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1. INTRODUCTION 
 

1. Introduction 

atterns and waves are so “natural” that we do not pay particular attention to them in 
our life normally. We do not even notice most of them. Yet, they are inherent phe-

nomena of our world. In general sense pattern can be an arrangement of matter, energy or 
other substance. Patterns are around and in us everywhere and they play an important role 
even in our understanding and perceiving. A wave is created when the state or position of a 
substance locally changes spatially and temporally synchronized in such a way that this 
local change propagates. In a broad sense the pattern is a distribution of a property of the 
medium. A kind of mixture of waves and patterns is also possible: a traveling pattern can 
form a wave, or from the other point of view a wave can have texture (see Fig. 1 and Fig. 
2). In this case special local interactions form and maintain an arrangement or texture in 
the spreading wave. An interesting example is shown in the third thesis of this dissertation. 

P

 
Figure 1. Novel type of traveling nonlinear wave. It propagates to a finite distance. After 
that distance is reached only ripples along the edge travel. Consecutive snapshots of the 
active medium. 

 
Figure 2. Novel type of traveling pattern. Consecutive snapshots of the active medium. 
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Figure 3. Special trigger wave. 
Observe the smoothing of the 
sharp edges along the contour. 

When we are talking about waves one usually thinks of the classical waves that spread in 
conservative systems. An example of this well-known by everybody is the surface waves of 
water. In this case, the energy pumped into the system is conserved. 

Nonlinear wave can also be formed in water. Russel [2] discovered the so–called “soli-
tary waves” or soliton. This is a wave consisting of a single elevation, of height not neces-
sarily small compared to the depth of the fluid. If properly started it can travel mostly 
without change in a uniform canal. Similarly, in the ocean an isolated giant wave triggered 
by earthquake travels thousands of kilometres without losing its shape and energy. At pre-
sent solitons are typical objects in hydrodynamics, acoustics, optics, plasma physics, theory 
of superconductivity, etc.  

 
Figure 4. Snapshots of different autowaves. Trigger, target and spiral waves. These results 
were measured on a programmable analog VLSI array computer.  

Nonlinear waves spreading in excitable (non-conservative) medium differs from the 
“classical” waves. Waves in the classical sense (e.g. electromagnetic waves spreading in 
vacuum) mostly constitute physically closed system in themselves, i.e. they do not interact 
with other systems e.g. with a media. It is enough to integrate the state variables of the 
closed system into the energy balance of such waves and the energy computed taking them 
into account remains constant during the process. In the case of the excitable waves the 
conservation of energy is hold only when one considers the state of the wave and the media 
and the interaction between them. However it seems not to be hold if we consider the wave 
as a subsystem. 

Nonlinear waves spread at the expense of energy stored in the media such a way that an 
activated point activates the neighboring points of the medium. From this comes the name 
autowaves [3] coined by R.V. Khorlov, as an abbreviation for autonomous waves. The name 
expresses well the property that the propagation is self–sustaining. The dispersion and de-
cay properties of a spreading autowave are characteristically different from that of the clas-
sical ones: the wave does not decay nor the waveform is distorted during the propagation. 
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Autowaves cannot be reflected from the boundaries, nor can they interfere. When collid-
ing, autowaves annihilate each other. Diffraction is the only property classical and 
autowaves have in common. Table 1. shows the comparison of classical and autowaves. 

Property Classical waves Autowaves 
1. conservation of energy + – 
2. conservation of am-

plitude and wave form – + 

3. reversibility – + 
4. reflection + – 
5. interference + – 
6. diffraction + + 
7. annihilation – + 

Table 1. Comparison of classical and autowave properties 
[1]. 

Up to now, several types of active waves were described and studied. Depending on the 
nature of the observed phenomena different names have been used in literature, such as 
autowaves, traveling waves or trigger/triggered waves, target waves or concentric waves, 
spiral waves, scroll waves (in 3D) [31]. See Fig. 4 and 3 for a few examples. There is no 
well-established convention to find appropriate names for different types of waves. Some 
authors use the term “trigger wave” for autowaves with annihilation properties [80], other 
authors use it for a traveling wave that propagates in the medium in such a way that the 
bistable media flips from one stable state to another and stays in that state for the rest of the 
time. This kind of behaviour is typical e.g. for phase transition waves. In the following I use 
the “trigger wave” in the latter sense. A difference between the trigger waves and other 
autowaves is that when two trigger waves meet they simply merge. 

We know several well-described phenomena of active wave propagation. Flame propa-
gation in combustion systems are typical examples. Chemical reaction–diffusion systems 
can also produce autowaves [4]. Many autowave processes were found in biology. Perhaps 
the most obvious one is the nerve impulse propagation [5].  

An important autowave process can be found in the cardiac muscle [29, 143]. The con-
traction of the muscle follows travelling wave patterns due to the propagation of electrical 
impulses in the heart tissue. Sometimes the propagation fails due to some inhomogenity 
(dead or damaged cells) or too early reexcitation of freshly excited cells. In these cases the 
wave can break or anchor at an inhomogenity and evolves into spiral wave that rotates. 
Thus heart stops pumping at normal frequency. Instead, high frequency disordered con-
traction patterns occur that eventually lead to sudden death. 

Another rather surprising example of autowaves is the communication method of the 
cellular slime mold amoeba species [6,7]. Interestingly, the members of a colony of amoeba 
communicate by spiral and target waves. When no more food (bacteria) is left and they are 
starving some of them send out spiral and target waves and attract the neighbouring amoe-
bas. Then they transform to spores until food becomes available. When this happens the 
spores are regenerated into amoebas again [147].  

3 



1. INTRODUCTION 
 

Alan Turing proposed a model to explain mechanism of pattern formation in a reaction–
diffusion system in his paper in 1952 [8]. He suggested that chemicals can react in such a 
way that the steady state of the reaction is a heterogeneous spatial pattern of chemical con-
centration and that this can be the chemical basis of morphogenesis. 

Since the fundamental work of Turing hundreds of papers and several books dealt with 
the possible explanations of the complexity of forms found in Nature and their correspond-
ing mathematical models [7,9–13,28,151,141]. As a good starting point see [142]. 

These phenomena detailed above attracted remarkable attention and several researchers 
have become involved in different fields of sciences in recent decades. This resulted in the 
emergence of new multidisciplinary research areas. The phenomena have been studied 
under different guises in literature, such as order from disorder (Schrödinger, [16]), synergetics 
(Haken [17–19,141]) self-organization (Nicolis & Prigogine, [20]), dissipative structures op-
erating far from thermodynamic equilibrium (Prigogine, [9,15]), edge of chaos (Langton, 1990 
[21]). Another recently developed theory, the local activity (Chua [11, 22–26]) offers a uni-
fied paradigm for studying these phenomena. It provides precise necessary mathematical 
conditions for the possible emergence of complexity in energetically active media. 

As a result of efforts of many researchers in the field several methodologies and mathe-
matical tools have been developed. A classical approach for modeling is to use PDEs. How-
ever, recently, it became apparent that not all phenomena can be reproduced with the con-
tinuous PDE models (Keener [27]). 

Systems of discretely coupled cells with some kind of transfer process between the cells 
are often used to model the above mentioned phenomena that occur in living cells, tissues, 
nervous system, ecosystems, reaction–diffusion systems describing chemical processes. 
Such discrete modeling frameworks are the cellular automaton model (CA), coupled map 
lattice (CML [148, 149]), nonlinear lattice (NLL) and cellular nonlinear/neural networks 
(CNN). See Table 2. for comparison. The latter one is a powerful hardware feasible model, 
i.e. it can be effectively implemented in analog VLSI chip. Moreover, it turned out that it is 
a suitable unifying framework for PDEs, CA and NLL since almost all PDEs can be trans-
formed into CNN form with appropriate spatial discretization and the other two can be 
considered as a special case of CNN [26, 30, 145, 146]. Surprisingly Gilli et. al. showed that 
CNN dynamics represents a broader class than PDEs [135]. 

Model Space Time State

PDE C C C 

CNN D C C 

NLL D C C 

CML D D C 

CA D D D 

Table 2. Comparison of different model-
ing tools. C = continuous, D = discrete 

CNN is a locally connected ensemble of nonlinear dynamical systems called cells. It is 
discrete in space but continuous in time. Its connections or couplings determine the dy-
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namics of the system. CNN provides a well-defined mathematical and physical framework 
to study the emergence of patterns encoded by the local interactions of identical cells. 
Chapters 3 and 6.3 of this dissertation present examples of this. 

In spatially discrete systems, such as the CNN, a traveling pattern is the assembly of 
synchronized oscillations of individual cells. Thus it is straightforward to deduct that the 
trajectory of the system in the state space is characteristic to the pattern. If the attractor 
that the trajectory moves around is a chaotic one, a rather complicated pattern can be 
formed. This suggests that coupled oscillations can serve as the generator of forms and pat-
terns. Chapter 3 and 4 of this dissertation deal with this. 

Besides the modeling and studying of complex phenomena, CNN makes it possible to 
conceive novel, inherently fast computation principles. Such parallel computation method 
is presented in the third thesis and chapter 5 of this dissertation. 

Although in the state–of–the–art microprocessors more or less parallelization can be 
found, algorithms are executed sequentially since the computing principle is based on an 
abstract mathematical construct called Turing machine that has a fundamentally sequential 
operation. On the contrary, in active media things happen parallel. CNN is organized typi-
cally into a regular grid-like array. Electrical circuit implementation can be the optimum 
choice since circuits can be well controlled compared to e.g. chemical solutions and current 
VLSI technology enables the easy mass production of large arrays. The elementary cells of 
the arrays are identical circuits that operate parallel. If we want to make use of this for 
computation we must think different from the usual way one got used to at digital com-
puters. One should take into account that the computation goes parallel and the task should 
be expressed in the form of the available parameters. They are the initial state of the sys-
tem, couplings and boundary conditions. The result of computation is established as the 
steady state or any intermediate state of the system developed by the collective behaviour 
of the array. 

The mammalian retina consist of interconnected layers of mostly locally connected 
cells. CNN shows strong resemblance to this structure. It naturally offers itself as a model-
ing tool [71]. Hardware implementation makes it a promising basis for further possible 
retinal prosthesis prototypes [131].  

The receptive field is a basic structure found everywhere in the neural pathway. It can 
be found in the tactile system, retina and in the cortex. The receptive field is the set of 
neurons from where a neuron receives input [150]. This usually means the local neighbor-
hood of the neuron. With the aid of the CNN several types of artificial receptive field can 
be built [130]. 

In the first thesis I present novel 2D traveling patterns exhibiting rich nonlinear dynam-
ics including spatio-temporal chaos. I study the corresponding dynamical system and de-
termine the parameters that control the character and the dynamics of the pattern. I show 
that the 2D pattern is composed of 1D rows of coupled oscillators. In the second thesis I 
focus on the analysis of one row. I show that even the boundary conditions can change the 
dynamic behaviour e.g. from periodic to chaotic.  

In the third thesis I present the mathematical analysis of a local curvature controlled 
trigger wave. I show how it can be used for practical image processing purposes.  

5 



1. INTRODUCTION 
 

In Chapter 6 I present algorithms based on CNN computing and I show how to repro-
duce basic active wave phenomena in the two-layer CNN Universal Machine (CNN-UM 
[49]) VLSI chip [59]. Actually, using the CNN-UM as a stored programmable spatiotem-
poral computer with the CNN dynamics as an elementary instruction, a new world of 
wave based algorithms is emerging. With these algorithms I have solved some practical 
problems. 
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2. CNN paradigm 

he Cellular Neural/Nonlinear Network is a two or higher dimensional set of nonlin-
ear dynamical systems [99] organized into a grid. Its elements called cells or “neu-

rons” have local interconnections. The grid may have various topologies such as rectangu-
lar, toroidal or even hexagonal. Up to date mainly rectangular and toroidal ones were the 
subjects of research. Such system can be expressed as a two or higher dimensional array of 
cells. 

t

Since the original paper [46] several articles have dealt with different theoretical issues 
including stability problems and novel phenomena, with applications and hardware im-
plementations. CNN has been aooeared to be suitable theoretical and hardware framework 
[50-59] for computing partial differential equations [75,76], reaction–diffusion systems and 
high speed near-sensory image processing techniques [56,64-74]. 

In the CNN the couplings, the initial state of the system and the boundary conditions 
determine the operation of the array.  The couplings represent the weighting of the effects 
of the neighbouring cells on each other.  

Cellular Neural Networks [46,47], the CNN paradigm [48] and the analogic computer, 
the CNN Universal Machine [49], provide a new computational approach to spatiotempo-
ral computing in particular image processing.  

The concept was originally invented by circuit theorists thus it promotes hardware re-
alizations. Due to its local connectivity, the principle fits in with the current VLSI technol-
ogy. Moreover, its local processing manner naturally makes it a near–sensory technology 
that enables ultra–high speed parallel computation without I/O bottleneck [128,129]. 
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2.1 CNN Paradigm 

Since the inception of the CNN several enhanced and modified models were proposed. In 
the following I briefly review the most important variants. 

2.1.1 Basic notations 

The CNN is defined by two mathematical constructs according to [26]: 

 
I. A spatially discrete collection of continuous nonlinear dynamical systems 

called cells, where information can be coded into each cell via three inde-
pendent variables called input, threshold, and initial state. 

II. A coupling law relating one or more relevant variables of each cell to all 
neighboring cells located within a prescribed sphere of influence Nr(ij) of 
radius r centered at ij (see Fig. 5). 

( ) ( ) { }
⎭
⎬
⎫

⎩
⎨
⎧ ≤−−=

≤≤≤≤
rjliklkCN

NlMk
ijr ,max,

1,1
, where ( )lkC ,  denotes the j cell in 

the i row. 

 

 

C(i,j)

r =1

r =2}

i 

j 

 
Figure 5. The meaning of sphere of influence Nr(ij) 

of cell C(i,j) in rectangular grid. 1 < i ≤ M, 1 < j ≤ 
N. 

It is important to note that the boundary condition is also possible information storage and 
therefore it is necessary to prescribe it. Indeed, as it will be shown in Chapter 4, it is an im-
portant system variable and bifurcation parameter that controls the dynamics of the whole 
system. Boundary condition is represented in the form of virtual cells: V={C(i,j)|i=0,M+1, 
j=0,N+1}. 

Boundary condition types: 
I. Fixed (Dirichlet) 

C(i,0)=I1, C(i,N+1)=I2, C(0,j)=I3 ,C(M+1,j)=I4 
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II. Zero flux (Neumann) 
C(i,0)= C(i,1), C(i,N+1)= C(i,N), C(0,j)= C(1,j) ,C(M+1,j)= C(M,j)
 

III. Periodic (Toroidal) 
C(i,0)= C(i,N), C(i,N+1)= C(i,1), C(0,j)= C(M,j) ,C(M+1,j)= C(1,j) 

2.1.2 Mathematical formulation 

Throughout my theses, I use the one-layer CNN model with first order elementary cells 
organized into regular grid.  

First order CNN or first order (core) cells means that the elementary cells of the CNN are 
described by first order ordinary differential equations ignoring the couplings between the 
cells. Second or third order cells mean second or third order differential equations describing 
the elementary cell.  

CNN with second order cells is introduced in Chapter 6. Indeed, higher order cells can 
be formulated with multiple layers and vice versa. Therefore, the two-layer CNN with 
first order cells and single layer CNN with second order cells are practically equivalent. In 
the following I give an overview of one-layer, first order, hardware feasible version of 
CNN. 

General first order CNN state equation: 

 

ij

r

rk

r

rl
ljkiljkiljki

r

rk

r

rl
ljki

r

rk

r

rl
ljki

r

rk

r

rl
ljkiij

x

ij
x

z)uxyD(i;j;k;l)xC(i;j;k;l

)uB(i;j;k;l(t))ylkjA(i(t)x
Rdt

(t)dx
C

+++

+++−=

∑ ∑∑ ∑

∑ ∑∑ ∑

−= −=
++++++

−= −=
++

−= −=
++

−= −=
++

,,,,

,,

;;;;

;;;;;
1

 (2.1) 

where  
 Cx,Rx are (linear) capacitance and (linear) resistance. They determine the time constant 

of the CNN: τ=RxCx. With no loss of generality they are considered to be 1. 
 A is the operator for the connections from the outputs of the neighbors including its 

own. 
 B is the operator for the connections from the inputs of the neighbors including its 

own. 
 C  is the operator for the connections from the state. 
 D  is the operator for the mixed connections.  
 xij  is the state of the cell being in the ith row and jth column. 
 yij  is the output of the cell. 
 uij  is the input of the cell. 
 zij  is the bias (also referred to as current or threshold) of the cell that adds a constant 

value to the state. It can be space variant or invariant. In the latter case it is a single 
number. 

 r  is the neighbourhood. It typically ranges from one to three. 
 i,j are the cell indices 
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 M,N are the vertical and horizontal dimensions respectively. 
  1 < i ≤ M, 1 < j ≤ N 

 
Output equation: 

 |)1||1(|)(
2
1 −−+≡= xxxfy  (2.2) 

 f(x)

x

-1 1

 
Figure 6. Piece-wise linear 
nonlinearity used in the origi-
nal Chua-Yang model. 

