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1 Introduction 

Computer-assisted observation of human or vehicular traffic movements, natural 

reserves or any kind of activities using multiple cameras is now a subject of great 

interest for many applications. Examples are semi-mobile traffic control using 

automatic calibration, or tracking of objects in a surveillance system. The use of 

single camera limits the number of possible applications - even simplest applications 

need multiple cameras. Typical scenarios of multiple camera surveillance could be 

found in banks, airports, parking lots, stations etc. Here the observation with a single 

camera is not possible because of occlusions and cameras’ limited field of view. Such 

systems/algorithms should work robustly and real-time. In computer vision the 

development of fast and/or robust algorithms is still a great challenge. Typical multi 

camera system performs the following steps: 

1. change or motion detection; 

2. object detection; 

3. classification of objects – position, class, features etc. 

4. tracking of objects; 

5. event detection. 

During my work I tried to answer some of the above problems. On the one hand, I 

have developed real-time algorithms for the analysis of face images and on the other 

hand, I have developed robust algorithms for the matching of images. 

Object detection and tracking is a well defined problem for single images and image 

sequences. The detected object must be found in the later frames, which is a 

correspondence problem between the current frame and next frames. Multiple camera 

tracking means finding the same object in different views. To exploit information 

exchange between different cameras a correspondence must be established between 

them. A possible solution is the matching of different views of the same scene.  
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Matching different images of a single scene may be difficult, because of occlusion, 

aspect changes and lighting changes that occur in different views. Still-image 

matching algorithms [23][26][53][54] search for still features in images such as: 

edges, corners, contours, color, shape etc. They are usable for image pairs with small 

differences; however they may fail at occlusion boundaries and within featureless 

regions and may fail if the chosen primitives or features cannot be reliably detected. 

The views of the scene from the various cameras may be very different, so we cannot 

base the decision solely on the color or shape of objects in the scene. In a multi-

camera observation system the video sequences recorded by cameras can be used for 

estimating matching correspondences between different views. Video sequences in 

fact also contain information about the scene dynamics besides the static frame data. 

Scene dynamics is an inherent property of the scene independently of the camera 

positions, the different zoom-lens settings and lighting conditions. References [39] 

and [25] present approaches in which motion-tracks of the observed objects are 

aligned. In practice, the existing algorithms can be used only in restricted situations. 

In case of scenes including several objects in random motion, successful registration 

of images from separate cameras conventionally requires some a priori object 

definition or some human interaction. But in most cases the extra information of a 

priori object models or human interaction is not available. During my work I focused 

on approaches that can establish a correspondence between different views without a 

priori defined object models and scene structures in fully automatic way. 

Fast algorithms must be developed to be able to integrate several algorithms, e.g. 

object detection, tracking, classification, into a single system. The most natural way 

of identification of human in images or videos is the analysis of their faces’ image. 

Humans’ face is a non-intrusive biometric feature, which means that the identification 

can be done without disturbing the observed human. 

In the literature of the computer vision many examples about how the face images can 

be analysed are described. Usually a face detection of face recognition algorithm 

[58][62] is built up from the following steps: i) detection of face like images (face 

candidates); ii) verification of face candidates; iii) identification. In the verification 

step about each face candidate the decision of being a face or not must be made. A 

possible solution when the face candidate is compared to an average face or to a face 

model [57]. Another possible solution is when facial features are extracted and their 
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geometrical relationship verifies the face candidate [56]. Such algorithms need a fast 

facial feature extractor method. During my work I have developed a real-time facial 

feature extraction algorithm, which was implemented on ACE4K Cellular Visual 

Microprocessor, a real-hardware for real time image processing. 

 15



 

2 Motion based matching of images 

Image to image matching algorithms are restricted to the information contained in 

single static images, e.g. the spatial variations within images, which capture the scene 

appearance. However, the dynamics of the scene contains much more information 

than a still image does. It is a property of the scene that is common to all videos 

recording the same scene, even when taken from different cameras. 

This chapter focuses on motion based image matching algorithms. We will show that 

matching can be done without assuming any preliminary information about objects’ 

appearance, scene’s structure and dynamics. 
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2.1 Introduction 

Image registration or matching is a basic task in many computer vision and digital 

photogrammetry applications. It is an important subtask of image based 3D 

reconstruction, camera-view registration and calibration in multicamera systems. The 

use of single camera for observation limits the number of possible applications, even 

simplest applications need multiple cameras. Typical scenarios of multiple camera 

surveillance could be found in banks, airports, parking lots etc. It is not possible for 

one camera to observe activity in the whole scene because of occlusions and cameras’ 

limited field of view. To exploit the information exchange among additional cameras, 

it is necessary to find a correspondence (a registration or matching) between different 

views. Consequently, transforming the activity captured by separate individual video 

cameras from the respective local image coordinates to a common spatial frame of 

reference is a prerequisite for global analysis of the activity in the scene. 

In the literature of computer vision, many examples about how the registration of 

different views has been achieved are described, together with the associated 

problems. Matching different images of a single scene may be difficult, because of 

occlusion, aspect changes and lighting changes that occur in different views. 

Basically, the existing methods can be divided into two groups: those that are still-

image based, and image sequence based ones. 

 

2.1.1 Still-image based methods 

Still-image matching algorithms can be classified into two categories. In “template 

matching” the algorithms attempt to correlate the gray levels of image patches, 

assuming that they are similar for a given object-element in the two images [22][54]. 

This approach appears to be usable for image pairs with small differences; however it 

may fail at occlusion boundaries and within featureless regions. In the other category, 

“feature matching”, the algorithms first extract salient primitives (edges, contours 

etc.) from images, and match them in two or more views [23][26][53]. An image can 

then be described by a graph with primitives as nodes and geometric relations 

defining the links between nodes. The registration is then performed by the mapping 
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of the two graphs (subgraph isomorphism). These methods are fast in execution 

because the subset of the image pixels that needs to be processed is small; but they 

may fail if the chosen primitives cannot be reliably detected. Wide-baseline camera 

positions also call for more distinguished analysis. The views of the scene from the 

various cameras may be very different, so we cannot base the decision solely on the 

color or shape of objects in the scene. 

 

2.1.2 Motion based methods 

In the other major group, the motion-based methods, the employed algorithms try to 

establish correspondences between different views by analyzing the dynamics of the 

scene as recorded by different cameras. Image sequences in fact contain information 

about the scene dynamics as well as the static data in each frame. The dynamics is an 

inherent property of the scene which is independent of camera positions, zoom-lens 

settings or lighting conditions. In [25] and [39] the tracks of moving objects are the 

basic features for matching the different views. In this case the capability of robust 

object tracking is assumed, which is the weak point of the method. In [6] a method is 

reported that finds matching points by calculating co-motion statistics. We employ the 

same idea of co-motion here; but the drawback of the exhaustive search method as 

implemented in [6] is the need for huge amounts of memory for storing co-motion 

statistics for each pixel. In [9] the approach of using co-motion statistics was extended 

by using gait analysis of human subjects in the scene; this technique makes 

registration possible even for non-overlapping views. In [37] a correspondence only 

between the tracked objects is achieved by analyzing entry/exit events as seen by the 

different cameras. However, the authors also assume that a robust tracker method is 

available. In [36] two non-overlapping views were registered by registering two static 

cameras to a moving camera the view of which had a view overlapping the views of 

the static cameras. The main drawback of this method is its exponential complexity. 

However, they also assume that a robust tracker method is available. In a recent work 

[42] registration of views is based on the extraction of "interesting" segments of 

planar trajectories. The success of image-registration is mainly reliant on the accuracy 

of the object tracker. The authors assume that only a limited number of objects are 

observed in both views, which is not an acceptable restriction in most of practical 
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situations. These methods also assume that the objects of interest are moving on the 

ground plane and that the cameras are far distant from the scene, so that the height of 

the moving objects is small enough for them to appear in the recorded videos as 

“moving blobs on the ground”, as seen in Figure 2-1 (right). 

 

2.1.3 The proposed approach 

In practice, the existing algorithms can be used only in restricted situations. The 

reported methods focus on the solution of the view-registration problem in respect of 

outdoor scenes for a given plane where points are assigned, and neglect the additional 

difficulties, which tend to arise for indoor scenes. In case of indoor cameras, see 

Figure 2-1 (left), the still-image based methods may fail due to the variability of 

conditions: occlusions, changing illumination etc. Due to the larger size of the moving 

objects, the cited motion-based methods will also fail; the observed motions are not 

necessarily on the ground-plane – while for outdoor scenes, such an assumption can 

safely be made. 

 

Figure 2-1. Examples of indoor (left) and outdoor (right) images. 

 
In case of scenes including several objects in random motion, successful registration 

of images from separate cameras conventionally requires some a priori object 

definition or some human interaction. The extra information of a priori object models 

or human interaction is not available in most cases. We therefore tend to prefer 

approaches that can establish a correspondence between different views in fully 

automatic way without a priori defined object models. 

Usually an algorithm for registration of different views contains the following steps:  
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(i) extraction of feature points; 

(ii) extraction of candidate corresponding points; 

(iii) estimation of the model(or transformation) that does the matching 

a. model based rejection of outliers; 

b. estimation of the model. 

Our method follows the above general algorithm. The feature extraction is divided 

into three steps; in each of these steps, a probability of being interesting point is 

estimated about every output point of the preceding step and a decision has been 

made about interesting points for later processing. The algorithm is looking for 

feature points where objects are moved through and significant changes are detected. 

Detection of candidate corresponding points is performed by estimation of 

concurrently moving feature points. A moving object in scene produces 

simultaneously (concurrently) changing pixels (the projections of the objects in the 

images) in both cameras. Similarity between concurrently changing pixels (the feature 

points) is measured by comparing their history of change detection. Then outliers are 

rejected by fitting a model to the detected candidate corresponding points. After that 

the matching transformation is estimated from the inlier corresponding points. 
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2.2 Assumptions, notations and definitions 

We assume that two time-synchronized video cameras (synchronized by any 

algorithm preferred by user, e.g. Berkeley algorithm [52]) are observing the same 

scene, and that their fields of view partially overlap. We assume standard static 

cameras having no lens distortions. However, possible lens distortions produced of 

cameras with wide-angle lenses can be corrected by using well-known methods 

described in Chapter 7.4 of [34].  

The widely used pinhole model, outlined below, is used to describe the imaging 

produced by the cameras. A 3D point TzyxM ),,(=  in a world-coordinate system and 

its projected image Tvum ),(=  are related by: 

⎟⎟
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⎟
⎟

⎠

⎞
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⎜
⎜
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z
y
x

Pv
u

s , 
(1)

where s  is an arbitrary scale-factor. P  is a 43×  matrix, called the perspective 

projection matrix (or the camera matrix). Denoting the homogeneous coordinates of 

an arbitrary vector Tyxx ),(=  by Tyxx )1,,(~ = , we get MPms ~~ = . 

The perspective projection matrices of camera 1 and camera 2 are  and ; the 

images of the cameras are  and . Point 

1P 2P

1I 2I m  in the ith image plane  is noted by iI

im , where the subscript i = 1,2 denotes the point in the image produced by the 

corresponding camera. 

Using the above notation we can formally define the overlapping field of view (OFV) 

of two cameras with camera matrices  and  as 1P 2P

}2,1;~~ ,~|{ =∈=∃= iiIimMiPimMOFV . The projections of OFV in  and  are: 1I 2I

{ | ;  }i i i iOFV m M OFV m PM= ∈ =  where 2,1=i . 

Points  and  are called corresponding points projected from the same real-

world point 

im1 km2

M  if imMP 11
~~

=  and kmMP 22
~~

= . 
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2.3 Mathematical background 

In this chapter we briefly describe the main mathematical definitions and methods 

that we used in our experiments. 

2.3.1 Models for matching 

Applying motion based methods for image matching implies different models for 

matching in case of different types of motions. When the observed motions are on the 

groundplane the matching can be modelled by a 2-D homography. In case of 3D 

motions image matching can be modelled by epipolar geometry. 

 

2.3.1.1 Homography 

The 2-D homography H  is a projective transformation that can be represented by a 

3*3 matrix and can be calculated from at least 4 corresponding points by 

implementing the Direct Linear Transform algorithm [34]. 

The first question is how many point correspondences are required to compute the 

projective transformation. On the one hand, the matrix H  contains 9 entries, but is 

defined only up to scale. On the other hand, each point-to-point correspondence 

accounts for two constraints, since for each pointing the first image the two degrees of 

freedom of the point in the second image must correspond to the mapped point. A 2D 

point has two degrees of freedom, each of which may be specified separately. 

Alternatively, the point is specified as a homogeneous 3-vector, which also has two 

degrees of freedom since scale is arbitrary. As a consequence, it is necessary to 

specify four point correspondences in order to constrain H  fully. 

