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Abstract

Visual attention is the ability which allows us to direct our gaze rapidly

towards objects of interest in the visual environment. In this definition

“rapidly” means in real time (it is enough to think of its’ evolutionary

importance: detecting predators, preys, etc.), whereas the problem

concerning what are the “objects of interest” in a given moment, is

extremely complex: it depends on the systems’ actual activity, in-

ner state and different outer conditions as well. In a nutshell, visual

attention is a complex and difficult task, which is being performed

very effectively by living creatures, whereas it is extremely haltingly

imitatable for artificial systems, demanding enormous processing ca-

pacity. Mammalian attentional system consists of two different, but

closely related parallel working mechanisms: a reflex-like, involuntary

one, called “bottom-up” and a volitional one, called “top-down”. In

the present dissertation I describe the design, realization, adjustment

and testing of a bio-inspired (partially “neuromorphic”) bottom-up

attentional model, applying a CNN-based (Cellular Neural/Nonlinear

Network) mammalian multi-channel retina simulator. The included

parameters have been optimized based on human gaze direction mea-

surements during viewing complex dynamic natural scenes. Similarly,

the model’s accuracy has been determined by comparing its’ predic-

tions to measured human fixation locations. Overall it has performed

very well: the measured locations have been among the first four

predicted locations in more than 70% of the cases, for which the acci-

dental chance is less than 20%. Finally, I also report on some related

practical applications I have realized. These tasks have raised in the

“Bionic Eyeglass Project”, which aims to help the everyday life of

blind or visually impaired people.
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Chapter 1

Introduction

1.1 Preface

Attempts aiming to understand human vision dates back to Antiquity. Euclid

(˜300 BC) already wrote about perspectivity, that is, how the three dimensional

world can be mapped onto a two dimensional surface. But, in spite of some early

results, ancient Greeks had a quite incoherent conception about vision. Aristotle

thought, that the eye emits light-beams – similarly to distance-indicators used

in our days. This idea had been transmitted by Arabic scientists (primarily

by Alhazen) to the western world and influenced the conception about vision

until the late 16th century. During this period, the fundamental problem was

the nature of the physical connection between the objects and the eyes. Worth

noting, that although the basic concepts about vision were completely incorrect,

based on the given ideas, Alberti and Brunelleschi were able to work out the

theory of perspective pictures early in the 15th century, and that spectacles were

in common use by that time, notwithstanding the complete absence of any theory

to explain why they worked.

According to an alternative idea, conceived during these centuries, the ob-

jects send out copies of themselves, which are captured by the eye. Under this

hypothesis, the fundamental questions were targeting the physical nature of these

copies, as well as the anatomical background of their incorporation.

Finally, the reassuring solutions to these questions have been given by Kepler

in the beginning of the 17th century, who provided a theoretical explanation of

1
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the optics of the eye in 1604. Soon after, in 1624 Christopher Scheiner in a direct

experimental demonstration showed, that an optical image is indeed formed on

the inside rear wall of the eyeball. These two events have actually grounded

modern vision research.

Regarding the problem of attention – although the word itself has a Latin

root and had already been used in the Ancient world – Descartes is the first who

mentions it in a scientific context in 1649 [11]. He related it to movements of the

pineal body acting on the animal spirit:

“Thus when one wishes to arrest one’s attention so as to consider one

object for a certain length of time, this volition keeps the gland tilted

towards one side during that time.”

After him, Hobbes, Malebranche and others formulated some interesting ideas,

and for the first time, Leibnitz (1765) and Wolff (1734) introduced the idea of

apperception, by which they interpreted attention as a ‘gateway’ to consciousness:

“In order for the mind to become conscious of perceived objects, and

therefore for the act of apperception, attention is required.”

In other words, attention implements an information-processing bottleneck that

allows only a small part of the incoming sensory information to reach short-term

memory and visual awareness [6, 12, 13].

In spite of these rather philosophical or sometimes naive explanations of vision

and attention, our aim is to find a restricted, however efficient model for some

kind of real-time tasks.

Namely, in our days, the phrase visual attention is basically used in the fol-

lowing sense: [6, 14, 15, 16, 17, 18, 19].

It is an ability, which allows the (living or artificial) creature to direct its’ gaze

rapidly toward objects of interest in the visual environment.

This definition has two important passages: Firstly, “rapidly”, which means in

real time. This becomes obvious, if one thinks about the evolutionary background

of visual attention: for a living creature, it is fundamental to detect possible
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predators in the moment they appear, signals from mates, possible preys etc., no

matter how cluttered the visual scene is. Secondly, “objects of interest”, which

means the ability of identifying those objects or regions in the visual environment,

which contain the actually important information. But the problem concerning

what is important in a given moment, is extremely complex. It depends also on

the systems’ actual activity, inner state and different outer conditions as well.

To conclude, visual attention is a complex and difficult task, which is being

performed very effectively by living creatures, whereas, as it has turned out,

it is extremely uneasily imitatable for artificial systems, demanding enormous

processing capacity.

Though, despite of all difficulties, visual attention modeling is a very active

research area. From an engineering viewpoint, a system that attends, determi-

nates the “region of interest” (ROI), possesses very advantageous features, since

it does not have to process all the data that is present in the visual environment,

but only a small part of it. Thus, the quality of the processing can be increased

significantly, whilst the time necessary for it can be decreased, by omitting the

redundant and/or actually unimportant data.

1.2 Main objectives

Mammalian (and thus partially human as well) visual attentional mechanism is

composed of two different, but closely parallel working methods: one of them is

a fast, reflex-like process, which directs ones’ gaze toward sudden, unexpected

stimuli, for example toward a flickering red lamp on the street, while the other is

a slower, intentional method, which originates in the high brain areas (primarily

in the prefrontal cortex). One – for example – is able to find his key in a crowded

drawer with the assistance of this latter process, which is called “top-down”(TD),

after its’ projection direction: it originates in the “top” (high brain areas) and

the signal travels “down”, that is, towards the eyes. In contrast, the reflex-like

method is called “bottom-up”(BU), which indicates that it originates in “low”

areas, namely in the retina, and projects towards the cortical regions, where the

stimuli is appercepted.



4 1. INTRODUCTION

General neuromorphic top-down attention models in our days do not yet exist,

primarily because the underlying mechanisms are fundamentally not yet under-

stood: little is known about awareness, conscious decisions and the structures

materializing them. In this top-down mechanism cognitive human aspects might

play an important role as well. In contrast, the areas to which the bottom-up

method can be basically tied to (primarily the retina, LGN, V1 and some other

“low” areas) are much better described and understood [20] [21]. Besides, from an

engineering viewpoint, the intentional search (TD process) modifies the processes

used in the BU method in well-definable points (for example at the weighting of

the channel-based saliency maps, see chapter 2.1 and 3.1, [6]). Furthermore, ex-

periences show, that the BU process can be surprisingly effective in many cases,

thus many applications can also be based on it. Probably these are the main

reasons why the majority of the attempts aim to realize the bottom-up method.

The primary goal of the work being carried in the present dissertation, is to

design, implement, effectuate and finally to test a general, partially neuro-

morphic bottom-up attentional model, which on the one hand, stays as close as

possible to the biological basics in its’ structure, and on the other hand, gives

verifiable predictions which can be compared to “real” human fixation locations.

Of course, an essential goal has been to bring the accuracy of the model as high as

possible, where the “accuracy” has been defined by comparing the models’ pre-

dictions to measured human fixation locations. Two separate sections (3.2 and

4.1) deal with the placement of the introduced model among other approaches by

detailing the differences and novelties compared to other models. Additionally,

a fundamental objective has been to apply the model – or its’ parts – in some

real-life problems as well.

1.3 Framework of the dissertation

The basic topic concerning the present dissertation is modeling visual attention.

Figure 1.1 summarizes the framework of the thesis, and in particular, how the

different chapters relate to each other (the chapter numbers are depicted with

bold italic letters).
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The second chapter – right after this introduction – describes the biological

background of visual attention: how it operates in living creatures, what the main

methods and principles are and details the involved brain areas. This is followed

by the corresponding models known from the literature (chapter 3), whereas chap-

ter 4 describes the model I have realized during my Ph.D. years, emphasizing the

novelties and differences compared to the existing ones.

The proposed model initially had included two important, yet unknown pa-

rameters, namely (1) the receptive field sizes belonging to the different channels,

and (2) their channel weights (detailed in section 4.2). The values of these param-

eters have been estimated via human gaze direction measurements – the set-up

of the corresponding experiment is described in the Appendix B. The next two

chapters refer to the methodology I have used for the estimation of the quested

parameters: the receptive field sizes and the channel weights, in chapters 5 and

6, respectively. Chapter 7 details the validation results of the model adjusted by

the previously estimated values. The verification data relies on the comparison

of measured human gaze directions to the predictions of the model.

The next chapter (8th) somewhat stands alone: it is about the already exist-

ing practical applications, which are tasks raised in the so called “Bionic Eyeglass

Project”. Finally, the last chapter summarizes the new scientific results, itemized

in the form of separate points (theses).

The basic definitions and abbreviations are collected together in the Appendix

C.
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Figure 1.1: Framework of the dissertation.



Chapter 2

The Background of the Model:
Visual Attention in Living
Creatures

Selective visual attention refers to the mechanism by which a creature can di-

rect its’ gaze rapidly towards objects of interest in the visual environment. This

mechanism allows only a small part of the incoming sensory information to reach

the short-term memory and visual awareness [22], permitting, in this sense, the

creature to break down the complex problem of scene understanding into a rapid

series of computationally less demanding, localized visual analysis tasks [6]. Vi-

sual attention is often compared to a rapidly shiftable spotlight which scans the

visual environment either covertly (when the eyes remain fixed) or overtly (when

the direction of the gaze follows the focus of attention).

Of course, vision as a complex task, is not merely attentional, since one can

derive a coarse understanding from short appearances of visual scenes being so

brief, that they do not leave time for attention to explore the stimuli. Thus,

vision appears to rely on an elaborated cooperation of a coarse, massively par-

allel, full-field pre-attentive analysis system and a more detailed, circumscribed,

sequential analysis system [14].

Biologists often distinguish three main functions, which compose visual at-

tention in living creatures [23, 24]:

The first component is the selection, which contains those mechanisms that al-

7
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low the creature to sort out those sensorial stimuli that agree to the creature’s

actual purpose.

The second one, wakefulness, refers to the mechanisms that maintain the con-

tinual attentional level.

And finally, the third one is called control, which enables the dynamic atten-

tional shifts, according to the creature’s actual condition, purpose and task.

(Although this chapter is dedicated solely to the biological background, I antici-

pate that from an engineering viewpoint, only the selection, that is the first group

is important, since the sustaining and the releasing of attentional resources do

not appear as a problem in artificial systems. This is the reason why “visual at-

tention” and “selective visual attention” often appear as synonyms in engineering

literature dealing with visual attention modeling.)

2.1 Bottom-Up & Top-Down

As mentioned in the Introduction, visual attention basically consists of two mech-

anisms: a volitional one, which is called “top-down” or “task-dependent”, and

a stimulus-driven, which is respectively called “bottom up” or “image based”

process. Top-down attentional selection is determined by the current goals of

the organisms and is mediated by the top-down modulator projections from the

front-parietal areas to the visual cortex [25, 26]. For example, searching for a

red pen in a crowded drawer will result in a top-down attentional facilitation of

the visual cortical neurons, coding the red color and suppressing those which are

selective for other colors [27, 28, 29]. It should be noted that in the top-down pro-

cess there might be a human cognitive aspect involved. Actually, the exact fully

neuromorphic model of the bottom-up pathway is not known (not to mention the

top-down). On the other hand, bottom-up attentional selection is determined by

the physical properties of the visual input. In case of abundant visual input -

consisting of many different visual objects - there is a competition between the

neural representations of different objects that are simultaneously present in the

visual scene. Bottom-up attentional selection refers to the mechanism as a result

of which the most salient visual objects of the scene - according to its’ physical
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properties - gain processing advantage and are going to “capture our attention”

and evoke an eye movement towards it. For a comparison see table I.

Table 2.1: The main features of the Bottom-Up and of the Top-Down attentional
mechanisms; a comparison

Bottom-Up Top-Down

Image-based Task-dependent
Originates in the low brain areas
(retina) and projects towards the
high regions (prefrontal cortex)

Originates in the high brain areas
(prefrontal cortex) and projects
towards the low regions (retina)

Involuntary (reflex-like) Voluntary
Takes 25 ˜50 ms Takes ˜200 ms
It comes before getting aware of
the scenery

The process of the visual features
can be adjusted voluntarily ac-
cording to the a task

example: a flickering red point in
front of a gray background

example: searching for a key in a
crowded drawer

2.2 The Involved Brain Areas

Although the bottom-up(BU) and the top-down(TD) methods work in a strongly

parallel way, both processes can be bounded to specific brain areas. The most

important brain structures involved in the BU process are primarily the retina

(section 2.2.1), the Lateral Geniculate Nucleus (LGN), the Colliculus Superior

(CS) and the V1 (section 2.2.2). From that level, the brain areas are more tightly

bounded to the TD process. From V1 the processing dissolves into two main

pathways: one is the “where pathway”, which comes from the periphery of the

retina and goes towards the posterior parietal cortex, and the other is the “what

pathway”, which comes from the fovea and directs to the infero-temporal cortex.

The former participates in the movement and spatial information processing,

while the latter contributes to the object recognition - of course, in a tight co-

operation (section 2.2.3).

During the discussion of the visual process, it is important to keep the three main

organizing principles in view, which characterize the entire visual processing and

structure. These are:
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• Topography

• Parallel processing

• Hierarchy

2.2.1 The Retina

The retina is a multi-layered sheet of nerve cells at the back of each eye which

converts light into electrical signals, which are transmitted to the brain through

the optic nerves and tracts (figure 2.1). Since its’ functioning and structure has

a fundamental role in the developed model, it is expedient to devote a separate

section for the structure and the functioning of the living retina.

Figure 2.1: The structure of the retina: it is a multi-layered sheet of nerve cells at
the back of the eye which converts light into electrical signals that are transmitted
to the brain through the optic nerves and tracts. The picture is from [1]

Mammalian visual system perceives the outside world through several different

channels. These spatio-temporal channels arise in the retina and persist until the

high brain areas - whilst several processing steps occur on them. The question

referring to how and where do these unite into a uniform visual perception is

still open. Between the photo receptors (which intercept the photons) and the

ganglion cells (which axons form the eye’s “output”, the optic nerve) there are

several layers and cell-types which already start to process the information in

the retina. The retina has ten histological layers. (figure 2.2) The information

flows through the vertical pathway composed by the photoreceptors, the bipolar
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cells and the ganglion cells. Among these layers the two synaptic strata lie: the

Outer Plexiform Layer (OPL) between the photoreceptors and the bipolar cells,

and the Inner Plexiform Layer (IPL) between the bipolar cells and the ganglion

cells, which are ordered stacks of synaptic planes. These strata primarily do not

convey the information but they modify it [20][30].

Figure 2.2: Organization of the retina in a schematic vertical view. In reality
the retina is packed with cells, and there is hardly any extracellular space. The
“vertical pathway” is composed by the photoreceptors (rods and cones), bipolar
cells and ganglion cells, among which layers lie the two synaptic strata: the Outer
Plexiform Layer between the photoreceptors and the bipolar cells, and the Inner
Plexiform Layer between the bipolar cells and the ganglion cells. The picture is
from [2].

In the first step light is captured by the photoreceptors: rods and cones. In

daylight cones are active, while in dim lighting conditions the rod-system works.

Nevertheless, in most of the mammalian retinas rods outnumber cones by around
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20-fold, there are usually about 8-10 times more neurons in the retina driven by

cones than by rods [30].

The next cell-group of the vertical pathway consists of the bipolar cells, of which

a typical mammalian retina has around 9-11 different types of. These cells con-

nect the inner and the outer retina. They are explicitly oriented: the dendrites

always go towards the photoreceptors while the axons branch in the inner plexi-

form layer. The approximately ten bipolar cell types define the decomposition of

the visual information: they compose different channels, which join to the differ-

ent ganglion cell types selectively. Bipolar cells stimulated by cones are usually

called “cone-bipolars”. All cones release glutamate, but different bipolars react

differently to this neurotransmitter: about the half of them has ionotropic glu-

tamate receptors: these get depolarised by glutamate through a cation channel,

while the other half has sign-inverting synapse: these get hyperpolarised through

metabotropic glutamate receptors (mainly mGluR6).

Since photoreceptors get hyperpolarised by stimulation (practically: light), those

bipolar cells that respond to stimulation with hyperpolarisation are sign conserv-

ing : these are the OFF-cells, while those that get depolarised by the photorecep-

tors hyperpolarisation are sign-inverting : these are the ON-cells. This distinction,

which has evolved in the first retinal synaptic step, remains throughout the whole

visual system. Furthermore, both the ON and OFF classes subdivide into further

distinct classes according to the response-time: there will be separate channels

for high-frequency (transient) and low-frequency (sustained) information. The

individual bipolar cell-types branch at different layers of the IPL, where they find

different amacrine and ganglion cells as possible synaptic partners.

The output of the retina is formed by the axons of the ganglion cells. In

mammals there are approximately a dozen types of them, which can be classified

by dendritic arbor, structure, physiology, and branching level. The dendrites of

the different ganglion cell-types ramify at distinct strata of the inner plexiform

layer, and they embody different representations, features of the visual world [21].

The width of the dendritic arbor is the area that the given cell is able to perceive;

this area, that is the patch of the visual field that any single neuron monitors, is

called that cell’s receptive field (RF). On the layer of the ganglion cells appears
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the central-peripheral organization of the RFs. In this, a circle-shaped central

part is surrounded by an antagonistly responding peripheryal part. Homogeneous

light covering the whole RF results in no response (figure 2.3).

Figure 2.3: The patch of the visual field that any single neuron monitors is called
the cell’s receptive field. Center-surround receptive fields arise from a pool of
photoreceptors. The photoreceptors can either act to excite or to inhibit a down-
stream cell. In an on-center bipolar cell, light hitting the central photoreceptors
will be excitatory and light in the surround will be inhibitory. In an off-center
bipolar cell, light in the center will be inhibitory, and light in the surround will
be excitatory [3].