The operators A,B,C,D are called (cloning) templates. They are written usually as matrices, 
their elements can be functions or constants. They represent the strength of the coupling 
between the neighbouring cells. Considering the case when the cells are organized into a 
2D array, the output (or state) of the system is a two-dimensional image in which each cell 
corresponds to one pixel of the image. The input uij of the CNN is also an image. The bias 
zij that can be a single constant or an image that adds constant bias to each cell. 

The CNN paradigm allows general synaptic coupling. We may introduce couplings 
depending on  

a) the output and input A(i;j;k;l,yi+k,j+l(t)), B(i;j;k;l,ui+k,j+l(t)) respectively. 

b) the state (template C). Intensive research was done related to this coupling type by 
Arena [105, 139].  

c) mixed variables coupling (template D). In this case the coupling is a function of 
mixed variables x, y, u. Such connection can be for example when the coupling 
strength is: D(.)=D(xij – xkl), D(yij – ykl) or D(xij – ukl). Shi presented a nonlinear sta-
tistical filtering based on this type of coupling [138]. Rekeczky also did in–depth 
research related to this type of coupling [67]. He developed operators and algo-
rithms for local statistics based filtering [68]. 

For examples and additional coupling types such as delay type ones see[62] where the in-
terested reader finds several operators designed for specific tasks.  

In the most general case templates may vary with position (i,j) and can be nonlinear 
function of variables xij, xkl, yij, ykl, xij, ukl. However, due to VLSI realization issues CNNs 
with linear and space invariant coupling are the most widely studied ones. Namely, when 
A(i;j;k;l,yi+k,j+l(t))=akl ykl, B(i;j;k;l,ui+k,j+l(t))=bkl ukl.  
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The first order CNN with nonlinear function (2.2), with r = 1, with linear templates A, 
B and with bias z is called standard CNN. The following linear template matrices show the 
couplings for the standard CNN. The elements of the matrices are constant. 

             z
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

−

−

−−−−

1,10,11,1

1,0001,0

1,10,11,1

aaa

aaa

aaa

A
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

−

−

−−−−

1,10,11,1

1,0001,0

1,10,11,1

bbb

bbb

bbb

B ij (2.3) 

Together with the initial state, input, boundary conditions and possible with a bias map 
these 19 numbers characterize completely the whole array of standard CNN. 

2.1.3 Space invariant linear CNN 

This type of CNN model is the most widely used both for theory and physical implemen-
tations. In the following I present two variants. The first one is more often is the subject of 
theoretical works while the second that is the modification of the original so called Chua–
Yang model is frequently used in chips. 

Chua–Yang model 
This model was described in the original paper [46]. Akl and Bkl are matrices with constant 
coefficient like in eq. (2.3). The general state equation (2.1) simplifies to the following:  

 ij

r

rk

r

rl
ljkikl

r

rk

r

rl
ljkiklij

ij zuB(t)yA(t)x
dt

(t)dx
+++−= ∑ ∑∑ ∑

−= −=
++

−= −=
++ ,,  (2.4) 

The nonlinear function remains the same as eq. (2.2). The original Chua–Yang cell circuit 
is shown in Fig. 7 .  

 

 

↑ ↑↑Eij 

uij xij yij 

zij Cx Rx

Ixy(i,j;k,l)=Ai+k,j+l ykl Ixu(i,j;k,l)= Bi+k,j+l ukl

Ry 

Iyx=
1

2Ry
 (|xij-1|-|xij+1|) 

+ 
– ↑ 

Iyx 

Ixu(i,j;k,l)Ixy(i,j;k,l)

 
Figure 7. Standard CNN cell core circuit [46]. Notations are according 
to eq. 2.1. Rx and Ry are linear resistors; zij is an independent voltage 
source; Ixu(i,k;k,l) and Ixy(i,k;k,l) are linear voltage-controlled current 
sources with the characteristics Ixy(i,j;k,l)=Ai+k,j+lykl and 
Ixu(i,j;k,l)=Bi+k,j+lykl; Iyx=f(x) is a piecewise-linear voltage-controlled 

current source with characteristic y=
1

2Ry
 (⏐xij-1⏐-⏐xij+1⏐); uij is an inde-

pendent voltage source. 
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Full range (FSR) model 
This is a modification of the original model due to the VLSI implementation issues [97]. 
The difference is that the state is always bounded and the same as the output. This modifi-
cation does not change the qualitative behaviour in most of the parameter range. However 
Gilli and Corinto [136,137] has shown that even if the two models exhibit similar proper-
ties, they are not topologically equivalent, i.e. there exist sets of identical parameters for 
which they present a qualitatively different dynamic behaviour. As a consequence, all the 
results based on the original Chua-Yang model, should be carefully checked, before ex-
tending them to the Full-Range model. The state equation is the following: 

  (2.5) ij
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r

rk

r

rl
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 g(x)

x

-1 1

 
Figure 8. Full-range model’s ideal nonlinearity. 

Fig. 8 shows the ideal nonlinearity. However, it can not be realized physically, instead a 
“less hard” real nonlinearity was implemented. See Fig. 15 on page 23. 

An illustrative example for the different qualitative behaviour can be when the dynamics 
of the array is e.g. chaotic with a given parameter set in the Chua–Yang model and periodic 
with the FSR model and vice versa.  

2.1.4 Autonomous CNN and PDEs 

CNNs having no input represent an important subclass. Several paper related to them 
showed their importance. They can be the suitable medium for modeling and generating 
many pattern formation and active wave phenomena mentioned in the Introduction. Sev-
eral types of nonlinear waves have been reproduced and analyzed on this structure de-
pending on the complexity of the elementary cells [31, 59, 77-82]. In literature results were 
presented with first [64, 83, 85], second [59, 84] and third order CNN cells [31, 152–154]. 
The so-called Chua circuit was used as a third order core cell. It is a well-described simple 
yet dynamically rich three-dimensional dynamical system [155].  

The classical physics postulates in most of the cases the local character of interaction. 
Waves as global effects arise from local effects of the dynamic evolution of the media. Ap-
propriate mathematical description of local dynamics of the media is a partial differential 
equation. Most of the PDEs cannot be solved in closed form. In these cases, one uses nu-
merical integration. To do this spatial discretization needs to be performed. This trans-
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forms the PDE into a set of ODEs. This means that the original spatially continuous system 
is transformed into an array of small, discrete, interacting systems.  

Interestingly it turned out that spatially discrete system represents a broader class than 
PDEs [135]. Not all phenomenon exhibited by discrete systems can be reproduced in 
PDEs (Keener [27]).  

The CNN paradigm is a natural and flexible framework to describe locally intercon-
nected, simple, dynamical systems that have lattice like structure. CNN offers a massively 
parallel and analog solution for the computation of discretized PDEs. Programmability of 
interactions and boundary conditions provides flexibility for treatment of various prob-
lems.   

It should be noted that the discretized analog solution provides a different precision 
compared to that of the digital processors. While in case of digital computing we can define 
e.g. 32 bit precision for each (virtual) cell in our analog processor equivalent precision can 
not be defined since each cell has analog dynamics. The elementary cell has virtually “infi-
nite” precision though due to the fabrication process the cells have a distribution of pa-
rameters. This should be considered and requires a different thinking when one designs 
algorithms and applications. 

2.2 CNN Universal Machine – Analogic computer 

To build algorithms some kind of programmability is obviously required. The earlier neu-
ral network chips (e.g. Intel’s ETANN i80170NX) were not truly successful because the 
reprogramming took order of magnitude longer time than the computing itself due to the 
high number of synaptic couplings, which heavily limited the range of applications. The 
space invariant linear CNN requires only the same 19 numbers to be stored in each cell. 
Thus reprogramming takes approximately the same time as the transient of a CNN with 
simple, non–propagating template setting. This template constitutes the elementary analog 
instruction of the whole CNN array. This means that if r =1, 19 numbers are enough to 
describe the operation of the whole array. To compose programs based on these instruc-
tions, additional devices and circuitry should be added to the cells and the array in addition 
to local and global logic.  

2.2.1 Architecture 

The CNN Universal Machine array computer [49] was designed according to these prin-
ciples.  Local Analog Memories (LAM) and Local Logic Memories (LLM) were added to 
the cells to store intermediate results, which means a great advantage in computational 
speed. Local Logic Unit (LLU) was added to perform preprogrammed logic (AND, NOT, 
OR, XOR, etc.) on the intermediate results. Thus logic operations together with the analog 
ones form the analogic instruction set of the array processor.  

On the other hand, at the array level a Global Analogic Programming Unit (GAPU) was 
added to the machine. It includes Analog Program Register (APR) to store the analog pro-
gram and Logic Program Register (LPR) to hold the control sequences for logic program 
of the individual cells. The Switch Configuration Register (SCR) stores the settings of 
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switches that control the behaviour and functionality of the cells. The Global Analogic 
Control Unit (GACU) stores the sequence of analogic instructions that forms an algorithm. 
It controls the data transfers, timing, program execution, and communication with other 
devices.  

 

GAPU 

APR 
SCR 
LPR 

GACU 

cnn universal machine

CNN CELL 
 

LAM 
LLM 

LAOU 
LCCU 
LLU 

OPTIC 

 
Figure 9. CNN Universal machine. 

2.2.2 Algorithm design 

Contrary to usual digital computing, the application of the CNN paradigm and analogic 
algorithms require a completely different way of thinking. Instead of sequentially executed 
arithmetic and logic instructions executed for individual pixels, the CNN analogic pro-
grams consist of the combination of parallel logic and spatiotemporal analog operations. 
This analog operation defined by a template can perform complex computational tasks in a 
single dynamic wave or process as illustrated in Chapter 5. Such spatiotemporal processing 
principle is inherent in biology, for example such computing method can be found in the 
retina [70,131]. 

In the algorithmic design it is important to keep in mind the key principles of CNN proc-
essing: 

I. Distributed parallel processing based on mainly local interactions. 

II. Local storage of necessary information and intermediate results. 
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III. Decisions are based on global properties e.g. all pixels are white. This implies the 
reduced information transfer since this kind of detection can be implemented eas-
ily. 

2.2.3 Hardware implementations 

Since the inception of the CNN paradigm several successful hardware implementation has 
been realized due to the intensive interoperation of circuit theorists, mathematicians, com-
puter scientists, circuit designers and neurobiologists [50-59]. The array dimension being 
12×12 at the beginning [50] has been increased more than tenfold to 128×128 whithin ten 
years [55]. After the first steps a hardware accelerator board was designed to put into PC. 
Later binary input/output chips were fabricated. Latest versions have grayscale in-
put/output and also have optical input that enables near-sensory processing. Table 3 shows 
the comparison of the main characteristics of CNN–UM chips; Fig. 10 m shows the photos 
of some CNN–UM chips; Table 4 shows some characteristics of the new CNN-UM based 
smart camera system produced by Analogic Computers Ltd [108]. 

 
Place of 
design 

Berkeley 
& Munich 

Seville Leuven Seville Berkeley Helsinki Seville Seville Seville Budapest

Date of 
design 

1993 1994 1995 1995 1996 1997 1998 2000 2001, 
2004 

2004 

Array size 12×12 32×32 20×20 20×22 16×16 48×48 64×64 32×32 128×128 n×40 

Cell type DTCNN Full-
range 

Chua-
Yang 

Full-
range 

Chua-
Yang 

Chua-
Yang 

Full-range Full-range, 
complex cell 

Full-
range 

Full-range 

Technology 2µ 1µ 0.7µ 0.8µ 1µ 0.5µ 0.5µ 0.5µ 0.35µ 0.35µ 

Time con-
stant (τ) 

300ns - 4.8µs 400ns 27ns 50ns 250ns 
two <100ns, 
one is vari-

able 
250ns - 

Input analog binary & 
optical 

analog 
binary 

& 
optical 

analog binary analog analog analog & 
optical 

digital 

Output binary binary analog binary 
analog & 

binary binary 
analog & 

binary analog analog digital 

APR external 8 external 8 external 1 32 32 32 20 

LLU AND program-
mable 

- 
pro-

gramma-
ble 

program-
mable 

program-
mable 

program-
mable 

programmable program-
mable 

programma-
ble 

LLM 2 4 - 4 2 2 4 4 - 3×40×12
LAM - - - - - - 4 4 8 3×40 

Table 3. Comparison of the performance characteristics of different CNN Universal Chips. 

Seville 20×22 
1995 

Seville 64×64 
ACE4k  1998 

Seville 128×128 
ACE16k  2001 

 

Figure 10. Selected CNN Universal Chips. 

17 



2. CNN PARADIGM 
 

Product 
Name 

Computing 
power 

Digital Proces-
sor 

Digital 
Memory 

Neural Proces-
sor 

Frame rate 

Bi-i 
1600 MIPS + 
~ 1 TerraOPS 
using ACE16K 

TMS320C6202, 
250 MHz 

2MB Flash, 
16 MB 

SDRAM 

ACE16K - 
128x128 sensor 

processor 

28 - 2000 fps, 
up to 10000 

Table 4. Technical data of the latest CNN-UM equipped Bi-i smart cam-
era system. 

Other types of implementation are also possible. Such feasible example can be the opti-
cal one [156,157] where the computation is done by the light using Fourier optics. Its ker-
nel processor is a novel type of high performance optical correlator based on the use of 
bacteriorhodopsin (BR) as a dynamic holographic material. This optical CNN implemen-
tation combines the optical computer’s high speed, high parallelism and large applicable 
template size with the flexible programmability of the CNN devices (Fig. 11).  

 
Figure 11. Laptop-size POAC (Programmable Opto-
electronic Analogic CNN Computer). 

2.2.4 Application development environment 
In our laboratory we tested successfully almost all CNN–UM chips (see Fig. 10 for im-

ages of some chips). For this we made prototyping hardware environments [60]. The first 
component of the system is a host PC that displays the results and allows the user to inter-
act. The next component is a DSP module that communicates both with the PC and with 
the CNNUM. The CNN chip is hosted by a transparent hardware–software interface that 
makes it possible to interchange various chips [133,134]. Earlier versions of the system re-
quired a PC, but the latest version is a standalone system that can operate even on battery 
connected to the internet through a wireless adapter (see Figure 12 ). 

The system has different levels of software interface. At the lowest level man can use 
C++ library calls [63] which execute specific tasks on the chip and DSP. The next abstrac-
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tion level is the so called AMC that stands for analogic machine code. This has the same func-
tionality as the C++ library calls but it is interpreted in runtime. It is possible to use a 
high–level language called Alpha. The CNN software library [62] contains several CNN 
templates and algorithm examples.  
 

 

 
CCPS ACE–BOX 

Figure 12. PC-embedded hardware hosts of development en-
vironment. 

 

 
Bi-i V1 Bi-i V2 

Figure 13. CNN-UM smart cameras as standalone hardware hosts of de-
velopment environment. 
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3. Dynamic patterns 

 

First Thesis 

Spatio-temporal signatures in CNN 

I discovered a linear, space invariant 2D template class with few nonzero elements 
that can produce complex, chaotic spatio-temporal behavior depending on the template 
parameters and the input of the array. It generates spatially bounded or unbounded 
traveling patterns according to the parameters. I introduced the “Spatio-temporal Signa-
ture” – a still image that is the snapshot of the output – as a descriptor for the dynamic 
state of the array. This image reflects the temporal history of the dynamics in space due 
to the propagating effect.  

I gave principles for the template design. I gave a 1D template of which correspond-
ing CNN exhibit complex, chaotic behavior depending on the input.  

 
 

n
 

umerical simulations of spatial-temporal chaotic systems require enormous digital 
computing power, but even so this is the usual analysis tool because it offers the ad-

vantage of easy experimentation via programming. Until now, the physically implemented 
chaotic circuits were “hard-coded”. The analogic cellular computing paradigm [99,49,107] 
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places the spatial-temporal dynamics into array computer architecture. Using the ACE4K 
test-bed [98-99] it is possible to make programmable real-time experiments and uncover 
new complex dynamic behaviours in the Cellular Nonlinear Network. 

The Cellular Nonlinear Network [46–49] was introduced in Chapter2. In this thesis I 
consider its standard two–dimensional one-layer, first order version except where explic-
itly noted.  