The transformation is given by the equation ii Hmm 21 =′ .  Note that this is an equation 

involving homogeneous vectors, thus the vectors 1im′  and  are not equal, they 

have the same direction but may differ in magnitude by a non-zero scale factor. It can 

be shown by elementary manipulations that this equation is equivalent to the system 

of equations: 

iHm2
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where  is the scaling factor for i′ω 1im′ . Writing (2) in matrix form: 

0=hAi , (3)

where  is now a  matrix. The equations hold for any homogeneous coordinate 

representation of the point 

iA 92×

1im′ . Each point correspondence gives rise to two 

independent equations in the system. Given a set of four such point correspondences, 

we obtain a set of equations 0=Ah , where A  is built from the matrix rows  

contributed from each correspondence. 

iA

A  has rank 8 , and thus the system of 

equations has a non-zero solution, which can only be determined up to a non-zero 

scale factor. However, H  is in general only determined up to scale, so the solution  

gives the required homography. 

h

 

2.3.1.2 Epipolar geometry 

The epipolar geometry between two views is essentially the geometry of the 

intersection of the image planes with the pencil of planes having the baseline (the line 

joining the camera centres) as axis. The fundamental matrix is the algebraic 

representation of epipolar geometry. In the following we derive the fundamental 

matrix from the projective camera model as in [54].  

Considering the case of two cameras as shown in Figure 2-2. Let  and  be the 

optical centers of the first and second cameras, respectively. Given a point  in the 

first image, its corresponding point in the second image is constrained to lie on a line 

called the epipolar line of , denoted by . The line  is the intersection of the 

plane , defined by ,  and  (known as the epipolar plane), with the second 

image plane . This is because image point  may correspond to an arbitrary point 

on the semi-line (

1C 2C

im1

im1 iml 1 iml 1

Π im1 1C 2C

2I im1

MC1 M  may be at infinity) and that the projection of  on  is 

the line . All epipolar lines of the points in the first image pass through a common 

point , which is called the epipole.  is the intersection of the line  with the 

image plane . For each point  in the first image , its epipolar line  in  is 

MC1 2I

iml 1

2e 2e 21CC

2I im1 1I
iml 1 2I
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the intersection of the plane , defined by ,  and , with image plane . All 

epipolar planes 

kΠ im1 1C 2C 2I

kΠ  thus form a pencil of planes containing the line . They must 

intersect  at a common point, which is . The symmetry of epipolar geometry 

leads to the following observation. If  (a point in ) and  (a point in ) 

correspond to a single physical point 

21CC

2I 2e

im1 1I km2 2I

M  in space, then , ,  and  must lie 

in a single plane. This is the well-known co-planarity constraint or epipolar equation 

in solving motion and structure from motion problems when the intrinsic parameters 

of the cameras are known. 

im1 km2 1C 2C

 

e1 

e2 

C1 

C2 

M 

m1i 

m2k 

(R,t) 

lm2k 

lm1i 

Π 

I1 

I2 

 

Figure 2-2. The epipolar geometry 

 
Let the displacement from the first camera to the second be . Let  and  be 

the images of a 3-D point 

),( tR im1 km2

M  on the cameras. We assume that M  is expressed in the 

coordinate frame of the first camera. Under the pinhole model, we have the following 

equations: 

[ ]
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⎢
⎣
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=
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where  and  are the intrinsic matrices of the first and second cameras, 

respectively. Eliminating 

1A 2A

M ,  and  from the above equations, we obtain the 

following fundamental equation: 

1s 2s

0~~
1

1
122 =−− mTRAAm TT , (5)

where  is such that  for all 3-D vector T xtTx ∧= x  ( ∧  denotes the cross product). 

Equation (5) is a fundamental constraint underlying any two images if they are 

perspective projections of one and the same scene. Let , 1
12
−−= TRAAF T F  is known as 

the fundamental matrix of the two images. Without considering 3-D metric entities, 

we can think of the fundamental matrix as providing the two epipoles and the 3 

parameters of the homography between two epipolar pencils. This is the only 

geometric information available from two uncalibrated images [41]. This implies that 

the fundamental matrix has only seven degree of freedom. Equation (5) says no more 

than that correspondence in the right image of point  lies on the corresponding 

epipolar line. 

im1

Properties of Fundamental Matrix: 

• Geometrically, the fundamental matrix represents a mapping from the 2-

dimensional projective plane of the first image to the pencil of epipolar lines 

through the epipole. Thus, it represents a mapping from a 2-dimensional onto 

a 1-dimensional projective space, and hence must have rank 2. 

• F  has seven degrees of freedom: a 3*3 homogeneous matrix has eight 

independent ratios (there are nine elements, and the common scaling is not 

significant); however, F  also satisfies the constraint  which removes 

one degree of freedom. 

0det =F

• If F  is the fundamental matrix of the pair of cameras , then 1 2( P ,P ) TF  is the 

fundamental matrix of the pair in the opposite order . 1 2( P ,P )

 

2.3.1.3 The normalized 8-point algorithm for the computation of 

fundamental matrix 

The fundamental matrix is defined by the equation 

021 =FmmT  (6)
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for any pair of matching points in two images. Given at least 7 point matches this 

equation can be used to compute the unknown matrix F . Denote by  the 9-vector 

made up of the entries of 

f

F  in row-major order. Then from a set of  point matches 

we can write a set of  linear equations with unknown . 

n

n f

0f 
1

1

221212112121

212111211121111121112111

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

nnnnnnnnnnnn vuvvvuvuvuuu

vuvvvuvuvuuu
Af . (7)

This is a homogeneous set of equations and F  can only be determined up to scale. 

Solution exists if and only if matrix A  have rank 8. If the input data is not exact, 

because of noise in point coordinates, then the rank of A  may be greater than 8. In 

this case a least square method is used to find the necessary solution. The least square 

solution for  is the singular vector corresponding to the smallest singular value of f

A . The solution found in this way minimizes Af  subject to the condition 1=f . 

This algorithm is known as the 8 point algorithm. 

To ensure the singularity of the obtained fundamental matrix further calculations must 

be done. A convenient way of this is the use of SVD. Let  be the SVD of TUDVF = F , 

where  satisfying . Then the matrix  will be 

the closest singular matrix to 

),,( tsrdiagD = tsr ≥≥ TVsrUdiagF )0,,(=′

F  under a Frobenius norm [34]. 

Application of a simple translation and scaling of the input points in the image before 

formulating the linear equations leads to great improvement in the conditioning of the 

problem and in the robustness of the result [34]. The suggested normalization is a 

translation and scaling of each image so that the centroid of the reference points is at 

the origin of the coordinates and the distance of the points from the origin is equal to 

2 . The overall normalized 8 point algorithm for the computation of the fundamental 

matrix is as follows. 

1. Normalization: transform the image coordinates according to  and ii Txx =ˆ

ii xTx ′′=′ˆ , where T  and T ′  are transformations consisting of a translation and 

scaling. 

2. Find the fundamental matrix F ′ˆ  corresponding to the matches  by ii xx ′↔ ˆˆ

a. Linear solution: determine F̂  from the singular vector corresponding 

to the smallest singular value of Â , where Â  is composed from the 

matches ii xx ′↔ ˆˆ  as in (). 
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b. Constraint enforcement: replace F̂  by , where 

 and . 

TVsrdiagUF ˆ)0,ˆ,ˆ(ˆˆ =′

TVDUF ˆˆˆˆ = )ˆ,ˆ,ˆ(ˆ tsrdiagD =

Denormalization: Set TFTF T ′′= ˆ . 

 

2.3.2 Robust model estimation 

In many practical situations the assumption that we have a set of ideal 

correspondences only perturbed with measurement error is not valid. In practice many 

of correspondences are mismatched. These mismatched points are the outliers for the 

model to be estimated and they can severely disturb the estimated model. The goal is 

then to determine a set of inliers from the given set of correspondences so that the 

model can be estimated in an optimal manner from them. 

The estimation of models and rejection of outliers is performed by the RANSAC 

procedure. The RANSAC procedure is opposite to that of conventional smoothing 

techniques: rather than using as much of data as possible to obtain an initial solution 

and then attempting to eliminate the invalid data points, RANSAC uses as small 

initial data as feasible and enlarges this set with consistent data when possible [31]. 

The steps of RANSAC algorithm for fitting a model (which can be estimated from s 

points) to a data set  are: S

1. Randomly select a sample of s  data points from  and instantiate the model 

from this subset. 

S

2. Determine the set of data points  which are within a distance threshold  of 

the model. The set  is the consensus set of the sample and defines the inliers 

of . 

iS 1C

iS

S

3. If the size of (number of inliers) is greater than some threshold , re-

estimate the model using all the points in  and terminate. 

iS 2C

iS

4. If the size of  is less than , select a new subset and repeat the above. iS 2C

5. Calculate ε  and  as in (8). N

6. After  trials the largest consensus set  is selected, and the model is re-

estimated using all the points in the subset . 

N iS

iS
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N  is chosen sufficiently high to ensure with a probability (0.99 in our 

experiments) that at least one of the random samples of s  data points is free from 

outliers. 

))1(1log(/)1log( spN ε−−−= , (8)

where )/()(1 rofpointstotalnumbeliersnumberofin−=ε . 

For the homography estimation the symmetric transfer error is calculated to determine 

whether a point is inlier or outlier: 

221 ),(),( ii
i

iiSTE HxxDxHxDE ′+∑ ′= − , (9)

where  is the Euclidean distance of point ()(⋅D ix ix′ ) to its transformed pair 

( ) ;ixH ′−1
iHx H is the estimated homography;  and ix ix′  are coordinates of point 

correspondences in the input images of different views.  

In case of 3D scene, in the estimation of the fundamental matrix the following error 

function is calculated to determine whether a point is inlier or outlier: 
22 ),(),( i

T
i

i
iiDTEL xFxDxFxDE ′+∑ ′= , (10)

where  is the Euclidean distance of point ()(⋅D ix ix′ ) to its epipolar line ( );  

and  are coordinates of point correspondences in the input images. 

ixF ′ i
T xF ix

ix′

 

2.3.3 Introduction to Markov chains 

Let us consider a stochastic process ,...}2,1,0,{ =nX n that takes on a finite or countable 

number of possible values. The set of possible values of the process will be denoted 

by the set of nonnegative integers . If ,...}2,1,0{ iX n = , then the process is said to be in 

state  at time . Suppose that whenever the process is in state  there is a fixed 

probability  that it will next be in state . So, it is supposed that: 

i n i

ijP j

ijnnnn PiXiXiXiXjXP ====== −−+ },,...,,|{ 0011111  (11)

for all states  and for all . Such a stochastic process is known as a 

Markov chain [48]. Equation (11) means that, for a Markov chain, the conditional 

distribution of any future state  given the past states  and the present 

state  is independent of the past states and depends only on the present state. 

jiiii n ,,,...,, 110 − 0≥n

1+nX 11,0 ,..., −nXXX

nX
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The value  represents the probability that the process will, when in state , next 

make a transition into state . Since probabilities are nonnegative and since the 

process must make a transition into some state, we have that: 

ijP i

j

∑
∞

=

==
0

0,1,...i ,1
j

ijP . (12)

The Markov property allows to express the probability of any finite sequence 

 in terms of the initial distribution },...,{ 1,0 nXXX }{)( 00 iXPi ==µ  and . Indeed, the 

Markov property implies that 

ijP

)(...},,...,,{ 00001111 01211
iPPPiXiXiXiXP iiiiiinnnn nnnn

µ⋅⋅=====
−−−−− . (13)

From this we also get 
)(

0 1211
...}|{ n

ijiiiiiin PPPPjXiXP
jnnn

=⋅⋅=== ∑ −−−
. (14)

)(n
ijP  may be viewed as the thji −),(  entry of the matrix nP , where  is the 

transition matrix of the Markov chain. According to the (12) matrix 

)( ijPP =

P  is a stochastic 

matrix. Given the initial distribution of the Markov chain 0µ , the distribution of  is 

then given by: 

nX

0µµ n
n P= . (15)

A Markov chain is called an ergodic chain if it is possible to go from every state to 

every state (not necessarily in one move). A Markov chain is called a regular chain if 

some power of the transition matrix has only positive elements. In other words, for 

some , it is possible to go from any state to any state in exactly  steps. It is clear 

from this definition that every regular chain is ergodic. On the other hand, an ergodic 

chain is not necessarily regular. 

n n

Any transition matrix that has no zeros determines a regular chain. However it is 

possible for a regular chain to have a transition matrix that has zeros. Of special 

interest are the long-time properties of a Markov chain. An interesting question 

whether the probabilities  are converging to some value as or not. The 

following theorems state two important results for regular chains.  

)(n
ijP ∞→n

Theorem. Let P  be the transition matrix for a regular chain. Then, as , the 

powers 

∞→n

nP  approach a limiting matrix W  with all rows the same vector w . The vector 

 is a strictly positive probability vector. w
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This theorem states that the probability of being in  in the long run is 

approximately  and is independent of the starting state. 

jX

jw

Theorem. Let P  be the transition matrix for a regular chain, let , let  be 

the common row of W , and let c  be the column vector all of whose components are 

. Then 

n

n
PW

∞→
= lim w

1

• , and any row vector  such that wwP = v vvP =  is a constant multiple of . w

• , and any column vector  cPc = x  such that xPx =  is a multiple of . c

An immediate consequence of the theorem is that there is only one probability vector 

v  such that vvP = . Then the limiting probabilities can be calculated from the system 

of linear equations: 

.0

,1

,

≥

=

=

∑
j

j
j

w

w

wwP

 (16)
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2.4 Accumulated motion statistics for camera registration 

In this chapter we will show that accumulated motion statistics can be used for robust 

and precise camera registration without any a priori information about observed 

objects. 