2.2.2 Between the Retina and the V1

After the nerves leaving the eye cross in the chiasma opticum, (in humans about

the 50% of the nerves changes brain-side here) about 80% of the fibre projects to

the thalamic nucleus LGN, while the remaining 20% goes to different midbrain

structures from which the Superior Colliculus (SC) is the most important (figure

2.4). These two visual centres are rich in different connections with other areas.

The SC is an ancient, more primitive area than the visual cortex. Besides the

visual stimuli, this area receives audio input as well. If the audio and the visual

stimuli appears at the same time, the generated response is much stronger. The
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principal role of this structure is supposedly to detect those objects, which are at

that moment further from the fixation point, but otherwise could be important

for some reason, and to direct the gaze towards them. Nevertheless, the SC is

not able to process vision in detail [31, 32].

Figure 2.4: Brain areas involved in vision and visual attention between the retina
and the Primary Visual Cortex (V1). After the nerves leaving the eye cross in the
chiasma opticum, most of the fibers project to the LGN, while the remaining go
to different midbrain structures, e.g. to the SC. Axons of the LGN cells project
to the V1.

The LGN consist of (in humans six) different layers. All of the layers have

a topographic map of the visual scene, which means that those points that are

adjacent in the outside world are represented by adjacent neurons in the LGN

as well. This topographic alignment is typical in the whole sensory system, from

the retina up to the high brain areas. In the LGN, the six topographic maps

are located in a way that the similar parts of the different maps lie right under

each other. Similarly to the retina, circle-shaped receptive fields belong to the

LGN cells, organized into oppositely responding central and peripheral parts.

Similarly to the topographic alignment, the receptive field organization is a basic

principle in the neuromorphic signal processing as well. An important difference

between the LGN and the retina is that the LGN’s peripheral cells inhibit much

stronger than those in the retina, adding up in a more emphasized contrast.
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From here, the axons of the LGN cells project to the V1, where more complex

processing begins. Important to note, that the direction of the information-flow

is not unidirectional, because the LGN receives surprisingly many signals from

the V1, which indicates significant top-down influence [33, 34]. From here, the

information process persists until the prefrontal cortex through several steps.

2.2.3 Higher Areas

Figure 2.5 shows the two main pathways starting from V1 (“Visual cortex 1”,

“Striate cortex” or Brodmann area 17) [35][4][20]. Functions involved in object

recognition can be binded to the “ventral stream” (the lower pathway on the

figure), which is hence also called “what stream”. The process taking place here

is slower and more detailed than in the ‘Dorsal stream’. The STS (Superior

Temporal Sulcus), is the location of face recognition [4]. Many textbook include

this into the Ventral stream. Other important areas within the ventral stream

are the InferoTemporal cortex, (IT), which codes object features. Individual IT

neurons show preference for a particular pattern. Neurons that code for similar

objects or object features are organized into columns. Parahippocampal Place

Area (PPA) responds to places, Extrastriate Body Area (EBA) responds to

bodies, Lateral Occipital Complex (LOC) responds to objects. The Fusiform

Face Area (FFA), together with the STS, responds to faces as well.

Spatial perception takes place in the Dorsal (or “where”) stream. The process

here is faster, but as the same time, more rough. One of the most prominent areas

specialized for analyzing visual motion, is the MT (Motion Area, V5). Without

this region the automatic perception of motion is lost. Instead, the visual motion

becomes a series of stills, simple judgments of an object’s speed and direction

become difficult.

Other important areas within the Dorsal pathway are the Anterior IntraParietal

cortex (AIP), which coordinates grasping, Lateral IntraParietal cortex (LIP),

for eye movements, and the Parietal Reach Region (PRR), which assists in the

action of reaching an object.
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LIVING CREATURES

Figure 2.5: The two main pathways contributing in object recognition and local-
ization: the dorsal pathway, that is the “where stream”, and the ventral pathway,
which is also called “what stream”. (The picture is from [4])



Chapter 3

Attentional Models - Approaches
and Questions

The first models of visual attention have been developed in the 1980s, after Treis-

man and Gelade have proposed their feature integration theory [36], wherein they

have suggested that only the basic visual dimensions (such as color and orienta-

tion), the so-called ‘low-level visual features’ are processed throughout the visual

field in a parallel way. Afterwards, it is the visual attention that binds together

the low-level features belonging to the same object into coherent object represen-

tation. The later, attention-based process takes place in a serial way; attention

is allocated to one or at most a few objects at a time.

A detailed BU, stimulus-driven visual attentional model has been proposed by

Koch and Ullmann in 1985 [5]. In this model feature-specific ‘saliency maps’

have been calculated for the different visual features (color, orientation, etc.).

‘Saliency maps’ are scalar, two-dimensional topographic maps, representing fea-

ture contrasts rather than a given feature’s absolute value, at each location of the

visual field. As a next step, feature-specific saliency maps have been integrated

into a so-called ‘master’ or ‘final’ saliency map. In the master map the saliency

representation was already feature independent. Lastly, due to a ‘winner-take-

all’ mechanism, the most salient part of the master map (which has the highest

salience value) gains processing advantage and captures attention, while other

salient parts of the map are suppressed.

Osberger and Rohaly have identified some factors on complex scenes, which have

strong influence on visual attention [37]. Based on these, they have created a

17
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model that is able to make predictions for human gaze directions. Most of these

features were driving the BU process (motion, contrast, etc.), some of these were

related with the TD process (people, context), while some were in ‘between’

(shape, foreground/background distinguishment). They also highlighted the dif-

ficulty of the weighting of these features.

In the last two decades, several models of visual attentional selection have been

developed [38, 39, 40], most of them sharing the main components of the original

Koch and Ullmann model [41][38]. There are some important characteristics of

these models:

(1) the choice of the low-level visual features is heuristic and it primarily depends

on the purpose of the given model [6];

(2) the weighting of the individual feature-specific saliency maps during integra-

tion into a master map is based on TD approximations, mixing biological findings

with heuristic methods to achieve higher efficiency;

(3) with a few recent exceptions[42][43], the models have been tested on static,

non-dynamic visual input.

In comparison, I have been primarily focusing on the elaboration of the BU

process, taking carefully into account all the features that might have any effect

on the bottom-up process. This is being achieved by including all the retina

channels – instead of the heuristic low level visual feature extraction – both those

whose function is well understood and also those whose function is not sufficiently

illuminated up to present. I have managed to give a satisfactory approximation

on the weightings of all these features as well. The model has been adjusted and

validated on moving input, via human gaze direction measurements.

3.1 The skeleton of a general neuromorphic vi-

sual attentional model

Most of the models that work out BU mechanism use more or less the same princi-

ples. First, that a point’s final saliency value is composed of several conspicuous-

values [44] – each of these belong to different low level visual features ( – these

are the “feature dependent saliency values”) [6, 38, 45]. Second, that a location’s
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saliency-value basically depends on the surrounding context, that is, it is not equal

with the ‘loudness’ in an absolute value, but it is proportional with the contrast it

composes with its’ near surrounding [46, 47]. Third, the final saliency map is be-

ing aggregated from the feature dependent saliency-values, with different weights.

The weighting vitally depends on top-down modulation [28, 48, 49] and can be in-

fluenced through training as well [45, 50, 51, 52]. Fourth, scene understanding and

object recognition tightly interplay in gaze-direction [53, 54, 55, 56, 57, 58, 59].

Figure 3.1 shows the main steps, which are the followings:

• Dissolve the incoming picture according to low level visual features: colors,

intensity (on, off, etc), orientations (0◦, 45◦, 90◦, etc), motion, junctions,

etc. Usually the certain models employ a few of these features, chosen

according to their relevance in the given approach or task.

• Create the saliency maps to each channel. There are several strategies,

the relevant precept is to measure the contrast between a point and its’

surrounding. This is often some kind of ‘competition’ among near points,

which can employ long-range connections as well.

• Feature combination. Unify the feature-based saliency maps into one final

one, which is thus already feature independent - (“feature independent”

in the sense, that it depends on the whole collection of features). The

weighting of the different channels are usually not equal, it is generally

under some kind of top-down modulation.

• Determine the most salient point (find the location that has the highest

saliency value). This is a winner-take-all mechanism, which means that the

whole process was for locating this single point, which will be the attended

location.

• Particularly for still images: creating a mechanism called “inhibition of

return” which is for preventing attention to rut into one point [60]. This

inhibits the system to return to the attended locations for a while, thus

attention can move to the next most salient location, then to the third one,

etc. This process can also differ in several items in the certain models.
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Figure 3.1: The skeleton of a general bottom-up attentional method, originally
proposed by Koch and Ullman [5]. The picture is from [6]. The input picture (left
hand-side, top) is getting dissolved according to the low level visual features (right
hand-side, top). Each of these channels create a topographic feature map, which
codes the center-surround differences, according to the given features (right hand
side, bottom). Then, these maps are aggregated into a ‘final saliency map’(left
hand side, bottom), each with a certain, mostly top-down dependent weight (right
hand side, bottom). The most salient point of the final saliency map attracts the
attention, which is suppressed after a while by the method called “inhibition of
return” (left hand side, middle).
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3.2 ‘Low-level visual features’ contra retina chan-

nels

As described in [21], it has been recently discovered that a mammalian retina

has ten parallel channels1, and also the neuromorphic structure of these channels

has been found. These channels give qualitatively different answers to the same

input. The main differences lie both in spatial and temporal properties. For more

biological details I refer to [21, 20, 30] and section 2.2.1.

By these measurements, that have been made on rabbit retina, a first and

rough approximation has reached completion and not the detailed circuitry. At

the same time, using these findings, this is the first time that we have the pos-

sibility to consider this multi-channel pre-processing step. In addition, this step

could help solving the biggest difficulty that image processing algorithms nowa-

days face, namely, that the intensity or color values of the same object can vary

in a very large scale according to the scaling and actual lighting conditions, that

is, from accidental conditions. Thus we have found the adaptation of this multi-

channel pre-processing step in attention modeling fundamental. As far as we

know, this has been the first attempt to use this bio-inspired channel decomposi-

tion in attention-modeling. Moreover, using functional spatial temporal models

instead of input-output models in the first part enhances the success of model

identification.

This section deals with the function of the different retina channels, mean-

while some details about the used multi-channel retina simulator can be found

in Appendix A. As we will see, up to present only half of the channels’ functions

are known, in the sense that the aim of the process of the remaining five channels

could not yet be formulated explicitly. Since these channels do form saliency

maps as well – and thus they do take part in the formation of the final saliency

map – neglecting them significantly modifies the final results. This has an impor-

tant corollary compared to models using heuristic low level feature extraction: In

1According to the latest researches, certain cells in the retina respond to motion direction-
dependently, that is, in certain living creatures, another channel could exist, which filters motion
in a direction selective manner [61].



22 3. ATTENTIONAL MODELS - APPROACHES AND QUESTIONS

my model, similarly to living systems, the saliency maps that are based on those

retina channels having non-explicitly described functions, also take part in the

allocation of the fixation location.

Comparing some functional characteristics of three retina
channels

During the first year of my Ph.D. studies, on a retina model based on the same

principles than described above, we were investigating and comparing the func-

tioning of three retina channels. The name of the simulator of which the mea-

surements had been made on is “RefineC”. The results have been reported in [7],

the measurements (that are described in the present subsection) had been made

together with Robert Wagner, David Balya and Tamas Roska. The investigated

channels were:

• Local Edge Detector, (LED)

• “Sluggish”, which is mostly referred to as “Delta” throughout the present

dissertation (since there is not yet a commonly accepted nomenclature for

the retina channels, small variances can occur among different papers).

• Transient channel

The basic experiment aiming to clear up the function of the different channels

had been a flashing square: a square that appears for one second in a smooth

gray background, and then disappears. We had two main reasons to choose this

stimulus: firstly, we had the results of biological measurements for the same in-

put [21], with which we could control our results. This gave trustiness for the

simulations. And secondly, this stimulus is simple, but at the same time shows

the main characteristics.

The results can be seen on figure 3.2: the first row shows the original input,

the second row depicts the answer of the Transient channel, the third one is

the Local Edge Detector, and the last row is the response of the “Sluggish” (or
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Figure 3.2: A basic experiment for investigating the retina channel functions: a
flash square appearing for one second. The top-most row depicts snapshots from
the original input, the other three rows belong to different channels: Transient,
LED and Delta (or Sluggish), respectively. All the (a) pictures correspond to
the moment when the stimulus pops up. The (b) pictures show the sustained
responses, meanwhile the (c) figures correspond to the moment when the stimulus
disappears. The Transient channel reacts vividly to all kind of changes, LED
emphasizes edges, and the sluggish channel “fills out” the objects. [7]

“Delta”) channel. Pictures under each other indicates the same moment after the

appearance of the stimulus: a) in every row is the moment of the pop up, b) is

at half second, and c) is the moment of the disappearance in all the four rows.

The transient channel filters out changes and stays silent in the motionless

regions (see also figure 3.3, second image in the first row). As we will see, this

channel strongly interplays in directing visual attention. The LED channel (third
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Figure 3.3: The original input is a van passing by. (a) the moment it enters
the visual field, (b) it fills out, and (c) leaves the scene. First row: original
input, second row: the answer of the Transient channel, third row: LED, and the
last row is the response of the Sluggish channel. In contrast with the LED, the
Transient channel eliminates the hard shoulder and the strips on the roadway,
because they are motionless. The Sluggish channel keeps the shade of the van.
[7]
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row) also gives vivid answer on motion, but in contrast with the Transient chan-

nel, the LED gives response to motionless edges as well (“b” pictures) meanwhile

eliminating the inner part of the square. This phenomena can be seen even better

on figure 3.3, which depicts a van passing by the visual scene. The structure of

this figure is similar to 3.2: the first row includes snapshots of the original input,

the second row is the response of the Transient channel, beneath the LED, and

the last row shows the outcome of the Sluggish channel. As it nicely appears, the

Transient channel eliminates the hard shoulder and the strips on the roadway,

because they are motionless. In contrast, they do appear on the response of the

LED channel. Both the LED and the Transient eliminate the inner part of the

objects, if they do not have any special pattern inside (that is: moving edges).

This can be observed in both cases: the square and the van.

The reason why we do see the shades of the objects and not only their con-

tour, is because of the existence of channels similar to Delta: it seems, that these

channels “fill out” the objects around us. (Bottom-most rows in figures 3.2 and

3.3)

Another well-known phenomenon is that we are able to see coherent motion,

even if it is made of “noise” in the sense that every snapshot of the vision is pure

noise alone, but as a flow, it consolidates into a cohesive, perceptible moving

formation. An example for this can be seen on figure 3.4: the first picture (a) is

a snapshot of the input video flow: this frame is basically noise in itself. Picture

(b) depicts the outcome of the Transient channel for the same frame of the video

flow: as we can see, the motionless part disappears, while the moving figure, a

horse nicely traces out. As we have already seen, the LED channel (c) is also

sensitive on motion, but in a different way: the pattern of the background has

not vanished completely, because it contains edges, but at the same time, the

inner structure of the moving object (the horse) has not been kept as intact as

in the case of the Transient channel.

This example represents the significance of the temporal processing that most

channels in living creatures perform (in our model, seven out of the ten: the ones
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operating on the discussed retina simulator). Temporal processing enables to re-

trieve relevant information that actual data solely does not even contain. These

channels sometimes are referred to as channels with “memory”.

Figure 3.4: Channels with “memory”. The first picture (a) is a snapshot of
the input video flow: this frame is basically noise in itself. Picture (b) depicts
the response of the Transient channel for the same frame: the motionless part
disappears, while the moving figure, a horse traces out. The LED channel (c) is
also sensitive to motion, but in a different way: the pattern of the background
has not vanished completely, because it contains edges, and the inner structure
of the moving object has not been kept as intact as in the case of the Transient
channel.



Chapter 4

The realized model

4.1 The skeleton – summarizing the main steps

This section outlines the main steps of the bottom-up visual attentional model

I have realized. In the same time, I emphasize the occurrent differences at each

step, compared to the models described in section 3.1. Figure 4.1 illustrates the

text.

• The first step is to dissolve the incoming stimuli according to low level visual

features. As detailed previously, I have built the model on a multi-channel

retina simulator. (see section 3.2 and Appendix A). In half of the channels

we can denominate their function, whereas the other five channel’s function

is still unknown - at least we can not phrase it. Therefore these channels

(Polar-, Alpha-, Beta-, Delta- and the Bistratified channels, see Fig. A.2)

have never appeared in heuristic artificial models.

• Create the saliency maps referring to each channel. There are several strate-

gies, of which I have used different sized, circle-shaped receptive fields (RF),

on and off (section 6.1). Since different receptive field sizes generate differ-

ent saliency maps on the same input, and also, the extent of these RFs are

unknown for the certain channels, these fundamental values had to be es-

timated somehow. On figure 4.1 red question-marks indicate the unknown

parameters.

27
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• Feature combination: unify the channel-based saliency maps into one final

one, which is thus already feature independent. In other words, the final

(or “master”) saliency map is a combination of the channel-based maps,

thus it does not depend on only one or a few features, but on all of them.

The weights of the different channels are not equal, but the exact ratio is

unknown (red question mark on image 4.1). I have investigated different ap-

proaches to estimate these weights: “constant” and “continually updated”:

– Continually updated channels weighting strategies: for

every frame I have approximated the average and the maximal saliency

values appearing on the individual channels, and I supposed that only

the first few most salient channels participate in the generation of the

master map with weightings that are proportional to their approx-

imated saliency values. The effect of the other channels – on this

specific stimulus – is negligible. The exact method how the saliency

values had been defined is described in section 7.

– On the contrary, by constant channel weighting strategies, I

have presumed that the different channels participate in the formation

of the master map with a pre-defined, invariant ratio.

• Once the master saliency map is ready, the next step is to determine its’

most salient point (find the location that has the highest saliency value).

This is a winner-take-all mechanism, which means that the whole process

aims at locating this single point, which will be the attendant location.

