimization problems us-
ing techniques inspired by natural evolution, such as inheritance, mutation, selection, and
crossover. However these operations are not always used together in every version of genetic
algorithms.

In a genetic algorithm, a population of strings (called chromosomes, genotype or
genomes), which encode candidate solutions representing them in the state space of an
optimization problem, evolves toward better solutions. Traditionally, solutions are rep-
resented in binary as strings of 0s and 1s 3, but other encodings are also possible. The
evolution usually starts from a population of randomly generated individuals and hap-
pens in generations. In each generation, the fitness of every individual in the population
is evaluated (based on heursitcis), multiple individuals are stochastically selected from
the current population (based on their fitness), and modified (recombined and possibly
randomly mutated) to form a new population. The new population is then used in the
next iteration of the algorithm. Commonly, the algorithm terminates when either a max-
imum number of generations has been produced, or a satisfactory fitness level has been
reached for the population. If the algorithm has terminated due to a maximum number of
generations, a satisfactory solution may or may not have been reached.

Genetic algorithms find application in bioinformatics, phylogenetics, computational
science, engineering, economics, chemistry, manufacturing, mathematics, physics and other
fields.

A typical genetic algorithm requires:

• a genetic representation of the solution domain (the state space of the problem),

• a fitness function to evaluate the solution domain (a heuristical evaluation of the
genomes).

A standard representation of the solution is as an array of bits. Arrays of other types
and structures can be used in essentially the same way. The main property that makes
these genetic representations convenient is that their parts are easily aligned due to their
fixed size, which facilitates simple crossover operations. Variable length representations
may also be used, but crossover implementation is more complex in this case. Tree-like
representations are explored in genetic programming and graph-form representations are
explored in evolutionary programming; a mix of both linear chromosomes and trees is
explored in gene expression programming.

3hence these are the straight forward represnetation on a common computer
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The fitness function is defined over the genetic representation and measures the quality
of the represented solution. The fitness function is always problem dependent. For instance,
in the knapsack problem one wants to maximize the total value of objects that can be put
in a knapsack of some fixed capacity. A representation of a solution might be an array of
bits, where each bit represents a different object, and the value of the bit (0 or 1) represents
whether or not the object is in the knapsack. Not every such representation is valid, as the
size of objects may exceed the capacity of the knapsack. The fitness of the solution is the
sum of values of all objects in the knapsack if the representation is valid, or 0 otherwise.
In some problems, it is hard or even impossible to define the fitness expression; in these
cases, interactive genetic algorithms are used.

Canonical operations of the Genetic Algorithm

The following four methods are the fingerprints that determine genetic algorithms
They can be found in every variants and alterations.

• 1- Initialization of the population

• 2- Fitness (weight) calculation for every entity

• 3- selection and recombination

• 4- mutation

And after the fourth step the iteration of steps 2,3,4 till a previously given time con-
straint, or until we can find the optimal solution. (the N-queen problem uses the second
version because the fitness of the optimal solution is known. This weight is not known in
every case, however this will not effect or change the steps in the iterations)

During each successive generation, a proportion of the existing population is selected to
breed a new generation. Individual solutions are selected through a fitness-based process,
where fitter solutions (as measured by a fitness function) are typically more likely to be
selected. Certain selection methods rate the fitness of each solution and preferentially
select the best solutions. Other methods rate only a random sample of the population, as
the former process may be very time-consuming.

The next step is to generate a second generation population of solutions from those
selected through genetic operators: crossover (also called recombination), and/or mutation.

For each new solution to be produced, a pair of "parent" solutions is selected for
breeding from the pool selected previously. By producing a "child" solution using the above
methods of crossover and mutation, a new solution is created which typically shares many
of the characteristics of its "parents". New parents are selected for each new child, and
the process continues until a new population of solutions of appropriate size is generated.
Although reproduction methods that are based on the use of two parents are more "biology
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inspired", some research [80] [81] suggests that more than two "parents" generate higher
quality chromosomes.