2.4.1 Change detection 

In the implemented experimental system the videos of urban traffic were recorded 

with standard digital cameras, so the images are blurred and noisy. The size of 

moving objects has a great variety; there are small blobs (walking people) and huge 

blobs (trams or buses), too. Background extraction in outdoor videos is still a 

challenging task and cannot be done perfectly because of changes in illumination. A 

good comparison of different methods can be found in [33]. In our method we do not 

need precise motion detection and object extraction, these minor errors are irrelevant 

because of the later statistical processing. 

The motion blobs are extracted by using simple running-average background 

subtraction [33] by using the reference background image . A thresholding 

operation is performed to classify a pixel as foreground if (17) holds. 

);,( tyxBc

τ>− |);,();,(| tyxBtyxI cc , (17)

where  is the camera index; }2,1{=c Zt ∈  is the frame index and  is estimated 

by: 

);,( tyxBc

( ) ( ) ( ) ( ) 10    ,1;,11;,;, <<−−+−= βββ tyxBtyxItyxB ccc . (18)

In the experiments we use 8.0=β  and noise threshold 2.0=τ  according to [33]. In 

outdoor videos of urban traffic fast adaptation of the background model is quite 

important. The system should be able to follow changes in background caused by 

illumination or by traffic control. Large β  corresponds to fast adaptation of . 

After thresholding morphological closing has been performed to eliminate isolated 

pixels and to connect object parts [33]. This approach seems to be a usable solution to 

detect the significant motions in the scene.  

);,( tyxBc
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Figure 2-3. The detected objects are shown in image (a); the corresponding change map is shown 

in (b). 

 

The image with the detected objects is the change map (M), which value for a given 

pixel  is equal to 1 if change is detected at that pixel  and 0 else: ),( ji ),( ji

c ij c

c
ij c

M(I , t) {m (I ; t)},       1 i h,       1 j w,

1,  change  is detected at pixel (i, j) I ,  
m (I ; t)

0,  else.                                                    

= ≤ ≤ ≤ ≤

∈⎧
= ⎨

⎩

 (19)

where  and  are the height and width of the input image  respectively. Sample 

result of the detected changes and the corresponding change map can be seen in 

Figure 2-3. 

h w cI

 

2.4.2 Definition of co-motion statistics 

For finding point correspondences between two views in case of video sequences we 

have decided to analyze the dynamics of the scene. To do it co-motion statistics 

(accumulated statistics of concurrent motions) were used. In the case of a single video 

sequence a motion statistical map for a given pixel cIqp ∈),(  can be recorded as 

follows: when change is detected at pixel cIqp ∈),( , the coordinates are recorded for 

all pixels (in the same view – local, or in the other – remote) where change is also 

detected at that moment. In the motion statistical map the values of the pixels at the 

recorded coordinates are updated. Thus, it can be considered as the accumulation of 

the motion maps with respect to a given pixel. After all, this statistical map is 

normalized to have global maximum equal to 1. Formally, it can be expressed as: 
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cpqc

wj
hi

c tImtIM
tImtIM

qpIMSM  (20)

where  is the input image of the c-th camera;  is the change map of the cI ),( tIM c t -th 

frame of the c-th camera, ;  is the value of the  motion map at the given 

pixel  at time 

Zt ∈ ),( tIm cpq

cIqp ∈),( t  ( t -th frame); T  is the index of the last frame. Values in 

assigned to pixel ),,( qpIMSM c cIqp ∈),(  are the conditional probabilities that change 

was detected at pixels of  when motion was detected at pixel . Examples of 

such motion statistics, shown as images, can be seen in the left image of Figure 2-4. 

The higher the value at a given position of  the brighter is the 

corresponding pixel in the image. 

cI cIqp ∈),(

),,( qpIMSM c

In case of stereo video sequences two motion-statistic maps are assigned to each point 

in the images: a local and a remote. Local map means that the motion-statistical map 

is calculated for the image from which the pixel is selected; the remote motion-

statistical map refers to the correlated motions in the other image. After the change 

detected on the local side, for the points defined by the local motion map the local 

statistical map updated by the local motion map (21a). For each point where change is 

detected on the local side, the local motion map of the remote side updates the 

corresponding remote statistical map Eq. (21b). In this case the co-motion statistics 

express the conditional probability of concurrent changes in two different cameras. 

Examples of co-motion statistics are given in Figure 2-4 and Figure 2-5. 

 

 
Figure 2-4. Remote statistical maps for different cases are in the pictures. In the left one for a 

pixel, which is not in the cameras’ common field view; in the right one for a pixel from cameras’ 
common field of view. The higher the value at a given position of RMSM the brighter is the 

corresponding pixel in the image. 
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So, according to the above definition the local and remote motion statistical maps 

(LMSM and RMSM respectively) for a given pixel  are calculated by the 

formulas: 

1),( Iqpx ∈=

∑
∑

=

∑
∑

=
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≤≤

≤<
≤<

≤≤
≤≤
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hi
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pq

wj
hi

tImtIM
tImtIM
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qpILMSM
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));();((max

1),;(

,);();(
));();((max

1),;(

, 

(21a)

 

(21b)

where  are the input images of size }2,1{, ∈cIc width)(height ×× wh  pixels;  is the 

change map of image  at time 

);( tIM c

cI t  ( t -th frame);  is a scalar value of the  

motion map of image  at the given pixel  at time 

);( tIm kpq

kI ),( qp t  ( t -th frame); t  is the index 

of the current frame and T  is the index of the last frame. 

According to the above definition,  for a given pixel  is a 

distribution over the pixels of the second view. It expresses the probability of 

concurrent changes in the second camera with respect to changes detected at . 

The pixel from the other camera, see (22), will be the pixel which grey 

value changes most concurrently with the changes detected at . 

),,( qpIRMSM c ),( qp

),( qp

),( maxmax qp

),( qp

),;(maxarg),(
),(

maxmax qpIRMSMqp c
Iqp othercc ∈

=  (22)

 If  is from the common view of the cameras, then  should be the 

corresponding point of  in the other view. Thus, by extracting maxima of 

 we will get the set of point correspondences 

. An example of such a correspondence is illustrated in 

Figure 2-5. It also follows from the definition of  that  could 

be a pixel where changes are detected continuously. In this case, the extracted 

corresponding points are mostly outliers. An example of such a failure is shown in 

Figure 2-6. The next step of the algorithm is the rejection of outliers. For this, 

additional constraints are used. 

),( qp ),( maxmax qp

),( qp

),,( qpIRMSM c

)}),(;),{(( maxmax otherc IqpIqp ∈∈

),,( qpIRMSM c ),( maxmax qp
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Figure 2-5. Top images: example of co-motion statistics for inlier point-pairs. Below: a 
corresponding point-pair is shown in the images of the left and right cameras. 

 

2.4.3 Outlier rejection 

As candidate matches we choose global maximums on local and remote statistical 

images. For the rejection of outliers with respect to the models from the set of 

candidate point-pairs we have implemented the RANSAC algorithm [31]. The 

proportion of outliers in the set of point candidates is essential for the RANSAC 

algorithm [31] that we have used for the rejection of outliers and estimation of the 

geometric relation between the views. Larger rate of outliers means a longer running 

time of the RANSAC algorithm [34]. In order to reduce the number of outliers we 

have implemented an algorithm based on some neighborhood rules, which is then 

followed by the robust estimation of the geometric model. 

2.4.3.1 Neighborhood rules 

For the rejection of outliers from the set of point correspondences we applied the 

principle of “good neighbors” [54]. The principle of “good neighbors” says that if we 

have a true match, then we will have many other true matches in some neighborhood 
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of it.  Consider a candidate match  where  is a point in the first image and 

 is a point in the second image. Let  and  be the neighbors of  and 

. If   is a true match, we will expect to see many other matches , 

where if  then 

),( 21 mm 1m

2m )( 1mN )( 2mN 1m

2m ),( 21 mm ),( 21 nn

)( 11 mNn ∈ )( 22 mNn ∈ . So, candidate pairs for which less other 

candidate pairs could be found in their neighborhood were eliminated to avoid noisy 

correspondences, following the method in [54]. 

 

 
Figure 2-6. The global maximum is the circle, while it should be the cross. 

 

 
The reduced set of point-correspondences also has erroneous matches due to the 

errors caused by properties of co-motion statistics: 

From the global motion statistics (23) we know image regions where much more 

moving objects are detected than in other places. These image regions correspond to 

regions where the observed objects are moving continuously. If we have a point 

 where the correspondent scene location is not in the field of the view of the 

other camera, then the maximum of  will usually be in a wrong place, in 

a point where the value of the motion statistics in the global motion statistical map is 

high, see Figure 2-6.  

cIqp ∈),(

),,( qpIRMSM c

Because of the size of the moving objects and the averaging in the accumulation of 

motion maps the global maxima of  could be shifted and it will be 

somewhere in the neighborhood of the desired corresponding point. These “shifting”-

s result in cases where different points from local statistical images are “mapped” 

),,( qpIRMSM c
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onto the same point in remote statistical images. Thus, the correspondences are not 

unique in such cases. 

To solve the first problem we need to eliminate points from the set of candidate 

matches if the global maximum on remote statistical images is a pixel where the value 

of the global motion statistics (23) is greater than a threshold value 1τ . Global motion 

statistics ( GMSM ), defined in (23), express the probability of motion detection in a 

single view. Because of normalization in (23) the values of GMSM  are from interval 

. A higher value of  at a pixel means that observed objects are moving 

continuously through that pixel, which is a typical situation when observing urban 

traffic. We have selected threshold 

[0;  1] GMSM

1τ  to be equal 0.8 to eliminate pixels 

corresponding to nearly continuous motions.  

,),;(
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hi

c qpIM
qpIM

IGMSM  (23)

where stands for global motion statistics of image . To get over 

on the second problem we also need to eliminate points from the set of candidate 

matches if the global maximum on remote statistical image is a pixel with multiple 

assignments. This preliminary outlier rejection step is followed by a robust geometric 

model based outlier rejection that based on projection geometry. 

 cGMSM( I ), c {1,2 }∈ cI

 

2.4.3.2 Model estimation 

Geometric models are used for the final alignment of the extracted point 

correspondences. For planar scenes (motions) the homography H  is a projective 

transformation that can be represented by a 3*3 matrix and can be calculated from at 

least 4 point-pairs by implementing the Direct Linear Transform algorithm [34]. In 

case of 3D motions the fundamental matrix F  relates the input images, which can be 

represented by a 3*3 matrix and can be calculated from at least 8 point-pairs by using 

the Normalized 8-point Algorithm [34]. The rejection of outliers with respect to the 

geometric models and robust estimation of the homography and fundamental matrix 

was performed by the RANSAC algorithm [31]. 
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2.4.4 Fine tuning of point correspondences 

The above described outlier rejection algorithm results in point correspondences, but 

these results must be fine-tuned for the precise estimation of point correspondences.  

The point coordinates can contain errors; they can be shifted by some pixels, due to 

the nature of co-motion statistics recording. Even if we have 1 pixel error in point 

coordinates the precise alignment of the views cannot be done. The implemented 

outlier rejection algorithm must be followed by a robust optimization to fine tune 

point correspondences and obtain subpixel accuracy. 

 An iterative technique is used to refine both the point placements and the geometric 

model. The method used is the Levenberg-Marquardt iteration [44]. The entries of the 

fundamental matrix or the homograhy as well as the coordinates of points in right 

camera’s image are treated as variable parameters in the optimization, but the point 

coordinates of the left camera’s image are kept constant. The initial condition for this 

iteration is the entries of the fundamental matrix or homography and point’s 

coordinates estimated by using the above-described algorithm.  

For the homography estimation the symmetric transfer error is minimized which is 

defined by: 

221 ),(),( ii
i

iiSTE HxxDxHxDE ′+∑ ′= −
, (24)

where  is the Euclidean distance of point ()(⋅D ix ix′ ) to its transformed pair 

( ) ;ixH ′−1
iHx H is the estimated homography;  and ix ix′  are coordinates of point 

correspondences in the input images of different views.  