• The “inhibition of return” mechanism, which aims at preventing attention

to get stuck into a point, comes to fruition spontaneously, because I am

working with moving input, thus the saliency maps change permanently.
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Figure 4.1: The diagram of the bottom-up mechanism I have realized. In the first
step the input image (top of the picture, left hand-side) is decomposed into ten
different retina channels ( – topographical maps in the different brain areas: the
higher activity a neuron shows, the darker/lighter color on the monitor appears.
This is because the ON channels’ and the OFF channels’ responses are visualized
on the same pictures.) In living beings this is a pre-attentive feature extrac-
tion mechanism which operates over the entire visual scene in a highly parallel
way. Onces the input vision is decomposed, each retina-channel creates its’ own
saliency map. For defining the individual point’s saliency value, I have used dif-
ferent sized, circle-shaped receptive fields (RF), on and off. The next step is the
aggregation. The final (or master) saliency map is practically a weighted sum
of the feature-based saliency maps. The weighting of these feature-dependent
maps are under top-down modulation, if it is present. (Bottom of the picture.)
Then the winner-take-all mechanism chooses the final saliency map’s most salient
point: this point wins the attention, the others are suppressed. The correspond-
ing picture-portion ‘appears in the fovea’, this is the small part of the visual scene
that is processed in detail and the rest is being processed only roughly.
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4.2 Unknown parameters: receptive field sizes

and channel weights

Using the model described above, two fundamental questions arise:

1. What should be the exact size of the receptive fields we apply on

the different retina channels? Since different RF sizes eventuate in differ-

ent saliency matrices, this parameter essentially influences the results. In

living creatures, it is likely enough that the different channels have a range

of receptive field sizes. In other words, probably not one single RF size

corresponds to the individual channels, but a distribution of them. At the

same time, probably each channel has a “preferable” size, which dominates.

My aim has been to find these preferable sizes for the individual channels,

since defining the saliency maps according the a whole range of RF sizes

would need unmanageable amount of calculation during the operation of

the model.

2. What kind of weighting strategy should be followed during the creation

of the master saliency map? (How do living creatures determine their cor-

responding topographical maps during bottom-up attentional conditions?)

Is it always the same (under BU conditions) or it differs according to the

actual stimuli?

Referring to these questions, a fundamental difficulty had been, that directly

we can not measure any of the parameters appearing during the process (for

example a saliency map, a channel weight, etc.), but only the fixation locations

provided by the experimental subjectives. In other words, the process detailed on

figure 4.1 is similar to a “black box” experiment in the sense that we only know

the input and the output, but we can not measure anything in between. (It is

quite difficult to design an experiment, a “stimulus”, which affects only one of the

channels – it is enough to mention, that if the stimulus is for example dynamic,

then it immediately affects the seven spatio-temporal channels and the Intensity

one as well.) Accordingly, one can only infer, deduce these directly immeasurable

values using different assumptions, indirect methods. Furthermore – since for
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estimating either of the missing parameters, one needed the other – they had to

be estimated in an “interconnected”, “coupled” way. (In this sense, the problem

was a bit similar to a Diophantine equation, except that here the criterion was not

valid, that the solutions have to be whole numbers.) The assumptions I have used

because of the above difficulties will be detailed in chapter 6. After the selection

process of the channels triggering the individual saccades – that is, those channels

satisfying the criterion appearing on the following diagram (top of the picture)

– the corresponding data have been stored and processed (the channel’s saliency

values in the measured fixation location; one value for each RF size).

Figure 4.2:

Since only those channels’ data are taken into account on a given stimulus,

which satisfy the criterion of being saccade-triggering – being moreover the cri-

terion distinguishing the different approaches from each other in section 6 – the

channels do influence each other via this competition for being treated as saccade-

triggering ones. After this step, the different channels ‘calculate’ their optimal

RF sizes independently from each other. In contrast, the channel weights reflect

exactly the result of this competition.
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(Theoretically, it is possible, that a channel will never satisfy the criterion for

being a saccade-triggering one, and thus it will not have, neither a weight, nor

an optimal RF size, because there wouldn’t be any data to calculate them from,

but since this case has never happened (in any of the approaches), I do not deal

with it.)



Chapter 5

Estimating the Optimal
Receptive Field sizes

One of the primal aims has been to determine the receptive field distribution –

and hereby the “optimal RF size” – for all the ten channels. For estimating these

values, I have prepared functions representing the average saliency values at the

attendant locations in the function of the RF sizes, for all the ten channels (like

on figure 5.4). These diagrams show how “effective” are the individual RF sizes

on the different channels at the measured fixation locations. (The way I use the

notion of “efficiency” is explained bellow, in the comments.)

During the measurements I have exploited the finding that under pure bottom-up

(or “image-based”) conditions, it is the different locations’ saliency values that

determine gaze direction ([5, 62]).

Some comments:

• During the evaluation, I have used only the first measured fixation locations

after each of the saccades, because these are the most BU-modulated ones

([43]); afterwards – due to scene understanding and analysis – the TD effect

increases.

• Only those saccades had been taken into account that expand at least 1◦

viewing angle.

33
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• I have investigated 40 different receptive field sizes, spreading from 0.5◦ up

to approximately 26◦, expressed in terms of the viewing angle (see figure

5.3). This covers all the RF sizes that are present in the visual system.

• The “efficiency” of a receptive field (size) plays an important role in my

approach. I use this term in the following sense: An RF is “efficient”,

if the biggest values of the saliency matrix belonging to it overlap with

the measured fixation locations. For example, figure 5.1 depicts a saliency

matrix. If we measure fixation locations in points like A, then this saliency

matrix is “effective”, while if B is a typical measured gaze direction, then

this saliency map is not effective at all.

Figure 5.1: Receptive field “efficiency”: if we measure fixation locations in points
like A, then this saliency matrix is “effective”, while if B is a typical measured
gaze direction, then this saliency map is not effective at all.

5.1 Saliency calculation: preparing the 40 re-

ceptive fields

For calculating saliency values I have used receptive fields (RF), as a biologically

inspired solution. Its’ schematic structure can be seen on figure 2.3, which I have

approximated according to figure 5.2. The smallest was one pixel for the central

part surrounded by a one-pixel-width belt. This matched for 0.5◦. The largest
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(the 40th) has had a 79 pixel caliber central region surrounded by a 39 pixel belt.

The parameters depicted on figure 5.2 have been calculated as follows: (x is a

simple index, which corresponds to the size. It takes values from 1 to 40.)

Figure 5.2: The approximation of a general receptive field (RF) [8]. Circles have
been approximated with squares chopped down on their corners. The main prin-
ciples have been: 1) to keep the neuromorphic ratios: In degree, half of the RF
should belong to the central part and half to the surroundings. 2) different RF
sizes should return the same saliency value if they receive their optimal stim-
ulus, and 3) the saliency value should be zero if the entire RF is exposed by
homogeneous light. For precise values see the text.
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Dt(= dx) = 4x− 3 the length of the outer square side in pixels
Db = 2x− 1 the length of the inner square-side in pixels,

that is the central part’s square-side
Dk = x− 1 the width of the surrounding ring in pixels

Sb = round
(
Db

6

)
the length of the square-side that was cut off from
the inner square in pixels

Sk = round
(
Dt

6

)
the length of the square-side that was cut off from
the outer square in pixels

Nb = D2
b − 4S2

b the number of the pixels in the central part
Nk = D2

t − 4S2
k −Nb the number of the pixels in the surrounding region

Wk = −A
255∗Nk

the weight of the surrounding part; this is necessary

for the saliency calculation
Wb = A

255∗Nb
the weight of the inner part; this is also necessary

for the saliency calculation

Figure 5.3: The 40 different receptive field sizes I have investigated, spreading
from 0.5◦ up to approximately 26◦, expressed in terms of the viewing angle. The
squares indicate the diameter of the given RF, which is the “dx” in the above
equations. x = 1 is the smallest, x = 40 is the largest. The RF sizes increase
linearly with respect to the index ‘x’. The exact relation between the α viewing
angle and the x index is tan α

2
= 4x−3

100
0.147.
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‘A’ is an arbitrarily chosen scaling parameter, corresponding to the maximum

saliency value that an RF can return if it receives its’ optimal stimulus. (A

stimulus is ‘optimal’, if both the central and the surrounding part of the RF get

the stimuli they respond to with the higher intensity. For example, light appears

in the central part and disappears in the surrounding area of an ON-center Off-

surrounding RF).

For the sake of accuracy, I note that the index x = 1 is an exception from the

prior formulas. It corresponds to a one pixel centered, eight pixels surrounding

receptive field.

The exact relation between the α viewing angle and the x index – due to the

resolution and monitor size – is: tan α
2

= 4x−3
100
∗ 0.147.

5.2 The rough course of the calculation

• Known are the

– frames of the training video set,

– a set of measured fixation locations recorded on this video,

– the ten retina channel output for arbitrary input,

– the 40 different RFs, and how the saliency is calculated from an RF

and from a retina-channel output. (by convolution)

• Determining the output of the ten retina channels, for all the frames of the

training video (– that is 10 matrix/frame).

• Determining the saliency maps according to the 40 RFs, for all the retina

channel outputs (– that is 10 ∗ 40 = 400 matrix/frame).

• Defining the saliency values in the in the measured fixation locations for all

channels, all the RF sizes (– that is: every fixation-location – frame pair

entails the calculation of 400 saliency values. )

• Based on the above data, producing the functions representing the average

saliency value at the attendant locations in the function of the RF size, for

all the ten channels (figure 5.4).
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Figure 5.4: The average saliency value at the attendant locations in the function
of the RF size, for all the ten channels. The first approximation for the the
‘optimal’ receptive field sizes: where the curves reach their maximum.

Although it will be always indicated, in this point I note that throughout the

dissertation, the channel-enumeration will always follow the next order:

1 Intensity
2 Transient
3 Local Edge Detector (LED)
4 Red-green opposition
5 Blue-yellow opposition
6 Alpha
7 Beta
8 Delta
9 Bistratified

10 Polar

5.3 The detailed course of the calculation

From an engineering viewpoint, receptive fields are filters applied on the different

retina channels. A RF is determined by a [dr × dr] matrix and the images are
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defined as [M ×N ] sized matrices, denoted as IMk,c (these are the outputs of

the ten retina channels) for every frame of the input video. The notations I have

used are the follows:

R the number of the receptive field types (sizes);
I have worked with R=40.

r (actual) receptive field type, r ∈ {1, 2, . . . , R}
dr the size of the ‘r’ receptive field, d = 4r − 3 .

(x, y) the coordinate of the measured gaze direction
(every coordinate-pair belongs to a k frame on which it was measured,
where the saccade ended)

M,N the size of the input video; M : width, N : height; M = 273, N = 201
C the number of the channels, C=10
c (actual) channel number, c ∈ {1, 2, ..., C}
K the number of the frames, K = 267
k (actual) frame number, k ∈ {1, 2, ..., K}

The IM image matrices contain values between -127 and +128. -127 is black,

128 is white and 0 is middle-grey. This shifting (compared to the conventional

bitmap valuing) is due to the antagonistic behavior of the receptive field weights:

the outer part of the receptive fields has negative weight, whereas the inner part

has positive. Thus a stimulus, which “fits” to a receptive field, gives a maximal

(absolute) value: a big positive, if it fits an ON-centered OFF-surrounded RF,

and a big negative (“big” in absolute value) in the other case.

Before the measurements, I have calculated the SM saliency matrices for all

the IM image matrices by all the R=40 receptive fields: this means K × C × R
saliency matrices, that is 400 for every input frame. Thus the saliency matrix is

different for every frame, every channel and RF type:

SM = SMk,c,r = IMk,c ∗RFr (5.1)

where ‘*’ denotes convolution. With CNN terminology, RFs are ‘A’ templates.

I have defined the SM saliency map as an [M × N ] matrix, so the outer ‘ring’

of the matrix has been cut off, which has become into existence because of the

convolution.

Let us define the (i, j) coordinates of the (x, y) centered, d sized region in an
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arbitrary matrix as follows (these are simply those matrix indexes that belong to

the d sized region of the x− y point):

S(x,y,d) =

(i, j) | max
1≤i≤M

1≤j≤N

{|i− x| , |j − y|} ≤ d/2

 (5.2)

During the measurements, I have recorded the (x,y) coordinate pairs (the fix-

ation locations) and the corresponding k frame-number for each (x,y) fixation

location, then I have allocated the proper SVM saliency matrix-segments for all

these data-triplets:

SVMk,c,r
(x,y) is the [dr × dr] sized, (x, y) centered segment of the SMk,c,r saliency

matrix.

(This means C × R = 10 × 40 = 400 matrix segments for every measured

[(x,y), k] triplet.)

In order to define the final saliency value in a given location, I have put a

discrete Gauss-filter with the same size and position with the receptive field. The

next step has been the creation of these filters in all the R = 40 sizes, the discrete

form of (5.3), where t is the radius and σ is the standard deviation.

Gt =
1√
2πσ

e−t
2/2σ2

(5.3)

For example, the 3× 3 discrete Gauss filter is

G1 =

1 2 1
2 4 2
1 2 1

 /16 (5.4)
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(I note that the bigger ones can be obtained, for example, with repeated

convolution from G1.)

In CNN terminology these filters also act as ‘A’ templates.

With these arrangements we can assign a scalar value for every measured [(x,y),

k] data-triplets as follows:

SalV alk,c,r(x,y) =

∑M∑N
(
SVMk,c,r

(x,y) ∗Gr

)
SMk,c,r

(5.5)

where SMk,c,r is the average value of the SMk,c,r matrix and Gr is the discrete

Gaussian matrix whose size is also dr like as in the rth receptive fields.

‘*’ can be interpreted as a filter or convolution. In the latter case, again, I

“cut off” the outer ring of the result matrix, which happens to be there because

of the convolution.

Hence the normalized saliency value of the cth channel, rth receptive field size,

belonging to the kth frame, where the measured fixation location was (x,y), is

defined by equation (5.5). For adjusting the model’s free parameters these values

were essential.

Let P denote the number of all the measured (and used) fixations. (Some

of the measured fixation locations “fell out” from the processing, for example

because they followed a saccade less then 1 degree.) With these, the average

saliency value arising on channel c by the rth receptive field is

SalV alc,r =

∑P SalV alk,c,r(x,y)

P
(5.6)

To find those r∗ RF sizes for every c channel where the relative saliency values

reach their maximum, I have defined:

r∗c = argmaxr
{
SalV alc,r

}
(5.7)
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These are those “optimal” receptive field sizes, which had to be defined.

The above deduction shows how the saliency values, and through them, the

optimal RFs are determined. However, this train of thought does not take into

account, that the different saccades are evoked by different channels. In the

next chapter I investigate different assumptions targeting the question of these

channel-weights.



Chapter 6

The contributing channels -
different approaches

Probably everybody has a share in the experience when a cat unexpectedly glides

away next to him, in a dark street. Although this is just a small change in the

entire visual environment, it evokes a strong inducement to look there. In this

case, it is the motion that provokes the attentional shift towards the cat. In the

same time, when one has a look at a steady picture (that is, motion can not play

any role in directing the gaze), the observed locations are not random, but they

follow a well defined pattern as well [53, 63] – determined by different channels.

In the present model, it is crucial to select the contributing channels properly,

together with the extent of their contributions (– which are called “weights” in

engineering systems).

During this process I strongly exploit the widely accepted ‘principle’ of attention

research, that saliency attracts visual attention, primarily under bottom-up con-

ditions [6, 14, 62, 64, 65, 66, 67, 68, 69].

In this chapter I discuss three different approaches targeting the questions of

• which are those channels that contribute in provoking a saccade?

• (related question: how many out of the ten channels “work” at a time?)

• define the proper extent of these contributions, that is, to define the weights

of the channels in question

• what are the corresponding optimal RF sizes for the individual channels

43
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The first two approaches are based on the phenomenon that characterizes at-

tentional mechanism in almost all levels, namely that stimuli compete with each

other for attention. To realize this, I have treated those channels as saccade gen-

erators, to which the highest saliency values belong at the attendant location, by

any RF size. In other words, only one outstandingly high saliency value being

created by a given channel by a given RF size is enough for the characterization

of this channel as a saccade-triggering one. The first two approaches are based

on this phenomenon. The corresponding curves look very similar, according to

the expectations.

To achieve this, in the first approach (as it is detailed in section 6.1) I have set a

threshold with the aim of selecting the ‘appropriate’ (that is: saccade-generator)

channels. The threshold has been a given percentage of the maximal saliency

value that has come into existence on the given frame, on the corresponding mea-

sured fixation location. I discuss the results belonging to the thresholds of 95%

and 75%.

In the second approach (section 6.2) I have graded the channels according to their

highest saliency value and have taken into account only the first few channels (1,

3 and 5, respectively).

In the context of the third approach, I have assumed that those channels take

part in the provocation of a saccade, which are salient in average on the actual

stimuli. The biological background of this approach is that every channel has

a big range of different sized RFs, but their distribution could differ strongly.

To define the mean saliency, I have determined the saliency values according to

all the 40 RF sizes at the measured attendant locations and have averaged it.

Section 6.3 details the corresponding results.

Regarding the estimations of the channel weights and the optimal RF sizes,

the principles are the same in the different approaches. Accordingly, the channel

weights are proportional with the ratio determining how many times they have

been interpreted as saccade-triggering ones, whereas the estimation of the opti-

mal RF sizes follows the calculation described in section 5.3, with the restriction,

that only those channels’ data have been taken into account, which have satisfied

the condition of the given approach (that is, how many times they have been
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considered as saccade-triggering ones, during the given process).

These results are visualized on diagram-assembles, similar to figure 5.4, each of

whom consists of ten curves – one for each channel. Consequently, these show the

average saliency values in the function of the receptive field sizes in the measured

fixation locations, recorded on human observers. The “optimal” RF size belong-

ing to the different channels are those, where the corresponding curve reaches

its’ maximum. Since the different approaches aim to select those channels that

generate the several saccades, these curves differ from each other because – ac-

cording to the different assumptions – different channels have been considered as

saccade-triggering ones.

The depicted results belong to the frames where the given saccades presum-

ably evoked in the positions where the saccades in question ended. Accordingly,

I have used the preceding frame compared with the one that I have measured the

saccade-end location on. I have applied 8 fps video, meaning 125 ms retrace in

time, which is a good approximation for the period between the saccade initial-

ization and the fixation on the saccade-end location.