 
        (a) (b) (c)  

Figure 14. Typical pattern classes. (a) The input and initial state, 
(b) snapshot of the output when the extra coupling is greater than 
zero, (c) snapshot of the output when the extra coupling is less 
than zero  (Chip measurements) 

The qualitative theory of nonsymmetric feedback (A) template were first exposed in 
[106].  Later, several papers studied the operation of the CNN with non-symmetric or 
sign-antisymmetric templates [100–102]. They described some necessary conditions under 
which propagation effects occur or the solution is periodic. Other works investigated the 
pattern formation properties of the CNN [91] or studied the complex behaviour [103-105] 
of the CNN. However, only a few works dealt with the case when there is a constant input 
[64]. With constant input, we are able to change the local dynamics within the array and to 
localize the propagation effect into a certain region according to the extent of the input 
pattern. By using a constant input as a “seed”, different shapes can be generated depending 
on the properties of the template. 

In the following I present some experimental analysis of a simple antisymmetric tem-
plate class in that case when we add only one extra coupling below the central element. I 
introduce a basic template class and show how the behaviour of the CNN changes from 
stable to chaotic states at different values of the extra coupling. Fig. 14 shows two basic pat-
tern classes that are generated with two different values of the key template element (the 
extra coupling is greater or less than zero). Throughout this thesis black color means “+1” 
and white color means “-1” in the images. The input is the same as the initial state in every 
measurement and example. Boundary conditions are set to zeroflux in the simulator and to 
–1 in the chip measurements, except where explicitly noted. 

Section 3.1.1 describes the CNN model of the simulation and of the chip. Section 3.2 pre-
sents the basic pattern classes. Section 3.3 and Section 3.4 describes the effect of the self-
feedback and of the input and initial state respectively. Section 3.5 presents an example of a 1D 
CNN with first order cells that exhibits chaotic behaviour. Section 3.6 shows some additional 
examples of traveling pattern classes. 

Throughout this analysis I only consider CNNs with space invariant templates i.e. the 
same template matrix describes the local couplings for each cell. In the model (3.1) we have 
a nonzero input u that adds a constant value to each cell. 
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3.1 CNN Model 

The models used in this thesis were introduced in Chapter 2. Therefore I only repeat the 
basic equations. 

3.1.1 Simulation 

The mathematical model of the simulation of the CNN dynamics is the following: 

  (3.1) zuB(t)xA(t))g(x(t)x
r

rk

r

rl
ljkikl

r

rk

r

rl
ljkiklijij +++−= ∑ ∑∑ ∑
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++

−= −=
++ ,,&

I use the so-called full range model [97]. In eq. (3.1) xi,j denotes the state, Akl is the feed-
back template matrix, Bkl is the control template matrix, that describes the effect of the con-
stant input ukl , and z is the offset or bias. The integration method throughout the simula-
tion was an implicit Euler method. In all cases the boundary cells are set to zeroflux, except if 
explicitly noted differently.  

3.1.2 Programmable chip measurements – the experimental test bed 

The chip experiments were made on the ACE4k test bed. The model of the CNN is the 
following: 

  (3.2) zuB(t)xA(t))(xg(t)x
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On the chip, the ideal nonlinearity (see Fig. 8) is approximated by a “less hard” nonlinear-
ity (See Fig. 15).  

g’(x)

x

1

-1

 
Figure 15. ”Less hard” nonlinearity g’(.) 

3.2 The effect of vertical coupling 

In the following, I show how an extra coupling added to a vertically uncoupled template 
changes the behavior of the system. At first, let us consider a one-dimensional “CCD-like” 
template of which solution is periodic (See Template 1 and Fig. 16). 

 Template 1:  1.0

000

01.10

000

000

6.03.06.0

000

=
⎥
⎥
⎥

⎦

⎤

⎢
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⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−= zBA
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During the transient, cells along the right hand side border of the constant input pattern 
act like oscillators. The oscillators are only coupled horizontally and the rows operate in-
dependently.  

 
 

Figure 16. The time evolution for Template 1, snapshots of the state. Observe that the 
propagation decays spatially after a few pixels, but the oscillation remains. The initial state 

is the same as the input. (Simulated results, size: 41×23) 

 
The oscillation propagates to the right along the rows starting from the triggering con-

stant input (black pixels), and depending on the template values, it stops (dies) after a cer-
tain distance or endures until the edge of the array. 

Template 2 shows the general form of the nonsymmetric template with an added verti-
cal coupling. When sq < 0 the template is called sign-antisymmetric. This is shown in Tem-
plate 3 with s = – q. By introducing an extra template element r below the central one (that 
is denoted by p) the homogeneous propagation and oscillation disappear. We get some 
structured pattern. The character of the structure depends on the sign of the extra template 
element r. (See Fig. 14 and Table 5.) 

Template 2: 
general form 
s ≠ q 

zb

r

qps =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= z
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00

000

00

000

BA  

Template 3: 
antisymmetric 
s = – q 

zb

r

sps =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−= z
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00

000

00

000

BA

 
Coupling sign  Traveling pattern Snapshots 

positive:   r > 0 
solid inner part, oscillat-
ing border cells 

negative:   r < 0 
texture like traveling 
pattern 

Table 5. Categorization of templates containing one extra cou-
pling. The effect of the sign on the shape of the pattern. 
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3.2.1 Positive vertical coupling (r > 0) 

If the extra coupling is positive, a pattern is formed which is solid inside, however its right 
border is oscillating. At the beginning, the input pattern propagates oscillating to the right 
until a certain extent, and then the global propagation stops and cells along the right border 
continue oscillating (at certain parameter setting the left border can also oscillate but does 
not propagate). A typical snapshot of the pattern is shown in Fig. 17, its corresponding 
template is Template 4. The ruffles along the right border of the pattern move up and right 
during the evolution – it is a periodic solution in time and space (See Fig. 20). Figure 18 
shows the result of the chip measurement and its corresponding template, Template 5. The 
exact values of the chip templates are different from the template of the simulation, how-
ever the phenomenon can be reproduced quite well. The differences between the simula-
tion and the chip measurements are due to the effect of the AD/DA converters in the sup-
porting circuitry. It is important to note that it is not trivial to get similar attractors in 
simulator and in a real, noisy physical system. 
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Template 5:
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Along the right border of the shadow-like structure, local oscillators operate which are 
coupled horizontally to the nearest neighbor and to the cell below them  (see Fig. 19). Gen-
erally, there is no oscillation inside the structure, only along its border. Together these lo-
cal oscillations form the main pattern, which looks like the cross-section of waves on the 
surface of the water (see Fig. 20). 
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Figure 17. The input & initial state 
and snapshot of the output pattern if 
the coupling is positive. (Simulated re-
sult) 

   
Figure 18. The input & initial state and 
snapshot of the output pattern if the 
coupling is positive. (Chip measurement) 

 

oscillating cells

constant input propagation

first row 

second row 

 
Figure 19. Structure of the pattern when p is greater than zero. 

 
Figure 20. Time evolution of the pattern when p is positive. Snapshots of the state (simu-

lated results, size: 41×23). The last snapshot shows the largest spatial extent of the gener-
ated pattern. There is no global propagation after that moment, only the ruffles travel 
along the right border of the pattern.  

3.2.2 Negative vertical coupling (r < 0) 

When the vertical coupling is negative a texture-like traveling pattern is formed. This pat-
tern has a unique structure. It consists of propagating horizontal line segments which 
spread to the right (See Fig. 23). The spatial extent of the propagation to the right direction 
changes as we change the parameters but the main characteristics remain the same. 

Template 6:
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Template 7:
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Let us define the bottom row of the input pattern (black pixels) as the “first” row (See 
Fig. 24). The template produces a straight line (a shadow) for this row over a large range of 
parameter values. The cells in this row have really simple dynamics: they are stable (satu-
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rated black pixels). The straight line serves as a constant driving for the cells in the next – 
“second” – row upward. The “second” row does not produce a traveling pattern. Instead, 
we find a few neighboring oscillating cells. The number of oscillating cells depends on the 
other nonzero elements of the template. The third row also gives rise to a periodic signal 
but with a different waveform and traveling pattern. Typical snapshots of the pattern are 
shown in Fig. 21 and Fig. 22 respectively for simulation and chip measurements. The cor-
responding generator templates are Template 6 and Template 7. 

   
Figure 21. The input & initial state and 
snapshot of the output pattern if the ver-
tical coupling is negative. (Simulated re-
sult) 

   
Figure 22. The input & initial state and 
snapshot of the output pattern if the ver-
tical coupling is negative. (Chip measure-
ment) 

 
Figure 23. Time evolution of the pattern when r is negative. Snapshots of the state (simu-

lated results, size: 41×23). 

 

first row, 
constant black 

line 

oscillating cells

constant input propagation 

second row, no 
propagation 

 
Figure 24. The structure of the traveling pattern. 

3.3 The effect of the central template element 

If we increase the central element (self feedback) the generated pattern becomes more and 
more irregular and it can become chaotic. Based on the simulations and measurements, it is 
possible to construct a partition of the r-p space. Fig. 25 shows the different dynamic re-
gions of the system parameterized by r and p of Template 8. 

Template 8:

 

zb

r

sps
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

000

00

000

00

000

BA  

27 



3. DYNAMIC PATTERNS 
 

3.3.1 Simulation 

The r-p plane can be divided into stable-periodic-chaotic sub-regions (See Fig. 25). 

   

r

p

0

stable 

stable 

stable 

Input picture 

stable 

chaotic chaotic

chaotic? periodic 
quasiperiodic 

stable

 
Figure 25. Partitioning of the r-p parameter space. The input & initial state are shown in 
the upper left corner. It is a three-pixel wide bar. The pictures in the different regions 
show few typical snapshots of outputs belonging to that region.  The arrangement and size 
of the different regions gives only qualitative information. 

Stable region 
Around the periodic and chaotic region is a stable region with various stable patterns. 

When p is high the effect of the input becomes dominant and therefore the output is almost 
the same as the input. When p is low (negative) the character of the system is diffusive-
dissipative. Between the two extreme values of p is a region where the effect of the input is 
less significant. Therefore the patterns are dominantly one-dimensional or there is no pat-
tern at all. 

Periodic region 
The patterns propagate periodically and have the form of solid wave-like and texture, as it 

is described previously in Section 3.2.  
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Chaotic region 
If p is large enough, the system can become chaotic. However, I found that chaotic be-

havior may occur at smaller p, when r is less than zero. (See Fig. 25).  

Positive coupling (r > 0) 

This section contains results of simulations when r is greater than zero. Observe the transi-
tion from the simple to the more complex dynamics. Fig. 26 shows the zoomed structure of 
the pattern. Figures 27 - 29 show the snapshot of the generated pattern, the time evolution 
of one sampled state variable, the power spectrum of that variable and the trajectory of the 
sampled cell and its neighbor cell. The captions contain the actual value of parameter p (p 
= [0.5, 0.87], r = 0.3). The generator template for the figures is Template 9. 
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Figure 26. In the first row, to the right from the 
edge of the black part of the constant input (de-
noted by blue striped boxes) the second and third 
cells were sampled as shown. 
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Figure 27. Snapshot of the output, the time evolution of one cell from the first row, loga-
rithm of power spectrum and the 2D trajectory of the same cell and the neighbor cell 
from the first row (p=0.5). 
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Figure 28. Snapshot of the output, the time evolution of one cell from the first row, loga-
rithm of power spectrum and the 2D trajectory of the same cell and the neighbor cell 
from the first row (p=0.6). 
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Figure 29. Snapshot of the output, the time evolution of one cell from the first row, loga-
rithm of power spectrum and the 2D trajectory of the same cell and the neighbor cell 
from the first row (p=0.87). 

Negative coupling (r < 0) 

When r is less than zero, a texture-like traveling pattern is formed. Fig. 30 shows the 
zoomed structure of the pattern. Observe the transition from the simpler to the more com-
plex dynamics in Figures 31 - 33. The figure captions contain the actual value of parameter 
p (p=[0.2,  0.7], r = – 0.3). See the generator template, Template 10. 
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Figure 30. In the second row, right from the edge of 
the black part of the constant input (denoted by 
blue striped boxes) the first and second cells were 
sampled as shown. 
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Figure 31. Snapshot of the output, the time evolution of one cell from the second row, 
logarithm of power spectrum and the 2D trajectory of the same cell and the neighbor 
cell from the second row (p=0.2). 
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Figure 32. Snapshot of the output, the time evolution of one cell from the second row, 
logarithm of power spectrum and the 2D trajectory of the same cell and the neighbor 
cell from the second row (p=0.6). 
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Figure 33. Snapshot of the output, the time evolution of one cell from the second row, 
logarithm of power spectrum and the 2D trajectory of the same cell and the neighbor 
cell from the second row (p=0.7). 

3.3.2 Programmed chip measurement 

The following subsections contain programmed chip measurements at different values of p 
for positive and negative values of r. While the measured waveforms do not coincide com-
pletely with that of the simulation, the qualitative details of the phenomenon are the same. 
In the figures the trajectories are virtually scaled and the null points are virtually shifted 
compared to the simulation results. This is due to the AD/DA supporting circuitry of the 
chip.  

When there is no stable equilibrium, such as in the case of periodic or chaotic steady 
state behaviour, it is not trivial to find the equivalent settings for the chip to get the same 
result as that of the simulation. Since the chip is a real, physical, noisy system with high 
complexity and interconnection, the model that we simulate is inevitably different from 
the model of the chip. In spite of this it is still possible to get appropriate results, which 
show the robustness of the phenomenon. 

Positive coupling (r > 0) 

Cells from the first row were sampled (See Fig. 26). When p is small, the power spectrum 
contains dominant peaks according to the periodic signal. Later, when p is higher the peaks 
disappear or significantly decrease. Figures 34 - 36 show the measured time series, power 
spectrum and the trajectory of the two sampled cells. The sampling position is shown in 
Fig. 26. The generator template for the figures is Template 11. The captions contain the 
actual value of parameter p (p = [0.51, 0.85], r = 0.24). 
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Figure 34. Snapshot of the output, the time series of one cell from the first row, loga-
rithm of power spectrum and the 2D trajectory of the same cell and the neighboring cell 
from the first row (p=0.51). 
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Figure 35. Snapshot of the output, the time series of one cell from the first row, loga-
rithm of power spectrum and the 2D trajectory of the same cell and the neighboring cell 
from the first row (p=0.61). 
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Figure 36. Snapshot of the output, the time series of one cell from the first row, loga-
rithm of power spectrum and the 2D trajectory of the same cell and the neighboring cell 
from the first row (p=0.85). 

Negative coupling (r < 0) 

In case of negative coupling we experiment with a similar phenomenon to that of the simu-
lation. Figures 37 - 39 show the measured time series, power spectrum and the trajectory of 
the two sampled cells. Fig. 30 shows the sampling position. The generator template for the 
figures is Template 12. The captions contain the actual value of parameter p (p = [0.42, 
0.68], r = -0.4). 
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Figure 37. Snapshot of the output, the time series of one cell from the second row, 
logarithm of power spectrum and the 2D trajectory of the same cell and the neighbor-
ing cell from the second row (p=0.42). 
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Figure 38. Snapshot of the output, the time series of one cell from the second row, 
logarithm of power spectrum and the 2D trajectory of the same cell and the neighbor-
ing cell from the second row (p=0.6). 
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Figure 39. Snapshot of the output, the time series of one cell from the second row, 
logarithm of power spectrum and the 2D trajectory of the same cell and the neighbor-
ing cell from the second row (p=0.68). 

3.3.3 Spatio-temporal signatures 

As it can be seen from the results, there is a correlation between the time evolution of the 
selected cells of the CNN and the dynamic behaviour of the whole array. 

Spatio-temporal Signature: A still image that is the snapshot of the output, a descriptor for the 
dynamic state of the array.  

This image reflects the temporal history of the dynamics in space due to the propagating 
effect; therefore, it can be suitable for characterizing the system without cell data meas-
urements. Observe that, due to the complex dynamics of the patterns, it is difficult to find 
good characteristic 2D snapshots. Table 7 shows the most characteristic signatures for the 
state of the CNN.  
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Table 6. Different dynamical behaviours with the same template but with different input 
and initial state. The time evolution of one cell from the second row, logarithm of power 
spectrum of the same cell and the 2D trajectory of the same cell and the neighbor are 
shown. 
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Stable Chaotic Periodic 

 
r > 0, p < 0 r > 0, p >> 0

 
r > 0, p > 0 

 
r < 0, p < 0 r < 0, p >> 0

 
r < 0, p > 0 

Table 7. Spatio-temporal signatures for different values of r and p. 

3.4 The effect of the constant input and initial state 

An inherent property of the chaotic systems is the extreme sensitivity to the initial condi-
tion. In this section some results relating to this aspect are presented. 