In case of 3D scene in the optimization of point correspondences the fundamental 

matrix is parameterized in the form (25) to ensure that the estimated fundamental 

matrix will have rank 2 [34]. 
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dxcycd
bxayab

F , (25)

where  and  are the affine coordinates of the two epipoles;  are 

the parameters. The following error function is minimized in the optimization: 

),( ee yx ),( ee yx ′′ a, b, c, d

22 ),(),( i
T

i
i

iiDTEL xFxDxFxDE ′+∑ ′= , (26)
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where  is the Euclidean distance of point ()(⋅D ix ix′ ) to its epipolar line ( );  

and  are coordinates of point correspondences in the input images. 

ixF ′ i
T xF ix

ix′

2.4.5 Time synchronization 

Until now, we have assumed that the cameras’ clocks are synchronized. For time 

synchronization many algorithms have been developed, e.g. the Berkeley algorithm 

[52]. In our case, if the cameras are not synchronized then the generated co-motion 

statistics should no longer refer to concurrent motions detected in two stereo 

sequences. So, when we apply our algorithm for outlier rejection, we do not get a 

“large” set of point correspondences, but more point correspondences can be 

extracted in the case of synchronized sequences.  

 
Figure 2-7. Cardinality of the set of point correspondences for different time offset values. The 
maximum is at 100 frames, which means that the offset between two sequences is 100 frames. 

 
Since this observation is obvious and true in practice, we calculate point 

correspondences for different time offset values and then perform a one-dimensional 

search for the largest set of point correspondences to synchronize the sequences, see 

Figure 2-7. 
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Figure 2-8. The change of the error rate for different offset values is in the diagram. The 

minimum is at 100 frames as the maximum for the cardinalities of sets of point correspondences. 

 
It can be seen in Figure 2-7 that even in the case of unsynchronized sequences the 

algorithm produces point correspondences. But if we analyze the sum-of-square 

differences score (the reprojection error in this case), see Figure 2-8, we found that 

the global minimum is at offset value 100 frames, as the maximum in Figure 2-7 for 

the cardinalities of sets of point correspondences. This means that the global optimum 

is at offset value 100 frames, in all other cases the obtained point correspondences 

mean that the algorithm finds a local optimum. 

 

2.4.6 Experimental results 

The above-described approach was tested on videos captured by two cameras, having 

partially overlapping views, at Gellert (GELLERT videos) and Ferenciek squares 

(FERENCIEK videos) in Budapest. The GELLERT videos are captured at resolution 

160×120, at same zoom level and with same cameras while the FERENCIEK videos 

are captured at resolution 320×240, at different zoom levels and with different 

cameras. The proposed outlier rejection algorithm rejects most (98%) of the candidate 

point pairs. For the GELLERT videos it results in 49 point-correspondences and in 23 
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for FERENCIEK videos. The computation time of the whole statistical procedure was 

about 10 minutes for 10 minutes of video presented in the figures.  

 

 

 

Figure 2-9. The constructed composite views are in the pictures. The upper one is generated for 
the GELLERT videos; the lower one is for the FERENCIEK videos. 
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2.5 Bayesian model for the extraction of concurrently 

changing points 

This chapter will describe a feature extraction method for the extraction of 

concurrently changing pixels based on the analysis of their change histories. The aim 

of the feature extraction step is to reduce the region of interest before the extraction of 

matching points and model estimation. We have implemented a three-step procedure 

in which at each step the number of interesting points is reduced. The output is two 

sets of feature points, one from each image, which represents pixels where real 

objects moved through and with high probability have a corresponding point in the 

other image. 

 

2.5.1 Change detection 

For the purposes of our algorithm, we do not need precise (e.g. motion field 

estimation) change-detection and object-extraction. This is an advantage, since 

achieving such results is very time consuming. Any misclassifications are excluded in 

the course of the later statistical processing. In our experiments we have used the 

simplest change detection method: change between two consecutive frames was 

calculated as the absolute value of their difference image. This also covers the feature 

maps of most of the sophisticated other methods [45][50], but these higher level 

methods are usually based on some a priori information (motion/change speed, 

structure or shapes) and we wanted to avoid that.  The output of change detection is a 

set of absolute values of differences denoted by , where i  denotes the image (1,2), 

and  denotes the index of a single pixel within the image. For each pixel in  and 

 the change history, as a series of scalar values, is stored in a vector 

ijc

j 1I

2I Tttc ij ,...,2,1),( = , 

where T is the length of the recorded image sequence. This vector will be used in 

further calculations to narrow-down the region of interest to be used in subsequent 

processing. 
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2.5.2 Entropy based preselection of feature points 

Then, we use an entropy-based preselection of features to find possible corresponding 

pixel change histories, since the value of change detection itself ( )(tc ij ) is not a 

measure of importance. The algorithm filters out pixels of noise flickerings1 and 

continuous motion, since their change histories cannot relate the input images. The 

aim is to detect pixels where “sometimes” (suddenly, not continuously) significant 

changes were observed. These changes will serve as markers in change history, which 

relate the potential corresponding points. We define pixels of significant changes with 

an entropy-based analysis of change histories. We calculate the complexity of motion 

history time-series )(tc ij  ( ) by means of the entropy (27).  = = ii 1,2; j 1,2,...,| I |

1

1 ( ) log ( )
log

L

q q
q

entropy p x p x
L =

= − ∑ , 

 
(27) 

where ( )qp x  is the probability that ( )ij 1 c  < q qx t x +≤ for the qth bin of the 

histogram in which the bin-widths were set according to Scott’s rule2 [49], and  is 

the number of bins. 

L

Noise flickering causes a uniform or wide-Gaussian histogram, resulting in a 

relatively high entropy value. In case of continuous motion, the value of continuous 

change is added to the same noise, resulting in a similar distribution and entropy 

value. In our case, changes of definite time-stamps are preferable, meaning that some 

sudden changes of significantly high value broaden the argument of the histogram. In 

this case the range of noise is shrunk into lower values, while we get additional peaks 

at the higher values: entropy decreases due to the less uniform distribution.   

Experiments with different real-life indoor and outdoor videos demonstrate that the 

distribution of entropy of change history statistics can be approximated by a Gaussian 

distribution, as is shown plotted in Figure 2-10 for real life video samples. To 

evaluate the distribution of entropies, ground truth masks have been manually 

generated classifying into pure noisy pixels and motion-affected pixels.   

                                                 
1 Under noise flickerings we mean the usual camera noise and similar effects that is always present in videos captured by 

digital cameras. 

2 Scott rule for interval width is 3
3.5h

T
σ= , where σ is the standard deviation of )(tc ij . 
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Figure 2-10. The distribution of entropy (24) for noise flickerings (marked with boxes) and 
deterministic motions (marked with circles) in real life videos. The black line shows a selected 

threshold at which the proportion of potential outliers is 15%. N(.) means Gaussian distribution. 

 

Table 2-1. Parameters of entropy distribution for different test videos. Last column shows the 
proportion of noise flickerings among pixels of detected changes if the threshold value is 0.2. 

  
Real motions 

 
Noise flickerings 

Proportion 
of noise 

flickerings  
 exp. 

value 
variance exp. value variance  

Video 1 0.23 0.14 0.43 0.14 12% 
Video 2 0.26 0.11 0.41 0.16 13% 
Video 3 0.31 0.05 0.47 0.1 19% 
Video 4 0.28 0.16 0.49 0.11 15% 

 

A reasonably low proportion of potential outliers in the set of point candidates is 

essential for the RANSAC algorithm [31] that we used for the rejection of outliers 

and for model estimation. Based on the above considerations and Figure 2-10, 

choosing the set of potential correlating points is accomplished by collecting them 

starting from the ones with minimum entropy towards the greater values. If we have 
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enough points (and later the RANSAC can result in a small error) then we can stop 

the selection. If not, we can go up to a reasonable limit of entropy, namely 0.2, where 

the proportion of noise flickerings (the potential outliers) in the set of candidate 

feature points is still in the order of 15% in our testing examples.  

As it was mentioned before, the aim of the algorithm is to select those pixels where 

"sometimes" (suddenly, not continuously) significant changes were observed. 

Continuous motion causes additional fluctuation in the detected change values of a 

given pixel and its entropy does not differ significantly from a common background 

pixel, due to the more uniform distribution of change values than in the case of 

sudden changes. Thus entropy at pixels of background or continuous motion is higher 

than that of the change histories of sudden changes. By selecting a threshold equal to 

0.2 we can eliminate pixels of continuous motions and noise flickerings too. 

Instead of using the offline evaluation of entropy in (27), which would need a lot of 

memory and computations for histogram estimation of the input )(tc ij , a different, 

quicker calculus can also be applied (28). Here the probability function on which the 

entropy is calculated is not the frequency function of change values, but the change 

value itself, as a measure of probable motion at a given time proportional to the value 

of change, see (28). 

( ) ( )*
ij ij

1

1 ˆ ˆ c log c
log

T

t
entropy t t

T =

= − ∑  
(28)

where 
∑

=

t
ij

ij
ij tc

c
c

)(
ˆ . 
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Figure 2-11. The distribution of entropy* (25) of noisy flickering (marked with boxes) and 
deterministic motions (marked with circles) for real life videos. The black line stands for the 

selected threshold. N(.) means Gaussian distribution. 

 

Noise flickering causes randomness in the motion history, resulting in a relatively 

high entropy* value. In case of characteristic sudden changes at given times, it 

expropriates an important portion of the function’s area, decreasing the entropy* due 

to the less uniform distribution. Figure 2-11 shows the distribution of entropy* of 

noise (flickerings) and deterministic motions, and Table 2-2 shows the parameters of 

the entropy* distribution for the different test videos.  

Table 2-2. Parameters of the Gaussian distribution of entropy* for different test videos. Last 
column shows the proportion of noise flickerings if the threshold value is 0.32. 

  
Real motions 

 
Noise flickerings 

Proportion 
of  noise 

flickerings 
 exp. value variance exp. value variance  

Video 1 0.37 0.05 0.45 0.043 16.6% 
Video 2 0.33 0.06 0.43 0.05 12.7% 
Video 3 0.30 0.04 0.41 0.06 17.6% 
Video 4 0.35 0.054 0.39 0.051 9.0% 

 

 46



In a similar manner to the entropy calculated the first way (27), we show a threshold 

value for entropy* where the proportion of noise signals is around 15% (in this case 

the threshold value is 0.32). The main advantage of formula (28) against formula (28) 

is that it can be calculated very rapidly, in fact on-line, from one frame to the next. 

The output of the entropy-based preselection of feature-points is a set of pixels with 

their change-history vectors for each input image. 

 

2.5.3 Bayesian model for the extraction of the Overlapping Field of 
View 

As the result of previous entropy based filtering, a set of image pixels with 

corresponding change histories are filtered in this step to get the probable points – the 

potential corresponding points – in the OFV area. 

Consider two cameras with an overlapping field of view. Let  denote the 

probability that image pixel . Let  denote the probability of 

 given the pixel . If  then a  must exist, such that  and 

 are corresponding points, so that at the same time changes were or were not 

detected. The conditional probability  expresses the frequency of change 

detection at  when change is detected at and can be calculated by the related 

formula (29). 

)( ijmP

iij OFVm ∈ )|( 21 ki mmP

1im OFV∈ 1 1km2 1im OFV∈ km2 im1

km2

)|( 21 ki mmP

im1 2km

∑
∑ =

=

=
T

t
kiT

t
k

ki tbtb
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mmP
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21

1
2

21 )()(

)(

1)|( , (29)

where T  is the length of the input video-image sequence; 300 frames in our 

experiments. Conditional probabilities  are normalized such that 

, and 

)|( 21 ki mmP

1 2( | ) 1i k
k

P m m =∑ ( )ijb t  
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(29a)

are the binarized change-history vectors and K  is as follows.  

The role of K  is to distinguish between significant changes and noise flickerings in 

change histories )(tc ij . The definition of significant changes could be different for the 

different views and positions in 3 dimensions, considering that projections of motion, 

lighting and occlusion may affect the results. For thresholding the changes we can 

find several semi-automatic or ad-hoc methods [45], but the adaptive thresholding in 

[47] may fit our case the best. It considers the thresholding of the change history as 

two classes of events (noise flickerings and significant changes) with each class 

characterised by a pdf. The method then maximizes the sum of the entropy (27) of the 

two pdfs to converge to a single threshold value. In our video samples above, this 

optimization method resulted in threshold values of about 3-20% of the range values 

in Tttc ij ,...,2,1),( = . We have selected the above threshold K  equal to 8% as an 

average value of the estimated thresholds. 

If  and are high then  and  may be corresponding points. 

This correspondence is not exact and unique because of the size of moving objects. A 

single pixel will correlate with a set of pixels from the other image. The correlation 

values of such set of concurrently changing pixels follow Gaussian distribution 

around true corresponding points, usually (but not necessarily) having maximal 

correlation for true corresponding points [35].  