Firstly I provide the results in sections 6.1, 6.2 and 6.3 (one section for each

approach), then, in section 6.4, I discuss the results.

6.1 First approach

6.1.1 Main steps

• The first step is the same in all the different approaches:

For all the frames with valid fixation location on them, I have defined the

saliency values in the given point, for all the ten channels, all the 40 RF

sizes – that is: 400 values for all of these frame–location pairs. For an

illustration see table 6.1. (A measured fixation location is “valid”, if it is

the first recorded location after an at least 1◦ wide saccade, see Appendix

B.3.)
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RF1 RF2 RF3 · · · RF39 RF40

Channel1 614 729 998 · · · 456 312
Channel2 503 402 378 · · · 716 652

Channel3 424 642 768 · · · 1000 861
...

. . . . . . . . . . . . . . . . . .

Channel9 871 956 804 · · · 502 432
Channel10 575 842 615 · · · 307 211

Table 6.1: An illustration aiming to help to understand how the calculations
have been made throughout the three approaches described hereinafter. Each
row corresponds to a channel (there are ten of these), and 40 RF sizes belong
to all of them – these are the columns. Once a “valid” fixation location had
been measured on a frame, all the 400 saliency values have been determined,
according to the 10 channels’ 40 RF size. This can be imagined as if a table
like this would had been filled out, for all these measured locations. This step is
common in the three approaches, whereas the assumptions aiming to select the
saccade-triggering channels are different.

• From this step, the procedure pertains to this approach alone:

I have searched for the largest value among these 400 values (1000 in the

example depicted on table 6.1, belonging to the third channel, 39th receptive

field, marked with dark background).

• Here, the assumption has been, that those channels trigger a saccade on

a given stimulus (input frame), which have at least one RF that produces

saliency value reaching a given percent of the maximal value.

For example, if this “given percent” is 95%, then the 1st and the 9th chan-

nels contribute in repositing the fixation location in the example shown on

table 6.1 – besides, of course the 3rd channel, which gives the maximum

value.

Some remarks:

• the maximal value is always different (or if it is not, then it is just by

coincidence)
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• the number of the channels satisfying the condition varies from frame to

frame, as well

• the calculations had been completed with different percentages

6.1.2 Experimental results by thresholds set to 95% and
75%

Figures 6.1 and 6.2 belong to the stricter case in which the threshold is set to

be 95%, that is, a channel’s highest saliency value has to reach the 95% of the

maximal saliency value (came into existance by any channel, any RF size) to

be taken into account. The results regarding the “efficiency” of the different RF

sizes are depicted on figure 6.1, whereas the ones regarding the channel weights

can be seen on figure 6.2.

In the case to which figures 6.3 and 6.4 belong to, the condition is not as strict

as in the previous one: a channel’s data has been taken into account, if it had

at least one RF that provided saliency value exceeding the 75% of the maximal

value, instead of 95%. That means, that more channels’ data have been included

during the generation of the curves depicted on figure 6.4.

Regarding the corresponding channel weights, as it can be seen on figure 6.3,

the differences are reduced compared with the previous one (figure 6.2), which

indicates that the one most salient channel very frequently proved to be the Tran-

sient one. Even so, the leading role of the Transient channel in guiding visual

attention on moving stimuli, still stands out.
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Figure 6.1: The average saliency values at the recorded fixation locations, as a
function of the receptive field sizes, for all the ten retina channels, respectively.
The corresponding channel names are indicated on the figures. In this case the
threshold is set to be 95%, that is, for every [measured gaze direction-frame] pair,
only those channel-data have been taken into account, which had at least one RF
that provided a saliency value reaching the 95% of the maximal saliency value.
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Figure 6.2: Channel weights (that is, the percentages expressing how often they
have been considered as the ones generating the saccades) corresponding to the
first approach, with the threshold set to be 95%. The outstanding (second) bar
belongs to the Transient channel, which responds to motion. The exact values
are depicted on the top of each column, in percentage.

Figure 6.3: Channel weights corresponding to the first approach, with the thresh-
old set to be 75%. The exact values are depicted on the top of each column, in
percentage. By the less strict condition the differences among the channels have
decreased.
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Figure 6.4: The average saliency values at the recorded fixation locations, as a
function of the receptive field sizes, for all the ten retina channels, respectively.
The corresponding channel names are indicated on the figures. In this case the
threshold is set to be 75%, that is, for every [measured gaze direction-frame] pair,
those channel-data have been taken into account, which had at least one RF that
provided saliency value reaching the 75% of the maximal saliency value.
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6.2 Second approach

6.2.1 Main steps

• The first step – which is the same for all the three strategies – is the fol-

lowing:

For all the frames with valid measured fixation locations, I have defined

the saliency values in the given point, for all the ten channels, all the 40

RF sizes – that is: 400 values for all of these frame–location pairs. As an

illustration see table 6.1.

• Then I have ranked the channels according to their highest saliency values.

In the example used previously (table 6.1), assuming that the values are

smaller in the missing, dotted parts, the channels in order would be:

1. Channel 3 (with maximum saliency value: 1000, by RF 39)

2. Channel 1 (with maximum saliency value: 998, by RF 3)

3. Channel 9 (with maximum saliency value: 956, by RF 2)

4. Channel 10 (with maximum saliency value: 842, by RF 2)

5. Channel 2 (with maximum saliency value: 716, by RF 39), etc.

• Here the assumption has been, that the first few most salient channels

trigger the saccades, according to the above ranking.

For example, if these “first few” are two, then the 3rd and the 1st channels

contribute in generating the next saccade. As it follows from the algorithm – in

contrast with the previous approach – in this case the number of the participating

channels are always the same.

6.2.2 Experimental results for the first 1, 3 and 5 most
salient channels

Figures 6.5 and 6.6 record the results that belong to the case when only the first

most salient channel’s data has been taken into account, the next two diagrams,
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Figure 6.5: The average saliency values at the recorded fixation locations, as a
function of the receptive field sizes, for all the ten retina channels, respectively.
The corresponding channel names are indicated on the figures. In this case only
those channel’s data has been taken into account, to which the highest saliency
value belonged to – that is: one channel for each measured fixation location.

figures 6.7 and 6.8 belong to the case in which the first 3 most salient channels

have been treated as the ones generating the saccades, and finally, figures 6.9 and

6.10 belong to the case of the first 5 most salient channels.
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Figure 6.6: Channel weights corresponding to the second approach. In this case
only one channel’s datum (the one that provided the biggest saliency value) has
been taken into account for all the measured fixation locations.
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Figure 6.7: The average saliency values at the recorded fixation locations, as a
function of the receptive field sizes, for all the ten retina channels, respectively. In
this approach, the channels have been ranked according to their highest saliency
values. The above diagram belongs to the case in which the first 3 channels’ data
have been taken into account.
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Figure 6.8: Channel weights corresponding to the second approach, when the
first 3 most salient channels’ data have been taken into account. These “weights”
are the percentages expressing how often they have been considered as the ones
generating the saccades, that is, how often they have satisfied the criteria of the
present approach.

Figure 6.9: Channel weights corresponding to the second approach. The first 5
most salient channels’ data have been taken into account. The relative role of
the Transient channel (second column) apparently decreases.
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Figure 6.10: The average saliency values at the recorded fixation locations, as a
function of the receptive field sizes, for all the ten retina channels, respectively. In
this approach the channels have been ranked according to their highest saliency
values. The above diagram belongs to the case in which the first 5 channels’ data
– that is, half of the channels – have been taken into account.
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6.3 Third approach

In this approach I have selected the channels to which the highest average saliency

values belonged to (defined by the 40 RFs), instead of selecting the channels that

contained the highest one or two values. According to the expectations, the

results belonging to this approach differ more from the first two ones, than those

differing from each other. Thus the process described in this section gives new

“optimal receptive field sizes” and corresponding channel weights (table 6.3) than

to the ones belonging to the first two approaches (table 6.2), which could have

been bracketed because of their similarities.

6.3.1 Main steps

• For all the frames with valid measured fixation locations, I have defined

the saliency values in the given point, for all the ten channels, all the 40

RF sizes – that is: 400 values for all of these frame–location pairs. (An

illustration can be seen on table 6.1.)

• Then I have defined the average saliency values for all the ten channels,

among the 40 RF sizes. On the example depicted on table 6.1, this means

the determination of averages of the 10 different rows.

• Finally I have selected the channel(s) bearing the highest average saliency

value(s), according to the assumption that these channels trigger the sac-

cades.

6.3.2 Experimental results for the first 1, 3 and 5 most
salient channels

As described above, in this approach I have ranked the channels according to

their average saliency values appeared in the measured fixation locations. Fig-

ures 6.11 and 6.12 belong to the case, where only the first most salient channel

has been taken into account (– salient on the average), the next two, figures 6.13

and 6.14 to the case in which the first 3, whereas the last two ones, figures 6.15

and 6.16, correspond to the case, where the first 5 (that is, half of the channels)
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have been considered as saccade generators.

Figure 6.11: The average saliency values at the recorded fixation locations, as a
function of the receptive field sizes, for all the ten retina channels, respectively.
The above curves include the data of those channels, which proved to be the most
salient in average at the recorded fixation locations.
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Figure 6.12: Channel weights corresponding to the third approach. The above
diagram shows the percentages expressing how often the several channels proved
to be the ones with the highest average saliency value, at the recorded fixation
locations.

Figure 6.13: Channel weights corresponding to the third approach, namely to the
case in which the first 3, in average most salient channels’ data have been taken
into account.
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Figure 6.14: The average saliency values at the recorded fixation locations, as a
function of the receptive field sizes, for all the ten retina channels, respectively.
In this approach I have ranked the channels according to their average saliency
values, among the 40 RFs, at the attendant fixation locations. The above curve
includes the data of the first 3 channels, from this ranking.
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Figure 6.15: The average saliency values at the recorded fixation locations, as a
function of the receptive field sizes, for all the ten retina channels, respectively.
In this approach I have ranked the channels according to their average saliency
values, at the attendant fixation locations. The above curve includes the data of
the first 5 channels from this ranking.
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Figure 6.16: Channel weights corresponding to the third approach, namely to the
case in which the first 5, an average most salient channels’ data have been taken
into account – in other words, in this case half of the channels are considered as
saccade-triggering ones.
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6.4 Discussing the results

The prime goal of the measurements and calculations has been to yield an atten-

tional model that selects similar locations to those that a human observer selects,

on complex moving natural scenes, under bottom-up conditions. This is not an

obvious question, primarily if one considers that two different human observers

might easily attend to different locations on the same frame of a video. Moreover,

the same observer might fixate to different locations on the same frame, during

watching the video for a second or a third time. Even so, there are obviously some

criteria that make some point a probable candidate for winning the attention, or

oppositely, very unlikely to be attended to [6, 37, 42, 43, 62, 64, 65].

Exploiting these criteria, which are basically the saliency values of the several

points in the visual environment, artificial systems can be created behaving simi-

larly to living creatures. A basic problem is that these saliency values fundamen-

tally depend on both the “low level visual features” by which they are salient or

not (color, motion, etc.), and also on the way of defining these values in ques-

tion. Since in the introduced attentional model I use a mammalian multi-channel

retina simulator, these “low level visual features”in my case are straight-forward:

they are defined by the different channels’ behavior ( – and thus following a bio-

inspired filtering, instead of a heuristic one). But the “way of defining” these

saliency values are not that straight-forward: although it is known, that living

creatures basically ‘apply’ receptive fields with this end, which can be mathe-

matically simulated (by a simple convolution), different RF sizes give completely

different saliency values. Thus, the fundamental question arises: what sized RFs

should be applied on the different retina channels?

Figures depicting the average saliency values in the function of the RF sizes

(namely figures 6.1, 6.4, 6.5, 6.7, 6.10, 6.11, 6.14 and 6.15.) target this question.

Since they are calculated from data that belong to locations where a human

observer did attend to during the measurements, these curves reflect the average

‘saliency level’ for all the channels, created by the different RF sizes, at the

locations that have won the attention. An artificial model will give the closest

results to humans, if it selects fixation locations based on similar saliency values
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that appear in the living creatures (in the appropriate topographic maps; see

sections 2.2.1 and 2.2.2). To ensure this, two fundamental criteria should be

satisfied:

1. On a given stimulus, the allocation of the new fixation location should de-

pend on the same low-level visual features ( – which in my case means the

same channels). The different approaches introduced above, in sections 6.1,

6.2 and 6.3, aim to ensure this criterion.

2. On a given channel, the saliency calculation should result in a similar out-

come for the living creature and for the artificial one (– that is, on a given

channel the same places should appear salient). In my case, this latter one

basically means the selection of the proper RF size for the different chan-

nels. These are the “optimal RF sizes”, where the different curves reach

their maximums.

Before summarizing the results in a table, I make some general comments

which have influenced the readings:

• Although the curves belonging to the same channels in the different di-

agrams show more or less differences (which is innate), the similarities

throughout the first two approaches are apparent – primarily from the

viewpoint of the maximum-locations. See for example figures 6.1 and 6.5,

which belong to different approaches. (Theoretically, since the different

approaches select different channels, the resulting curves could be com-

pletely different as well, primarily because the different cases include differ-

ent amount of channels.) During the inspection of the figures please note

that the scale division on the vertical axes varies!

Because of the above similarities, from an engineering viewpoint it is expe-

dient to amalgamate the results of the first two approaches.
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• The role of the different channels can be better traced on those cases, where

the exact number of the participating channels are traceable ( – primarily

if this number is 1). In this sense, the second approach gives more accurate

results than the first one, hence the readings rely more on this approach

(figures 6.5, 6.7 and 6.10) than on the first one (figures 6.1 and 6.4).

• Regarding the channel weights, they – in contrast with the optimal

RF sizes – fundamentally depend on the number of the channels (1, 3, or

5) that have been taken into consideration. This is natural, since – for

example – if a channel has an indisputable leading role (and the Transient

channel indisputably has, see figures 6.2, 6.6 and 6.12), then in those cases

when not only the first most salient channel’s data is taken into account,

the relative weight of the remaining channels will necessary increase – com-

pare figure 6.3 to 6.2; 6.8 and 6.9 to 6.6, and finally 6.13 and 6.16 to 6.12.

(The numbers depicted on the top of the bars are rounding-offs.)

Since the most independent channel-characteristics can be seen on those

diagrams, which take into account one channel for every measured fixation

location (these are the “first cases” in the different approaches), the cor-

responding channel weights (figures 6.6 and 6.12) are co-ordinated to the

optimal RF sizes. The final results are summarized in tables 6.2 and 6.3.

Some engineering notes:

• Before the measurements there were no clues as to what shaped curves

should be expected: would they be smooth with a few optimums, would

they show uniform or random distribution, or would they be more like

noise, etc.? As it can be seen, most of the curves have one, whereas some of

them two cambers. Nevertheless, this does not mean that the corresponding

channels unequivocally have exactly two RF sizes. As it has already been

mentioned before, the several channels have a wide range of different sized

RFs, but in unequal amount: one channel favors a given size, another one
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prefers a different size, etc. These curves reflect much more these ‘prefer-

ences’.

• Of course, one may consider an other way to define these saliency values as

well, which also seems to be accurate: define the saliency values in every

single point of the visual environment according to all the used RF sizes (40

in my case), for all the “low level visual feature extracting” channels (10 in

my case), and then define a weighted average from these values, keeping in

mind the above defined curves, which can be interpreted as the frequency

distribution of the different RFs, for all the channels (see previous bul-

let). The main problem with this process is not theoretical, but practical:

it would demand the calculation of more than 400 values (at least in the

present set-up) for every single pixel of every frame of the input video. In

contrast, by choosing an appropriate RF size for each channel, this amount

of more than four-hundred values decrease to ten, for all the frames. Since

the speed and necessary processing demands are also fundamental features

for an attentional model, the occasional accuracy that this solution offers

is not worth the amount of the additional calculation the process requires.

Keeping in mind the above remarks, table 6.2 summarizes the results belong-

ing to the first two approaches, whereas 6.3 synopses the outcome of the third

approach.
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Channel name RF size RF size Channel weight
(in index) (in viewing angle) (in percentage)

Intensity 3 1.5◦ 9.9
Transient 9 5.55◦ 37
LED 2 0.84◦ 9.5
Red-Green opp. 12 7.57◦ 6.1
Blue-Yellow opp. 3 1.5◦ 9.84
Alpha 12 7.57◦ 4.5
Beta 4 2.18◦ 2.8
Delta 4 2.18◦ 4.76
Bistratified 4 2.18◦ 7.3
Polar 15 9.58◦ 8.3

Table 6.2: An estimation for the quested parameters highlighted with red
question-marks on figure 4.1 (optimal RF sizes and channel weights) belong-
ing to the first two approaches, detailed in section 6.1 and 6.2. The first
column shows the channel names, the second column indicates the index of the
optimal RF size for the different channels, whereas the third column depicts the
corresponding RF sizes in viewing angle. The fourth column indicates the corre-
sponding channel weights, which are basically the values depicted on figure 6.6.
During the validation, the results belonging to this approach will often be re-
ferred to as ’M rf ’ (- which is only a fancy name used for abbreviation, implying
the process, during which an arbitrary RF can be considered as reaching the
maximum.)
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Channel name RF size RF size Channel weight
(in index) (in viewing angle) (in percentage)

Intensity 20 12.9◦ 7.3
Transient 9 5.55◦ 40
LED 21 13.6◦ 6
Red-Green opp. 20 12.9◦ 9.2
Blue-Yellow opp. 31 20.2◦ 9.5
Alpha 22 14.2◦ 6.6
Beta 19 12.2◦ 4.3
Delta 4 2.18◦ 4
Bistratified 15 9.6◦ 6.7
Polar 15 9.6◦ 6

Table 6.3: An estimation for the quested parameters (optimal RF sizes and chan-
nel weights) belonging to the third approach, detailed in section 6.3. The
first column shows the channel names, the second column indicates the index of
the optimal RF size for the different channels, whereas the third column depicts
the corresponding RF sizes in viewing angle. The fourth column indicates the
corresponding channel weights, which are basically the values depicted on figure
6.12. During the validation, the results belonging to this approach will often be
referred to as ’Avg’ - implying the average calculation.