3.4.1 Periodic-chaotic transition 

Table 6 shows the effect of the different input patterns in the case of simulation and chip 
measurements. The applied templates are the same for the two different inputs, i.e. the dif-
ferent behaviour of the system is due to the difference of the input pattern. 

The first input is a five pixel wide black vertical bar and the other input is a three pixel 
wide black vertical bar. The input and the initial state are the same. Template 13 and 14 
show the templates for simulation and chip measurements respectively. The gray back-
ground color of the input image for the simulation is to mimic the property of the chip, 
namely, its gray level shifting property. Using these level-shifted images we get similar 
results to that of the chip. 

Template 13: Template 14: 
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The result shows that if the input is the five pixel wide bar then the transient of the cell 
is periodic. But if the input is a three pixel wide bar, the transient – and the traveling pat-
tern too – is chaotic. The reason for the difference is that the local oscillators along the left 
and right border of the bar can influence each other. This can happen only if there is no 
stable (constant, saturated black) vertical column of cells along the center of the bar. If the 
input is the three pixel wide bar there is no column of saturated (+1) stable cells in the bar. 
In the other case there is at least a one pixel wide column of saturated stable cells horizon-
tally. Thus, the oscillators along the left and right border of the bar are uncoupled. The 
cells were sampled in the second row. 

Fig. 40 shows the r-p diagram in that case when the input and initial state are changed to 
the five pixel wide vertical bar. No chaotic behaviour has been found up to now. However, 
it cannot be excluded that it is possible to find a certain parameter setting at which the sys-
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tem produces chaos. A necessary condition for this seems to be that the stable saturated 
cells along the center of the bar become unstable. 
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stable
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stable 
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Figure 40. Partitioning of the r-p parameter space when the input is a five pixels wide bar. 
The input picture is shown in the upper left corner. The pictures in the different regions 
show few typical snapshots of the output patterns belonging to that region. With this input 
no chaotic behaviour has been found up to now. The arrangement and size of the different 
regions give only qualitative information. 

3.4.2 Stable-periodic transition 

Fig. 41 illustrates that a single pixel perturbation can alter the general dynamic behaviour 
of the system. The only difference between the three inputs, which are also the initial state, 
is that a single pixel is changed from black to gray (and from gray to black in the other 
case) in the middle of the right vertical edge of the bar. In the first case there is no propaga-
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tion and no pattern. However, the second and third input produces a periodic pattern (See 
Fig. 41). The boundary condition is periodic (torus-like left-right and bottom-up connec-
tions, this can also be programmed on the chip). The generator template is Template 15.  
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Figure 41. Effect of one pixel perturbation. The first row contains three different inputs. 
The first one is a vertical bar. The second one is the same except one pixel: a pixel is 
clipped off from the middle of the right border of the pattern. In the third one a pixel is 
added to the middle of the right border of the pattern. The circles denote the location 
of the difference. The second row contains the corresponding snapshots of the output 
patterns. In the first column the solution is equilibrium. The second and third column 
shows periodic (in space and time) solution. 

(a
)   

-0.92 -0.2 -0.2 -0.2 -0.2 -0.2 0.7 0.7 0.7 -0.8 -0.8 -0.8 -0.8 -0.8 
 

(b
) 

C
el

ls
 →

 

 
  time → 
Figure 42. (a) Input and initial state for a 1D chaotic CNN that consists of 14 cells. 
(b) The generated 1d pattern as a function of time. 

3.5 1D chaos 

Based on measurements and simulations we can construct probably the simplest template 
(e.g. Template 16) for a 1D CNN that can exhibit chaos with an appropriate input shown 
in Fig 42. The minimal number of cells that is necessary to produce chaos appears to be 
four according to the results of Chapter 4. 
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The general structure of the templates presented in this thesis shows that a CNN cell in 
the array does not depend on the cells above it. In the cases above (Templates 13,14) I 
measured and simulated chaotic signals in the row which has a constant valued row below 
it. Therefore, if we integrate the effect of the constant valued row into the constant input it 
is possible to construct a 1D CNN (template, initial state and input) for which the system is 
chaotic (see Fig 42 and Fig 43). All boundary cells were set to zero. 
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Figure 43. The time evolution, the power spectra of one cell and the trajectory of two 
neighboring cells. 

3.6 Additional traveling pattern examples 
This section shows some patterns which are generated with more complicated tem-

plates. The basic structure is the same i.e. the antisymmetry is preserved but some nonzero 
couplings are added. The corresponding templates matrices are shown below the figures. 

3.6.1 Wave shadow 

This special shadow operator produces different patterns depending on the central element 
p. The main structure remains the same at different values of p, but the border of the 
shadow looks like traveling wrinkles. The phenomenon related to the change of p is similar 
to that of described in Section 3.3. Template 17 and 18 are the generator templates of the 
patterns in Table 8 for simulation and for chip measurements respectively. 
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Table 8. Snapshots of the simulation and of the chip measurements of the 
complex wave template. Input and initial state are the same. The gray back-
ground of the input for the simulation is to mimic the level shift property of 
the chip. 
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With a different template setting (Template 19) a characteristic trajectory is measured 
on the chip (See Fig. 44 and Fig. 45). 
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Figure 44. The measured trajectory of the attractor and a snapshot of the traveling pat-
tern. (chip measurement). 
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Figure 45. The measured trajectory of the attractor. Snapshots of trajectory of two out of 
4096 state variables of the CNN array (chip measurement). 

3.6.2 “Four pixels” examples 

The patterns in this subsection were simulated using the full-range CNN model of eq. 
(3.1). The next examples show different patterns, all of which were generated from the 
same input. The “seed” of the patterns is a four-pixel wide horizontal line section. The ini-
tial state was the same as the input that is shown in Fig. 46. 

 

 
Figure 46. Input and initial state for the traveling 
patterns. 

Bird 

This example shows a traveling pattern which makes an impression of distant flying birds. 
(See Fig. 47 and Template 20) 

Template 20:
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Figure 47. Three snapshots of the propagation of the ”bird” pattern. 

Eruption 

This pattern “erupts” periodically during the propagation. It resembles fluid coming out of 
a pipe. (See Fig. 48 and Template 21) 
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Template 21:
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Figure 48. Six snapshots of the propagation of the ”eruption” pattern. 

3.7 Simulation time vs. real-time measurements 

A sophisticated simulation of chaotic systems takes several minutes (or even hours), espe-
cially when the dimension of the system is high. Using the programmable ACE4K test bed 
it is possible to speed up the analysis process of the chaotic system by at least four orders of 
magnitude. Table 9 shows the comparison of a typical simulation and the real time chip 
measurement. 
 

Simulation 
(500Mhz PC) 

Chip measurement 
(with sampling) 

Chip measurement 
(without sampling) 

25 min = 1500 sec 200 ms 5 ms 
Table 9. Comparison of simulation and chip measurement time. 
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4. Complex dynamics in 1D CNN 

 

Second Thesis 

Chaotic dynamics, coexistence of attractors in 1D CNN 

I uncovered novel complex dynamics in 1D CNNs with a sign-antisymmetric tem-
plate class. I investigated the effect of the boundary condition, dimension of the system 
and the initial state. I found that boundary condition behaves as bifurcation parameter. I 
found coexistence of attractors depending on the initial state.  

II/a. Effect of boundary conditions in 1D CNN  
I showed that the dynamic behavior of a 1D CNN with a sign-antisymmetric template class de-
pends on the boundary conditions. I presented examples that demonstrate the rich dynamics of the 
CNN system such as stable, periodic, quasi-periodic and chaotic dynamics. 

II/b. Effect of dimension and initial sate, coexistence of attractors 
I found that the steady state dynamics depends on the initial state: attractors coexist simultane-
ously in the same system. I showed that hyperchaotic behavior can occur in a CNN that consist of 
more than five cells. I demonstrated that the parity of the size of the 1D system drastically 
changes the dynamics. 
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rom the point of view of dynamics the CNN can be divided into two classes: stable 
CNN in which each trajectory converges to a stable equilibrium point and unstable 

CNNs which have at least one attractor that is not a stable equilibrium point. Up to now 
CNNs with this property have been the main concern of research because of the require-
ment of image processing applications in which usually the steady state of the system 
yields the desired result. Complete stability of CNNs was proved for symmetric templates 
in [46] and [109]; for positive cell linking templates in [106]. It was shown in [109] that 
CNNs with strictly sign-symmetric and acyclic templates are completely stable. Gilli in 
[110] gave sufficient condition for nonsymmetric CNNs. In [100] Zou investigated 1D 
CNNs with an opposite sign template. He determined a subset of the parameter range 
where the CNN is completely stable. He conjectured that opposite sign CNNs with s<p–
1<2s are completely stable. De Sandre refined the results of Zou in [111]. Thiran et. al. also 
studied general 1D templates and introduced the concept of  local diffusion [101] and global 
propagation [102] and proved some theorems on the number of stable equilibria of general 
1D CNNs. 

f

The unstable class of CNNs received much less attention. However, recently CNNs 
with opposite sign templates were reported in [106] that showed oscillating behaviour. In 
[100] Zou analyzed an opposite sign template class [s p –s] in detail and presented an ex-
ample of periodic limit cycle. Further examples of CNNs exhibiting limit cycles are shown 
in [102-115,158,159]. Complex dynamic behaviour has been observed with different CNN 
models: 

• chaotic attractor in a nonautonomous two-cell system [116] 

• autonomous CNN with space variant and space invariant templates of three cells 
[103] organized into 2D grid. 

• autonomous fully connected CNN composed of three cells [160]. 

• delayed CNN [117] 

• state controlled CNN [105] 

• autonomous CNN with space invariant templates composed of arbitrary cells 
[104][93]  

• One- and two-dimensional CNNs with constant input [118] 

4.1 Effect of boundary condition 

The former works with the exception of some general results concerning CNN stability 
concentrated mainly on the effect of the template parameters. In [119] Thiran analysed the 
effect of the boundary condition on the dynamics of the CNN and established three 
classes: always stable, always unstable, conditionally stable or unstable depending on the 
boundary conditions. He presented an example of a CNN with opposite sign template of 
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form [s p –s] that is stable if the boundary condition is ±1 and unstable with zero boundary 
condition.  

From the work of Zou [100] it is known that 1D CNNs without input, with p-1<s pos-
sess no equilibrium point. He proposed to check whether complex dynamics is found. This 
is a realistic expectation since the CNN is a high dimensional coupled nonlinear system.  

I investigated this possibility inspired by the work done with 2D spatio-temporal chaos 
that was described formerly. I discovered surprisingly rich dynamics and bifurcation proc-
ess. Indeed, constant boundary conditions behave as bifurcation parameters from the point 
of view of global dynamics of the system. They determine the equilibrium point patterns 
that consist of permutations of ±1. They are responsible for the transition from stability to 
instability. They also determine the type of instability such as periodic, quasi-periodic, and 
chaotic.  

For a better understanding of dynamics I repeat here four theorems that help to localize 
the possible interesting parameter region. 

Let us consider the following 1D version of (2.4): 

 ( ) ( ) ( ) ( ) ( )2112 ++−− +++++−= iiiiiii xvfxrfxpfxsfxwfxx&  (4.1) 

where f  is defined as: 

 ( ) ( )112
1 −−+= xxxf  

This CNN has a general 5×1 template: A=[w s p r v]. The effect of B template is inte-
grated into β. 

Theorem 1 [Gilli & Petrás,120]: If the template elements of equations (4.1) satisfy the con-
straints wv ≥ 0 and sr ≥ 0, then the corresponding CNN is completely stable (i.e. all trajec-
tories converge towards an equilibrium point) for any external constant inputs and bound-
ary conditions. 

Proof : it is derived from Theorem 1 and Theorem 2 of [110]. 

Consider now a 3×1 system: 

 ( ) ( ) ( ) β++++−= +− 11 iiiii xrfxpfxsfxx&  (4.2) 

Theorem 2 [Setti] The number S(N) of stable equilibria of  CNN (4.2) of N ≥ 3 cells, 
satisfying p– 1<|s–r|, p>1, β=0 and with zero boundary condition, is equal to 

 2N, if max{|r|,|s|} < p–1 < |s– r| 

 2, if min{|r|,|s|} < p–1 < max{|r|,|s|} 

 2, if p–1 < max{min(r,s),min(–r,–s)} 

 0, if p–1 < max{min(–r,s),min(r,–s)} 

Proof: See [102]. 
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Theorem 3 [Zou] The CNN described in (4.2) with p>1, s>0 has no stable equilibrium 
point, if 

β=0 and s>p–1 

Proof: See [100]. 

Theorem 4 [Zou] The system defined by (4.2) with p>1, s>0 is completely stable if  

β=0 and s<(p–1)/2 

Proof: See [100]. 

These theorems restrict the possible parameter space of complex dynamics.  Without loss 
of generality suppose that s > r. Summarizing the theorems yields that the following should 
be fulfilled so as the system does not have any stable equilibrium points: 

 s⋅r<0  (Theorem 1) 

 p–1 < |s–r|, p–1 < min{s,–r} (Theorem 2) 

 if s=–r, p–1 < s (Theorem 3) 

I show that if the template parameters fulfill s > p–1 derived from these inequalities the 
boundary conditions behave as bifurcation parameters. 

For the sake of simplicity I chose a one-dimensional opposite sign template class as a 
case study:  

 A=[s p –s].  

For practical and theoretical reasons the dimension of the system under study is from 
four by one to eight by one.  

Table 10 shows the possible equilibrium point patterns in a compact, regular expression 
form as a function of p, s and boundary conditions. They are composed of sequences of 
{+1,–1}. The string expression {a, b}0 represents the null string, whereas the expression {a, 
b}n denotes a string obtained by repeating n times the symbols a and b, e.g. {a, b}3 = a, b, a, 
b, a, b. The expressions were obtained using Deterministic Finite Automaton (DFA).  

The possible stable equilibrium patterns of a CNN are represented in such a way that a 
stable pattern constitutes one node of a graph (see Fig. 49). The stability of a pattern 
around a cell is determined by the actual state of that cell and by its one or two neighbors. 
A cell has one neighbor, if it is a left– or rightmost cell and two neighbors if it is an inner 
cell. The nodes are organized into three columns. In the first column there are the stable 
patterns for the leftmost cells. On their left is a constant cell state of which is always equal 
to the left boundary condition. In the second (inner) column are the stable patterns for the 
inner cells. The third column contains the stable patterns for the rightmost cells. Their 
right neighbor is a constant cell with the right boundary condition.  
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xn x2 xn-1x1  X0 Xn+1 x2

1 -1 1

-1 1 -1

1 1 -1

-1 -1 1

1 1 1

-1-1-1

1 -1 

-1 1 

1 1

-1 -1

1 1 

–1 –1 

1 1

–1 –1

Leftmost cell Inner cells Rightmost cell

x1 xn 
Left 
boundary 
condition 

Right 
boundary 
condition 

 
Figure 49. The DFA of the stable equilibrium patterns. With X0=0, 
XN+1=0 there is no stable equilibrium point of  the CNN characterized by 

A=[s p -s], p-1<s. 

 

xn x2 xn-1x1  X0 0 x2

1 -1 1

-1 1 -1

1 1 -1

-1 -1 1

1 1 1

-1-1-1

1 -1 

-1 1 

1 1

-1 -1

–1 –1 

Lefttmost cell Inner cells Rightmost cell

x1 xn 
Left 
boundary 
condition 

Right 
boundary 
condition 

|X0+1|<(p–1)/s 

 
Figure 50. The DFA of the stable equilibrium patterns. In the region 

{|XN+1|<1-(p-1)/s, |X0+1|<(p-1)/s} is one stable equilibrium pattern: -1,{-1}n,-
1. Thus a path exists from the left to the right in the DFA graph (bold 

line). A=[s p -s], p-1<s. 
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Definition. Oriented connection exists between two nodes if the second node is the con-
tinuation of the first node. This means that the two-element vector formed from the two 
rightmost elements of the first node and the two-element vector formed from the two left-
most elements of the second (inner) node are the same (Fig. 49).  Formally: 
Oriented connection exists between two nodes: n1→n2  

 n1={S1,S2,S3,}and n2={Q1,Q2,Q3,} iff. S2=Q1 and S3=Q2 , where Si ,Qi ∈ {–1,1}. (Inner Node) 
 n1={X0,L2,L3,}and n2={S1,S2,S3,} iff. L2=S1 and L3=S2 , where Li ,Si ∈ {–1,1}. (Left Node) 
 n1={S1,S2,S3,}and n2={R1,R2,R3,} iff. S2=R1 and S3=R2 , where Si ,Ri ∈ {–1,1}. (Right Node) 

Definition. A path is a sequence of connections. 
A pattern is a stable equilibrium point if a path exists from a node in the first column to a 

node in the last column (Fig. 50). 
Using this graph based rigorous technique all the stable equilibrium patterns can be 

represented as directed paths. It is revealed that the parameter space can be divided into 
twenty-five sub-regions. Except the central unstable region {|X0|<1–(p–1)/s, |XN+1|<1–
(p–1)/s} all the sub-regions exhibit at least one stable equilibrium point. 