)|( 21 ki mmP 2 1( |k iP m m ) im1 km2

Applying Bayes’ theorem we get: 

∑
=
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Considering all the  and their dependence on all  we can write: im1 km2

)()|()()( 221211 k
k

ki
k

kii mPmmPmmPmP ∑∑ == , (31)
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Writing the same for  we have: )( 2kmP

)()|()()( 112212 i
i

ik
i

kik mPmmPmmPmP ∑∑ == , (32)

(31) and (32) is a system of linear equations with unknowns  and  and 

with coefficients calculated according to (29). Writing this system in matrix form 

)( 1imP )( 2kmP

( ) ( )Π=  
2121

 pppp , (33)

where 
1

p  and 
2

p  are row vectors constructed from probabilities  and , 

respectively; 

)( 1imP )( 2kmP
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21

P
P  is constructed from matrices  

and . Let us consider the following matrix (34) 

constructed from 

12 1 2( , ) ( | )i kP k i P m m= 21 2 1( , ) ( | )k iP i k P m m=

Π : 

)(
2
1ˆ Π+=Π I , (34)

Then  Π̂  can be considered as a transition matrix of an ergodic regular Markov chain 

with states [32]. Then, according to the Frobenius-Perron theorem [32] 

such a Markov chain has a unique stationary distribution 

}}{},{{ 21 ki mm

π , which can be calculated 

by the equation: 

ππ Π= ˆ  (35)

It is easy to check that the solutions of (35) and (33) are the same. Thus the derived 

system of linear equations (33) for the calculation of  and  has a unique 

solution. 

)( 1imP )( 2kmP

In the following, we derive fixed point iteration for (33). Substituting (30) into (31) 

gives: 

∑ ∑
=

k
j

jjk

kiik
i

mPmmP
mPmPmmP

mP
)()|(

)()()|(
)(

112

2112
1 , (36)

which formula results in the following iteration scheme: 

 49



∑ ∑
=+

k
j

rjjk

rkik
riri

mPmmP
mPmmP

mPmP
)()|(

)()|(
)()(

112

212
111  (37)

Due to the symmetry of the above considerations with respect to the , iteration 

(37) can be extended with the estimation of : 
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In the iteration (37) and (38) initial values of  and  are set to  and 

, where  and  are the numbers of preselected feature points in images  

and  after the entropy-based processing. We need to select those features which are 

in  and , for which  and  are increasing. The sum of 

probabilities  and  remains 1.0 during the iterations. This means that if 

the probabilities of some pixels are increasing then the probability of some other 

pixels must decrease. Due to noisy change detection, finally, only one point pair will 

“survive” the Bayesian iterations (37) and (38). In our case this Bayesian iteration 

converges to a nearly corresponding point-pair as a unique solution of (33), but this 

correspondence is by no means exact. The obtained (potential) point correspondences 

are correspondences only in a statistical sense (according to the defined conditional 

probabilities in (29)), but they are not correspondences according to a model that 

relates the two images geometrically, as the model information is not included in (29). 

Running the procedure again, excluding the previous pairs, we can get more 

correspondences. Examples of such extracted correspondences are illustrated in 

Figure 2-12.   

)( 1imP )( 2kmP 1/1 N

2/1 N 1N 2N 1I

2I

1OFV 2OFV )( 1imP )( 2kmP

)( 1imP )( 2kmP
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Figure 2-12. Sample point pairs obtained by Bayesian iteration (15) and (16). The nearly 
corresponding points are numbered with the same number. 

 

However, this Bayesian process is very time consuming and the set of resulting point-

pairs might need a further selection through optimization. Instead of a fully 

converging Bayesian iteration series, we can run the series of double iterations only 

once up to a limited number of iterations. A similar iteration-cutoff is also applied for 

blind deconvolution [38]. After four of the double iteration steps the algorithm is 

stopped and those feature-points are selected for which  and  are greater 

than  and  respectively. 

)( 1imP )( 2kmP

1/1 N 2/1 N

Table 2-3. Reduction of ROI after feature extraction steps 

Size of ROI in pixels 
Feature extraction 

step 
1I  2I  

Input 19200 19200 
Entropy based 
preselection 

2311 3253 

Bayesian iteration 636 671 

 

This set of points in the image of each view well defines the projected common 

viewing area. In Table 2-3 it can be seen that the regions of interesting points (ROI) 

are significantly reduced and the obtained two set of points are in the projections 

(images) of the cameras’ OFV, as shown in Figure 2-13. This truncated double-

iteration method does not supply us with selected point-pairs, but it does give a good 

estimate of the OFV. 
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OFV1 OFV2 

 

Figure 2-13. Images show the resulting point sets of the feature extraction. First two images are 
samples from input videos. Below them there are the results of the entropy* (6) based preselection 

of feature points. Last two images show the result of Bayesian estimation of OFV. Red lines are 
the borderlines of real OFVs. 

 

The advantage of this Bayesian iteration can be shown when it is compared to the 

pure statistical information of the conditional probabilities. Here the correlated areas 

are estimated from the conditional probabilities (29) as a correlation measure of 

change histories of two points and the resulted probabilities.  ( )ijP m

We compare the relative impact of the conditional probabilities 1 1

1 2

1 2
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relative impact qualifies the distribution of extracted feature points: the higher the 

value of the impact the more of the feature points are from the true OFV. The change 

of the impact of feature points from common area can be seen in Table 2-4. 

Table 2-4. The change of the relative impact (in %) of feature points within the estimated OFV 
areas relative to the whole image before and after Bayesian iteration. 

Impact of feature points 
from OFV (%) 

 

Before After 
video1 51 81 
video2 59 78 
video3 37 70 
video4 32 75 

 

Table 2-5. The proportion of estimated OFV points to the real OFV points after correlation 
based selection and Bayesian iteration. 

 Correlation Bayesian 
video1 71% 98% 
video2 68% 99% 
video3 73% 93% 
video4 72% 90% 

 

We have also compared the number of true OFV points after Bayesian estimation of 

common areas and after selecting the first  most significant feature points 

according to their “correlation” (29) value, where  is the number of extracted 

feature points by the Bayesian iteration. Denoting the number of real OFV points 

among them by N  the precision of the estimation can be estimated as 

fN

fN

OFV 100*
f

O

N
N n 

the correlation based method the N most significant feature points were selected 

according to eq. 7. Table 2-5 shows the change of this ratio after correlation based 

selection and Bayesian iteration. Table 2-4 and Table 2-5 clearly show that after the 

iterations we can take a useful estimation about the OFV.  

FV . I

 f

The above Bayesian approach gives a good estimation for the OFVs without any 

further processing. However, to fit the different views exact point-pairs are needed. 
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2.5.4 Extraction of candidate corresponding points 

Having detected the feature-points in both views, for the extraction of candidate 

corresponding points the feature-points of the different views must be compared. For 

the comparison of feature-points (the corresponding motion-history vectors in our 

case), we have used Kulback-Leibler divergence (KLD) (39).  For recognition, KL 

distance proved to be a usable measure in similar recognition cases [51]. When KLD 

(39) is minimized over b  (40) the result of the estimation is equivalent to that of the 

maximum-likelihood method [27]. 

)log(),(
i

i

i
i b

a
abaKLD ∑= , 

 

(39)

where a and b are the compared distributions. Thus, a feature point  is a matching 

point for  if (40) holds: 

km2

im1

1 2
ˆ ˆarg min ( , )= i j

j
k KLD c c

,
 (40)

It is obvious that if all of our candidate corresponding points are from the close 

neighborhood of the input images, and thus are close to each other, then small errors 

in the coordinates of the points (which arise from the change detection, which is of 

course not perfect) will result in large errors in the final alignment of the whole 

images. To mitigate this problem, we force points to be better distributed in the region 

by introducing some structural constraints: images are divided into blocks of n×n 

pixels (n depends on the resolution) and for each block the algorithm searches for 

only one candidate point-pair with the minimum divergence. In our case  takes a 

value between 4 and 9: for greater windows feature extraction could result in 

undersampling for model fitting. 

n

 

2.5.5 Estimation of models and rejection of outliers 

For planar scenes the homography H  is a projective transformation while in case of 

3D motions the fundamental matrix F  relates the input images. The rejection of 

outliers with respect to the models and robust estimation of the homography and 

fundamental matrix was performed by the RANSAC algorithm [31].  
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2.5.6 Shadow based registration of indoor images 

As it was mentioned before in introduction (Chapter 2.1) the existing algorithms can 

be used only in restricted situations. Usually, existing methods focus on the solution 

of the view-registration problem in respect of outdoor scenes for a given plane where 

points are assigned, and neglect the additional difficulties, which tend to arise for 

indoor scenes. These methods assume that the objects of interest are moving on the 

ground plane and that the cameras are far distant from the scene, so that the height of 

the moving objects is small enough for them to appear in the recorded videos as 

“moving blobs on the ground”, as seen in Figure 2-14 (right). In case of indoor 

cameras, see Figure 2-14 , due to the larger size of the moving objects, the existing 

motion-based methods will also fail as the observed motions are not necessarily on 

the ground-plane. 

 

Figure 2-14. Examples of indoor (left image) and outdoor (right image) scenes 

 

Thus, in indoor situations detecting objects’ motion is not useful for ground plane 

registration. We are only interested in changes on the ground. Shadows are usually on 

the ground plane, thus they are excellent features for our algorithm to analyse. Here 

the input is the output of a shadow detector instead of a change detector.  

As shadow detector we used a modified ‘Sakbot’ method [28][24]. It works in the 

HSV color space, which corresponds closely to the human perception of color. The 

method exploits that the occlusion of cast shadow darkens the background pixel and 

does not change significantly its colour. As it can be observed in Figure 2-15 c) and 

d), the shadow pixels were found well on the images. However there were false 
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positive shadow occurrences especially around the body, so the shadow mask used in 

section 4.3 was filtered by an erosion step, see Figure 2-15 e). 

 

Figure 2-15. a) Background image and b) Silhouette image c) Result of shadow detection (blue 
color marks shadow points) d) Object silhouette after removing the  shadows e) Filtered shadow 

mask used for camera registration 

 

Further steps of the shadow based registration method are the same as the steps of the 

motion based method of registration. The block diagram of the method is shown in 

Figure 2-16. 

   Feature extraction   

Shadow  
Detection   

Entropy  
Based  

Selection   

Extraction of 
Areas of Conc. 

Changing Pixels 

Extraction of corresponding feature points   

Matching   

Rejection of Outliers   Model Estimation   

 

Figure 2-16. Shadow based registration of images 
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2.5.7 Experimental results 

Initially, the aim of the proposed method was to register two overlapping views based 

on the evaluation of observed motions. So, the algorithm is unable to register image 

regions where no motion was observed. Usually the observed objects (people, car 

etc.) are moving on the ground plane, when homography was used to register the two 

views (see section V/A and V/B). Also, if the observed motions are in 3D, the 

proposed algorithm still performs well by estimating the fundamental matrix for the 

registration of the two views. 

In our experiments we have used the following algorithm: 

1. Detection of changes; 

2. On-line entropy based preselection of features; 

3. Bayesian estimation of OFV; 

4. Finding point correspondences according to (40); 

5. Robust model fitting and rejection of outliers by using the RANSAC 

algorithm. 

For testing of our method’s performance we have captured several videos with 

different cameras and at different conditions. The videos were captured at public 

places and at the university campus of Peter Pazmany Catholic University. 

2.5.7.1 Experiments with outdoor videos 

The above-described algorithms were tested and compared on videos captured by two 

cameras, having partially overlapping views, at Gellert square (GELLERT videos) in 

Budapest. The GELLERT videos are captured at resolution 160×120, at same zoom 

level and with identical cameras. 
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Figure 2-17. Final alignment of two views with transformation T2 for the GELLERT videos. 

 

The result of final alignment is shown in Figure 2-17. Figure 2-18 shows the results of 

final alignment for the FERENCIEK videos. FERENCIEK videos are captured at 

Ferenciek square in Budapest at resolution 320×240, at different zoom levels and with 

different cameras. 
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Figure 2-18. Final alignment of two views for the FERENCIEK videos. 

 
We have also tested our algorithms on videos from PETS2001 dataset. The results of 

alignment can be seen in Figure 2-19. 

       

 

Figure 2-19. Final alignment of views from PETS2001 dataset. 
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2.5.7.2 Experiments with indoor videos 

For the testing the proposed shadow based registration method we used indoor videos 

captured at the university campus of Peter Pazmany Catholic University. Figure 2-20 

shows the results of alignment. 

 

  

 

Figure 2-20. Alignment of views based on the detection of concurrently moving shadows. 

 
Finally, in order to demonstrate that unpredictable random 3D motion can be used for 

extraction of point correspondences, we set up the following experiment. Small trees 

were blown with an artificial wind emanating from a ventilator fan which performed a 

periodical scanning movement (back and forth), and the generated motion of the 

leaves was recorded with two cameras at resolution of 320×240, at the same zoom 

setting (video 4: LAB video). The estimated epipolar geometry can be seen in Figure 

2-21. 
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Figure 2-21. Sample epipolar lines obtained for the LAB videos. 

 

2.5.8 Evaluation of results 

Table 2-6 summarizes the numerical results of model fitting for different video pairs. 

The error of alignment was calculated according to formulas (9) and (10) on manually 

selected control points. The minimum error owes to regions where corresponding 

points were detected. It can be clearly seen that the minimum error is in the subpixel 

range for both models. Then, model selection in a practical application can be 

performed as follows. First, the algorithm tries to relate the two input images with a 

homography. If the minimum error is significantly larger than one pixel that means 

that the observed motions are in 3D and the model that relates the two images should 

be the fundamental matrix. Fitting a homography to the images of LAB videos, the 

minimum error of alignment was 12.3 pixel, so the algorithm switched to calculate a 

fundamental matrix which was fitted with minimum error 0.16 and average error 6.15 

pixels.  