The detailed description of the operators are the following:

Initialization

Once the genetic representation and the fitness function are defined, a GA proceeds
to initialize a population of solutions (usually randomly) and then to improve it through
repetitive application of the mutation, crossover, inversion and selection operators. Initial-
ization At this step we will create random strings (with genomes according to the problem
representation). Each genome codes a possible solution candidate, representing a point in
the state-space Our aim is to create the most diverse population possible and cover the
entire stat-space. The optimization of this operation is always problem dependent. The
convergence of the algorithm does not depend on the initial population if the mutation
rate and the number of entities is relatively high, in this case the algorithm will always
converge to the optimal solution with probability one.

Initially many individual solutions are (usually) randomly generated to form an initial
population. The population size depends on the nature of the problem, but typically
contains several hundreds or thousands of possible solutions. Traditionally, the population
is generated randomly, allowing the entire range of possible solutions (the search space).
Occasionally, the solutions may be "seeded" in areas where optimal solutions are likely to
be found.

Fitness Calculation

We will calculate a fitness (weight) value for every genome. This value represents a
distance between our point and an optimal point in the state space. The metric of the
distance is based on a problem dependent heuristic.

The selection of this heuristic is a key part of the algorithm, and an extremely difficult
task. however we do not want to investigate this problem in this article. There are published
and well known fitness functions, heuristic metrics for a large number of problems. e
will calculate a fitness (weight) value for every genome. This value represents a distance
between our solution candidate and an optimal solution in the state space. The metric of
the distance is based on problem dependent heuristics. Selecting an appropriate metric is
a key question, I base our choice on well-known, published suggestions.

Selection of Parents

In case of the ’general’ GA selection is calculated globally. During this step we select the
genome we want to conserve, and use in the next iteration, and overwrite the unnecessary
elements.

For selection the following methods are used:
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Deterministic Sampling The best genome, genomes with highest fitness values are
selected. The genomes are ordered, and after this the first X % is selected, and the other
genomes are cleared. X is previously declared as a parameter.

The commonly used sampling methods are:
-Stochastic Universal Sampling also known as roulette wheel sampling.
During the generation of the new population ever genome has a probability to be

chosen relational to its fitness.
-Stochastic Tournament Selection
A composite method from the previous two version. First we select n genomes with

Stochastic Universal Sampling, and after this from the n elements we will chose k genomes
(usually k=1 or k=2) and these genomes will be conserved as parents for the next pop-
ulation. We will repeat the sampling until the new population will reach the size of the
previous population

-Remainder Stochastic Sampling
Also a composite method created from the first two selection mechanism. We normalize

the weights for every entity, in a way that the sum of the weight will be number of genomes
in the population. the selection is based on these normalized weights. First we will select
every genomes deterministically as many times as the integer part of their fitness. After
this we will create an other weight from the remainder part of the fitness values and
perform a stochastic resampling based on them. e.g.: after the normalization the fitness
value is 2.65, it means that the genome will be used twice in the gene pool of the next
iteration, and it will have a 0.65 likelihood (not probability) for the stochastic selection.

Recombination

There are two different versions of this operator: single-point and multi-point recom-
binations.

In case of a single-point mutation we will choose one gene in the genome, and until
this point all the genes will be taken from one parent and after this point all the genes
will be copied from the other parent. Single-point mutation can only be used in case of
two parents.

Multi-point mutation is a repeated version of single-point mutation for more parents.
we will select more genes in the genomes, and the genes between this selection are de-
termined by one parent. In an extreme case it is also possible the that all the genes are
inhereted from a different father.

Mutation

Mutation performs a random jump in the state space of problem in the neighborhood
of a candidate solution
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There exist many mutation variants, which usually affect one or more loci (genes or
components) of the individual. The mutation randomly modifies a single solution whereas
the recombination acts on two or more parent chromosomes.

There are also two different, simple version for this step: We have an upper limit
for the number of changing genes in a genome, or we do not have an upper limit,and
the number of changing genes is arbitrary. For every gene we have a probability, that
the selected gene will change its value. There are a large number of heuristic and non
heuristic version for improving the mutation, however all these steps are usually based on
the problem, and its representation. The mutation can be value dependent or independent,
in the value dependent case the new gene will be an altered version of the previous gene
(larger/smaller with a predefined value) in case of the value independent case the new
gene will be a randomly selected value.