This central unstable region is the most probable parameter sub-space for finding com-
plex behaviour. However, it cannot be excluded that in the regions with one or more stable 
equilibrium points are other attractors such as limit cycles or chaotic attractors. In fact, 
later I will show that this is the case. 
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X
0

Xn+1
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1

 
Figure 51. The parameter space of a 4x1 CNN with A=[0.9 1.1 -
0.9]. Yellow to red colors mean positive Lyapunov exponents, 
green means two zero exponents (torus or quasi-periodic dynam-
ics), blue denotes periodic behaviour with single zero exponent 
as the greatest one. White means stable region with all expo-
nents being zero. 
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4.2 Nonlinear dynamics 

4.2.1 Study of 1D CNN with a selected template 

I used first order 1D CNN with linear templates (2.4). I considered the following sign anti-
symmetric template without any input: 

 A=[ 0.9   1.1  –0.9 ] 
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Figure 52. Lyapunov map of a 4x1 CNN with A=[0.9 1.1 -0.9]. Some observed attrac-
tors are shown. Color code. Yellow-red: chaotic attractor; green: torus (quasi-periodic); 
blue: limit cycle (periodic); white: equilibrium point. 
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I used numerical technique to explore the unstable region of parameter space. Because of 
the need for computation of the Jacobian I replaced the PWL transfer function by function 
fε, a C1 function that is equal to the original in the limit [93].  
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I considered a 4x1 CNN and I discovered several well-separable areas with characteris-
tic dynamics. With zero initial state for all cells the unstable region turned to be centrally 
symmetric. Limit cycles were found in most part of the parameter space separated by areas 
of chaotic and quasi–periodic attractors (Fig. 51). Limit cycles are denoted by blue color, 
yellow-red color represents chaotic behaviour while green means the presence of quasi–
periodic dynamics. The colors reflect the magnitude of the highest Lyapunov exponents of 
the system; of course in the case of quasi–periodic dynamics there are two highest expo-
nents: two zeros. Exponents were computed using the algorithm described in [121] that is 
based on the QR decomposition of the evolution of a perturbation. The perturbation is 
computed using the time dependent Jacobian of the system making use of the Lyapunov 
exponent toolbox (LET) for MATLAB by S. W. Kam. 

Fig. 52 shows the map of a 4x1 CNN with A=[0.9 1.1 -0.9] with few characteristic attrac-
tors projected into 2D. Observe the periodic, quasi-periodic and chaotic attractors. 

In the following, I choose a line in the parameter space of Fig. 51 and show some typical 
route from one dynamical state to another. Fig. 53 shows the bifurcation diagram corre-
sponding to {X0; Xn+1}={0.66; -0.78…0.2}. Indeed, this diagram is equivalent to the line 
X0=0.66 of Fig. 51. 

Fig. 54 shows the zoomed part of Fig. 53 with period doubling bifurcation Xn+1={-
0.3665…-0.361}. Fig. 55 presents the corresponding 2D projected trajectories. 
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Figure 53. Bifurcation diagram with all kind of dynamic 
behaviour. Compare diagram with the corresponding row 

of Fig. 51. {X0; Xn+1}={0.66, ... }A=[-0.9  1.10  0.9]; Di-

mension: 4×1. 

 

 
Figure 54. Zoomed part of Fig. 53 with period doubling. {X0; Xn+1}={0.66, ... }; 
A=[-0.9  1.10  0.9]; Dimension: 4×1. 
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Figure 55. Trajectories with period doubling. {X0; Xn+1}={0.66, -0.3665 ... -

0.361}; A=[-0.9  1.10  0.9]; Dimension: 4×1. 

 
Figure 56. Bifurcation diagram. Naimark-Sacker bifurcation. {X0; 

Xn+1}={0.66, −0.56 ... −0.51}; A=[−0.9  1.10  0.9]; Dimension: 4×1. 

Fig. 56 shows another zoomed part from Xn+1={-0.56…-0.51} presenting a periodic to 
quasi-periodic transition process as we increase Xn+1. Observe the periodic windows in the 
quasi-periodic region. The corresponding trajectories are shown in Fig. 57. 
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Figure 57.  Trajectories of limit cycle to torus transition. {X0; Xn+1}={0.66, -
0.546...-0.538}; A=[-0.9  1.10  0.9]; Dimension: 4×1. 

Xn+1

 
Figure 58. Bifurcation diagram. Alternating Torus-Chaos windows. {X0; Xn+1}={0.66, ...}; 
A=[-0.9  1.10  0.9]; Dimension: 4×1. 
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Figure 59. Bifurcation diagram. Torus-Chaos win-

dows - zoomed region. {X0; Xn+1}={0.66, ...}; A=[-0.9  

1.10  0.9]; Dimension: 4×1. 

Fig. 58 presents a region of the bifurcation diagram of Fig. 53 in which periodic, quasi-
periodic and chaotic regions are alternating. Fig. 59 shows a zoomed part in which torus-
chaos transition is shown. Some corresponding trajectories are presented in Fig. 60. Fig. 61 
shows the 2D projection of Poincare map of a quasi-periodic attractor of the 4×1 CNN 
with A=[-0.9  1.10  0.9] at {X0; Xn+1}={0.66,-0.53}. 
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Figure 60. Torus to Chaos transition. Trajectories. {X0; Xn+1}={0.66, -0.76...-

0.757}; A=[-0.9  1.10  0.9]; Dimension: 4×1. 
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Figure 61. 2D projection of the Poincare map of a torus at {X0; 

Xn+1}={0.66,-0.53}; A=[-0.9  1.10  0.9]; Dimension: 4×1. 

 
Figure 62.  The ”Brain”. 2D projection of the Poincare map of 

four cell CNN at {X0; Xn+1}={-0.867,-0.463}; A=[-0.9  1.10  0.9]; 

Dimension: 4×1. 
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Figure 63.  Zoomed part of the Brain map. Observe the fractal 

structure.{X0; Xn+1}={-0.867,-0.463}; A=[-0.9  1.10  0.9]; Dimen-

sion: 4×1. 

Fig 62 and 63 show the 2D projection of the first return map of the 4×1 CNN with A=[-
0.9  1.10  0.9] at {X0; Xn+1}={-0.867,-0.463}. 
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Sub thesis II/b. 

Chaotic dynamics, coexistence of attractors in 1D CNN 

I uncovered novel complex dynamics in 1D CNNs with a sign-antisymmetric tem-
plate class. I investigated the effect of the boundary condition, dimension of the system 
and initial state. I found that boundary condition behaves as bifurcation parameter. I 
found coexistence of attractors depending on the initial state.  

II/b. Effect of dimension and initial sate, coexistence of attractors 
I showed that the steady state dynamics depends on the initial state: attractors coexist simultane-
ously in the same system. I showed that hyperchaotic behavior can occur in a CNN that consist of 
more than five cells. I demonstrated that the parity of the size of the 1D system drastically 
changes the dynamics. 

 

4.2.2 Coexistence of attractors in a 4×1 CNN 

Perhaps the most important result in this thesis is the simultaneous existence of different 
attractors. This could be exploited by further research for e.g information storage. 

As I noted before the existence of stable equilibrium points does not necessarily exclude 
the presence of other types of attractors. Indeed, in regions 

a) { ( ) spsX +−−< 10 , 111 −<++ psX N } 

b) { 110 −<+ psX , ( ) spsX N +−−<+ 11 } 

c) { ( ) spsX +−−< 10 , 111 −<−+ psX N } 

d) { 110 −<− psX , ( ) spsX N +−−<+ 11 } 

I found the coexistence of stable equilibrium points, limit cycles and chaotic attractors that 
are another example to that of the authors in section V. of [122].  

The presence of different attractors is also valid in the unstable region {|X0|<1–(p–1)/s, 
|XN+1|<1–(p–1)/s}.  
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Figure 64.  Coexistence of attarctors in a 4×1 CNN with 

a) xi(0)=0, b) xi(0)=−1, c) xi(0)=−0.5, i=1..4 (all cells are 
set to the same value). Observe the coexistence of chaotic 

↔ limit cycle, chaotic ↔ torus and torus ↔ limit cycle at-
tractors. 
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4.2.3 Effect of the perturbation of template parameters on the exponents 

As we change the template parameters the map obviously changes . Fig 65 shows the effect 
of s while Fig. 66 shows the effect of p. 

 
Lyapunov map - Dimension: 4×1 
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Figure 65. Effect of s on the Lyapunov map in a 4×1 CNN . Initial state is −1 
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Lyapunov map - Dimension: 4×1 
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Figure 66. Effect of p on the Lyapunov map in a 4×1 CNN . 

4.2.4 Higher dimension - Hyperchaos 

I showed that hyperchaotic behaviour can occur even in a 6x1 size CNN. Hyperchaos 
means that the system has more than one positive Lyapunov exponents.  
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Lyapunov exponents - A=[-0.9  1.10  0.9] 
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Figure 67. Effect of the dimension of the CNN on the Lyapunov map. Dimensions of the 

CNN are from 3×1 to 8×1. A=[-0.9  1.10  0.9] 

This can only appear in dynamical systems having dimension N>3. In the case of CNN 
the presence of hyperchaos was found with N≥6. Fig. 67 shows the effect of the size of the 
system on the dynamics.  
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Figure 68.  Hyperchaos in 6×1, 7×1 and 8×1 CNNs. In the right column the color denotes 
the number of positive Lyapunov exponents. 

Observe that parity of the number of cells can play an important role. Maps of the sys-
tems having the same parity of number of cells are similar. Fig. 68 shows the systems that 
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exhibit more than one positive Lyapunov exponents. The color-coded number of positive 
exponents are shown in the right column. 
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5. Special wave operator 

 

Third Thesis 

Curvature controlled trigger wave 

I showed that the CNN with a nonlinear diffusion type template class computes the 
approximation of the so–called “Curve Shortening Flow” of shapes. Indeed, the process 
can be described as local curvature controlled trigger wave propagation in the CNN 
array. In this framework the curve is represented as the boundary region of a solid black 
shape against white background. As a result of the diffusion–like evolution of the CNN 
array, a smooth 2D transition zone called boundary region is formed between black and 
white regions. The width of the region is controlled by the template parameters. The 
evolution of the shape of this region corresponds to the evolution of the curve. To show 
this, at first I analyzed the characteristics of the boundary region of the evolving shape 
than I studied the dynamics of this transition region.  

III/a. Stability of the boundary 
I proved that the boundary region is stationary provided that the region is horizontal or vertical. 
I gave relation on the number of linear cells in a horizontal or vertical boundary region. I gave 
approximation on the minimal number of linear cells of arbitrary oriented straight boundaries. 
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III/b. Dynamics of the boundary region 
I showed that the temporal derivative of the state variable of a linear cell being in the boundary 
region is the quasi-linear function of the local curvature of the isointensity line to which the cell 
belongs provided that the state variable of the cell is close to zero. This is fulfilled in the centerline 
of the boundary region. The boundary region changes so that its local curvature is zero. In other 
words the shape contours get smoothed provided that spatial constraints make this possible. I gave 
method to compute the convex hull of a shape in one transient. Moreover, I gave method to sepa-
rate two-dimensional clusters of points. 

 

 

onlinear (active) waves are natural phenomena that can be found everywhere 
around us in Nature and described by various fields of sciences. They can be ob-

served in e.g. chemistry [4], or biology [28,29]. Their basic property is that the wave 
propagates in an excitable (bistable) medium in a way that a small unit of the medium tran-
sits from one stable state to another at the expense of energy stored in the medium. The 
transition triggers the local neighborhood thus the propagation is self-sustaining; from here 
comes the name: auto(nomous)-wave (R. V. Khorhlov). Such nonlinear active waves are 
autowaves 31 (traveling waves, trigger waves, target (or concentric) waves [4]) and spiral 
waves [29]. 

n

Due to their local dynamics nature, considering continuous descriptions in space and 
time, reaction-diffusion PDEs are the plausible mathematical models for these phenomena.  

PDEs have proved to be useful as a general framework for image processing [32,33]. 
Multiscale analysis originally based on linear PDE filters [34]; later nonlinear diffusion 
filters were developed to avoid the artifacts [35-38]. In the active contour (or snakes) ap-
proach for object detection the contour propagation is also governed by PDEs [39,40]. In 
the level-set approach a PDE controls the evolution of a set of isointensity contours of the 
image [41,42]. 

Till now this field remained a focused and intensive research area. Several works re-
vealed the connection between the different PDE related image-processing methods 
[32,43-45].  

The main drawback of the approach is the increased computing power requirement be-
cause of the need of the numerical solution of PDEs. With parallel computing architecture 
this requirement can be overcome. This implies spatial discretization that gives an ap-
proximation of the original PDE. However with an appropriate spatial constant the original 
dynamics can be reproduced. Thus the PDE dynamics is described by a set of ODEs. 

For parallel computing of PDEs obviously we need programmable processors. However, 
they do not need to be as complex and general as a microprocessor or DSP. It is sufficient if 
they can ‘only’ compute ODEs. At first sight this might seem to make no sense, however 
considering analog implementation this approach shows itself much more attractive. 
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A suitable computing model that is hardware feasible can be the Cellular Nonlinear 
Networks [46-49] introduced in Chapter 2. The most widely applied variant of it consists 
of first order nonlinear dynamical systems that are locally coupled and organized into a 
two-dimensional array. An intensive research has recently emerged in the CNN field. Sev-
eral linear, nonlinear filtering methods and wave computing algorithms were developed 
[56,64-74]. The structure of the CNN naturally makes it a possible tool as spatially discre-
tized PDE computer [75,76]. 

The CNN as an active medium has been studied extensively. Several types of nonlinear 
waves have been reproduced and analyzed on this structure depending on the complexity 
of the elementary cells [31,59,77-82].  

5.1 Shape deformation 

Recently several papers have dealt with the CNN as a wave-computing device 
[57,59,64,65,75,83,84]. It has been proved to be a suitable computing frame for wave-based 
image processing. Some of these algorithms used autowaves for specific tasks [74], others 
used trigger waves for some kind of morphological processing in which the shape is de-
formed by the wave.  

These trigger wave-based processes were one-way: if the spreading wave triggered a cell 
then it remained triggered [64]. However, using an appropriate nonlinear diffusion opera-
tor this property can be violated yielding a qualitatively different behaviour [85].  

 

 
Figure 69 Curve shortening flow 

The phenomenon that is well-known from the image processing literature [167,168] is 
described by  

 
( )

N
t

tlC r
κ−=

∂
∂ ,  (5.1) 

where C is the boundary vector of coordinates (the planar curve), κ is the local curvature, 

N
r

 is the outward normal, l is the curve parameter, t is the scale parameter (Fig. 69). 
This equation is known as the geometric heat equation or curve shortening flow in differ-

ential geometry. Several work dealt with this flow (see for review e.g. [33]). It had been 
proved [86,87] that all closed contours collapse into a single point under this flow.  

During the evolution of this flow the shape (closed contour) propagates along its out-
ward normal direction and collapses under its curvature, which gives rise to obtain a hier-
archy of shapes and thus a scale space for shapes can be formed [88-90]. These scale spaces 
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and their enhancements gave a suitable framework for recognition, classification and re-
trieval of shapes. Due to numerical and theoretical reasons Osher and Sethian proposed an 
approach in which the curve flow is embedded as the zero level set of a surface [42]. The 
surface is evolved by its mean curvature and due to the special shape of the surface the 
mean curvature of the surface corresponded to the curvature of the embedded curve at the 
zero level set and the evolution of the surface contained the evolution of the original curve. 
See [166] for on-line reference. 

The CNN based nonlinear diffusion works similar way. The shape is given as the initial 
state of the array. The zero level set (or isointensity line) of the state is considered as the 
evolving contour of the shape during the evolution (see Fig. 70). Black (+1) color means 
“inside”, white means “outside” of the shape. 

The boundary region of a shape is a one- or two-dimensional transition zone between 
opposite-signed saturated cells (1D) or between regions (2D; see Fig. 73, 75 and 79). The 
state variables of cells that constitute the boundary are in the linear part of transfer 
function (5.3) i.e. -1<xij<+1. Please do not to mistake boundary region for boundary condition 
of the CNN array in this thesis. 

It will be shown that due to the flat shape1 of the boundary region (see Fig. 78) the mean 
curvature of the surface and the curvature of the embedded curve are practically the same. 
Therefore the boundary region evolves according to the curvature of the embedded shape. 

Using the discretized version of the following nonlinear diffusion operator 
A( ). =D∇2f( ). +aef( ).  the CNN computes the approximation of the curve shortening flow in 
one transient.  