Table 2-6. Numerical results of model fitting for different experiments 

Experiment Average 
Error 

Min 
Error 

Model 

Gellert 5.40 0.16 H 
Ferenciek 6.54 0.44 H 
PETS2001 4.18 0.88 H 

Indoor 9.00 0.63 H 
LAB 6.15 0.16 F 
LAB 21.22 12.30 H 

 

The obtained results of Table 2-6 look promising, especially if we take into account 

that the proposed algorithm does not use any a priori information (shape, motion etc.) 
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about observed objects. It can hardly be compared to other motion based methods 

described in [25][36][37][39][42] as they are aligning tracks but not views. 

Qualitative results shown in Figure 2-17- Figure 2-19 and quantitative results of Table 

2-6 prove the feasibility of our approach with respect to other methods. But, our 

method also can be used in cases when no tracking is possible because of the 

complexity of observed motions (see Figure 2-20 and Figure 2-21). 
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3 Facial feature extraction by using 
CNN 

An essential step for face detection, face recognition, facial expression recognition is 

the extraction of facial features. This process is the basis of feature based face 

processing algorithms and usually involves the detection of facial features (eyes, nose, 

mouth), their relative position. 

In this chapter we describe analogic algorithms for the detection of facial features. 

The algorithmic framework is the CNN Universal Machine. CNN is a natural tool for 

image processing tasks because of its regular two-dimensional structure and fast 

execution. 
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3.1 Introduction 

Reliable face analysis is very important for many applications such as human-

computer interfacing [64] or recognition of face and facial expression either from still 

images [72][76][19] or image sequences [80][85]. Several face detection and feature 

extraction methods were proposed in the field of face processing in the past years 

[58][62][84][83]. The methods may be categorized into two classes: methods based 

on template-matching [84], and those based on geometrical analysis methods 

[56][58][71][85]. An interesting comparison between the two techniques is given in 

[57]. Geometric or feature-based matching algorithms aim to find structural features 

that exist even when the pose, viewpoint, or lighting conditions vary, and then to use 

these to locate a face or faces. The idea is to extract relative position and other 

parameters of distinctive features such as eyes, mouth, nose etc. In the simplest 

version of template matching, the image, which is represented as a 2-dimensional 

array of intensity values, is compared using a suitable metric with a single template 

representing the whole face. Patterns of facial features also can be stored as templates 

and the correlations between an input image and the stored patterns are computed for 

detection. 

Relatively few results have been published on face analysis from video images 

[80][85]. The reliability (recognition rate) in the existing approaches is very high – in 

[85] it is nearly 100%; but a common disadvantage of them is the time-consuming 

nature of the algorithms: 16s per frame (frame size 350×240 pixels) for a face-

recognition task in [85], and in another case [80], 24s per proportion of the face in the 

image (image size 352×288 pixels) for a face-detection task. This slow response 

means that such methods are impractical for real-time processing of faces, for 

example in a visual surveillance system. Many results are known for face detection 

and recognition in still images. Rowley’s neural network based algorithm for face 

detection requires just half second for 320*240 images [75]. A more recent result is 

Viola and Jones’s algorithm for face detection, which can process 15 images (image 

size 384×288 pixels) per second in average (the performance depends on the number 

of features) [81].  
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The algorithms we propose were developed for use with a Cellular Visual 

Microprocessor (CVM), which process images in a pixel parallel way. The CVM 

[60][66] has proved to be an appropriate tool for accomplishing real-time image 

processing [59], as well as for real-time classification [77] and segmentation [78].  

The input of our system is a complete face contained within the image-frame. We 

assume the face to have been already detected by using skin-color based segmentation 

[62][83]. The morphological approach for facial-part detection is not an established 

procedure; however, here we attempt to explore and demonstrate its possible merits. 

Morphological operations have previously been applied for face shape extraction [82] 

and for extraction of darker regions in the face image [61]. Previous papers have also 

demonstrated how to use morphological operations for the pre-processing of images, 

for detecting features contained within them [61][77][82]. 

In the proposed algorithm, first a geometrical face model is defined. Based on this, the 

structure of the face is analyzed by binary morphology. Later we demonstrate that by 

means of this essential information (i.e. the x, y coordinates of the nose and eyes), 

primary feature extraction is possible. The algorithms were tested using input images 

from the face-image database developed by UMIST (the University of Manchester 

Institute of Science and Technology) [65]. 
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3.2 Cellular neural networks 

Since their invention in 1988 by Leon O. Chua Cellular Neural Networks (CNN) has 

become a widely used popular tool for solving different problems. Examples are 

simulation of partial differential equations, simulation of artificial immune systems, 

modelling biological systems. The most popular application of the CNNs is the 

processing of images. Because of the CNN’s regular structure an image easily can be 

mapped onto CNN and then the processing of the image is just “playing” with CNN’s 

control parameters. 

 

3.2.1 The CNN Paradigm 

A CNN is a collection of cells defined by: 

• The dynamics of each cell; 

• The local couplings among cells within a prescribed sphere of influence  

of radius 
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Figure 3-1 shows a 2D rectangular CNN composed of cells that are connected to their 

nearest neighbors.  

A regular cell is a cell whose r-neighborhood does not consist of boundary pixels. 

Boundary conditions are very important in the design of CNNs. A few standard 

boundary conditions are listed as follows: 

• Fixed (Dirichlet) Boundary Conditions. The input and output of a boundary 

cell are fixed to constant values. 

• Zero-Flux (Neumann) Boundary Conditions. A boundary cell and its 

symmetric (with respect to the boundary) regular counterpart share the same 

input and output. 

• Periodic (Toroidal) Boundary Conditions. By sticking one pair of boundaries 

side by side and then sticking the two opening ends of the resulting cylinder 

end to end, we get a torus on whose surface the cells are relocated. 
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 j th column 

i th row 

 

Figure 3-1. A 2-dimensional CNN defined on a square grid. The ij-th cell of the array is colored 
by black, cells that fall within the sphere of influence of neighborhood radius r = 1 (the nearest 

neighbors) by gray. 

 

Due to its symmetry, regular structure and simplicity this type of arrangement (a 2D 

rectangular grid) is primarily considered in all implementations. 

 

3.2.2 Mathematical formulation 

As the basic framework for the experiments in this chapter, let us consider a two 

dimensional (MxN) standard CNN array in which the cell dynamics is described by 

the following nonlinear ordinary differential equation with linear and nonlinear terms 

(the extension to three dimensions is straightforward allowing similar interlayer 

interactions): 
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Figure 3-2. The output function of a CNN cell. 
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where xij, uij, yij are the state, input and output of the specified CNN cell, 

respectively. The state and output vary in time, the input is static (time independent), 

ij refers to a grid point associated with a cell on the 2D grid, and kl∈Nr is a grid point 

in the neighborhood within the radius r of the cell ij. Term Aij,kl  represents the linear 

feedback, Bij,kl the linear control, while zij is the cell current (also referred to as bias 

or threshold) which could be space and time variant. The output characteristic f is a 

sigmoid-type piecewise-linear function. The time constant of a CNN cell is 

determined by the linear capacitor (C) and the linear resistor (R) and it can be 

expressed as τ=RC. A CNN cloning template, the program of the CNN array, is given 

with the linear terms Aij,kl and Bij,kl completed by the cell current zij.  

 

3.2.3 Image processing with CNN 

During the last decade numerous templates have been proposed for various image-

processing tasks: filtering, feature extraction, segmentation etc. [59][63][77][78][79]. 

Here however we describe only those image-processing template operations that are 

used in our proposed algorithms. Some of the template operations are direction-

dependent; the direction of the operations is “encoded” in the template values; and by 

“rotating” the template the operation will be performed in different directions. The 

Connected Component Detector detects the number of connected components in a 

given direction [67]. Also direction-dependent are the Shadow operation [68], and the 

Local Eastern Element Detector template operation [63]. A very interesting and 

important class of CNNs is the propagating CNNs. In these CNNs the information, 

like a wave, is propagating from cell to cell along the whole grid or until a given stop 

criterion. Examples of such CNNs are the Connected Component Detector, Shadow 

and Recall CNNs. In many image-processing tasks it is very useful to be able to 

reconstruct objects in the image, and this can be performed by the Recall template 

operation [63]. Logical operations can be performed also [70], as well as 

morphological operations [86]. The values of the templates are in Table 3-1 and the 

corresponding inputs and outputs of the template operations are shown in Figure 3-3 

to Figure 3-6. 
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Table 3-1. The values of feedback, input synaptic operators and bias for different templates 

Name A B z 
 a-1-1 a-10 a-11 a0-1 a00 a01 a1-1 a10 a11 b-1-1 b-10 b-11    b0-1 b00 b01 b1-1     b10 b11  

CCD 1 0 0 0 2 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 

Local E.-elt. Det. 0 0 0 0 1 0 0 0 0 0 0 0 1 1 -1 0 0 0 -2 

Shadow 0 0 0 0 2 2 0 0 0 0 0 0 0 2 0 0 0 0 0 

Recall .5 .5 .5 .5 4 .5 .5 .5 .5 0 0 0 0 4 0 0 0 0 3 

Logic AND 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 

Erosion 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 -2 

Dilation 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 2 

 

 

Figure 3-3. The input and outputs of the diagonal Connected Component Detector (CCD), 
Shadow, and Local Eastern-element Detector (Local E.-elt. Det.)  template operations 

respectively 

 

 
Figure 3-4. The input, initial state and output of the CNN for the Recall/Reconstruction 

operation 

 

 

Figure 3-5. The input, initial state and output of the CNN Logic AND template operation 
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Figure 3-6. The input and outputs of Dilation and Erosion template operations 

 

Generally, the detection of objects in an image necessitates a great deal of 

computation. A natural way to reduce the number of operations is to execute them in 

parallel, or to design parallel algorithms. Image-processing parallel algorithms can be 

interpreted as the simultaneous processing of each pixel and its neighborhood. The 

type of algorithm, which is provided by a CVM, a parallel operation on the whole 

image, is typically executed in a few microseconds. By using templates, different 

image-processing, morphological and wave-metric operations can be implemented 

[59][63]. Sophisticated complex tasks, such as texture segmentation or image 

segmentation employing a CNN, are described in [78] and [79]. 

 

3.2.4 The CNN Universal Machine 

The design of the CNN Universal Machine (CNN-UM, [59]) was motivated by the 

need of a reprogrammable CNN device. All earlier chip realizations of CNN allow a 

single instruction only and the programming of algorithms at chip level was 

impossible. 

CNN-UM, the stored program nonlinear array computer, is able to combine analog 

array instructions with local logic operations, it is capable of executing complex 

analogic (analog and logic) algorithms.  
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Figure 3-7. The CNN-UM. 

 

As illustrated in Figure 3-7 the CNN-UM was built around the dynamic computing 

core of simple CNN. Local memories store analog (LAM: Local Analog Memory) 

and logic (LLM: Local Logic Memory) values in each cell. A Local Analog Output 

unit and a Local Logic Unit perform cell-wise analog and logic instructions on stored 

values. The output is always transferred to one of the local memories. The Local 

Communication and Control Unit (LCCU) provides for communication between the 

extended cell and the central programming unit of the machine, the Global Analogic 
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Programming Unit (GAPU). The GAPU has four functional blocks. The Analog 

Program Register (APR) stores the analog program instructions, the CNN templates. 

In case of linear templates, for a connectivity r = 1 a set of 19 real numbers have to be 

stored (this is even less for both linear and nonlinear templates assuming spatial 

symmetry and isotropy). All other units within the GAPU are logic registers 

containing the control codes for operating the cell array. The Local Program Register 

(LPR) contains control sequences for the individual cell’s LLU, the Switch 

Configuration Register (SCR) stores the codes to initiate the different switch 

configurations when accessing the different functional units (e.g. whether to run a 

linear or nonlinear template). The Global Analogic Control Unit (GACU) stores the 

instruction sequence of the main (analogic) program. The GACU also controls the 

timing, sequence of instructions and data transfers on the chip and synchronizes the 

communication with any external controlling device. 

Synthesizing an analogic algorithm running on the CNN-UM the designer should 

decompose the solution in a sequence of analog and logical operations. A limited 

number of intermediate results can be locally stored and combined. Some of these 

outputs can be used as a bias map (space variant current) or fixed-state map (space-

variant mask) in the next operation adding spatial adaptivity to the algorithms without 

introducing complicated inter-cell couplings. Analog operations are defined by either 

a linear or a nonlinear template. The output can be defined both in fixed and non-

fixed state of the network (equilibrium and non-equilibrium computing) depending on 

the control of the transient length. It can be assumed that elementary logical (NOT, 

AND, OR, etc.) and arithmetical (ADD, SUB) operations are implemented and can be 

used on the cell level between LLM and LAM locations, respectively. In addition data 

transfer and conversion can be performed between LAMs and LLMs. 