Chapter 7

Validation

The present chapter summarizes the verification results of the model, that has

been adjusted according to the parameters yielded previously. Essentially, there

are two main ways in which the model can work, regarding the creation of the

final saliency map from the channel-based saliency maps (bottom of figure 4.1).

1. One way is to use the channel weights that have been estimated beforehand

and summarized in tables 6.2 and 6.3 (third column). That is, a weighted

sum of the channel based saliency maps form the final map for every frame,

where the weighting is the one mentioned before. This will be referred to

as “constant channel weighting strategy”.

2. An other strategy is to take into consideration the stimuli, that is the frames

one wants to make predictions for. In this case the above mentioned weights

will not be used, but the channel-proportion will depend on the actual stim-

ulus’ features: if it is a red house in a green field, the red-green opposition

channel will be an important one, if it is a flying bird in front of a mountain,

then the Transient, etc. (Of course, these actual channel weights are not

decided beforehand, but they depend on the features of the corresponding

saliency maps.) This method will be referred to as “dynamic (continually

updated) channel weighting strategy”.

69
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7.1 verification results on constant channel weights

With the aim of testing how close the models predictions are to human fixations,

I have proceeded as follows:

• Firstly, I have produced the final saliency map applying the channel weights

estimated beforehand (see sections 6.1 - 6.3), according to both results.

(The parameters belonging to the approaches are summarized in tables 6.2

and 6.3, respectively.)

• Then I have made predictions for the gaze directions. These were locations

(x-y coordinate pairs) which the model has calculated as the most probable

fixation locations. This means that if the model and the used assumptions

are correct, a human observer will attend to these locations with a higher

probability than to other points. There were more of these predicted lo-

cations (exactly four) to every frame, ordered by decreasing probability:

the first location has been calculated as the most likely fixation location,

the second one as the second most probable, and so on. Practically, these

probability values were saliency values calculated according to the different

approaches.

• In the same time, I have made human gaze direction measurements as well,

on the same video that the predictions had been made for, for the purpose

of comparing the predictions with the measurements.

– I have defined hit, as if the distance between the predicted and mea-

sured fixation location was less than 5◦. (Accordingly, accidental

chance was the product of an area of a 5◦ radius circle and the number

of predictions (1, 2, 3 or 4) divided by the area of the monitor.)

– Mathematically, the accidental chance (Ca) has been calculated as

follows:

Ca =
Trh ·Npred

Tm
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where Trh denotes the area of a (in this case) 5◦ radius circle, Npred is

the number of the predictions (1,2,3 or 4), and Tm indicates the sphere

of the monitor.

Figure 7.1 shows the results.

Driven by the unambiguously outstanding role of the Transient channel on

moving stimuli under bottom-up conditions, I have made an other comparison as

well: I was interested in the model’s accuracy, if the predictions are made based

on the Transient channel solely. In other words, the master saliency map – in

this case – is equal with the Transient channel-based saliency map. The results

are included in figure 7.1, besides the comparison of the two above introduced

methods, and the corresponding accidental chance. Other researchers have also

observed similar surprising efficiency of this channel, when it is applied alone,

under similar conditions [42].

As it can be seen, this method is almost as effective as the other strategies. On

the whole, these estimations are quite effective: the first four predictions contain

the measured fixation location with approximately 70% for arbitrary subject.

This shows, that on moving stimuli, during bottom-up attentional conditions,

the commanding role of the Transient channel is undoubted. Nevertheless, in a

general attention model, by all odds all the channels have their own role (it is

enough to think of motionless visual environment).Thus, the whole attentional

method has to be under the control of the other channels as well. Moreover,

under top-down conditions, during which search being based on complex visual

features comes to the front, probably the importance of these channels further

increases.

Even so, the best approach is apparently the one using the averages (middle

bar in the triplets with dots in it). Although the differences are not big, in all the

four investigated cases this one proved to be the most efficient, while the other

two go ‘neck and neck’.
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Figure 7.1: Validation results for the constant channel weighting strategies, for 4
predictions/frames. The left-most bar in each triplet shows the results based on
the Transient channel’s saliency map, the middle one (with dots) belongs to the
“third approach” detailed in section 6.3 and summarized in table 6.3, whereas
the right ones (with stripes) reflect the outcome of the predictions made by the
parameters of the first two approaches (summarized in table 6.2). The red bar
on the right of each triplet indicates the accidental chance for making correct
predictions under similar conditions.

Here I would like to remark that in order to understand the importance of the

parameters’ correct estimation, I have also made predictions based on randomly

generated parameters (channel weights and RF sizes), and compared them to the

human gaze direction measurements. In this respect, the correlation percent-

age between the above mentioned parameters and the measured ones, has been

slightly above 30%. This means, that it is better than the accidental chance by

around 10%. (According to the above, the major contribution is most probably
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due to the proper selection of the channels generating the saccades.)

7.2 Verification results on continually updated

channel weighting strategies

Compared to the previous (constant weighting) strategies, continually updated

strategies assume the other extremity, namely that the triggering channels and

their weights depend solely on the stimuli. The reality is probably somewhere in

between (here the problem is, that due to the recent discovery – and modeling –

of the mammalian retina channel system, there are no measurements aiming to

uncover the role of the several channels separately, in visual attention so far – at

least to the best of my knowledge).

After all, I still have expected higher efficiency from the continually updated

channel weighting strategies (described in the present section) than from the

constant ones. Even if the differences are not very big (according to the different

approaches 1-10%) – in contrast with my expectations – the constant strategies

turned out to be more effective.

The two investigated approaches are the same that have already been used in the

6th chapter: the channel weights depend on the corresponding saliency map’s:

i) highest value(s)

ii) averages.

7.2.1 First approach

Following the order of chapter 6, firstly I discuss the results belonging to the

approach assuming that those channels trigger a saccade which have (one or a

few) outstandingly high saliency value(s), anywhere in their saliency maps (see

also chapters 6.1 and 6.2). Accordingly, the process has been the following:

1. Dissolve the incoming frames of the test video set according to the ten retina

channels.
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2. Create the corresponding saliency map for all the ten channels. The RFs

by which these channel-dependent maps have been calculated are those de-

picted in table 6.2, last column.

3. Range the channels in descending order according the highest values of the

corresponding saliency maps.

4. Create the master saliency map by taking into account the first i most

salient channels (“saliency”, in the sense of the above ranking). i ∈ {1, 2, . . . , 10}.
The weighting is proportional to the maximal values of the saliency maps.

Mathematically:

FinalSM i
k =

10∑
c=1

wcSMk,c

where

wc =


max(SMk,c) if max (SMk,c) is in the first i biggest values among

the ten max (SMk)s
0 otherwise

and

k is the frame number
c channel identifier, c ∈ {1, 2, . . . , 10}.

1: Intensity, 2: Transient, 3: LED, etc.
i the number of the channels taken into account

during the calculation of the final saliency map
wc the weight of the cth channel

(during the calculation of the final saliency map)
SMk,c saliency map belonging to channel c on the kth frame

5. Make predictions ; that is, define the locations that the model marks as

probable fixation locations. I have made four predictions for every frame,
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that is four (x− y) coordinate pairs, which were the four most salient loca-

tions of the final saliency map.

6. Compare these predictions with measured human fixation locations. I have

defined “hit”, if the distance between the predicted and the measured loca-

tion was less then 5◦.

Figure 7.2 depicts the results. According to the diagram, the present approach

gives the best result by applying the four most salient channels (– “salient” on

the given stimulus) during the calculation of the final saliency map. Further

increasing of the channels number decreases the efficiency. It is also notable,

that – in contrast with the expectations – the results check behind the constant

channel weighting strategy with approximately 5-10% success in the case of four

predictions.

The results are slightly different, if the channel based saliency maps are nor-

malized, more accurately, if they are divided by their average. This happens

between the 2nd and 3rd steps in the former detailed process. In this case, the

final saliency map is defined as follows:

FinalSM i
k =

10∑
c=1

wc · SMk,c

where the normalized map is

SMk,c =
((IMk,c ∗RFr) ∗Gr)

mean (SMk,c)

where

∗ denotes convolution
IMk,c is the activation map of channel c on frame k

(or in other words: the output of the cth channel on frame k)
RFr r sized receptive field (r is an index)

(these are the “proper” RF sizes for each channel, summarized
in table 6.2)

Gr a discrete Gauss-filter with the same size that of an r sized RF
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Figure 7.2: Validation results for the first approach of the continually updated
channel weighting strategies, for 4 predictions/frames. Here I have assumed that
a channel participates in triggering a saccade, if the corresponding saliency map
contains one of the highest values that have came into existence on the given
stimulus (for details see the text). The receptive fields are the ones defined
previously for the corresponding approach, summarized in table 6.2. The first
bar in every group shows the results for the case when only one channel creates
the final saliency map (for which the highest saliency value belongs to), the second
bar if two channels participate in forming the final map, etc. The horizontal bars
indicate the accidental chance for making a “hit”. Once the saliency maps were
ready, I have made predictions referring to the locations with the highest saliency
values in the master map. I defined “hit”, if the distance between the predicted
and the measured location was less than 5◦.

The corresponding results are depicted on figure 7.3.
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Figure 7.3: Validation results for the first approach of the continually updated
channel weighting strategies, for four predictions/frames. Here the assumption
has been the same one as previously (figure 7.2) with the distinction, that the
channel based saliency maps had been normalized between the 2nd and 3rd step
(see text). The first bar in every group shows the results for the case when
only one channel creates the final saliency map (for which the highest saliency
value belongs to), the second bar, if two channels participate in forming the final
map, and so on. The horizontal bars indicate the accidental chance for making a
“hit”. Once the saliency maps were ready, I have made predictions referring to
the locations with the highest saliency values in the master map. I defined “hit”,
if the distance between the predicted and the measured location was less then 5◦.

As shown in the picture, in this case the accuracy is basically independent of

the number of the used channels, meanwhile the accuracy is better than in the

previous case, see for example the results belonging to three predictions: on figure

7.2 even the best outcome lags behind 50%, meanwhile on figure 7.3 it is around

it. To conclude, the previous approach – which does not apply normalization –



78 7. VALIDATION

mathes the present approach, if four channels’ data is taken into accound during

the formation of the final map.
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7.2.2 Second approach

The second approach – similarly to section 6.3 – assumes that those channels

contribute in the provocation of a saccade, which are salient in average on the

actual stimuli. The algorithm alters accordingly (the altered parts are typed with

small capital letters for the sake of better emphasizing):

1. Dissolve the incoming frames of the test video set according to the ten retina

channels.

2. Create the corresponding saliency map for all the ten channels. The RFs

by which these channel-dependent maps have been calculated

are those depicted in table 6.3, last column.

3. Normalize the saliency maps, more accurately: divide them with their mean

value:

SMk,c =
((IMk,c ∗RFr) ∗Gr)

mean (SMk,c)

where the notations are the same than in section previously, defined in sec-

tion 7.2.1.

4. Take out the first i saliency maps to whom the highest mean value

belonged to (for all i ∈ {1, 2, . . . , 10}, one after the other)

5. Create the master saliency map by taking into account the first i

most salient channels in average, with proportional weight-

ing to the average saliency values. Mathematically:

FinalSM i
k =

10∑
c=1

wcSMk,c
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with the same notations as previously.

6. Make predictions ; that is, define the locations that the model marks as

probable fixation locations. I have made four predictions for every frame,

that is four (x− y) coordinate pairs, which were the four most salient loca-

tions of the final saliency map.

7. Compare these predictions with measured human fixation locations. I have

defined “hit”, if the distance between the predicted and the measured loca-

tion was less then 5◦.

The corresponding results are depicted on figure 7.4.

As it can be read from the diagram, increasing the number of channels mildly

increases the accuracy as well, up to the usage of 5-7 channels. The efficiency –

depending of the number of the used channels – barely achieves the results of the

previous approaches. For the sake of better comparison among the different con-

tinually updated strategies, figure 7.5 summarizes their accuracy. ‘Mrf’ denotes

the strategy described firstly, belonging to figure 7.2, ‘PreNormMrf’ is its’ altered

version applying a normalization step (the corresponding figure is 7.3), whereas

‘Avg’ marks the latter approach described in the present chapter, to which figure

7.4 belongs to.

7.2.3 Conclusions

According to the results depicted on figures 7.1–7.5, constant channel strategies

achieved better results than the continually updated ones, (compare figures 7.1 and

7.5). Although this is a surprise, from an engineering viewpoint it is a kind of

“luck”, since this approach has less computational demands.

More precisely, although the differences were not huge, the overall “winner” is the

third approach from the static weighting strategies (often referred to as ‘Avg’),

whose accuracy abundantly exceeds 70%, on four predictions (fig. 7.1). The

corresponding values are summarized in table 6.3: channel weights and receptive

field sizes, all the quested parameters. The final adjustment of the described
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Figure 7.4: Verification data with dynamic channel choice. Here the assumption
has been that a channel participates in triggering a saccade, if it is salient on the
given stimulus (frame) in average. The first bar in every group shows the results
for the case when only one channel creates the final saliency map, the second bar
if two channels participate in forming the final map, etc. The horizontal bars
indicate the accidental chance for making a “hit”. Once the saliency maps were
ready, I have made predictions referring to the locations with the highest saliency
values in the master map. I defined “hit”, if the distance between the predicted
and the measured location was less then 5◦.

attentional model has been done applying these values.

Of course – as it was already touched –, based on the validation results for

the constant channel weighting strategies (figure 7.1), one might ask, why all

these channel decompositions are necessary, if the Transient channel alone gives

a result which is almost as accurate as the model applying all the channels? Well,

as we will see in the next chapter (“Practical applications”), the role of the other
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Figure 7.5: Comparison of the different dynamic channel choice strategies. ‘M
rf’ denotes the strategy described firstly, belonging to figure 7.2, ‘M rf norm’
is its’ altered version applying a normalization step (the corresponding figure is
7.3), whereas ‘Avg’ marks the latter approach described in the present chapter,
to which figure 7.4 belongs to.

channels will become fundamental as soon as one tries to make any kind of further

processing of the attendant data.
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Practical applications

Possible application fields for attentional models are extremely wide, starting

from different blind navigation tasks, through robot vision up to bionic retina

implants [70, 71, 72, 73]. In the present dissertation I discuss some subtasks

raised in the ongoing project called “Bionic Eyeglass Project” [74, 75], which

aims to help the everyday life of blind or visually impaired people. The pur-

pose is to provide a specific kind of information, or to locate those regions in

the visual scene that, with a high probability, contain important information for

visually impaired people - that is: to define the Region of Interest (“ROI”) in

an unstable, low resolution video input, recorded by the visually impaired person.

In this stage of the project, the input comes from a mobile phone’s video

camera in 176x144 pixel resolution (called Q-CIF), but the phone is now being

extended by a Cellular Visual Microprocessor (which is the Q-Eye in the Eye-RIS

system, a product of the AnaFocus Ltd., Seville, or the Bi-i camera computer of

Analogic Computers Ltd., Budapest). The diversity of interesting tasks as well

as the construction of the required database has been compiled with the help of

members of the “Hungarian National Association of Blind and Visually Impaired

People” [74]. In the thesis I present efficient new algorithms for:

• Finding light sources (lamps) – this task (although it seems to be a trivial

‘problem’ for a person with normal vision), could prevent lots of annoyance

for visually impaired people, for example, by preventing the lamps to re-

main switched-on for weeks after a guest.

83
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Here, the most important criterion is that the solution has to be indepen-

dent from the input’s actual brightness, that is, the accuracy should be the

same in the case of a sun-drenched and a dark room.

• Locating LED indicators (in real-life indoor and outdoor scenes).

• Finding traffic signs in real-life street scenes.

The main purpose of these two latter tasks is to realize a fast method that

locates the areas which contain the traffic signs / LED indicators with high

probability, on complex real-life outdoor scenes. Subsequently, a classifier

algorithm has to analyze only the located ROIs instead of the whole input,

which can fasten up the whole process significantly. The main difficulties

derive from the instability of the by-default bad-resolution input, the un-

constrained lighting conditions, and from the variety of the possible inputs.

The algorithm’s main functional components are: video stabilization, retina

channel decomposition (or “low-level feature extraction” – see section 3.2 and

Appendix A), and saliency map generation. A summarizing flow chart can be

seen on figure 8.1, which has been taken from the publication [76], in which I

report of the present algorithm.

The input of the whole process is an image flow taken by a mobile phone ex-

tended with a Cellular Visual Microprocessor, and the output consists of audio

information for the person using the equipment. In the present thesis I do not

deal with the methodology of transformation of the demanded information into

audio format, but with the problem of locating the demanded information within

a video flow.
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Figure 8.1: The flow chart of the proposed method. The input is a strongly
unstable, low resolution video flow coming from a mobile phone’s camera held
by a visually impaired person. The output can be: Regions of Interest (e.g.
locations of LED indicators, traffic signs), or Specific information (e.g. if there
is any switched-on lamp or not). The dashed line shows an optional information
combination step (raised in the task of locating traffic signs, where retina channel
data and saliency map data had been combined.)
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8.1 Stabilizing the input

Image flows provided by a camera held by a blind walking person are usually

extremely noisy and unstable, often accompanied by fast, unexpected camera

motions. The recording equipment (camera) can be

• rotated

• shifted in the vertical and horizontal direction, and

• transported in the direction of motion (e.g. looming).

Additionally, often the picture’s main objects shift significantly from one frame

to another, e.g. during turning around. The goal of the image stabilization step

is to keep the steady objects (e.g. buildings) in the same pixel positions, while

the moving objects (for example the pedestrians) can change position. (In-built

standard camera image stabilizers – both mechanical or digital solutions – can

only handle much smaller dislocations.)

It is useful to define the transformation-parameters between adjacent frames,

instead of estimating the difference between the reference frame and the actual

frame. In this manner, it is possible to trace bigger deformations throughout

longer frame-series. Then, the calculated transformation ‘inherits’ from frame to

frame, as follows:

If the actual reference frame is the ith one, then the Pi+k,i vector contains

the transformation parameters between the actual frame i+ k and the reference

frame i. In the next step, the vector Pi+k+1,i+k is calculated, which contains the

transformation values between the actual adjacent frames: i + k + 1 and i + k.