Termination Criterion

These processes ultimately result in the next generation population of chromosomes
that is different from the initial generation. Generally the average fitness will have increased
by this procedure for the population, since only the best organisms from the first generation
are selected for breeding, along with a small proportion of less fit solutions, for reasons
already mentioned above.

Although Crossover and Mutation are known as the main genetic operators, it is pos-
sible to use other operators such as regrouping, colonization-extinction, or migration in
genetic algorithms [82].

This generational process is repeated until a termination condition has been reached.
Common terminating conditions are:

• A solution is found that satisfies minimum criteria

• Fixed number of generations reached

• Allocated budget (computation time/money) reached

• The highest ranking solution’s fitness is reaching or has reached a plateau such that
successive iterations no longer produce better results

• Manual inspection

• Combinations of the above

Appendix D Particle Filter

This entire chapter and the description of the theory were based on the lecture notes
of Ramon van Handel used at Princeton University [47]. I will also refer to [48] and [49]
for the relevant mathematical theory.
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Particle filter (PF), also known as a sequential Monte Carlo method (SMC), is a
sophisticated model estimation technique.

Particle filters are usually used to estimate Bayesian models in which the latent vari-
ables are connected in a Markov chain — similar to a hidden Markov model (HMM), but
typically where the state space of the latent variables is continuous rather than discrete,
and not sufficiently restricted to make exact inference tractable (as, for example, in a linear
dynamical system, where the state space of the latent variables is restricted to Gaussian
distributions and hence exact inference can be done efficiently using a Kalman filter). In
the context of HMMs and related models, "filtering" refers to determining the distribution
of a latent variable at a specific time, given all observations up to that time; particle filters
are so named because they allow for approximate "filtering" (in the sense just given) using
a set of "particles" (differently weighted samples of the distribution).

Particle filters are the sequential (online) analogue of Markov chain Monte Carlo
(MCMC) batch methods and are often similar to importance sampling methods. Well-
designed particle filters can often be much faster than MCMC. They are often an alter-
native to the Extended Kalman filter (EKF) or Unscented Kalman filter (UKF) with the
advantage that, with sufficient samples, they approach the Bayesian optimal estimate, so
they can be made more accurate than either the EKF or UKF. However, when the simu-
lated sample is not sufficiently large, they might suffer from sample impoverishment. The
approaches can also be combined by using a version of the Kalman filter as a proposal
distribution for the particle filter

Markov Process

Memoryless stochastic processes are called Markov processes, they all have the marko-
vian property:

P (Xt+1 ∈ S|X0X1 . . . Xt) = P (Xt+1 ∈ S|Xt) (10.5)

The probability that during the next experiment S will occur depends only on the current
state Xt, and independent from the previous states. 4

This models are commonly used in modeling. The main reason behind this is that
our physical world is memoryless. The physical laws are memoryless and they are all
defined only by current states and the previous states have no effect5 on the current state
transition. This model is also a general and strong tool to develop generally applicable
mathematical models and robust methods.

The state transition can be defined by a transition matrix:

Qij = P (Xt+1 = j|Xt = i) (10.6)
4Xt can be a multidimensional variable.
5directly
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Qij defines a probability, that our process will step from state i to state j. When Q is
independent from t we call the process a homogeneous Markovian process, if it depends
on t the process is heterogeneous.

Here we will restrict ourselves to homogeneous Markovian processes. 6

Hidden Markov Models

A discrete time Markovian process containing two state variables is called a Hidden
Markov Model. One of this processes is the observable and the other is the hidden state 7.
The process can be noted by (xt, yt), where x is the hidden and y is the observable state.

We assume that xt follows Markovian dynamics given by the recursion

xt+1 = ϕ(xt, e1(t+ 1)) (10.7)

where ϕ : R2 → R is a fixed (non-linear) function and e1(t) is an IID (Independent
identically distributed) sequence independent of the initial state x0. The transition density
of xt will be denoted by q(v, w), that is,

P (x1 ∈ A|x0 = v) =
∫
A
q(v, w)dw

for sets A ⊂ R and for any v ∈ R.
The observations are assumed to be a function of the system state blurred by additive

noise, that is
yt = ψ(xt) + e2(t) (10.8)

for some (non-linear) function ψ : R → R and an IID noise sequence e2(t), independent
of e1(t), x0. We denote by r(w) the density function of the law of e2(t), i.e.