 

3.2.5 Cellular Visual Microprocessors and the Aladdin System 

The Aladdin system is the high-performance, professional computational environment 

of the ACE4k chip [60]. The block diagram, which shows the internal logic 

arrangement and the interconnection system of the Aladdin system, can be seen in 

Figure 3-8. The DSP module is connected to the motherboard of the host PC via the 

PCI bus. The PCI bus bridges the Aladdin system to standard frame-grabbers. The 
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output images (if there is any) leave the system also through the PCI bus and can be 

displayed on the display of the PC. In many cases, only decisions or a couple of 

identified events are read out from the system, or stored in the hard drive, and there is 

no need to send or store original or processed images.  

Hosting industrial
or desktop PC

PCI bus

display

platform bus

Motherboard
with VGA

card

DSP
module

digital
platform

ACE4k chip

analog
platform

Frame
grabber
module

network
module

Power
supply
module

Hard
drive

module

ISA bus

 

Figure 3-8. The block diagram of the Aladdin visual computer 

 

Either a desktop or an industrial PC may host the DSP module. The operating system 

on the PC can be either Windows NT or 2000. Since the DSP module uses a number 

of resources of the PC, a hosting program is needed (called CNNRUN) to provide the 

appropriate services. On the DSP module, another program, called CNN Operating 

System (COS), runs. This program drives the platforms and the ACE4k chip. The data 

transfer speeds and some general processing speed figures can be found in Table 3-2. 
 

Table 3-2. The measured operation speeds of the system 

Function speed 

64×64 grayscale image transfer 2,300 fps 

64×64 binary image transfer 22 000 fps 

Pixel-by-pixel logic operation on a 64×64 binary image 3.8 µ 

Template operation on a 64×64 binary or grayscale image  3-15 µs 

Processing of 64×64 sized images (grayscale input, binary output) 1500 fps 

Processing of 64×64 sized images (binary input, binary output) 5 000 fps 

 

At our laboratory an image processing library was developed for ACE4K visual 

microprocessor [60]. User can call them from the native AMC language [12] of the 

Aladdin Visual Computer and from C language also. The template values, transient 

time settings, reference values, etc. are all hidden from the users. Users have to 
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parameterize the functions in the top level only, like setting threshold levels, 

describing the structuring element set of a morphological operation, etc. The 

following list contains all image processing functions in the library (DSP functions 

are in italic type set and ACE4K operations are in regular): 

1. Basic data movement routines:  

a. Image transfer and type conversion from/to/inside the chip (e.g. 

threshold) 

b. Full PC frame grabber card support 

2. Pixel-wise image handling: 

a. Logic operations 

b. Addition, subtraction, multiplication, division 

c. Binary and gray-scale translation 

3. General statistics: 

a. Histogram calculation 

b. Mean, variance, median, global maximum, minimum 

4. Image features, extraction: 

a. Mathematical morphology (dilation, erosion, skeleton, prune, thicken, 

SKIZ, fill, shrink, pattern matching, single pixel removal, 

reconstruction, …) 

b. Classic functions (edge, shadow, whole filler, patch maker, concave 

place detection, perimeter structural operator, center-of-mass, 

majority, …) 

c. Connected component labeling (object information: area, solidity, 

bounding box, orientation, convex area, ordered contour, …) 

5. Image filtering: 

a. Contrast stretching, histogram equalization 

b. Linear and adaptive edge enhancement, Laplacian, Gaussian, Sobel, 

Correlation, Adaptive diffusion, Gradient, Thresholded gradient 

6. Transformations: 

a. Forward DCT, inverse DCT, wavelet processing, FFT-1, FFT-2, Haar, 

Hadamard, and Radon, JPEG compression, matrix quantization with 

rounding 

7. Image synthesis: 
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a. Patterns (e.g. checker, stripes), noise, gradients 

8. Signal processing: 

a. FIR, IIR filters, Autocorrelation, weighted vector sum, matrix 

operations 

The library contains over 40 optimized binary image processing functions. The 

implementation of the operators are based on reprogrammed switch configurations. 

Moreover, the self and the spatial feedback loops are fully neglected resulting in 

higher robustness and significantly reduced settling time in binary output generation 

[14]. Therefore, the propagation type operations are implemented iteratively.  

Table 3-3 summarizes the execution times of the classic (non-decomposed) CNN 

solution, the library functions and the DSP solution as a comparison. As it can be 

seen, the library functions are not faster all the time, however they provide error-free 

results all the time. If we compare the execution times of the library function to those 

of a state-of-the-art DSP, it turns out that the ACE4K chip has almost an order of 

magnitude speed advantage. We have to mention here, that the DSP functions are 

optimized assembler functions provided by the manufacturer.  

 

Table 3-3. Running time comparison for some typical operations between the non-decomposed 
CNN-type single template executions and the library solution in case of chip-sized images. As a 
comparison, we also show the execution times with a state-of-the-art DSP with its optimized 
assembly code. All images are 64x64 sized. The displayed times include on-chip data transfer and 
processing only, which means that all the images are stored in internal memories of the ACE4K 
and the DSP. 

Operator Non-decomposed CNN- 
solution  

(not error free) 

Library functions 
(error-free) 

DSP solution (Texas 
C6202 @ 250MHz) 

(error-free) 
Binary edge detection of 4-
nbr connectivity 

7 µs 4.1 µs 31µs 

Binary edge detection of 8-
nbr connectivity 

7 µs 6.7 µs 58µs 

Reconstruction using 4- nbr 
connectivity 

Initialization: 3 µs 
Propagation time per 

pixel: 1.1 µs 

Initialization: 3 µs 
Propagation time per 

pixel: 0.65 µs 

Propagation time per 
pixel: 31µs  

Reconstruction using 8- nbr 
connectivity 

Initialization: 3 µs 
Propagation time per 

pixel: 1.2 µs 

Initialization: 3 µs 
Propagation time per 

pixel: 1.5 µs 

Propagation time per 
pixel: 58µs 

Skeletonization of  
8-nbr connectivity 

171 µs 61.7 µs 464 µs 

 

All the algorithms presented later are developed by using equivalent operations of the 

Aladdin System’s image processing library to the template operations that are 
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collected in [63]. So, we are not using templates but the image processing library for 

ACE4K in which the template values, transient time settings, reference values, etc. 

are all hidden from the users. In the description of the algorithms the name of the used 

templates are only references to the equivalent image processing library operation 

because the same operations have same names.  

 76



 

3.3 Facial feature extraction with CVM based operations 

We now present our main contribution, the implementation of an efficient algorithm 

on real analog hardware. Facial features (as well as other features) could in principle 

be detected by calculating the vertical and horizontal intensity-gradients of the input 

image [55]. However we chose to design an algorithm employing binary-output 

operations, because these are more stable on analog hardware such as the ACE4K. 

Consequently, in our facial feature extraction system the input is the edge map of a 

face image, obtained by applying the CNN equivalent of the Sobel operator [63]. By 

analyzing the face image, a geometric face model can be defined [56].  

 

3.3.1 The geometric face model 

The extraction of primary facial features such as eyes, nose and mouth relies on the 

fact that the distance between the eyes is proportional to the distances between the 

facial features. Consequently, if one of the features is detected, the approximate 

position of the other features will be known and appropriate masks can be created to 

extract the features from the face image. Features extracted are the face symmetry 

axis, face width, nose, eyes and mouth. The geometric face model and the relationship 

between these measures are defined [56] as follows (see also Figure 3-9): 

1. Let the distance between two eyes be D; 

2. The vertical distance between the eyes and the center of the nostrils is 

0.6×D; 

3. The approximate face width is calculated as 1.8×D; 

4. The width of the nose is about 0.6×D. 
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Figure 3-9. The defined geometry of the face model 

 

3.3.2 Extracting facial features 

The procedure for locating the facial features using the above-defined geometric face 

model is described below. First, the input image is filtered by a Gaussian filter 

template operation [63] to reduce the noise, and then edge detection is applied to the 

face image. Following this the face symmetry axis and the face width are detected as 

in [19] and then, based on the defined face model (Figure 3-9), the nose is extracted. 

By utilizing the geometrical relationship among the features, the eyes, and then finally 

the mouth, are extracted. 

In the work described here we rely on CNN-friendly operations such as the projected 

histogram, the CCD operation of about 15µsec duration [67], which results in a 

histogram-like image of its input in either the X or Y direction (see Figure 3-10). The 

“peak” of the “histogram” in the resulting image corresponds to the most detailed 

region of the input image in the direction the operation is applied. The whole of this 

work is based on the principle that peaks on the resulting feature-images (i.e. the 

heights of the columns) refer to the respective vertical and horizontal positions of the 

specified facial features. Specifically, the region of the nose is the most detailed 

vertical feature; and the region of the eyes is the most detailed horizontal feature in 

the edge-map of the face image (see Figure 3-10).  
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Figure 3-10. Application of CCD operation in directions West and South to the edge map of face 
image. The peaks in the resulted histogram like images refer to vertical and horizontal positions 

of the nose and the eyes. 

 

To find the face symmetry axis, corresponding to the peak of the histogram-like 

image resulting from the CCD template operation in Figure 3-10, some typical 

template operations for binary images [19] are used (see Figure 3-11).  

In [74] a valuable analytic tool which we make use of was introduced, namely UMF 

(Universal Machine Flows) diagrams, a description language for complex analogic 

algorithms. The basic principles of UMF diagrams are described below, in the 

Appendix. UMF diagrams clearly show how the template operations are combined in 

an analogic algorithm. 
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Figure 3-11. The UMF diagram of face symmetry axis extraction 

 

 To detect facial features in the face image, we make use of the information that there 

is a correspondence between the geometric positions of the features and the overall 

size of the face. We apply binary dilations [86] to create masks; and by using them, 

the facial features can be extracted (see Figure 3-12). From the relations defined in the 

geometric face model (Figure 3-9), a parameter can readily be calculated to control 

the dilation time.  
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Figure 3-12. The dilated axes: the face symmetry-axis (the horizontal position of the nose; see 
Figure 3-13) and the axis of the eyes (which defines their vertical position; see Figure 3-13). The 

created masks are on the left, and the extracted features are shown  next to them. 

 

Thus, the extension of the face symmetry-axis detection algorithm described above is 

the detection of the nose, see Figure 3-13. However, besides the sought-for nose 

feature, some image-noise is extracted as well; some parts of the eyes, eyebrows, 

mouth, and the top of the head are also detected. To improve the detection, further 

analysis steps are needed. The parts of the top of the head can be removed from the 

image by using Figure Delete template [63]; and if the eyes have been detected 

(Figure 3-14 and Figure 3-15) the parts of the eyes and eyebrows can also be removed 

from the noisy nose-image. Even then, in the resulting image the mouth and some 

further noise below the nose are present; but if the top patch is chosen as the tip of 

nose and then used as a mask for a recall operation [63], the nose can be “cleanly” 

extracted from the original edge-map (see Figure 3-13). 

After the nose is detected, the next step is to find the position of the mouth, the next 

“patch” below the nose. Deleting the nose, eyes and eyebrows from Figure 3-12 and 

applying the recall template operation, we can extract the mouth from the edge-map 

of the region of the nose (Figure 3-13). 
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Figure 3-13. UMF diagram of the nose detection analogic algorithm 

 

In the “eyes extraction” process, first their vertical position is detected and the two 

eyes are extracted from the image by using a mask (see Figure 3-12) which is created 

according to the relations defined in Figure 3-9. Then the nose is deleted from the 
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image. After this, the image is divided into two parts along the symmetry-axis; and 

then the horizontal position of the eyes is found see Figure 3-14.  

 

Figure 3-14. Detection of the horizontal position of the eyes. The noisy images of the eyes are in 
the upper images; below them are the results of the applied CCD operation in the Southern 

direction. The methodology is the same as that for the detection of the horizontal position of the 
nose. 

 

Figure 3-15 shows the UMF diagram of the eyes-detection algorithm. 
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Figure 3-15. UMF diagram of the eyes-detection analogic algorithm 
 

The outputs of the above-described algorithms can be fed up into the Decision Table 

circuit of [77] to achieve a face detector/recognizer. Bad detections can be filtered out 

in the final decision making process. If the a posteriori rate of the final Bayesian 

decision is above a threshold then the decision is accepted if below then not, as in 

[22]. 
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3.3.3 Experimental results 

The algorithms were tested on the UMIST face database [65]. This is widely used for 

testing face processing algorithms, and is freely available for download from the 

Internet [88]. It consists of 493 images of 20 persons, both male and female (some of 

the subjects wear glasses and some have facial hair). We chose this database since it 

contains, for each person, a range of poses from profile to frontal views, presented as 

a video image sequence. Images from the database are of size approximately 220×220 

pixels, in 256 shades of grey. For our tests however the images were transformed to a 

size of 64×64 pixels, since the size of the ACE4K is 64×64 cells. This lower 

resolution is still sufficient for use in real applications; in surveillance systems, the 

resolution of faces typically varies from 20×20 to 50×50 pixels. As an example, 

Figure 3-16 shows a sequence of images (available at [33]) from subject 1a. 