Then Pi+k+1,i = Pi+k,i ⊕ Pi+k+1,i+k will be updated, and will comprise of the dif-

ferences accumulated throughout the k+ 1 frames that have been captured since

the last reference-frame updating.

Figure 8.2 depicts the flow chart of the stabilization. (See also [77, 78]) The

key element in it, is how the transformation parameters are defined (I have high-

lighted this step with a bit darker shade on the diagram). The following sections
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(8.1.1 and 8.1.2) targets this question.

Figure 8.2: The flow chart diagram of the stabilization. The input (left hand
side, top of the picture) is an unstable video-flow coming from a mobile phone’s
camera. The output of this algorithm is the stabilized video flow (left hand side,
bottom of the picture. The goal is to keep the steady objects (e.g. buildings) in
the same pixel positions, while the moving objects (e.g. pedestrians) can change
position.

8.1.1 Mathematical background

To estimate the instantaneous velocity field I have modeled the motion image by

a continuous variation of image intensity as a function of position and time. The

intensity value on position (x, y) at time t is described by the f(x, y, t) intensity

function.

If we expand this function in a Taylor series, we get:

f(x+ dx, y + dy, t+ dt) = f(x, y, t) +
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂t
dt+HT (8.1)

where HT is for higher-order terms, which are usually ignored [79].

The crucial observation that is exploited, is that if the image at some time t+ dt

is a result of the original image at time t being moved translationally by dx and

dy, then

f(x+ dx, y + dy, t+ dt) = f(x, y, t). (8.2)
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Thus, from equations (8.1) and (8.2) we get:

0 =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂t
dt (8.3)

or, in other form:

−∂f
∂t

=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
(8.4)

∂f
∂t

, ∂f
∂x

, and ∂f
∂y

are measurable quantities, while dx
dt

and dy
dt

are the quested values,

namely the velocity in x and y directions.

Using the dx
dt

= u and dy
dt

= v notation, we get

−∂f
∂t

=
∂f

∂x
u+

∂f

∂y
v (8.5)

or, equivalently,

−∂f
∂t

= ∇f · u (8.6)

where∇f is the spatial gradient of the image and u = (u, v) is the velocity vector.

8.1.2 The detailed course of the calculation

–Measured values: Ix(=
∂f
∂x

), Iy(=
∂f
∂y

), and It(=
∂f
∂t

), the intensity gradients

–Calculated values (the estimations): u(= dx
dt

) and v(= dy
dt

).

With these notations (8.5) will be, for every pixel:

Ixu+ Iyv + It = 0 (8.7)

.

The measured values

The Ix, Iy spatial gradients can be determined by convolution, where the kernel

is the
[
−1 8 0 −8 1

]
/12 vector, which is a commonly used estimation in the

literature [80]. (This kernel is applied on the Gauss-filtered image.)

The It time gradient is simply the difference between the two Gauss-filtered im-

ages.

(As it follows from the above process, these values are defined for each and every

pixels, so Ix is not a scalar, but a matrix, and Iy, It similarly.)
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Defining the parameters of the projection:

For mapping function, I have chosen a linear affine transformation, which can

handle shifts in x and y directions, scaling, rotations and shears, as follows:

u = a0 + a1x+ a2y (8.8)

v = b0 + b1x+ b2y (8.9)

where a0, a1, a2, b0, b1 and b2 are the parameters of the transformation, which we

want to determine. In the matrix-form of (8.7), the meaning of these parameters

can be understood better: [
u
v

]
=

[
a0

b0

]
+

[
a1 a2

b1 b2

] [
x
y

]
(8.10)

In this equation

[
a0

b0

]
defines translation in x and y directions, while

[
a1 a2

b1 b2

]
describes the scaling, rotation and shear.

Thus, from (8.7), (8.8) and (8.9), for every pixel we get:

(a0 + a1x+ a2y)Ix + (b0 + b1x+ b2y)Iy + It = 0 (8.11)

which will be
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where k (the number of rows) is the number of pixels.

With the notations:
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
I

(1)
x Ixx

(1) Ixy
(1) I

(1)
y Iyx

(1) Iyy
(1)

I
(2)
x Ixx

(2) Ixy
(2) I

(2)
y Iyx

(2) Iyy
(2)

. . .

I
(k)
x Ixx

(k) Ixy
(k) I

(k)
y Iyx

(k) Iyy
(k)

 (8.13)



90 8. PRACTICAL APPLICATIONS

and

P =


a0

a1

a2

b0
b1
b2

 (8.14)

we get

A · P = −It (8.15)

from where

P = A+ · (−It) (8.16)

where ’+’ denotes pseudo-inverse, and the P vector contains the transformation-

parameters, which we were looking for.

8.2 Retina channels, saliency maps and

receptive fields in the applications

Practically, from an engineering viewpoint, a saliency map is a retina channel

output (or the result of the ‘low level visual feature extraction’) convolved with

a receptive field. RFs can be represented in matrix form.

Figure 8.3 depicts how I have determined the optimal RF in the task of finding

traffic signs, as an example of their usage.

• The size of the receptive field is determined as follows:

– from one hand, the viewing-angle of the mobile phone is ˜45◦, which

occupies 176 pixels. This means, that roughly 3.9 pixels cover 1◦.

– on the other hand, at the video flow, the size of an object depends on

its’ distance. Namely, its’ size in viewing angle is tan α
2

= ObjectRadius
distance

(figure 8.3 a). Thus, the sensing-distance of a 45 cm diameter (0.225

m radius) traffic sign from ˜7-8 m covers a bit more than 3.3◦. Thus,

the optimal inner diameter of the receptive field is 13 pixels. (figure

8.3 a and b)
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– The outer size of the RF has been adjusted according to ‘real’ RFs in

which the inner part covers around the half of the whole RF in viewing

angle.

• The values of the matrix have to satisfy the criteria of

– giving maximal response if antagonistic stimuli hit the RF’s inner and

outer area

– giving no answer if the input image-region contains equal values – that

is, in case of uniform lighting

Figure 8.3: Receptive field adjusted for the task of finding traffic signs. Figure
a : the inner diameter of the receptive field and the size of the searched object
should be the same in viewing angle. This criterion helps to determine the size of
the RF. b and c: the resultant; On c the height and the depth are proportional
to the weights, which have – due to the antagonistic behavior of the RF’s inner
and outer part – opposite sign. The zero level is emphasized with purple line.
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The maximal value is arbitrary, since it is only a constant multiplier (“C” on

figure 8.3 b).

In the followings I get on the subject of carrying out the specific tasks, based on

the foregoing.

8.3 The Realized Applications

8.3.1 Locating traffic signs

The main purpose of the present algorithm is to realize a fast method locating the

areas which contain traffic signs with high probability, on complex real-life out-

door scenes. The main difficulties derive from the instability of the input – which

has by default bad resolution – and from the fact that the lighting circumstances

can vary on a wide range. Traffic signs – due to their color and shape design –

can effectively be detected by circle-shaped receptive fields on color opposition

channels. For solving this task, I have used the RF determined in the previous

section (figure 8.3) on the Blue-Yellow color opposition channel. According to the

experiments, rooftops and building walls often effectuate salient areas with the

blue sky, something that can lead to false results. In order to avoid these errors,

I have applied the Delta channel’s data as well: since it gives a vivid response on

light sources, only those regions have been taken into account, where this channel

has given a smaller response than a given threshold.

Figure 8.4 shows some typical frames from the test database. The distortions

of the input frames are due to the stabilization method. Important to note, that

this method does not exploit any additional information or knowledge (for ex-

ample, that traffic signs are primarily expected in a given height), thus with the

guidance of the equipment the results can be further improved. According to

the test results, the main error sources have been: from the one hand, shadow,

which leads to false negative results because of the loss of color information (fig-

ure 8.4 c), and from the other hand, objects with ‘appropriate size’ and vivid

colors, which lead to false positive results (figure 8.3 d). Important to note, that

– because of the lack of a commonly accepted test database for these problems –



8.3 The Realized Applications 93

the evaluated information significantly depends on the test database. Tables 8.1

and 8.2 show the test results.

(Frame percentage) Correct answers False answers

There is traffic sign on the
input video frame 73.7% 26.3%
(total 502 frames) (370 frames out of 502) (132 frames out of 502)

There is no traffic sign
on the input video frame 95.4% 4.6%

(total 414 frames) (395 frames out of 414) (19 frames out of 414)

Total 83.5% 16.5%
(916 frames) (716 frames out of 916) (151 frames out of 916)

Table 8.1: The results for the task: “Locating traffic signs”. “Correct” answer
means that either the input frame has no traffic signs on it and there are no
located areas on the output either, or, there is at least one sign on the input and
there are located areas on the output as well. The test video set included 916
real-life frames from different locations and with different lighting conditions.

Since Table 8.1 does not indicate the accuracy of the located areas (“ROIs”),

I provide another table (8.2) showing these results.

Correctly identified Incorrectly identified
locations locations

Altogether 490 73.7% 26.3%
located areas (361 ROIs out of 490) (129 ROIs out of 490)

Table 8.2: The accuracy of the identified locations. Only those frames are in-
cluded, where there was at least one located area. A ROI is “correct” if there is
a traffic sign at that very location, and “incorrect” otherwise. Thus, an answer
belonging to one single frame can contain both correct and incorrect locations
(see for example figure 8.4 d).
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Figure 8.4: Some typical frames from the test database I have used to evaluate
the task aiming to locate traffic signs. In all the four rows, the left-most image is
a frame from the input video flow with the areas identified as traffic signs (white
circles). The other two images in each row are the corresponding outputs of the
used channels: the middle ones are the Blue-Yellow color opposition channels’
output and the right ones are the response of the Delta channel. a and b are
examples for correct results. c: The prime cause of the false negative answers
(when the sign is not located) was due to the loss of the color information, which
happened when the sign was in shadow. On figure c the blue arrow points to
a traffic sign being in shadow. (These signs are difficult to see even with “pure
eyes”) From closer they can be identified: b is the same as c from a few meters
nearer. d depicts the typical reason for false positive results: vivid colors with the
“appropriate size”. The input frames are distorted because of the stabilization.
Table I and II indicate the test results.



8.3 The Realized Applications 95

8.3.2 Finding lights sources

A trivial matter for people with normal vision but often a hard task for the blind

ones, is to detect whether the lamps are switched on or switched off – for example

after leaving guests. According to our consultant from the ‘Hungarian National

Association of Blind and Visually Impaired People’ [81] – with whom the tasks

has been defined together – an algorithm solving this task could prevent much

annoyance.

Here, the most important criterion is that the solution has to be independent of

the input’s actual brightness, that is, its’ reliability should be the same in the

case of a sun-drenched room and a dark cell.

The solution for this subtask differs from the former one in the sense that here

I rely merely on retina channel information – instead of saliency maps. One

channel proved to be enough for this task, namely the “Polar” channel, which

seems to respond on light sources [9, 21] (figure 8.5). It gives strong reaction on

primary light sources, both for natural (sun) and artificial ones (lamps) – and, to

reflecting surfaces as well (mirrors, glass-tables, etc.) which cause a small error

rate. Still, the accuracy this channel enables is very high: the ratio of the correct

answers reaches 98-99% (see table 8.3).

Since this channel responds to natural light sources as well (figure 8.3 e), the

user is supposed to know where the window is, but this is not a real restriction

in every-day practice, since people usually do know the location of the windows.

Otherwise, precise knowledge about the location of the lamp(s) is not a demand,

since the visual environment can be scanned.

According to the experiments, the Polar channel saturates (gives maximal

response) on those areas where primary light sources are present, and give no

answer elsewhere (figure 8.5). It follows that the accuracy of the algorithm is

completely independent of the quality of the input video-flow, and also, it does

not depend on the brightness either. The results depicted in table 8.3 are based

on test videos made in sunshiny rooms.
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Figure 8.5: The “Polar” channel responds on light sources, both for natural (e)
and for artificial ones (c, d). The pictures are taken from the test video set.
All the five figures show the input on the left, and the corresponding output of
the Polar channel, on the right. a and b: a part of a bright room in day light;
the Polar channel is basically silent. c had been recorded a few seconds after b:
the lamp is switched on, the Polar channel is excited. (The exclamation mark
between the two channels indicates that the answer is: “There is light source
on the input!”) The Polar channel enables very high reliability for this task
(see table 8.3).
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Correct answers False answers

There is light source on 98.8% 1.2%
the input video frame

There is no light source on 99.38% 0.62%
the input video frame

Table 8.3: The test results of the algorithm aiming to detect primary light sources,
independently from the brightness of the input, or in other words, from the in-
tensity values. The process is based on one of the mammalian retina channels
(namely the “Polar” channel), which reacts on light sources. The small error is
due to reflecting surfaces (a glass table in our case). These values are based on the
evaluation of test videos made on shiny rooms, including 1563 frames together.
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8.3.3 Locating LED indicators

In many public buildings, offices and transport vehicles basic information is trans-

mitted by LED indicators. The aim of this method again is to carry out a fast

solution that localizes the areas that contain the indicators in question with high

probability, on various indoor and outdoor real-life scenes. The main difficulty

– over the bad resolution and the instability – originates from the variety of the

possible inputs.

The test video set I have used includes multifarious scenes including different

public and private places. Some of these can be seen on figure 8.6 and 8.7. On

figure 8.6 I have also visualized those three channels that I have used for solving

this task. These are the two color-opposition channels (blue-yellow and red-green,

which are used because LED indicators are colored) and the Delta channel, which

– according to the experiments – proved to be the most appropriate for the given

task. The function of this channel has not yet been precisely formulated up to

present, but according to the observations, it gives significant response for small

or fragile light sources as well (similarly to strong light sources).

From here, the selection algorithm is the following: if on a given location at

least one of the two color opposition channels gave bigger response than a certain

threshold, then a “fitness-value” would be calculated, being directly proportional

to the three channel-data at the given point. Afterwards these values would be

arranged into descending order, and the first few locations would be the solution

for the given frame, that is regions that the algorithm defines as presumptive

LED locations.

Table 8.4 shows the results I have measured on this task. The results are

based on the evaluation of 1207 frames. I have tested the method on real-life

scenes, taken from different areas with various lighting conditions, reflecting ar-

eas, light sources, colors, etc. As it turned out, the algorithm is not sensitive

to the quality of the input (e.g. resolution), to the lighting conditions or colors,

either to the reflecting areas, but it is sensitive to colored lamps (see figure 8.7

b) – which is not surprising since LEDs basically are small colored lamps, until
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no further object or pattern recognition algorithm is used.

(Frame percentage) Correct answers False answers

There is LED indicator on
the input video frame 96.6% 3.4%

(total 951 frames) (919 frames out of 951) (32 frames out of 951)
There is no LED indicator
on the input video frame 41% 59%

(total 256 frames) (105 frames out of 256) (151 frames out of 256)

Total 84.83% 15.17%
(1207 frames) (1024 frames out of 1207) (183 frames out of 1207)

Table 8.4: The results for the task: “finding LED indicators”. The values are
based on the evaluation of 1207 frames. First row first column is the correct
positive (96,6%), second row first column is the correct negative result (41%). The
test database included complex real-life scenes with different lighting conditions,
colored and reflecting areas and colored lamps. As it turned out, the algorithm
in not sensitive to the quality of the input (resolution), to the lighting conditions
and colors, either to the reflecting areas, but it is sensitive to colored lamps –
which the few frames (total 256) that did not contain LED happened to teemed in.
The bad results are due to these lamps (figure 8.7 b). In the third row (“Total”),
all the frames are counted, that is, “correct answer” indicates the percentage of
the frames where either the input included LED indicator (one or more) and the
output was at least one located area, or the input did not include LED indicator
and the output had no located areas. Accordingly, the line “False” indicates the
rest. The percentage means frame percentage.

Since the input frame may contain more than one LED indicator, and also,

the output can be more than one located region (see figure 8.6 and 8.7), the eval-

uation – similarly to the task of finding traffic signs – is not as straightforward as

in the previous task, where the answer was binary (“there is light source on the

input”/“there is no light source on the input”). Thus I give another table as well,

which indicates the correctness of the locations which the algorithm has given as

solutions. In contrast with table 8.4, table 8.5 depicts ROI percentage instead of

frame percentage, that is, the ratio of the correct and false located areas. Only
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those frames are included, where there was at least one located area.

Correctly identified Incorrectly identified
locations locations

Altogether 2075 81.36% 18.64%
located areas (1688 ROIs out of 2075) (387 ROIs out of 2075)

Table 8.5: The accuracy of the identified locations. Only those frames are in-
cluded, where there was at least one located area. A ROI is “correct” if there
were a LED indicator at that very location, and “incorrect” otherwise. Thus,
an answer belonging to one single frame can contain both correct and incorrect
locations (see for example figure 8.7 b, where the marking of the colored lamp is
incorrect (left hand side, top of the picture), while the sign on the elevator panel
is correct (right hand side, top of the picture).

Figure 8.6: Two frames of the test database for the task “finding LED indicators”.
The left-most pictures in both lines show the input with the identified locations
on them. The other three pictures belong to those channels, whose data has been
used in the execution of the task. These are the red-green and blue-yellow color
opposition channels and the Delta channel. (a) LEDs belonging to a hi-fi set in a
room. The various reflecting surfaces do not confuse the algorithm. (b) corridors
in the university.
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Figure 8.7: Some frames from the videos that I have used for testing the algorithm
that finds LED indicators. (a) rack-railway from the inside (these indicators show
the name of the next stop and the actual time) (b) a colored decorating lamp (left;
the typical error source) and a LED indicator (right) showing the floor-number
on a lift-panel in a department store. (c) tram interior.

8.4 Corresponding future tasks

In the followings I briefly mention some possible directions referring to how the

introduced applications could be improved. These ideas have risen during the

realization and evaluation of the different tasks.

• During walking, a camera held in a hand, makes a quasi-periodic motion.

Most of the people have their own way of “swinging” the phone, thus the

transformation-parameters (vertical/horizontal shifts, the angle of the ro-

tation, etc.) characterize the certain users. These quasi-periodic parameter

values could be learned during a certain amount of frames (and could even

be adjusted during the entire usage), thus they become predictable for a

given user. In this manner, by taking the predicted transformation values

into account, the quality of the stabilization can be improved.