 ,   (5.2) ( )∑ ∑
−= −=

+++−=
q

qk

q

ql
ljkiklijij txfAtxtx )()()( ,&

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

04/0

4/4/

04/0

D

DDaD

D

A e

where q =1, x is the state of the CNN, f = is a nonlinear transfer function [93] de-

fined by (5.3). 
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 (5.3) 

At the beginning of the evolution of the CNN the shape is implicitly embedded into a 
surface through the blurring of the diffusion process (Fig. 71). As a result, a linear transition 

                                                 
1 the linearity of the cross section of the surface along the gradient direction. This shape is a special 
characteristic of the CNN and maintained during the evolution. 
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zone is formed between the black and white regions. Cells belonging to the zone are in the 
linear region of (5.3). Cells being black or white are said to be saturated. They are in the 
saturation region of (5.3). The width of the linear region can be influenced by parameters D 
and ae (Fig. 72). However the blur is spatially limited: the nonlinear character of the diffu-
sion maintains the constant width and the gradient of the linear zone. This width is inde-
pendent of the orientation and the shape of the zone throughout the transient. When the 
desired curve smoothing is reached the transient is stopped. 

The CNN may be used as an effective parallel “curve shortening flow computer” and 
we can use the results developed for scale-spaces of shapes ([88-90]). 

O
ut

pu
t 

     

time t: 0 Local curvature 
at t:1 

t: 4 14 34 

Figure 70. s=0.6,p=-1, boundary condition of the array is zeroflux 

    
Figure 71. Linear zone of the interface between the black and white regions. 

5.2 Number of linear cells 

In this section I derive some relations on the boundary zone of the embedded shapes. At 
first I consider straight boundaries that are horizontal or vertical. In the second subsection 
boundaries are considered that are oriented along the π/4 direction. I derive a conjecture 
on the length of the linear zone along the gradient.  

5.2.1 Horizontally or vertically aligned boundary region 
Several authors investigated one-dimensional CNNs. In [91] Thiran et al. proved that the 
stable pattern of a 1D CNN with p,s > 0, -1<  (p-1)/2s <1  consists of a succession of alter-
natively black and white pair of adjacent saturated cells, separated by boundaries of B lin-
ear pixels. He gave conditions necessary for the stability of a pattern and also gave the 
range of stable patterns. This theorem can be easily extended into 2D CNN having hori-
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zontally or vertically oriented patterns (Fig 73). In 2D the linear cells form the boundary 
region between the black and white regions. 

 Stable pattern Stable pattern Unstable pattern Unstable pattern Stable pattern 

in
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 st

at
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sn
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sh
ot

 

  
 ae =2.39, 

D=2.4 
B1D=0 

ae =2.39, 
D=2.4 
B1D=0 

ae =1.3, D=2.4 
B1D=3 

ae =1.06, 
D=2.4 
B1D=8 

ae=2.45, D=2.4 
B1D=0 

Figure 72. The effect of the self-feedback on the propagation; B1D is the number of 
linear cells.  

 

B linear cells  5 10 15 20

-1

-0.5
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Figure 73. Extension of 1D stable pattern into 2D. B=7 

The following proposition shows the relation of the one- and two-dimensional stable pat-
terns provided that in 2D the boundary regions are oriented vertically or horizontally (i.e. 
the gradient vector of the 2D image is parallel with or perpendicular to the x axis of the 
image respectively). 

      
 r s r  
 s p s  
 r s r  
     

     
 r s r  
 s p s  
 r s r  
     

 
Figure 74. 2D vertically oriented boundary re-
gions with and without linear cells. The dy-
namics of all rows are the same. 
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Proposition: 
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where q=1. Let s, r > 0, p < 1, 4s + 4r + p > 1. Moreover, let the initial state of the infinite 
or periodic 2D CNN (5.4) consist of identical rows or columns (Fig. 74).  

Then the one-dimensional equivalent CNN has the form 

 ( ) ( ) ( )11 +− +++−= iiiii xfsxfpxfsxx )))
& ,     [ ]sps )))=A  (5.5) 

 pspsrs +=+= 2,2
))  

and the number of linear cells [91] in the boundary zone is an integer B: 
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Proof: 

The dynamics of all rows are the same therefore the array can be written as a vector:  
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Thus, the 2D array is transformed to 1D provided that the initial state is made up of 
black and (gray and) white regions separated by vertical regions. Doing so, we can use the 
theory from [91] for the number of linear cells equation (5.6). The same results are hold for 
horizontally aligned boundary regions as well.  

5.2.2 Boundary region aligned with π/4 

Let us consider an infinite 2D CNN controlled by template A. The governing equation is 
the same as in (5.4) with the following: 

  s > 0, p < 1, 4s+p > 1,      (5.8) 
⎥
⎥
⎥

⎦

⎤

⎢
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⎢

⎣

⎡
=

00

00

s

sps

s

A

To gain a relationship between p, s and B, I use a way of thinking similar to that of in 
[91] but I extend it into 2D with restrictions. Compared to the 1D case, the degree of free-
dom of the parameters increases greatly. The number of possible stable patterns also in-
creased a lot. Due to these only few things can be stated. 
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In spite of the fact that the linear analysis is not valid for equation (5.4) it is still useful 
for deriving some results for the number of linear cells in 2D. 

The two-dimensional discrete Fourier transform of the template matrix is:  

  (5.9) ( 21 coscos21][~ ωωω ++−= spA )

This describes the filtering characteristic of the CNN in the linear region. 

Let 21 ωω = . This means that the boundary zone is aligned with π/4 direction (see Fig. 75). 
Since we only consider straight zones this assumption can be valid. 

The cut-off frequency cω  is given by: 

 ( )21 coscos210 ωω ++−= sp  

 ( )21 coscos
2

1
0 ωω ++

−
=

s
p

  

Let 
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p
2
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2
arccos

µπωc  (5.10) 

Let us suppose that the stable pattern in equilibrium should 
have spatial frequency less than or equal to  

 ( )22
2

max +
=

B
πω  

This assumption is based on the 1D case. While in 1D we have a ‘n
this is never true except the horizontal or vertical contour case. T
frequencies of the stable pattern are rather uncertain if any stab
these difficulties in the following we consider only straight contou
k=1..3. 

In two-dimension we have two independent spatial frequencies.

 
21max +

=
xB
π

ω ,
22max +

=
yB
π

ω   

Condition 2max1max ωω = means that the contour zone is straight an
the spatial period and therefore the length of linear cells are the s
tions. Suppose that only patterns whose spatial frequency is lower 
1D case. Using equation (5.10): 
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Figure 75. The bound-
ary region is aligned 

with π/4 direction. In 
an infinite CNN are 
equal the two spatial 
frequencies of the pat-
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 (5.11) 

where Bxy is the closest greater integer. 

This gives a lower bound on the number of linear cells if the boundary between the black and white re-
gions is oriented at π/4.  

-0.2-0.100.10.20.30.40.5
0

5

10

15

20

25

 

B  xy 

 
Figure 76. The length of linear cells in 2D as a function of p. dotted: 

Bxy; + sign: Brot = Bxy  ⋅cos(45˚);  circle: B1D 

Although relation (5.11) is obtained without correct mathematical derivation it still gives a 
reliable approximation and corresponds to the simulations.  

In Table 11, B1D is computed using (5.6); Bxy comes from (5.11); Brot= round(Bxy cos(π/4)). 
Indeed, experiments show that Brot= round(By cos(α)) if α <π/2 and Brot=round(Bx sin(α)) if 
α >0, where Bx and By  are the number of linear cells along x and y direction obtained 
through simulation. Fig. 76 shows the length of the linear cells in 2D as a function of p. 

Results suggest corresponding with experiments that the number of linear cells perpendicular to the 
edge (along the gradient direction) is independent of orientation. 

 
p 0.5 0.2 0.02 -0.06 -0.1 -0.13 -0.148 -0.16 -0.168 -0.174 -0.178 -0.181

B1D 0 1 2 3 4 5 6 7 8 9 10 11 

Bxy, α= 
π/4 

1 2 4 5 6 8 9 11 12 14 15 16 

Brot 0 1 2 3 4 5 6 7 8 9 10 11 

Table 11. The Length of linear cells with differently aligned boundaries.  B1D is the horizon-

tally (vertically) oriented one, Bxy is the boundary oriented along π/4, Brot is the 1D equiva-

lent rotated length computed from Bxy. Brot= round(Bxy cos(π/4)). 
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Sub thesis III/b. 

Curvature controlled trigger wave 

I showed that the CNN with a nonlinear diffusion type template class computes the 
approximation of the so–called “Curve Shortening Flow” of shapes. Indeed, the process 
can be described as local curvature controlled trigger wave propagation in CNN array. 
In this framework the curve is represented as the boundary region of a solid black shape 
against white background. As a result of the diffusion–like evolution of the CNN array, 
a smooth 2D transition zone called boundary region is formed between black and white 
regions. The width of the region is controlled by the template parameters. The evolu-
tion of the shape of this region corresponds to the evolution of the curve. To show this at 
first I analyzed the characteristics of the boundary region of the evolving shape than I 
studied the dynamics of this transition region.  

III/b. Dynamics of the boundary region 
I showed that the temporal derivative of the state variable of a linear cell being in the boundary re-

gion is the quasi-linear function of the local curvature of the isointensity line to which the cell belongs 
provided that the state variable of the cell is close to zero. This is fulfilled in the centerline of the bound-
ary region. The boundary region changes so that its local curvature is zero. In other words the shape 
contours get smoothed provided that spatial constraints make this possible. I gave method to compute the 
convex hull of a shape in one transient. Moreover, I gave method to separate two-dimensional clusters of 
points. 

 
 

 
 

5.3 The CNN as a curve evolution computer 

In the following I present validation of the relation between the local curvature of the 
boundary of the evolving shape and the dynamics of the CNN. 

Let the CNN have the same form as (5.8): 

        (5.12) ( )∑ ∑
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where s>0, p<1, 4s+p-1>0, f  is the same as (5.3). Let s=D/4, p=ae–D  
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Proposition: 

The temporal derivative of the state variable of a linear cell being in the boundary region 
is the quasi-linear function of the local curvature of the isointensity line to which the cell 
belongs provided that the state variable of the cell is close to zero and that the number of 
linear cells is greater than 3. 

 ( )κFxij =& ,    where κ is the local curvature of the isointensity line 
  (5.13) 

Validation: 

Horizontal and vertical boundary regions are stationary based on Theorem 1. In these 
cases the curvature is zero and the state derivative is also zero since the pattern (the 
boundary region) is stable. Let us examine now the case when the orientation of the region 
contour is arbitrary. 

Consider the PDE equivalent of the autonomous CNN of eq. (5.12). Let us denote 
, u∈ R( tyxuu ,,= ) 2×Z→R 
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t
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∂ 2 ,   where D=s, ae=p+4s  is constant (5.14) 

Let f =  is as in (5.3) [93]: εε
f

0
lim

→

 
( )

( )

( )[ ]

( )[ ]

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

+≥

≤−+−−

−≤

≤+++

+−≤

=′

ε

εε
ε

ε

εε
ε

ε

ε

10

11
2
1

11

11
2
1

10

x

xx

x

xx

x

xf ( )

( )

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

+≥

≤−−

−≤

≤+

+−≤

=′′

ε

ε
ε

ε

ε
ε

ε

ε

10

1
2
1

10

1
2
1

10

x

x

x

x

x

xf

 (5.15) 

Let us expand : ( )uf2∇
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 ( )( ) ( ) uufuuf 22
∇′+∇′′=  (5.16) 
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Figure 77. The fε(x) and its first and second derivatives. 

Substituting (5.16) for (5.14) we get: 

 ( ) ( )( ( )ufauufuufDu
t
u

e+∇′+∇′′+−=
∂
∂ 22 )

tor: 

 (5.17) 

Observe that now we have two terms inside of the parenthesis: the first one is the product 
of the square of the vector norm of the gradient and of the second derivative of the nonlin-
earity. The second term is the product of the derivative of the nonlinearity and of the 
Laplacian of u.  

Let u(x,y) be the intensity image (surface), moreover, let Γ: u(x,y)=c be an isointensity line 
(or level contour) of the boundary region in the spreading wave front (see Fig. 78). Let us 
introduce local moving orthonormal coordinate system (ξ,η) at any point P0 in the 
isointensity lines of the boundary region. Let θ  be the angle of the gradient vec

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
ξη

θ uuarctan  (5.18) 

The η-axis is parallel to the gradient direction at P0, and the ξ-axis is perpendicular, i.e.  

 eξ = (sinθ, -cosθ)T     and      eη = (cosθ, sinθ)T= 
u
u

∇
∇ . 
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ξ 

P0 

zero isointensity line 
 Γ: u(x,y)=0 

direction of the movement 
of the wave front 

η 

 
Figure 78. A boundary region and its moving local 
coordinate systems. 

In terms of Cartesian coordinates the local directional derivatives can be expressed [33]: 

 yx ∂−∂=∂ θθξ cossin , yx ∂+∂=∂ θθη sincos . (5.19) 

In this local coordinate system one of the first-order directional derivatives, uξ, is zero. 
Each coordinate system moves together with the propagating wave front (Fig. 78). The 
Laplace operator can be written as  

 2
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2
2
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∂
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∂
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∂
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Let 
ηη ∂

∂
=

u
u , 2

2

ηηη ∂
∂

=
u

u . The second derivative along the ξ-axis can be written as 
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⎝
⎛ +

+−
==

yx

xxyxyyxyyx

uu

uuuuuuu
uu ξξξξ H  where H is the Hessian. 

Since the curvature of a plane curve defined by an implicit function Γ: u(x,y)=0 is 

 ( ) 2/322

22 2

yx

xxyxyyxyyx

uu

uuuuuuu

+

+−
=κ .  (See Appendix B and Table 12) 

We get [96] 

 ηξξ κκ uuu =∇=  (5.21) 

Table 12 shows different forms of operators in different coordinate systems. See tutorial 
web pages [164,165,166] on the relation to anisotropic diffusion, the motion of the level 
sets and their curvature. 
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Name Cartesian Local moving (gague)
Intensity u u 
Gradient2  22

yx uu +  2
ηu  

Laplacian  yyxx uu +  ηηξξ uu +  

Curvature of an 
isointensity line ( ) 2/322

22 2

yx

xxyxyyxyyx

uu

uuuuuuu

+

+−

η

ξξ

u
u  

Table 12. Different forms of two-dimensional differential in-
variants [33] 

Using notation 
ηη ∂

∂
=

u
u , 2

2

ηηη ∂
∂

=
u

u  and substituting eq. (5.21) for (5.20) we get the follow-

ing [96]: 

 . (5.22) ηηηηηξξ κuuuuu +=+=∇2

This curvature κ is the same for the surface u and for the zero isointensity curve. This is 
because u has a flat shape around the zero level set ( 0≈ηηu ), see Fig. 78 for three-
dimensional view and Fig. 73 for one-dimensional cross section of the spreading wave 
front. 

We know that 

 2222
ηuuuu yx =+=∇ , (5.23) 

where ux, uy denotes the derivative along the x and y axis. 

Substituting eq. (5.22) for (5.17) and using (5.23) we get the following one-dimensional 
equation: 

 ( ) ( )( )( ( )ufauuufuufDu )
t
u

e++′+′′+−=
∂
∂

ηηηη κ2 . (5.24) 

Now we see that the behaviour of the PDE depends on the local curvature κ. Inside of the 
linear region the influence of the curvature is dominant. Close to the edges of the linear 
region the importance of the curvature decreases while the square of the gradient deter-
mines the state derivative.  

Let us now suppose that u is in the linear region of the nonlinearity. Inside of this region 
( ε−≤ 1u )  and . Using this we get ( ) 0=′′ uf ( ) 1=′ uf

 ( ) uauuDu
t
u

e+++−=
∂
∂

ηηη κ . (5.25) 

Let consider the case when u is zero, which means it is on the zero isointensity line. Thus 
we can write:  
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 ηηη κuDDu
t
u

+=
∂
∂

. (5.26) 

On the other hand, equation (5.26) can be also written as: 

 ( )ηηξξ uuD
t
u

+=
∂
∂ . 

Since we get 0≈ηηu
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. (5.27) 

The speed of a point of the isointensity line along the gradient is  
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Thus we get 

 κη

η

ηη D
u

u
D

t
+=

∂
∂ .  

In this equation [ ] is a small number. As a result we see that the curve is moving 

according to the local curvature since η is the component of the basis vector of our local 
coordinate system along the gradient. 