 

 

Figure 3-16. Images from subject 1a in the face-database 

 

As can be seen in the Figure 3-16, most of the images are profile images of the 

subject, or nearly so. The algorithms were tested on a subset of 70 images; we 

selected from the database the face images on which the eyes can be seen. 

The images in Figure 3-17 show some results of the face symmetry axis detection 

algorithm described above. Cases sometimes occur where the axis is marked by a 

band and not by a single line. However, the centre of this band can be found by 
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applying a bipolar wave template operation [73], and the resulting axis then will be a 

single line.  

 

 

Figure 3-17. Results of ACE4K experiments of the face symmetry axis detection algorithm for 
faces in different poses 

 

Figure 3-18 and Figure 3-19 show some results of the nose-, eyes- and mouth-

detection algorithms implemented on the ACE4K device. 

 

 

Figure 3-18. Results of experiments on nose, eyes and mouth detection (ACE4K) 
 

The correct extraction of the features depends on the quality of the derived edge-map 

of the face image. If the detection of the edges is not precise, there may not be enough 

information to extract the facial features. If one or more of these features is wrongly 

detected, other features may also be detected incorrectly, as illustrated in Figure 3-19. 
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Figure 3-19. Typical errors caused by erroneous edge-detection 
 

The accuracy of the algorithms used was verified by visual checking of the outputs by 

human observers. In the face images of size 64×64 pixels, the size of eyes and the 

width of nose-tip varies from 10 to 15 pixels, while the width of the mouth is larger 

than this. In the verification process, if the detected feature was within a circle of 

radius 5 pixels located on the centre of the true feature, then the detection result was 

counted as correct. The percentage of the correct detection of facial features is given 

in Table 3-4. 

 

Table 3-4. Detection percentage for the extraction of primary facial features (for the database of 
70 face images). 

FEATURE CORRECTLY 

DETECTED (%) 

Nose 97 

Eyes 89 

Mouth 92 

 

These results were judged to be acceptable [71], considering the fact that the input 

images were not ideal: shots were in most cases not frontal, and the lighting 

conditions did not have a uniform effect on all parts of the image. 

Below we give computation complexity estimation for the proposed algorithm. Table 

3-5 shows the number of different instructions used in the implemented algorithm. 

The measured speed of the overall algorithm for the extraction of facial features, 

including capturing, downloading to the chip and the binarization of the image, is 

20.3 ms per frame; which means processing of 50 images per second and it is feasible 

for real time processing. In paper [85] the achieved speed is 0.8 sec per frame; and in 
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[80] the speed is 0.96 sec per frame, if we recalculate the speed of the algorithms for a 

frame of size 64×64 pixels.  

Table 3-5. Execution time estimation for the proposed algorithm for the extraction of facial 
features. The execution time refers to the processing of a 64×64 image. 

Operation  Number of 

instructions 

Estimated 

time (ms) 

Memory DSP to Chip 18 4.5 

transfer: Chip to DSP 16 2.0 

 Chip to Chip 16 0.3 

Logic 

operations: 

 
24 0.1 

Template 

operations: 

 
48 11.0 

Total  (Σ)   18.9 
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3.4 Identification of rotated faces by using CNN 

Based on the above described facial feature extraction algorithm a face identification 

analogic algorithm was introduced. Most of the face recognition algorithms focus on 

frontal facial views. However, pose changes often lead to large nonlinear variation in 

facial appearance due to self-occlusion and self-shading. Some algorithms have been 

proposed, which can recognize faces at a variety of poses. However most of these 

algorithms require gallery images at every pose [69]. These techniques are often too 

slow to be used for tracking purposes.  

In our approach we assume that the human head is detected and localized. The task is 

divided into the following sub-tasks. First some features are extracted to estimate the 

pose of the head. Then the head is transformed to create canonical images, in which 

the face is filtered, rotated and scaled to a standard size. At last, searching the most 

similar face in a database makes the identification of face. 

First, the algorithm extracts the face symmetry axis by using algorithm in Figure 3-11. 

The sides of the face are detected by shadowing the edge image of the face and then 

extracting the left and right side of the image by using hit and miss operators. Reading 

out the positions of the face symmetry axis and the sides of the face we have three 

parameters,  are the position of face symmetry axis, right side and left side, 

respectively, that describes the horizontal rotation of the face. If  then we 

have a frontal face, otherwise we have a face rotated by 

lrc ,,

lccr −=−

lcr +− 2  pixels to the left if 

 and to the right if 02 >+− lcr 02 <+− lcr . Then applying a shift template to the 

rotated face image the face can be shifted back to the frontal view, see Figure 3-20. 

 

 
Figure 3-20. Rotation of face on CNN-UM (Simulation results). The left is the input image the 

right is the rotated. 
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For the comparison of different face images we apply a simple technique based on the 

use of whole image gray-level templates. In the template matching the images are 

represented as two-dimensional arrays of intensity values representing the whole face. 

The Euclidean distance is calculated between two templates (images) to compare the 

test images. When attempting recognition, the unclassified image is compared in turns 

to all of the database images, returning a score, the distance to an image in database. 

Then the unknown person is classified as the one giving the smallest score.  

To test the algorithm’s performance we have divided the face database into four 

classes according to the amount of rotation of the input face. Examples of each class 

can be seen in Figure 3-21. We have performed four experiments. In each of four 

experiments one of the classes is the training class for which the algorithm calculates 

the average rotation. All the other classes are the test classes and the algorithm 

transforms the input images to the training class and tries to find the closest image 

from the training class to the input test image. Figure 3-21 summarizes the results of 

the experiment. 

 

Figure 3-21. Results of identification of rotated faces. The rows are the training classes and the 
columns are the test classes in the table. Example images from each class are also shown. 
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4 Summary 

The main results of research on registration of images were presented in Chapter 2.5 

and 2.6. Co-motion statistics were introduced in Chapter 2.5. It was shown that the 

principle of concurrent motions efficiently can be used for registration of cameras’ 

overlapping fields of view. Chapter 2.6 presents an enhanced algorithm for the 

estimation of overlapping fields of view of two cameras based on the detection of 

concurrently changing pixels. A Markov chain based model describes the concurrent 

motions in two cameras. Experimental tests showed the advantages of the proposed 

approach. 

In Chapter 3 an analogic algorithm was presented to detect facial features in images 

of human faces. The designed framework and algorithm is based on the fact that the 

geometry of faces can be described by only one parameter. A set of rules was defined 

to perform facial feature extraction by using CNN operations. Successful tests on a 

public face database prove the feasibility of the proposed methods. 
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4.1 Methods used in experiments 

In the course of my work, theorems and assertions from the field of ordinary and 

partial differential equations, mathematical statistics, numerical geometry, 

optimization, reported results of image and video processing were explored.  

The experiments for camera registration were performed by using the MDICAM 

multi-camera software system that was designed in the Analogical and Neural 

Computing Laboratory. For unique experiments I have also designed simulation 

systems in Matlab. Testing of the proposed algorithms was performed on various 

video sequences from personal experiments and from publicly available video 

databases. 

For the design and testing of analogic algorithms I have used a software-hardware 

system developed in the Analogical and Neural Computing Laboratory. Designed 

CNN templates and algorithms were tested on software simulators, such as Aladdin 

System and on Cellular Visual Microprocessors: ACE4k and ACE16k. The 

simulating system was developed in the Analogical and Neural Computing 

Laboratory. The implementation of different methods was completed in different 

CNN languages (Alpha, AMC, UMF) ensuring their applicability on different 

platforms. The proposed methods were tested on images from a publicly available 

image database. 
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4.2 New scientific results 

The First Thesis summarizes the results that related to the use of accumulated motion 

statistics for camera registration, the Second Thesis is about a Bayesian method for 

camera registration. The Third Thesis presents results that related to feature extraction 

on wave computers. 

4.2.1 First Thesis 

Accumulated motion statistics for automatic camera registration. 

a. I gave a new camera registration method based on the use of co-

motion statistics. 

I defined the notion of co-motion statistics that is based on the 

accumulation of motion statistics for different camera views. I have shown 

experimentally that co-motion statistics can be used for camera registration 

without any a priori knowledge about the objects’ appearance or motion 

and without human interaction. The method’s accuracy is in the subpixel 

range.  

Described in Chapter 2.4 

Published in [2][6][16] 

b. I showed that temporal alignment of image sequences in the case of 

co-motion statistics based camera registration is possible through the 

minimization of the estimated alignment error. 

In camera registration,  it is usually assumed that the cameras are 

synchronized. I have solved the problem of temporal alignment of image 

sequences during camera registration for unsynchronized cameras. The 

proposed method aligns the camera views for different time offsets and 

then searches for offset with minimum alignment error. 

Described in Chapter 2.4 

Published in [2][6] 
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4.2.2 Second Thesis 

Automatic Bayesian method for camera registration without human 

interaction and assuming any a priori information about scene structure, 

appearance of objects or movement. 

 

a. I showed that the extraction of cameras’ overlapping field of views can 

be done by a new automatic Bayesian iterative algorithm. 

The knowledge of cameras’ overlapping field of view is a prerequisite of 

the fast and robust matching of wide baseline stereo images. I proposed a 

Bayesian model for modelling concurrent changes in different camera 

views. I have shown that the solution of this model is equivalent to a 

solution of a periodic Markov chain. The developed method provides an 

automatic solution to the problem without any human interaction and a 

priori object model. 

Described in Chapter 2.5 

Published in [1][8] 

b. I showed that an entropy based analysis can be applied for the 

extraction of pixels of significant non-continuous changes. 

I worked out an entropy based method for the classification of motion 

histories into two classes: (i) significant non-continuous changes; (ii) 

significant continuous changes or camera noise. 

Described in Chapter 2.5 

Published in [1][8] 

In practice, the existing algorithms can be used only in restricted situations. The 

reported methods focus on the solution of the view-registration problem in respect of 

outdoor scenes, and neglect the additional difficulties, which tend to arise for indoor 

scenes. In the case of indoor cameras, the still-image based methods may fail due to 

the variability of conditions: occlusions, changing illumination etc. Due to the larger 

size of the moving objects, the cited motion-based methods will also fail; the 

observed motions are not necessarily on the ground-plane – while for outdoor scenes, 
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such an assumption can safely be made. But if we could detect feature points that are 

on the groundplane then the motion based methods still can be applied for the 

matching of two views.  

c. I introduced shadow as salient features on the ground and I have 

shown experimentally that shadows efficiently can be used for camera 

registration. 

Shadows are excellent features for indoor scenes, because they are mainly 

on the ground plane. I have experimentally shown that if we could detect 

shadows of moving objects then we have a lot of concurrently moving 

points in the cameras. By extracting them, the matching of the views can 

be done. 

Described in Chapter 2.5 

Published in [7] 

4.2.3 Third Thesis 

 
Working out robust feature extraction algorithms by using spatio-temporal 

dynamics. 

 

a. I did show that basic face features can be extracted by a set of 

procedures which can run on the reduced set of parallel operations in 

the CNN UM.   

I have developed new analogic algorithms for the extraction of main, eyes, 

nose and mouth, facial features. The extraction of primary facial features 

such as eyes, nose and mouth relies on the fact that the distance between 

the eyes is proportional to the distances between the facial features [56]. 

All the algorithms run on the ACE4K CNN chip, and the achieved speed 

of the algorithms is equivalent to 50 frames per second. 

Described in Chapter3.3 

Published in [14] 
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b. I worked out an analogic algorithm for the identification of rotated 

faces by using CNN. 

I have designed and implemented the algorithm in the CNN-UM 

framework. The algorithm is based on the estimation of face position by 

using analogic facial feature extraction algorithms. The steps of the 

algorithm are as follows: extraction of facial features, estimation of face 

position, transforming back the face to the frontal position and comparing 

to images in the database. 

Described in Chapter 3.4 

Published in [19] 
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4.3 Possible applications 

 

All the developed methods and implementations offer solutions for real applications 

problems.  

Methods of First and Second Theses provide general solutions for camera registration 

in real circumstances. They can be used in any multi-camera surveillance system 

where automatic functioning is needed.  

Algorithms of the Third Thesis provide solutions for computer systems where real-

time face analysis is needed, e.g. face detection, identification. 
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Appendix 

The CNN Software Library (CSL) [63] contains many templates {A, B, z} for various 

image-processing tasks. These implement waves of both simple and exotic form, with 

standard and complex templates and cells of first-order, as well as of a higher order 

(complex). The following symbol represents an elementary template instruction: 

 
Figure A-1: The symbol of a template instruction, where U is the input and Y the output. X0 

denotes the initial state; τ the time-constant; z the bias term. TEMk is the name of the template in 
CSL. 

 
By using the above symbol of template operation as a building block, one can draw 

UMF diagrams to describe a complete analogic algorithm. To interconnect the steps 

of the algorithms, considerations similar to those in a traditional flow diagram are 

used. For details, see [74]. 
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