• The model described in this chapter is attentional in the sense that it locates

regions on the input where something important appears. Naturally arises

the possibility of applying a more elaborated pattern or object recognition

algorithm onto the selected area.

• Many possibilities lie in the retina channel decomposition. Thus, the fur-

ther investigation of the individual channels can lead to a promising basis
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for different scene analyzer and object recognition algorithms. For example,

some time-dependent channel (primarily the Transient, Beta and the Bis-

tratified channels) seem to play an important role in separating the different

objects from each other – although, this area needs further investigations.

• In a more elaborated version, the threshold values can be adjusted by a

learning algorithm, and also could be adaptive according to the different

scenes and tasks.

8.5 General Conclusions and Perspectives

Visual attention – both the neurobiological background and the corresponding

engineering models – is a very actively researched area, in which new results are

reported basically every day. The main reason behind this is that new equipment

used in biological research, (such as EEG, MEG, MRI, fMRI, PET, etc. [82]) for

the first time in the history of science allows specialists to reveal more and more

details of the underlying biological structures of this most important sensor of

ours.

The interest from the engineering viewpoint is obvious: the range of the possible

applications is extremely wide: from robot vision through different defense and

observing equipment up to bionic implants, the variety is huge. Moreover, there

is a very stimulating feedback between biological research and the engineering

principles and applications, as the one interacts with the other via new ideas and

directions.

Regarding the visual attentional models, the realization of a complete, neu-

romorphic one, is something held by the far future, since the neurobiological

understanding of the top-down method is in its very infancy – just to mention

some of the relating categories: scene understanding, object recognition, visual

consciousness, etc.

Until then – although, according to the experiences, the direction of science is
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widely unpredictable – different, more or less bio-inspired or neuromorphic task-

specific algorithms will be developed. The ones including TD functions will be

necessarily heuristic.

The rough flow-chart of a possible model is given hereinafter, which can even

be interpreted as an ‘extension’ of the Bionic Eyeglass. It operates in the same

three main modes, as human TD attention can: object based, spatial based and

feature based [24]. The user can switch among these modes:

• Spatial based: process all the features that are present at a given location

of the visual scene, and try to recognize it. Regarding the question: “What

is there?”

• Feature based: finding locations in the entire visual scene which contain a

given feature or feature-collection. Like “Find locations containing ‘brown’

AND ‘oblong’ objects.” Meaning: Where is my suit-case? Generally speak-

ing, regarding the questions: “Where is the... ?”, if the features of the

searched object are known, that is, it is in the ‘Database of the known

objects’.

• Object-based: process (and store) the features of a given object (for example

with the purpose of memorizing it, that is, saving it to the ‘Database of the

known objects’.)

This model gives two outputs: firstly, the small region of the visual scene

that is worth further investigation (that is, focus of attention), and secondly, the

recognized objects.

Of course, the efficiency and practicability of the above model lies in the details

how the higher-order tasks (like “object investigation”, etc.) are realized – here,

simply represented by boxes.
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Figure 8.8: A rough flow-chart of a possible example of a heuristic, complete
visual attentional model. (“complete” in the sense, that enables functions that
are bounded to the top-down method). It can operate in the same three main
modes, as human TD attention can: object based, spatial based and feature
based. The user can switch among these modes. The ‘pure’ bottom-up part is
in the top, left-hand side of the figure. The arrows composing the important
loop among the focus of attention, the function of object investigation, and the
database of the known objects, are shown bold. The known objects are identified
via their features. If the features do not fit exactly, further investigation (data
collections) might be necessary from the surrounding visual scene. If the features
do fit with a high accuracy, the object is identified.



Chapter 9

Summary

9.1 Experimental methods

My research area requires the joint application of different disciplines. Accord-

ingly, as a first step, via neurobiological studies I have got acquainted with the

basics of vision and with the mechanisms that form visual attention as well.

The substance of modeling lies in the proper selection of the elements forming a

complex system (like an animals’ visual system), more precisely, the selection of

those elements which develop the features being important for us. Thus, if these

elements are the same in different systems, then trespassing is possible among

these systems. Accordingly, in a general sense, the vertebrate visual system can

be considered as the basics of my model. (Present-day attentional models are by

far not precise enough to detect the differences, for example between humans and

primates.)

The main steps of the model are depicted on figure 4.1. As a first step, the input

image (left hand-side, top) is being decomposed according to ten different retina

channels (right hand-side, top). Next, each channel creates its’ own saliency map,

which is a two dimensional topographic map of the physical world in the brain

(right hand-side, bottom). The weighted sum of these maps form the “final” or

“master” saliency map (left hand side, bottom), which is a topographic map of

the visual scene as well. The saliency map codes how striking, how obtrusive are

the corresponding points in the physical world. The most intense point of this

map attracts our attention the most, thus the corresponding location of the physi-

105



106 9. SUMMARY

cal world is being mapped into the center of the sharp seeing, that is, to the fovea.

I have realized the above model in (Borland) C++.

The first main step has been the investigation and the completion of the retina

channels. The model runs on a CNN (Cellular Neural/Nonlinear Network) sim-

ulator, which I have also prepared in Borland C++. I have got the proper pa-

rameters, which define the exact spatio-temporal behavior of the different retina

channels, from a previous work carried out by David Balya. Further developments

of the model – of course, under the guidance of my supervisor and consultant –

constitute my own work.

The principles underlying the retina-model are briefly the following: every

retinal cell-layer (photo-receptors, horizontal, bipolar, amacrine and ganglion cell-

layers) corresponds to a CNN-layer (figure 4.1, top, middle). The properties of the

different cell-layers (average diameter of the dendritic tree, temporal properties

of the cell responds, etc.) can be approximated with appropriate CNN templates

and parameters. The connections between these CNN layers (excitations, inhi-

bitions, temporal delays, diffusion parameters, etc.) have also been defined in

a way, so that they approximate the output of the corresponding retinal layers,

as close as possible. The temporal properties of the retina channels have been

entrapped with the adaptation of a weighted, circular memory buffer: the newly

processed frame overwrites always the oldest, and the overall output of the given

channel is the weighted, pixel-wise summation of the buffer content (figure 4.1,

top of the image, right hand side).

The next step is the creation of the saliency maps belonging to the individual

retina channels (figure 4.1, right hand side). These maps are being formed by

differently sized receptive fields (RF). In other words, every channel has a differ-

ent “optimal” receptive field size, or else, a different receptive field distribution

(e.g. figure 6.11). In the beginning of the cerebral vision-processing (that is, in

the “low” brain areas), the RFs are relatively small, and also circle-shaped. The

higher we get in the brain hierarchy, the biggest the RFs are, concerning their

size, and the more complex they become, with respect to their shape. Since in
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the beginning of my studies, the RF-sizes belonging to the different channels were

practically unknown, in the initial state of the model, these have been adjustable

values via the keyboard. (On figure 4.1, the parameters for which no literature

data has been existent up to now are highlighted with red question marks.) The

other important, yet unknown parameters which determine the final saliency map

are the weights of the channel-based saliency maps (figure 4.1, bottom, middle).

I have approximated these parameters via human gaze direction measure-

ments. For this purpose, I have applied an equipment called “iView X Hi-Speed

System” suitable for gaze direction measurements. The “training-set”, that is,

the video clip that the subjects have seen for the process of estimating the pa-

rameters, was a ˜33 second flow, consisting of 267 frames, 8fps, where, each frame

had a 512x298 pixel/frame resolution, 96 dpi. The stimulus did not contain any

voice. It consisted of four shorter natural scenes, containing birds, mountains,

lakes, horses, etc. The reason behind the usage of a moving natural input was

justified by the fact that, according to literature-data, if the subject had no spe-

cific task to perform (e.g. into which continent the subject puts the scene, or,

how many red and blue parrots the subject counts, etc.), then these conditions

primarily trigger bottom-up visual attention.

During the measurements I have investigated the efficiency of 40 different recep-

tive field sizes, for all the channels. This means, RF sizes spreading from 0.5◦ up

to approximately 26◦, expressed in terms of the viewing angle.

For the purpose of defining the channel weights I have applied different approaches

addressing the following question: considering a given stimulus (frame), which

channel(s) participate in triggering the saccade, and also, in what extent do

these determine the new fixation position. (We call “saccades” those little eye-

movements, “jumps”, for which the center of the focus changes, that is, when one

changes the fixation location. 1) During the measurements I have applied 240 Hz

sampling frequency and I have only taken into account the saccades bigger then

1◦.

1In the literature we can find the word “saccade” in the sense of the shifting of the entire
visual scene, but in the thesis I use this word in the sense given in the text.
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For controlling the stimuli I have used the MatLab’s Psychotoolbox[83], and

for evaluating the measured data according to the above assumptions (differing

according to which channels are being considered as saccade-triggering ones with

respect to given stimuli) I have developed programs under MatLab as well.

For the purpose of validating the received parameters, I have performed simi-

lar human measurements on a “test video set” with an analogous topic (that is:

moving natural scenes) using the same equipment. The other settings had been

the same, but for the sake of accuracy, I have used a longer-duration stimulus

including 9 scenes, 477 frames, ˜56 seconds.

During the validation process, I have measured the correspondence between the

models’ predictions and human gaze directions. For all the frames in the test

video set, I have determined more points, as possible fixation locations (like: “on

this frame, the coordinates of the most probable fixation location is the x − y

pair, the coordinates of the second most probable position is x′− y′ ”, etc.). The

results have shown a quite accurate correspondence: in ˜70% of the cases, the

measured location was among the first four predicted locations. The accidental

chance of this is less then 20%.

During the generation of a visual attentional model, the goal is to reproduce

the accomplishment of living creatures, namely, the capability of finding the ac-

tually important visual information in the redundant and/or irrelevant torrent,

in real time. This is possible by using heuristic methods and ideas as well, but

the final goal is – primarily in the case of neuromorphic modeling – to under-

stand and mimic the neural structure of the creature that we have used as model,

as proper as possible. The importance of this lies on the fact that during the

development of such a model, we can learn a lot about the functioning of living

systems. Moreover, problems of an engineering design create a correlation loop

with biological measurements as well. Furthermore, regarding efficiency, heuristic

systems are hardly up to the operational level of the corresponding mechanisms

in living creatures.
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9.2 New scientific results

Thesis #1: A new efficient method in the development of the bottom-up atten-

tional model. The employment of the multi-channel mammalian retina model,

which is based on the latest biological findings, instead of using the heuristic, low

level visual feature filtering, and its’ consequences.

In living creatures, the information processing starts already in the retina.

Even more, the information leaves the retina in a highly filtered and organized

way, and projects towards the higher brain areas for further processing. The first

precise enough neuro-biological descriptions of this information-classification –

and thus also the retina-models built on them – have been appeared only in the

last few years. Accordingly, this retinal process has been neglected in the earlier

models, and instead of it, heuristic, different low level visual feature extraction

algorithms have been applied.

The main novelties of the model I have implemented are the following: Firstly,

the application of the methodology of the above mentioned multi-channel decom-

position of the visual information, and thus the exploitation of the latest results

of the retina research. Secondly, the estimation of the corresponding receptive

field sizes in order to form the proper channel-based saliency maps by them.

1.1 I have improved the ‘classical’ visual attention model in a way

that instead of using the generally applied 3-5 low level visual feature

extraction (characterizing the ‘classical’ model), I am using the multi-

channel mammalian retina decomposition method, which is based on

the most recent neurobiological discoveries[21].

The first step in a neuromorphic visual attention model is the decomposition

of the input image/video, according to the, so called, “low level visual features”

(figure 4.1). Present-day models characteristically employ 3-5 of them, such as,

edge-filtering, corner-filtering, color-filtering, etc.

Instead, in my model I have used the recently revealed and modeled mammalian
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retina network model, which differentiates ten channels (figure A.2). In the case

of five channels, the functions can be read of the output (edge-detection, motion-

filtering, intensity and two color oppositions)1, while the function of the remaining

five is unknown, in the sense that, the aim of their process could not be formu-

lated explicitly, at least up to present. Consequently, none of the heuristic models

can incorporate them.

Corollary: In my model, similarly to living systems, the saliency

maps that are based on those retina channels having non-explicitly

described functions, also take part in the allocation of the fixation lo-

cation. I have investigated their role on moving visual input.

The so called “saliency maps” are two dimensional, topographic maps of the

physical world in the brain, such that, the activity of certain neurons are propor-

tional with the ‘vividness’, ‘high-contrast’ of the corresponding locations in the

physical world.

Since the retina channels having non-explicitly described functions form saliency

maps as well, and thus they take part in the formation of the final saliency map,

neglecting them significantly modifies the final results. In my model, I have taken

into account the saliency maps for all the retina channels, and I have determined

the weights, the ‘importance’ of the saliency maps belonging to these channels

by the same method, that I have used for the explicitly formulated ones.

Seven channels’ response (Transient, LED, Bistratified, Alpha, Beta, Delta, Po-

lar) out of the ten, depend not only on the actual stimulus, but also on its’

temporal behavior. In other words, the response of these channels – and ac-

cordingly the saliency maps based on them – more or less react on changes, on

motion. The effect of these saliency maps, during the formation of bottom up

visual attention, for the first time has been investigated during my measurements.

1According to the latest researches, certain cells in the retina respond to motion direction-
dependently, that is, in certain living creatures, another channel could exist, which filters motion
in a direction selective manner [61].
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Thesis #2: The estimation and optimization of the unknown parameters –

namely, the receptive field sizes belonging to the different channels as well as the

channel weights – based on human gaze-direction measurements. Additionally,

the verification of the model, based also on human measurements.

The model includes two essential, but unknown parameters: firstly, what sized

receptive fields form the saliency maps on the different retina channels, and sec-

ondly, what is the weighting with which the channel-based saliency maps form

the final saliency map. (These are marked with red question marks on figure 4.1)

These parameters had been estimated via human gaze direction measurements,

and I have checked the accuracy of the obtained model with similar measurements

as well.

Directly, we can not measure the channel-based saliency maps (i.e. those be-

longing to a given retina channel) or their effects, but only the fixation locations,

provided by the observers who have taken part in the experiments. We can only

infer, deduce these immeasurable values by using different assumptions; that is,

by using indirect methods. This is true for the weighting of the channels based

maps as well. (It is quite difficult to design an experiment, a “stimulus”, which

affects only one of the channels – it is enough to mention, that if the stimulus

is for example dynamic, then it immediately affects the seven spatio-temporal

channels and the Intensity one as well.)

Since, according to literature data, the gaze directions controlled by bottom-up

mechanism are essentially determined by these saliency maps, I have estimated

their efficiency through their most intensive points, namely, via the correspon-

dence between the ‘keenest’ locations of these channel-based saliency maps and

the measured fixation locations. Consequently, I have estimated the missing pa-

rameters via inferences – which is another reason why the validation (comparison

with human gaze direction measurements) has been so important.
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II.1 I have determined optimal receptive field (RF) sizes for all the

ten retina channels in our model, via human measurements. These cor-

respond to those receptive fields sizes that generate the corresponding

saliency maps. This process involves the investigation of 40 different

RF sizes, between ˜0.5◦ and ˜26◦, expressed in terms of the viewing

angle.

For the same input, receptive fields with different sizes result in different

saliency maps. I consider a receptive field size as optimal, if the saliency map

created by it is the most effective, that is, for which the most intense points

of the corresponding saliency map give the most accurate concurrence with the

measured fixation locations.

Different saccades are provoked by different channels. The open questions are

the following: 1) how many channels take part in the provocation of a given

saccade, and 2) which are these channels concretely. Addressing these questions,

I have investigated two different assumptions:

1. The channels which trigger a saccade (determine the new fixation location),

are those being the most “effective” according to arbitrary receptive field

sizes.

2. The channels which trigger a saccade are those that are effective in average,

that is, all the saliency maps according to all the 40 receptive field sizes

participate in the averaging.

I have investigated the results if the first 1, 3 and 5 most effective channels

take part in the generation of the final saliency map, according to both assump-

tions. During the evaluation of the different cases, I have obtained curves similar

to those that can be seen on figure 6.11. This diagram shows the curves that

belong to the most accurate estimation.

For the different channels, the ‘optimal ’ receptive field sizes are those, by

which the corresponding curves reach their maximum (tables 6.2 and 6.3). The
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final, “tuned” model uses these RF sizes for creating the saliency maps.

In the ‘real’, living retina, the channels have an interval of RF sizes. In a bi-

ological viewpoint, the curves like figure 6.11 preferably show the distribution

(density) of the different sized RFs, in the different retina channels. However,

the explanation of the biological relevance of these curves was not the subject of

my research. I emphasize that these investigations are based on a model level

with aggregated functional tests and are not related to the neurobiological details.

II. 2. I have investigated different hypotheses addressing the ques-

tion: what is the proportion (“weight”) by which the different channels

are responsible for provoking the saccades, that is, for determining the

new fixation locations. Based on these, I have obtained different chan-

nel weightings.

I have analyzed assumptions, in which the channel weights had been kept

constant, that is, the channel based-saliency maps had contributed in the for-

mation of the final saliency map with always the same proportion. And also, I

have investigated strategies, in which the channel weights had been constantly

updated, according to the actual input.

• The assumptions for the fix channel-weighting strategies –

which strongly build onto the previous point –, have been the following:

The channel-weights are proportional to the relative ratio (percentage), by

which they prove to be saccade-triggering :

1. by arbitrary receptive field sizes

(that is, how often do the highest saliency value(s) belong to the dif-

ferent channels - according to any RF)

More concretely, a channel’s weight is proportional to the frequency

that the channel-based saliency map contained one of the highest val-

ues.

2. by average saliency value

(that is, how often do the different channels prove to be the most
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salient one in average - using all the RF sizes)

More concretely, a channel’s weight is proportional to the frequency

that the channel-based saliency map was one of the highest in average.

The results are depicted on figure 6.6 and 6.12, whereas the accuracy of the

different hypotheses can be seen on figure 7.1. On the diagrams, the first

approach is denoted by “arf”, whereas the second one by “avg”.