ηηη uu /

 κη
D

t
=

∂
∂ . (5.29) 

Equation (5.27) shows that smoothing occurs along the boundary. This equation is well-
known in literature and it was shown that its meaning is that the level sets of u move in the 
normal direction with a speed proportional to their mean curvature (Alvarez [37], Evans 
[41], Osher [42]). Equation (5.29) also shows this. In our case, the curvature of surface u and 
the embedded curve are the same when u is on the zero isointensity line. Of course, the 
relation (5.27) is valid only in the linear region of the CNN, however this linear region 
always exists during the transient if p and s are chosen according to equations (5.8) and 
(5.11).  

From PDE to CNN 

To obtain the CNN representation we make the spatial discretisation of (5.25) with h=1, 
, ( ) [ ]2/102/1. −=η ( ) [ ]121. −=ηη : 

  ( ) ieiiiiii
i xaxxxxx

D
x

dt
dx

+⎟
⎠
⎞

⎜
⎝
⎛ −++−+−= +−+− 1111 2

1
2

4
κκ . (5.30) 

Let ae =  p+4s  and D = 4s. Substituting this for (5.30) we get 
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  ( ) ( ) iiiiiii
i xspxxxxxsx

dt
dx

4
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2 1111 ++⎟
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⎛ −++−+−= +−+− κκ , (5.31) 
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⎠
⎞

⎜
⎝
⎛ −+++⎟

⎠
⎞

⎜
⎝
⎛ ++−= iiii

i xsxspxsx
dt

dx κκ
.  (5.32) 

 

The Effect of κ 

In the following let us investigate the effect of κ. 

Case 1: 0=κ   

If 0=κ equation (5.32) is the same as equation (6) in [91] in the linear region: 

 11
ˆˆˆ +

−
−

+ +++−= iiii
i xsxpxsx

dt
dx . (5.33) 

where  and . Thus theorems and results developed in that case can 
be used, too.  

spp 2ˆ += sss == −+ ˆˆ

Case 2: 0≠κ  

If 0≠κ  then in equation (5.33)  

 ⎟
⎠
⎞

⎜
⎝
⎛ +=+

2
1ˆ κ

ss  and ⎟
⎠
⎞

⎜
⎝
⎛ −=−

2
1ˆ κ

ss .  (5.34) 

In template form: 
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⎦
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12

2
1

κκ
sspsA  (5.35) 

This template is asymmetric. Asymmetry depends on the curvature. The eigenvalues of 
this corresponding system of the linear region are [94]: 

 ⎟
⎠
⎞

⎜
⎝
⎛

+
++−= −+

1
cosˆˆ221

B
i

ssspi

πλ . (5.36) 

Substituting (5.34) we get 

 ⎟
⎠
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2

B
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πκλ  (5.37) 

In [91] Thiran proved that the exact values of the state of a CNN in equilibrium is  

if B is even ( ) ( )( )
( )( )2/1cos

2/21cos
1*

φ
φ

+
−+

−=
B

iB
x i

i , (5.38) 
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if B is odd ( ) ( )( )
( )( )2/1sin

2/21sin
1*

φ
φ

+
−+

−=
B

iB
x i

i . (5.39) 

where φ  is ⎟
⎠
⎞

⎜
⎝
⎛ +−

s
sp

2
21

arccos , B is the number of linear cells provided that the template 

describing the system is symmetric. If we introduced 
2
κε =  ( 0>ε ) small perturbation 

of the template then the equilibrium would change: 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

+−
=

212

21
arccos

ε
φ

s

sp . 

Therefore the equilibrium should change. The greater *
ix κ the greater *

ix  is. 

 0>κ →  0>ix&

 0<κ  → 0<ix&  

It follows from the definition that small perturbation (curvature) does not necessarily 
change B, however it does change  and consequently the location of the boundary re-
gion. 

*
ix

Corollary 

a) If the curvature is zero then the 2D problem is reduced into orientation-independent 
1D problem and stability results developed in the 1D case are valid.  

b)  Moreover, the result strongly conjectures that if the curvature is not zero the bound-
ary region will move according to the sign and value of the curvature. Experiments 
support the conjecture. 

5.3.1 Examples 

Disc deformation 

In this experiment I measured the change of state derivative x of the CNN during the evo-
lution. The initial state was a black disc. During the transient the disc was continuously 
decreasing with increasing speed until it disappeared. Meanwhile, the magnitude of the 
state derivative in the linear transition zone got larger and larger. At the same time the real 
curvature of the disc was computed according to the relation κ=1/Rt, where Rt is the actual 
radius of the disc. Results are shown in Fig. 79,80 and Fig. 81. 
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Figure 79. The interpretation and the sign of the local curvature 
of a boundary zone. 
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Figure 80.  The real curvature=1/Rt (solid) and the state derivative of the CNN 
(dashed).  (p=-1.25, s=0.6,r=0) 

   

initial state 
p=-1.25 

s=0.6 
  

time 230 1840 2760 2955 2980 
Figure 81. Measurement of the curvature. The first row contains the state derivative. The 
gray level encodes the curvature. White means negative curvature.  (p=-1.25, s=0.6,r=0, 

image size: 128×128) 
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Figure 82. Curvature smoothing. Upper row shows the snapshots of the state derivative. 

The bottom row shows the output of the CNN.  (p=-1.1, s=0.6,r=0, image size: 320×320, 

original size:64×64) 

Complex shape deformation 

In this experiment simulation shows the evolution of a human hand that is enlarged from a 
smaller image without smoothing. Thus the enlarged image is very rough in spite of high 
resolution. Snapshots in Fig. 82 show that the contour of the hand is smoothed. However, 
the shape is continuously distorted meanwhile. The same evolution is shown in a more 
complex scene in Fig. 83. 
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Figure 83. Curvature smoothing in complex scene. Upper row shows the snapshots of the 
state derivative. The bottom row shows the output of the CNN.  (p=-1.1, s=0.6,r=0, 

image size: 320×240) 
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5.3.2 Connection to bipolar waves 

In [85] the bipolar wave was introduced: two trigger waves are propagating in the same 
medium. The initial condition is special: it is zero except for few pixels. The zero initial 
state for the cell is the origin - an unstable equilibrium. This makes it possible to go to ei-
ther stable equilibrium. While opposite-signed cells are separated by zero cells the two 
types of trigger waves are spreading with the same speed and without influencing each 
other. When the black and white trigger waves collide the evolution continues according to 
the local curvature as derived above. This co-evolution can be controlled by template pa-
rameter p. If p >1 there is no other stable equilibrium only in the saturation regions of the 
nonlinear transfer function [46]. It means that the number of linear cells is zero and the 
wave front freezes after a transient. When p <0 the wave front moves if the number of lin-
ear cells B is ‘large enough’ ≈ 3. Experiments show that when B is equal or greater than 
three the evolution is smooth. 

These can be used for computation, e.g. to find the contour that is equidistant from the 
black and white patches (see Fig. 84). 
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Figure 84. r=0,s=0.6,p=-1, The boundary condition is zeroflux 
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Figure 85. Effect of  input on the curvature.  (p=-1, s=0.6, r=0, b0=1, image size: 

64×64) 

Example  

Let us consider the following equation: 
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  ( ) ij

r

rk

r

rl
ljkiklijij z(t)xfA(t)x(t)x ++−= ∑ ∑

−= −=
++ ,&

Now we introduced a constant term: zij. Its effect is that the contour is not stationary when 
its curvature is zero but when it has either a certain negative or positive curvature (see Fig. 
85). 

If zij is greater than zero contours with positive curvature are stationary, if it is less than 
zero contours with negative curvature are stationary. The bias map zij is chosen so that the 
cells belonging to the original shape are also stable i.e. they are in the black saturation re-
gion. 
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6. Practical wave computing and experiments 

6.1 Wave computing 

In section 6.1.1 a binary propagating wave is introduced, which propagates along a prede-
fined direction and the propagation stops when a certain kind of partial convex hull of the 
object is filled.  

In section 6.1.2 a so called bipolar wave is described that propagates symmetrically, but 
black and white waves spread simultaneously. When two differently colored waves collide 
the propagation stops, a boundary between the black and white region is formed of which 
characteristics was analyzed in Chapter 5. 

An algorithmic frame is described in 6.1.3. It lists the basic steps of an analogic algorithm 
for concavity based object decomposition. The steps are composed of template and logic 
operations. Through decomposition recognition is accomplished since the result of each 
decomposition block is an image which is empty (white) or not (contains black pixels). 
Based on this a binary decision tree can be built of which leaves contain the detected object 
classes. 

In section 6.2 a mobile robotic environment is intoroduced in which the wave based 
computing forms an algorithmic block. Finally in section 6.3 active wave experiments are 
shown that were measured on a CNNUM with second order core cell.  Basic active wave 
types are shown such as trigger, traveling, target and spiral waves. 

6.1.1 Direction constrained wave 

Trigger waves, which have symmetric generator template matrix, were discussed in detail 
in [64]. If symmetry is broken a direction selective trigger wave generator yields. The 
propagation starts from those black pixels around which there is a properly oriented, 
L-shaped concave pixel configuration (see Fig. 86). 
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Figure 86. The result of the concavity filler tem-

plate in a 3×4 sized window. The stable pixels are 
denoted by black. Gray color denotes those pixels 
that are to be turned into black in the next step. 
Propagation occurs if there is a properly ori-
ented, L shaped  pixel configuration around a 
white pixel. 

Expressed as pixel level rule: those white pixels which have black neighbours to north-
west, south-west and south will be black. Other directions are obtained with rotation and 
mirroring. The result of a concavity filler template can be seen in Fig. 86 and Fig. 87. 

As a result, eight different templates can be produced. The templates are characterised 
by the angle (α) of the direction of the propagation. Possible α values are: α= arc-
tan(±0.5)+k2π, α= arctan(±2) +k2π, k=0..1. 

 
Figure 87. The result of the concavity filler tem-

plate in a 10× 10 sized window, α=26.56° . Gray 
color denotes those pixels that are to be turned 
into black. 

 
Figure 88. The Result of the concavity filler tem-

plate., α=26.56 ° 

The following template generates propagation for the α=26.56 ° (arctan -0.5) direction: 
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⎡
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This type of wave can fill concave segments of the object depending on the orientation 
of the concavity. The effect of the template can be well observed in Fig. 88. The concavity 
template (which can be found in the CNN Software Library [62]) produces similar, but 
direction independent result. 

6.1.2 Bipolar  waves 

All cells of a trigger wave CNN - except the cells changing in the wave front - are in one 
of the stable states: they are either black or white. However, there is a third, though unsta-
ble state – the zero level or origin –, which can be applied in computation. Setting the ini-
tial state of a CNN to zero except for few pixels, two different waves can be initiated in the 
same structure: black waves starting from black pixels and white waves triggered by white 
pixels. Other empty areas are set to zero. When two identically coloured waves collide, 
they join. But when two different ones collide, the propagation stops and a boundary region 
is formed between them. See Fig 89.  

 
Figure 89. Transients of bipolar waves. When two different 
waves collide, annihilation occurs. 

Using the theory developed in Chapter 5 and choosing the number of liner cells between 
the black and white regions to be zero, one possible template for this is: 
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= zBA

Since the speed of propagation of the black and the white waves are the same, the stopping 
will occur half way between two different initiator patches. The boundary will be a line 
(Fig. 90). 
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Figure 90. Waves of two patches. The annihi-
lation zone divides the distance of the initial 
patches into two equal parts. 

If more than two different patches are present, the boundary region will consist of line 
segments (Fig. 91). This may be exploited in clustering of point sets. 

 
Figure 91. Bipolar waves when three points 
are present. The annihilation zone consists of 
two line segments. 

6.1.3 Curvature and concavity based object decomposition 

One of the characteristic features which human recognition seems to be based on is the 
concavities and arcs of objects. Several objects can be well described by the positions and 
relations of their concavity locations.  

During his experiment, Fujita [126] found that in monkeys' inferotemporal cortex are 
neurons which are sensitive exclusively to specific complex shapes and patterns. This rec-
ognition is not a kind of template matching, but a much more robust process which can 
tolerate a wide range of changes of illumination and viewing angle of objects.  

The CNN operation presented in section 6.1.1 is suitable for detection of differently 
oriented arc concavities. Since the concavity is a scale invariant property, it can be an ef-
fective descriptor of objects. 

Here a CNN algorithm frame for object classification is presented, where feature-based 
decomposition is applied first and then the resulting images are filtered by logic operations. 

 
1. Apply the direction selective concavity filler template to the initial black and 

white images. Do this for all desired directions of arcs by applying the appropri-
ately transformed template. 

2. Subtract the original image from all of the result images and remove small patches 
and single pixels. 
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3. Form logic combinations of the result images of the previous step, which contain at 
this point only patches at the locations of selected concavities. By logic combina-
tion, direction selectivity can be improved.  

4. Classify the patches by distance. As a result, we get images on which patches are 
left that have specified distance and orientation compared to each other.  

5. Make logic combination of the result images of the previous step. 
6. Compose logic OR of each image. The result is a binary feature vector. 

 
Steps 4 and 5 are not always necessary. The distance classification can be accomplished 

by applying the variants of shadow templates [62] for projecting shadows of prescribed 
length into appropriate directions. If two images are given that contain patches, let the 
transient of the shadow template run until it reaches the desired length in the first image. 
Then we take the logic AND of the two images. The result contains patches which fall into 
the selected direction and are not farther from the patches in the first image than the length 
of the projected shadow. 

This algorithm skeleton is used for some applications which are presented in the follow-
ing section. 

InputInput Orientation  classesOrientation  classes ReconstructionReconstruction

LogdifLogdif

SmkillerSmkiller
Final result overlaid 

with original
Final result overlaid 

with original

Concavity 
65°

Concavity 
65°

LogdifLogdif

SmkillerSmkiller

Shadow 315Shadow 315

Shadow 225Shadow 225

Concavity 
–65°
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–65°

Logic ANDLogic AND

FigrecFigrec

Patch
Maker
Patch
Maker

 
Figure 92. Fork detection using the algorithm frame described formerly. 

6.1.4 Fork detection 

Using the algorithm frame detailed above I present a simple example where the task is to 
detect the fork in the picture. We have to find characteristic features of the object then to 
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extract them. Such features are concavities or endings and their relative position. Some 
post- and intermediate processing is needed such as small object removing. 

The solution starts with applying two direction–selective concavity filters (Step 1). 
Thus we can fill in the tip and the bifurcations of the fork (see Fig. 92). Next taking the 
difference of the result and the original we get the locations of the tip and the bifurcation 
points (step 2). 

Following templates were used: 
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The Figrec template reconstructs the image starting from one point. The Smkiller tem-
plate removes the small, few pixels wide objects. The Figrec, Smkiller and the Patchmaker 
templates are available in the CNN software library [62]. The Shadow* templates result in 
directed shadows originating from concave locations. 

6.1.5 Hand orientation detection 

This algorithm shares the basic principle described in 6.1.3. Supposing a suitably preproc-
essed image the algorithm starts with a thresholding. Next the difference of the original 
and the intermediate results are taken and artifacts are removed. Finally, the nonempty 
image out of the three intermediate results denotes the detected orientation class. 
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Figure 93. Hand orientation detection by the 64x64 CNNUM chip. The dotted input line of 
Logdif symbolises the signal source from the black and white input images. The text boxes 
contain the names of the applied templates and logic operations. 
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Figure 94. Texton segmentation. The text boxes contain the names of the applied templates 
and logic operations. The final image contains the regions. 
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6.1.6 Texton segmentation 

This algorithm is also built according to the steps listed in 6.1.3. However, as a final step 
segmentation block is added. The segementation applies bipolar waves described in 6.1.2. 
The result of computation is the steady state of the propagation. 

6.2 Mobile navigation unit 

The templates and subroutines described previously constitute a basic image processing 
tool-set. In the following I introduce a mobile surveillance robot (see Fig. 95) of which con-
trol algorithm integrates the aforementioned tool-set. 

The aim was to design and produce a mobile platform-based system that is able to iden-
tify objects or events by simple features (shape, texture, motion, etc.) and to approach or 
navigate to them. Moreover, it is able to gather information and transmit information about 
them to the base station. The mobile unit communicates with the base station through a 
wireless channel. The base station monitors the mobile unit of which control can be taken 
over at any time. 

The robotic system is equipped with several sensors, operates on battery and controlled 
by the Bi-i system introduced in chapter 3 on page 18. The robot itself is an off-the-shelf 
mobile platform fabricated by K-Team from Switzerland. 

 

IR proximity sensors Bi–i 

Sonar 

Wireless internet 
802.11b TCP/IP 

 

Air flow sensor

Gas sensor

 
Figure 95. Mobile unit overview. 

6.2.1 Hardware infrastructure 

The hardware of the system is the result of collaboration of several partners of the project. 
The Bi-i system was designed and produced by the Analogic Computers Ltd [108]. The 
airflow and gas sensors were produced by MTA-KFKI-MFA research institute (see Fig. 
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95). The high-level algorithm frame for controlling the mobile unit was designed at MTA-
SZTAKI, in which the author took part. 