P (e2(t) ∈ A) =
∫
A
r(w)dw, A ⊂ R.

Then r(yt−ψ(x)) is the “likelihood function” expressing how x is likely to be the state
of the system at time t when the observation is yt.

The applications of this kind of processes is extremely versatile, however they can be
divided into different subgroups:

• processes where the original state 8 can not be observed directly, only through distor-
tion and noise. E.g: the general channel model: In this case our aim is to approximate
X based on the values of Y .

• The other case is, when we would like to estimate and predict Y 9, however the
state transition of Y can not be seen or derived directly. Sometimes it is useful to

6however the theories and methods are easily applicable to heterogeneous processes too
7which usually can not observed directly
8Xt that we would like to process or estimate
9the current and previous values can be observed
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introduce a hidden value X in the background, which has a simple state transition
and also effects/determine the values of Y E.G: A stock process (Y ) can have difficult
dynamics, and usually we are interested in stock prices, however to introduce the
manufacturing process (X) will simplify the state transition and determine 10 also
the stock price.

Filtering Equation-Filtering Recursion

The pair of processes (xt, yt) is a typical example of a hidden Markov model, see [83].
In applications one tries to compute

E[xt|yt, . . . , y1],

which is the best least-squares estimate of the hidden state xn based on the information
yk, . . . , y1 available at time t.

To do this, one needs the conditional law of xn knowing yk, . . . , y1, that is

µn|k(A) := P (xn ∈ A|yk, . . . , y1).

for A ⊂ R.
To simplify our notation we will use µk|k (approximate the current state) if k ≥ 0 we

can call µk|k=µk.
According to this notation:
If we examine µk and µk−1 we can obtain a recursion using Bayesian updating to

calculate µk, namely

µk+1(A) =
∫
A

r(yk+1 − ψ(u))
Mk+1

∫
R
q(v, u)µk(dv)du (10.9)

where Mk+1 is the normalizing constant

Mk+1 :=
∫

R
r(yk+1 − ψ(u))

∫
R
q(v, u)µk(dv)du

ensuring that µk+1 is a (conditional) probability.
With the initial condition: µ0(y0, A) =

∫
A
r(y0−ψ(u0))

M0

∫
R q(v, u)du Based on this equa-

tion we can derive a filtering recursion for any arbitrary HMM. This recursion is extremely
important in practice, because this way we can minimize our calculations in every step
and this gives us hope to implement online methods, capable of working real-time.

Discrete state space

When our state space is finite and discrete it is easy to calculate the probability of the
hidden state based on the observations, because the integral in (10.9) will be a discrete
summation and this can be calculated easily. We can also derive a simpler closed formula

10with an additional noise
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for the recursion equation based on the state transition and observation matrices, called the
Baum equation [84], determining the hidden values based on the previous observations.

If we would like to obtain not only one value, but more consecutive values in a tra-
jectory we can use the recursion 11 in both direction, resulting the forward-backward or
the Baum-Welch algorithm [85]. If we would like to maximize the conditional probability
based on Transition counting and occupation time for the whole trajectory, considering
the maximization of not one element at a time, but the probability of a trajectory we will
have the famous Viterbi algorithm [86].

Although in this case all the calculations are relatively simple and can be described
as matrix products and summations, in case of extremely difficult models, where in spite
of the discrete state space the problem representation can be too large to compute 12. In
this case we have to find an other method to avoid the calculation in every state (usually
the state transition affects only a few states, the state transition matrix is usually sparse;
and the observation/noise affects more states)

Linear Gaussian state space models

At some cases we can handle problems with infinite and continuous state spaces. In
these special case our state space is general, but our model is a special subclass of all the
possible problems. If we now that our model is a linear combination of Gaussian processes
13:

Xk = a+AXk−1 +Bξk (10.10)

and

Yk = b+ CXk−1 +Dηk (10.11)

In the previous equations Xk represents the hidden state, Yk the observations, ξk and
ηk are independent random variables with normal distribution and A,B,C,D, a and b are
arbitrary constants in the model (or constants matrices or vectors in higher dimension).
Because the linear combination of Gaussian processes will result a Gaussian process, we
are working in a subset of all the possible processes 14 Every conditional distribution in our
model will be Gaussian, all we have to do is to approximate the properties of this Gaussian
distribution. The only parameters are the mean vector and the covariance matrix. Based
on the dimension of the problem we are facing a subclass of the general problem again,
where our aim is not to approximate the hidden values directly but first to approximate
all the parameters. This is indeed a finite dimensional problem and it can be calculated
by a finite dimensional recursion, because our approximations are linear and considering

11or the Baum equation
12also in case of discrete,but infinite state-spaces
13or can be approximated with linear Gaussian processes
14the subset of Gaussian processes
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the previously described properties and the filtering equation will lead us to the famous
Kalman-filter [87].