• The hypothesis for determining the channel weights in a continu-

ally updated manner is based on the assumption that the involvement

of the different channels depend on the actual stimulus. In other words, the

actual channel weights depend on the input, instead of being pre-defined.

The two basic assumptions are the same than previously: those channel(s)

are responsible for triggering a saccade on the actual stimulus, which:

1. contains outstandingly high saliency values belonging to any RF size

2. are the most salient in average on the given frame

The weighting is proportional to these maximal/average values.

Contrary to the expectations – although the differences were small – the fix

channel weighting strategies proved to be better than the continually updated

ones, in the sense that they gave more accurate predictions, compared to human

gaze direction measurements. The former strategies have performed better by

˜5% than the latter ones (see figures 7.1 and 7.5).

Validation. I have verified the model’s accuracy via human gaze

direction measurements, and I have shown that the model predicts

the human fixation locations with high conformity on complex natural

scenes.

With the model adjusted according to the results of the described measure-

ments, I have made predictions of the expected fixation locations, and then I have
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compared them with measured human gaze directions. The measured locations

were among the four most probable predicted locations in ˜70% of the cases, on

the given frames (– the accurate value varies slightly according to the different

hypothesis.) The accidental chance for this, under the same conditions, is a bit

less than 20%. I have defined “hit”, if the distance between the predicted and

the measured location was less then 5◦ 1.

Figure 7.1 indicates the accuracy of the fix channel weighting strategies, figure

7.5 for the continually updated ones. On figure 7.1, the two approaches discussed

in the text have been completed with a third one, in which the saliency map

based on the Transient channel (which in-filters everything that moves and elim-

inates all the steady part) forms the final saliency map, on its’ own. According

to literature-data on dynamic input, this channel is outstandingly strong – which

is intuitively not surprising, if we take into account how naturally we snap our

head at cats, birds, etc., if they abruptly make a motion on the periphery of our

sight. These results have been confirmed by my measurements as well (left-most

columns in the bar-trios).

9.3 Applications of the results

Areas where attentional models can be applied are extremely wide, the subtasks

and methods employed within them can be used in very many fields. Accord-

ingly, during the last years, I have had the opportunity to test different parts of

my model in real practical applications as well – namely in the “Bionic Eyeglass

Project”.

This project meant to help the everyday life of blind or visually impaired

people with mobile equipment, via image-flow analysis and different recognition

methods. The main lines, like the subtasks, have been developed together with

the expert of the “Hungarian National Association of Blind and Visually Impaired

1Counting with 10◦, the hit ratio ameliorates significantly – although of course the accidental
chance as well. The 5◦ ‘threshold’ seemed to be a reasonable choice, both from biological and
from evaluational viewpoints.
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People”. Within this project, I have successfully adapted different parts of the

discussed model, or rather, of an expanded version of it. This version includes

a preprocessing part designed to stabilize the unstable input that comes from a

camera held by a blind walking person. These video-flows are usually extremely

noisy and unstable, often accompanied by fast and unexpected camera motions.

Additionally, often the picture’s main objects shift significantly from one frame

to another, e.g. during turning around. The goal of the image stabilization step

is to keep the steady objects (e.g. buildings) in the same pixel positions, while

the moving objects (for example the pedestrians) can change position.

The main idea in this step is to combine an optic flow algorithm with an affine

transformation model, which can handle translation, scaling, rotation and shear.

By using the optic flow algorithm we obtain estimation for the velocity of the pix-

els by measuring their time and spatial gradients (vertical and horizontal) piece

by piece. Then, with the transformation model, the translation (in vertical and

horizontal directions), scaling, rotation and shear of the frame can be estimated.

By the usage of the mammalian retina channel decomposition, the classical diffi-

culty that image processing algorithms nowadays face (namely that the intensity

or color values of the same object largely depend on the actual lighting conditions)

can be avoided – at least partly. This observation has a fundamental importance

in practical applications, and it is exploited in the methods aiming to solve the

following problems raised within the Bionic Eyeglass Project:

• Locating LED indicators (in real-life indoor and outdoor scenes)

• Finding traffic signs in real-life street scenes

The main purpose of these two tasks is to realize a fast method that lo-

cates the areas which contain the traffic signs / LED indicators with high

probability, on complex real-life outdoor scenes. Subsequently, a classi-

fier algorithm has to analyze only the located ROIs (“Region of Interest”)

instead of the whole input, which can fasten up the whole process signif-

icantly. The main difficulties derive from the instability of the by-default

bad-resolution input, the unconstrained lighting conditions, and from the

variety of the possible inputs.

The accuracy of the introduced methods is around 80%. The test database
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has been made out of complex real-life scenes, for all the different tasks.

• Finding light sources (lamps) – which task (although it seems to be a trivial

‘problem’ for a person with normal vision), could prevent annoyance for

visually impaired people, for example, by preventing the lamps to remain

switched-on for weeks after a guest.

Here, the most important criterion is that the solution has to be independent

from the input’s actual brightness, that is, the accuracy should be the same

in the case of a sun-drenched room and a dark cell.

The method I have introduced relies only on a single retina channel, the

“Polar” channel, and achieves a very high accuracy: the ratio of the correct

answers is around 99%.

The precise algorithms have been explained in chapter 8 and have appeared

in separate publications.

Generally speaking, the possible application-fields of a well functioning visual

attentional system is extremely wide, starting from different monitoring systems

via robot vision up to different ‘bionic’ applications. Nevertheless, a well func-

tioning bottom-up system (which I have attempted to produce during my Ph.D.

studies) is not a complete attentional system. It would be complete, if it had

included the so called “top-down” method as well. However, our knowledge of

this cortex-originated function is quite restricted for the time being, but at any

rate, slimmer than necessary for a reliable and complete model.

At the same time, regarding the above task, some knowledge we already possess

comes from well known data from the literature, for example, that this method

is “fed-back” at the point of summing up the channel-based saliency maps, right

before the creation of the final saliency map (figure 4.1, bottom, middle). On

this schema, different practical applications can be constructed, for example via

the task-dependent modification of these weights (e.g. finding traffic signs, from

the above discussed applications).
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Appendix A

The used multi-channel retina
simulator

The retina channel simulator I have used relies on the retina-model developed

by David Balya and which is detailed in [9]. I have prepared both the used

CNN (Cellular Neural/Nonlinear Network, [84]) simulator and the multi-channel

retina model (similarly to the entire attentional model) in Borland C++, while

the proper parameters, which define the exact spatio-temporal behavior of the

different retina channels have been given by David Balya. This section is devoted

to summarize the used retina model, but more details can be found in [9].

The usage of Cellular Neural/Nonlinear Network (CNN)-based algorithms in

handling different visual problems is common: from robot navigation [85] to mo-

tion analysis [86] the range is wide. The retina model I have used to perform the

seven spatio-temporal channels (Transient, Local Edge Detector (LED), Bistrat-

ified, Alpha, Beta, Delta and Polar, figure A.2.) is also CNN-based and has been

developed by keeping the main structure of the retina in a manageable simple

form. The circuit structure of the mammalian retina and its’ multilayer spatial

temporal model is the same [87, 9], (figure A.1).

The sketch of a (general) spatio-temporal channel is depicted on figure A.1,a.

Each horizontal line on the right-hand side is a CNN layer which corresponds to

a retina layer (depicted in the left-hand side of the picture). The outer retina,

which is the same for all the channels, consists of the cone and the horizontal

layer. The horizontal layer feeds back to the cone layer through an inhibitory
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Figure A.1: The scheme of a general retina channel (b) roughly and (a) with CNN
layers. In our model we have seven of these, one for each ganglion output. The
interacting diffusion layers are numbered. The dashed lines show the inhibitory
connections whereas the continual ones nominate the excitatory ones. Figure (a)
is cited from [9].

connection; thus, the output of the cone layer includes the effect of the horizontal

cells as well.

The bipolar cells connect the inner and the outer retina. From an engineering

viewpoint the inner retina can be divided into an On- and an Off-pathway. (figure

A.1,b) “On” cells respond during illumination, “Off” cells respond when the light

disappears, whereas “On-Off” cells react on both cases.

Each channel consists of three layer pairs, which are serially connected. The first

one is the cone-horizontal, which composes the outer retina. The second one

is the amacrine-bipolar, where the connection is also inhibitory similarly to the

previous one. The third connection is excitatory between the amacrine and the

ganglion layers. The output of the retina-channel is the output of the ganglion

layer. Ganglion cells typically have two qualitatively different inputs: an excita-

tory and an inhibitory one. Excitation comes from the amacrine layer, whereas

inhibition derives from the bipolar cells.

For the seven spatio-temporal channels (which differ only in the parameters

that determine their spatio-temporal characteristics), firstly I have performed

the temporal processing. For this purpose I have used a buffer for the images,
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Figure A.2: An example for the functioning of the retina. The input image
(first picture) is processed by ten different pathways resulting in ten ganglion-
cell types that form the ten retina channels. The second picture in the first row
(next to the input image) is the output of the ‘Transient’ channel that filters
out the mobile parts of the visual scene and removes all the steady sections: at
this moment the birds flight triggers the biggest response. Normally this is one
of the strongest channels. The last image in the first row depicts the output of
the ‘Intensity’ channel. In the second row we can see the blue-yellow and the
red-green contrast channels (these are the color channels), the LED (local edge
detector) and the ‘bistratified’ channels. The functions of the channels depicted
in the third row (Alpha, Beta, Delta and Polar) are unknown for the present, as
well as the bistratified channel’s task. The picture is from [8].

which preserved the recently processed sceneries – in the biological equivalent this

corresponds to the information that is still under processing in deeper layers of the

retina. Practically, this is a fixed-sized buffer, where the certain positions indicate

the time elapsed since the input reached the sensor. Each of these positions has

different weights. (It is important to note that working with image frames is a

corollary of working with simulators that run on PCs; this is because of the fact

that the retina has no frame-rate or any similar category: it works on a totally

analog way, in the sense that the input image flow is continuous in time and
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value, and there is no time discretization, the only discretization is in space.)

Once a new frame is being read, it gets diffused with the former images: that is,

the signals that reach the retina beforehand, subsequently reside on different levels

of the vertical pathway. The different layers of the retina have different diffusion

characteristics: accordingly, the individual positions of the circular buffer have

different weights that characterize the diffusion being made on the image restored

there. Once this process has been completed, the result overwrites the oldest

image. This is the outcome of the specific retina channel.

Spatial processing is the effect of the diffusions that occur inside the certain

layers. From an engineering viewpoint this is the outcome of the subtraction being

made between two different diffusions engaged on the last (temporally already

processed) frame. Figure A.2 shows a snapshot of the ten retina channels for a

natural scene.

The remaining three channels (red-green color-opposition, blue-yellow color-

opposition, and Intensity) do not require complex simulations, since they use only

actual data for producing the output. Although some basics are known [20], the

precise method explaining how the colors are processed is mostly undiscovered.

As a wildly accepted approach, if ‘R’ is the actual red value in a given pixel-

position (from the ‘RGB’ triplet), ‘G’ is the green and ‘B’ is the blue, then [20]

• Intensity has been calculated as 0.812 ∗G+ 0.177 ∗R + 0.1 ∗B

• Red-green opposition as R−G

• Blue-yellow opposition as B − R+G
2
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The Set-Up of the Measurements

B.1 The Stimuli

I prepared two different video sets. One of them was used for the basic mea-

surements, the final purpose of which was to estimate the unknown parame-

ters, namely the (most effective) receptive field sizes, and the channels

weights (section 4.2). The second video was used for the validation and assess-

ment of the model.

Both video-sets contained moving natural scenes, each without any humans or

artificial environment: birds, horses, rivers flowers, sees, mountains, etc. The

stimulus was 8 frame/second video, 512x298 pixel/frame, 96 dpi each. No audio

was added. The first (“training”) video-set included 4 clippets, 267 frames, ˜33

seconds. The validation (or “test” video-) set contained 9 clippets with a sum of

447 frames, ˜56 seconds. Participants were asked to watch both videos 4 times

in the following order: 2 for the training video, then 2 for the test video, then 2

for the training video again, and finally 2 for the test one.

The reason why I chose natural scenes is because recent results indicate that

under natural viewing conditions (if the subjects have no specific task to perform,

for example counting the birds, making suggestions where the scene could be, etc.)

attention is indeed guided by bottom-up mechanisms [62]. Secondly, the reason

why I chose moving stimulus, is because as it is detailed in the section dealing

with the retina channels (sections 2.2.1 and 3.2), seven channels out of the ten
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have some kind of “memory”, thus they give fundamentally different response on

steady input then on moving stimuli.

B.2 Participants

21 naive human observers participated in the first “training” video-set measure-

ments (and 2 non-naive) and 14 naive (plus 1 non-naive) in the second series.

Non-naive participant’s data were not included in the evaluation. Each subject

had normal or corrected-to-normal vision.

B.3 Experimental Design

The equipment I used for recording the fixation locations was an “iView X Hi-

Speed System” which I used on 240 Hz sampling frequency. The distance between

the subject’s eyes and the monitor was 50 cm; the inner part of the monitor was

40 cm x 30 cm. I recorded saccade-end locations and in the first series I processed

the data belonging to saccades bigger then 1 degree, in order to find out the most

BU-modified fixations. During 66 (naive) trials in the first case I recorded 3995

fixations, from which, 2560 saccades were bigger then 1 degree. The second run,

for validation, included 54 trials with 6430 saccade end-location recordings.



Appendix C

Used Definitions, Appellations,
Abbreviations

• Attention is the cognitive process of selectively concentrating on one as-

pect or feature of the environment while ignoring the other ones. It can

belong to any sensory system: audio, visual, tactile or smelling.

• The Bottom-Up (or by abbreviation: “BU”) method is an impor-

tant mode of operation of attention, which is largely unconscious (“reflex-

like”) and driven by the specific attributes of the stimuli present in the

visual environment [14]. The “bottom-up” and the “top-down” attentional

mechanisms form the entire attentional process in conjunction with each

other.

• Channel-based saliency map (Feature-dependent saliency map) is

a scalar, two-dimensional map whose activity topographically represents

the visual saliency of that particular visual feature, which the given chan-

nel codes. That is, a red object in a field of green objects is only salient in

the saliency map belonging to a channel that codes red-green opposition,

and will not cause activation in other maps.
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• A CNN (Cellular Neural/Nonlinear Network): is basically a cou-

pled, dynamic, analog, non-linear processor-array, which lies on an M ×N
tetragonal grid, consisting of locally interconnected cells. There is a cell (a

dynamic system, which can be a processor) in each node of the grid, which

is connected to only the surrounding cells in an r radius distance. It can

include more of these layers (see figure). The state equation which describes

the state if the cell indexed with (i, j), is the next [84]:

ẋi,j = −xi,j +
∑

C(k,l)∈Sr(i,j)

A (i, j; k, l) yk,l +
∑

C(k,l)∈Sr(i,j)

B (i, j; k, l)uk,l + zi,j

where xi,j ∈ R, yk,l ∈ R, uk,l ∈ R and zi,j ∈ R are called the state,

output, input, and threshold of cell C (i, j), respectively. A (i, j; k, l)

and B (i, j; k, l) are called the feedback and the input synaptic operators

(“templates”). The output of the cell Ci,j is:

yi,j = f (xi,j) =
1

2
|xi,j + 1| − 1

2
|xi,j − 1|

Figure C.1: The basic structure of a Cellular Neural/Nonlinear Network. The
picture is from [10].
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• “Efficiency” of a [retina channel – receptive field] pair: A receptive

field (RF) is “effective” on a given channel, if the saliency values deter-

mined by it reaches their maximal values on those locations where human

observers attend to with a good chance.

• Fixation location: That small part of the visual environment which is

mapped into the fovea, to the center of sharp vision.

• Low-level visual features: Basic characteristics of a visual stimulus, for

example the edges, junctions, intensity, color-properties, moving parts, ori-

entation, etc. of its’ elements.

• Master (or final) saliency map is a scalar, two-dimensional map whose

activity topographically represents visual saliency, irrespective of the fea-

ture dimension that makes the location salient. That is, an active location

in the saliency map encodes the fact that this location is salient, no matter

whether it corresponds to a red object in a field of green objects, or to a

stimulus moving towards the right while others move towards the left [6].

• Naive subject: Human experimental subject without any information or

knowledge about the set-up or goal of the given experiment which could

effect her behavior.

• Optimal RF: The most effective receptive field size on a given channel

(see above “efficiency”).

• The retina is the light sensitive inner layer of the eye consisting of neurons,

which receives images formed by the lens and transmits them to the brain

through the optic nerve. The optic nerve is formed by the axons of the so
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called ganglion cells.

• Retina channels: The retina not only captures the visual stimulus and

conveys it to the brain, but it already starts to process it: the visual input

dissolves according to around dozen different “low-level visual features”,

like motion, color-oppositions, edge detections, etc. These are the so called

retina channels, which thus code different aspects of the visual environ-

ment. (see figure 3.3, section 3.2)

• RF: Receptive field of a cell: That area of retina over which light stimuli

changes the activity of a particular cell [35]. More general, every receptor

organ and cell has a receptive field, a specific part of the world to which it

responds [4].

• Saccades are those little eye-movements, “jumps”, for which the center of

the focus changes, that is, when one changes the fixation location. (The

word probably originates from the 1880s, when French ophthalmologist

Émile Javal used a mirror on one side of a page to observe eye movement

in silent reading, and found that it involves a succession of discontinuous

individual movements.)

• The Saliency map ( or Saliency matrix) is a scalar, two-dimensional

map whose activity topographically represents visual saliency. The channel-

based (or feature dependent) saliency maps form the final (or) master

saliency map (see above).

• Top-down (or by abbreviation: “TD”) method is the volitional

mode of operation of attention, which is largely determined by the current

goals and state of the organism. The “bottom-up” and the “top-down”

attentional mechanisms form the entire attentional process in conjunction
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with each other.

• Trial: a scientifically controlled study of some kind of behavior in well-

defined conditions. In this case the observed behavior has been the visual

attention (gaze direction) under bottom-up conditions, using human sub-

jects.

• Visual Attention: Selective visual attention is the mechanism by which

we can rapidly direct our gaze towards objects of interest in our visual en-

vironment [14].
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