PC

Sensory
platform

Gas Flow

Bi-i

Visual 1

Visual 2

Koala

US

IR

Wireless 
bridge

Wireless 
bridge

Base station

Mobile unit

 
Figure 96. Block diagram of the mobile sytem. 

The block diagram of the system is shown in Fig. 96. Main components are the base sta-
tion that consists of a PC with a wireless bridge and the mobile unit. The mobile unit is 
built up of a mobile platform (Koala), the Bi-i system and the sensory platform. The Koala 
is a processor controlled mobile platform equipped with IR proximity sensors and sonar 
(US) that controls the low-level navigation of the car. The Sensory platform hosts the gas 
and airflow sensors.   

 

 
Figure 97. Real - virtual environment 
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Figure 98. Robot in the test world 

The mobile unit is tested in a closed test-world  (Fig. 97 and 98) in which different ob-
jects or places should be recognized/found by the fused infrared, ultrasound, gas and visual 
sensory information. Future developments include the virtual representation of the model 
world and the car. We developed an integrated control environment that provides visual, 
literal and/or numerical feedback from the robot and allows the user to change parameters, 
strategy and operation modes of the mobile unit and to interact immediately if necessary 
(see Fig. 99). 

 

 
Figure 99. Integrated control environment of the mobile unit. 
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6.2.2 Software infrastructure 
The Bi-i system is responsible for the high-level control. It contains three dedicated 

processors (CNN-UM, DSP -digital signal processor, Communication processor). The 
processor of the robot car is responsible for the control of the motors. It computes a low-
level obstacle avoidance algorithm that is modulated by the Bi-i system. The car receives 
direction and speed commands from the Bi-i that computes the so-called hybrid strategy 
based mobile robot control algorithm. The main emphasis is put on the visual processing 
that is the most computationally intensive part of the control architecture (Fig. 100). 

The computationally intensive parts of the image processing algorithms run on the CNN-
UM. This includes the topographic preprocessing of images (feature and motion extraction 
and the fusion of them). The DSP controls the CNN-UM, gathers measurements both 
from the sensory platform and from the robot car. The car provides – if necessary – IR, 
sonar measurements and homeostatic sensory information.  The DSP computes some part 
of motion analysis and performs post processing necessary for the categorization of infor-
mation. The other modules that run on DSP update the world model – a global memory of 
the space discovered –, determine the goal to be reached (planner module) and perform the 
integration of the different sensory modalities so as to provide a suitable input to the navi-
gation module, that selects the appropriate behaviour (movement) to reach the goal. 

In the following I introduce some of the modules that make use of CNN technology. 
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Figure 100. Mobile unit control architecture. 
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6.2.3 Optic flow estimation 

Optic flow calculation is a rather computationally intensive step of image processing. Still, 
its use cannot be omitted because it is one of the key steps of spatio–temporal motion proc-
essing. Algorithms found in literature [127] usually include some kind of computationally 
intensive method e.g. block matching techniques, iterative minimization methods or matrix 
inversion. However, using simple parallel near–sensory image processing techniques a very 
fast approximate motion field can be extracted. The result of this method can be used as a 
first guess for more sophisticated methods or, if the precision is enough, it can be the start-
ing point for segmentation and recognition tasks. 

Let us consider a moving object. The key element of the algorithm is a fading memory 
that serves as storage for motion history. The movements of selected features are stored in 
it such a way that the feature map is iteratively added to the memory. Adding is followed 
by a thresholding to keep the values bounded. The detected feature is represented in the 
map with black pixels (maximum intensity level). Meanwhile, the whole memory content 
is leaking i.e. the intensity of each pixel is gradually decreasing. As an object moves it as 
added to the memory in a little shifted position depending on its speed. Due to the fading 
property of the memory a motion history is produced resembling a comet that draws a tail. 
The head is the actual position of the object feature having maximum intensity; the tail 
preserves the previous positions with decreasing intensity. The direction of the gradient on 
this tail gives the direction of the motion and its magnitude is proportional to the inverse of 
the magnitude of the speed of the object. As a result, a vector field of the moving features 
(objects) is produced. It is supposed that the feature map is not “too dense”. This supposi-
tion is necessary to have enough space for the motion history.  

Motion field estimation algorithmMotion field estimation algorithm

InputInput

Feature 
extraction
Feature 

extraction

Fading 
memory
Fading 

memory++

GradientGradient

Vector fieldVector field

binarybinarybinary

grayscalegrayscalegrayscale

grayscalegrayscalegrayscale

grayscalegrayscalegrayscale

 
Figure 101. The block diagram of 
the motion field estimation algo-
rithm. 
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The faster the object the longer the tail is. The slower the object the higher the gradient 
is on the tail. 

Using several feature maps and fading memories effective motion analyzer algorithms 
can be built due to the inherent parallel nature of the method proposed. 

Due to this it is a completely focal–plane array feasible solution. Electronically the im-
age memory can be represented with (fading) capacitors that are charged to maximum 
value when the corresponding pixel is black. The feature map can be e.g. the time deriva-
tive of the input, of which computaion is easy by a hardware. Additional morphological 
operations such as dilation, or erosion is applied to smooth the feature map.  

 
Figure 102.  The original snapshots 

 
Figure 103. The feature map. The image feature is the thresholded temporal derivative of 
the image flow. 

 
Figure 104. Fading memory: head (white patches) and tail (gray parts) of the motion his-
tory map. 
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Figure 105. Gradient map. Upper film shows the gradient along x direction, the lower one 
shows along y direction. White color means positive gradient component, black denotes 
negative. 

 
Figure 106. Final output. The vector field is overlaid onto the original image flow. 

6.2.4 Visual collision avoidance 

The algorithm is based on the fact that the obstacle parameters such as area of the object, 
size of the object, edge quantity, edge speed, etc. change faster as the observer gets more 
and more closer to the object provided that the observer has constant speed. If the speed of 
change reaches a prescribed limit we declare a threat of collision and send a signal to the 
navigation unit. 

Figure 107 shows the block diagram of the algorithm. The input frames are grayscale 
images. Let us consider the last four frames of the image flow. Difference is computed be-
tween Framet and Framet-1, Framet-1 and Framet-2, Framet-2 and Framet-3. Then the abso-
lute value of the frames are taken. Thus we get three images that are mostly zero and con-
tain only black pixels where change occurred. On the first two frames a propagating tem-
plate is computed the result of which can predict the possible change of the image.  
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Figure 107. Visual TTC (time to collision) based 
analogic algorithm. 

These two images are added topographically to filter the noise and fluctuations of the 
frames. The difference between predicted and the last absolute difference image gives a 
good measure of the speed of change of the edges. The sum of the pixels in the Difference 
image gives a number. Based on this number we can set a threshold above which the system 
declares danger in which case the car should immediately stop. 

Feature extraction

Visual sensorVisual sensor

Feature extractionFeature extraction

ClassificationClassification

ConcavityConcavity CornersCornersLocal 
curvature

Local 
curvature

Tipical shapesTipical shapes

Horizontal positionHorizontal position

 
Figure 108. Pattern recognition module. 
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6.2.5 Feature detection 

This algorithm makes use of the methods described in section 5.3.1 and 6.1. The consecu-
tive image frames are filtered and thresolded. Then an image is produced for each local 
feature (curvature, concavity, corners, etc.) that is extracted and bound to the shape they 
belong to (Fig. 108).   

The horizontal position of the detected shape gives the direction information to the 
navigation module. This information is also integrated to the world model. 

6.3 Complex spatio–temporal wave experiments with CNN 

The Complex Cell CNN programmable array computer [123,124] is an extension of the 
CNN Universal Machine [46–49]. The cells are organized into a 32×32 square grid. Each 
cell has second order dynamics and local interconnections to its neighbors. This structure 
is especially suitable for computing a certain set of ordinal differential equations. Simple 
PDEs can be transformed so that they can be easily programmed on the array computer. 
With the programmable Complex Cell CNN Universal Machine scientists are provided 
with a unique opportunity to study active-wave propagation and other reaction-diffusion 
differential equation based phenomena in a programmable manner. Exploiting the inherent 
programmability of the CNN architecture, complex wave-computing analogic algorithms 
can be designed. 

In the following I describe the mathematical model of the core of the complex cell chip. 
Section 6.3.3 contains the real-time chip measurements. We should emphasize that no 
simulation results are presented here. This chip was designed also for computing biologi-
cally inspired retina modelling. 

The architecture of the chip follows the design of the first order CNN-UM chip [98], 
but its first order cell core is replaced by a second order one [123]. With this change we are 
able to reproduce basic autowave phenomena. Fig. 109 shows the functional architecture of 
the second order, two-layer CNN. 

 

input

layer 1

layer 2

a12 a21y2 A1x1

A2x2 x2x1

τ1

τ2

z1 

b2u2

z2 

b1u1

τ1  ≥ τ2output  
Figure 109. Functional diagram of the CACE1k chip  

6.3.1 Mathematical model 

The evolution law of the complex cell CNN is the following differential equation system: 
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Where M and N denote the vertical and horizontal dimensions of the array respectively.  

 
( )

( )⎪
⎩

⎪
⎨

⎧

−<−+
≤
>+−

=
∞→

111

1

111

lim)(

,,

,,

,,

,

ijnijn

ijnijn

ijnijn

m
ijn

xifxm

xifx

xifxm

xg  (6.4) 

Function g(.) regulates the state so that the state stays within the +1..-1 interval. Vari-
ables u1 and u2 are the independent inputs, b1 and b2 are their weight factors; z1,ij and  z2,ij are 
space variant bias maps. Variables x1 and  x2 denote the state variables of the layers. Each xij 
corresponds to one cell; it is one pixel of an M by N image if we consider the system’s out-
put as a picture. A1, A2 are the weights of the intra-layer couplings, a1, a2 are the inter-layer 
weights; τ1 and τ2 are the time constants of the two layers. Equation (6.3) utilizes the so-
called full-range model (FSR)[125], where the voltage of the state variable is always the same 
as the output.  

6.3.2 Stored programmability 

The CACE1k chip can be programmed using the so-called AMC (ANALOGIC MACHINE 
CODE) language. This is similar to the assembler language but it contains additional high-
level instructions, such as: image loading, frame grabber instructions, etc. and built in image 
processing functions. In the Appendix is a simple AMC program which computes the snap-
shots of the autowave example. The actual computation is performed in line 40. Before this 
line is the preparation for computation: setting up the parameters. After the computation is 
done, the results are read out and displayed from the local analog memories of the chip. 

The elementary program of the chip is the template. It contains the weight factors of the 
coupling between the cells and weights for the input and the bias map. 
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The operation of the array computer is completely determined by the 25 template val-
ues, the initial states and boundary conditions. In (6.5) A1 and A2 matrices denote the 
weights of the inter-layer connections of the slower and the faster layers. The strength of 
the influence of the second layer on the first is controlled by a21; a12 stands for the reverse 
case. Symbols b1, b2, z1 and z2 are the weights of the independent inputs and the space vari-
ant bias maps. The ratio of the time constants of the two CNN layers are controlled by 
τ1;τ2 is fixed. An analogic algorithm is made up of combinations of template executions, 
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logic instructions and spatial arithmetic operations. The example shown in the Appendix is 
a very simple one, it contains only template execution operation.  

6.3.3 Wave phenomenon 

This subsection contains the on-chip measurements of the active wave phenomena. I pre-
sent chip measurement of the different nonlinear wave phenomena: trigger wave, traveling 
wave, autowave, and spatio-temporal edge detection.  

Trigger wave 

This example shows a very simple effect: an active (nonlinear) wave in the faster layer 
initiates a second wave in the slower layer through the positive inter-layer coupling. The 
input is fed to the faster layer. Fig. 110 shows snapshots of the wave evolution.  
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Figure 110. Trigger wave propagation in the faster and in the slower layer. The first film 
shows the output of the faster layer. 

Erasure effect 

This example is an “enhancement” of the trigger wave example: a negative coupling is in-
troduced from the slower layer back to the faster one. As a result, after a while, the trigger 
wave on the faster layer is erased by the trigger wave from the slower layer. As in case of 
the trigger wave the input is given to the faster layer. Fig. 111 shows the snapshots of the 
wave evolution on the faster layer and Fig. 112 shows the evolution on the slower layer. 
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Figure 111. Retina-like wide-field erasure effect, faster layer. 
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Figure 112. Retina-like wide-field erasure effect, slower layer. 

Traveling wave 

The characteristic of this wave is that a single wave front travels across the active medium. 
The traveling wave is simply formed from the trigger wave template by adding a negative 
intra-layer coupling from the slower to the faster layer. Observe the annihilation property 
of this wave type in Fig. 113. 
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Figure 113. Traveling wave generation. 
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Target wave 

The target waves possess all of the properties of the traveling waves; the difference is that 
in this case multiple wave fronts are generated. See Fig. 114. 

 
Figure 114. Target wave propagation CACE1k chip. 
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Spiral wave 

This type of wave received its name from the spiral-like autowave structure. This phe-
nomenon was observed e.g. in biology. Examples are described in the Introduction of this 
dissertation. Fig. 115 shows measurement results on the CACE1k chip. The annihilation of 
two wave fronts occurs in this case as well.  

    
Figure 115. Spiral wave formation in the CACE1k chip. 
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Figure 116. Edge detection with second order dynamics on the CACE1k chip. Upper 
row shows the output of the faster layer, lower row shows the output of the slower 
one. 
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Spatio-temporal edge detection 

The basic idea of edge detection in the image processing is to somehow extract or enhance 
the high frequency components of the image. Here this is done with two layers. The slower 
layer, which gets its input from the faster one, computes the diffusion. The result is sub-
tracted from the faster layer. As a result, we get the edge image of the original image. The 
input was fed to the faster layer. See snapshots of the transient in Fig 116. 
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Appendix A 
 
Typical AMC program example. 

  1  ;AUTOWAVE COMPUTING AMC PROGRAM FOR THE CACE1K COMPLEX CELL CHIP 
  2   
  3 ;INITIALIZE CYCLE VARIABLE 
  4 mov.gam_f.gam_f  10 gamf1 
  5 
  6 ;LOAD CLONING TEMPLATES 
  7 host.load.tem autowave.tem tem33 1 
  8 host.load.tem autowave.tem tem34 2 
  9  
10 ;LOAD IMAGE 
 11 host.load.pic autowave.bmp lam5 
 12 
 13 Loop: 
14 ;FILL UP THE NECESSARY MEMORIES 
 15  ar.layer.param 1 fill_bias -1 
 16  ar.layer.param 2 fill_bias -1 
 17  ar.layer.param 1 fill_state 0 
 18  ar.layer.param 2 fill_state 0  
 19 
20 ;SET THE TIME CONSTANT RATIO OF THE TWO LAYERS (1..16) 
 21  ar.layer.param 1 layer_c 11  
 22  
23 ;SET BOUNDARY CONDITIONS FOR THE TWO LAYERS 
 24  ar.layer.param 1 layer_boundary zeroflux 
 25  ar.layer.param 2 layer_boundary zeroflux 
 26  
27 ;ASSIGN THE LOCAL ANALOG MEMORIES (LAM) TO THE INNER MEMORIES  
 28  ar.layer.image 1 img_input LAM1 
 29  ar.layer.image 2 img_input LAM1 
 30  ar.layer.image 1 img_output LAM3 
 31  ar.layer.image 2 img_output LAM4 
 32  
33 ;ASSIGN TEMPLATE TO BE EXECUTED 
 34  mov.tem.tem tem33 TEM1 
 35  
36 ;COPY INPUT IMAGE TO THE CHIP MEMORY 
 37  mov.lam.lam lam5 LAM1 
 38 
39 ;COMPUTE THE TRANSIENT  
 40  ar.tem.run TEM1 gamf1 1 
 41 
42 ;READ OUT THE RESULT FROM THE CHIP 
 43  mov.lam.lam LAM3 lam6 
 44  mov.lam.lam LAM4 lam7 
 45 
46 ;DISPLAY IT 
 47  host.display lam6 1 
 48  host.display lam7 2 
 49  
50 ;INCREASE CYCLE COUNTER 
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 51  sc.add.gam_f 50 gamf1 gamf1 
 52  sc.rel.gt 3500.0 gamf1  glm1 
 53 jumpc glm1 Loop 
 54 end 
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Curvature of a plane curve defined by a implicit equation  Γ: u(x,y)=0. See online 
[165,168]. 
We assume that (X(t),Y(t))

 
is a parameterization of Γ. As shown in Fig. 117. Moreover we 

assume near point P, and 0,0,0 ><< yuYX && 0<xu .  
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Figure 117. Plane curve defined by u(x,y)=0. 
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