If we have a nonlinear model, but it can be linearized in certain intervals, or can be
approximated as a series of linear functions we can use the extended Kalman-filter [88]
instead of the general filtering equation (10.9).

Hidden Markov Model and Particle Filtering

It is often the case that (10.9) is difficult to calculate and q is not available in an
explicit form. Then, instead of the unfeasible numerical integration, one often resorts to
particle filters which provide an effective method for computing (10.9) and thus also

E[xt|yt, . . . , y1] =
∫

R
uµt(du).

There are various implementations of particle filters, but they usually contain the four
steps explained below. A more detailed description can be found in [55] or [52]. We will
simulate K particles whose trajectories follow the state dynamics but are subject to a
selection mechanism based on observations.

Initialization (step 0)

We first draw initial values
ξi0 = ζi (10.12)

where i = 1, . . . ,K is the index for the different particles and ζi is an IID sequence with
a law of our choice, a guess for the true law of x0. 15

The time parameter t will range over t = 0, 1, . . . , T , where T is the time horizon for
our observations.

Each particle will have a weight that represents its accuracy/distance from the real
state. We first set wi0 = 1/K so all the initial weights are assumed to be equal. 16

Error calculation (step 1)

Let us assume that we have already generated the trajectories of the particles ξis,
i = 1, . . . ,K for s ≤ t. We now have to calculate the “fitness” of each particle, based on
the next observation. We set Eit = yt − ψ(ξit) for the “error” of particle i in the light of
the observation yt.

Resampling (step 2)

Set new weights for every particle according to the likelihood function above:

w̃it = r(Eit) = r(yt − ψ(ξit)), (10.13)
15Here I am not dealing with the question of how to choose this law optimally.
16We do not have any observation about the system yet, hence this seems to be a reasonable choice
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then normalize the weights:

wit := w̃it∑N
j=1 w̃

j
t

. (10.14)

We choose our new set of particles by drawing from our sample based on the discrete
probability distribution determined by the weights wit:

ξ̂it := ξηi
t , (10.15)

where the ηi are IID random variables taking values in {1, . . . ,K} such that P (ηi = j) =
wjt , for i, j = 1, . . . ,K.

Iteration (step 3)

Go one step ahead with all the particles according to the rule in model (10.7):

ξit+1 := ϕ(ξ̂it, ei1(t+ 1)). (10.16)

here the ei1(t+ 1) are K IID copies of e1(t+ 1).
Often it is more efficient to generate ξit+1 using a law other than that of e1(t + 1)

and then correct this bias by assigning appropriate weights to these new particles. With
this trick (called “importance sampling”) we can “lead” the particles towards a prescribed
region where we are the most interested in their behavior, see e.g. [55]. This method fits
our algorithm described below and it points to numerous further enhancements. However,
these are not in the scope of the present dissertation so for simplicity we stick to the above
setting and assume that we generate ei1(t+ 1) according to the law of e1(t+ 1).

After this we return to steps 1 − 3 and eventually ξit for all the time points 0, . . . , T
and for all i = 1, . . . ,K will be generated. If T and K are large enough then the (discrete)
distribution of the particles ξiT , i = 1, . . . ,K is hoped to approximate µT fairly well.
(This can be rigorously proven under suitable assumptions, see e.g. [62, 63, 64, 65, 89].)
In formulas, denoting by δw the one-point mass at w, we have

1
K

K∑
i=1

δξ̂i
T
≈ µT .

Hence one may take
1
K

K∑
i=1

ξ̂iT ≈ E[xT |yT , . . . , y1]. (10.17)

to estimate the hidden state xT .
[10]
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