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NEUROMORPHIC MODELING OF REACHING ARM
MOVEMENTS

by Róbert Tibold

Abstract

A dynamic, three-dimensional (3D) musculoskeletal model was developed to simulate

complex, slightly restricted (prono-supination was not allowed) point-to-point

movements (while holding an object) of the entire upper limb containing the shoulder

complex under altering external forces manifested in three objects with distinct masses.

The model was constructed considering structural and biomechanical aspects of the arm.

The outputs of the model were virtually predicted muscle forces capable to generate the

desired joint rotations and joint torques. This new approach (predicting muscle activity

using measured kinematics of the limb in the 3D space) is planned to support general

rehabilitation of movement disorders through the predictive simulation of muscle forces.

Literally, activation patterns can be regarded as templates based on the movement of

healthy individuals for people with any motor dysfunction.  The effect of altering object

masses on joint torque profiles was investigated. Joint torque profiles have been found

object-invariant through correlation analysis of joint torques predicted under distinct

object conditions. Elbow and shoulder joint torque profiles predicted by the model are

invariant to changes of the mass of the object held in the hand. The range but not the

shape of the torque-time curve depended on the object in the hand. This may reflect the

existence of a general movement pattern.

Variances of hand position (endpoint), joint configuration and muscle activities

(measured EMG, muscle force) were calculated to analyze the stability of the studied

movement.  Ratios of movement variances observed in two conditions (load versus

without load) showed no differences for hand position and arm configuration variances.

Virtual muscle force variances for all muscles except deltoid posterior and EMG

variances for 4 muscles increased significantly by moving with the load. The greatly

increased variances in muscle activity did not imply equally high increments in kinematic

variances. As a conclusion of the stability analysis the enhanced muscle cooperation

helps to stabilize the movement at the kinematic level through synergies when a load is

added.
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C h a p t e r  I

INTRODUCTION

I.1. Preface

In everyday running life there are many situations in which people can be injured

seriously thus becoming spinal cord injured (SCI) patients or suffer from the symptoms

of diseases which effect different movement functions like controlling or executing a

given movement. Such movement disorders - without further details - are Parkinson’s

Disease [1-4] caused by the malfunctioning of the basal ganglia and/or the dopaminerg

system; dystonia as a neurological movement disorder where oscillating muscle

contractions result in twisting and uncontrolled repetitive movements with abnormal

postures [5], [6]; multiple sclerosis in which the nerves of the central nervous system

(CNS) (brain and spinal cord) degenerate as a result of inflammation of the nerves [7-

10]. Another serious disorder of the brain is the stroke in which the individual rapidly

loses some of his brain functions due to disturbance or damage of the blood supply. In

many cases of stroke the motor cortex of the brain is highly affected. In such cases the

individual cannot move the limb(s) on one side of the body (hemiplegia, hemiparesis). In

more serious cases when the brainstem is involved in the stroke the abilities of the patient

for sensing and balancing may be reduced or totally lost.

Hence, for current science of motion it would be a great deal to help people overcoming

their serious movement dysfunctions whether it is caused by an accident or neural

disease.

In SCI patients in both paraplegics (caused by the injury or the illness of the thoracic area

of the spinal cord - normal movement functions of the neck, hand and thorax are usually

not effected) and tetraplegics (caused by the injury or the disease of the cervical area of

the spinal cord – all limbs under the neck are effected) functional electrical stimulation

(FES) has been recently used to restore lost motor functions and muscle strength of the

leg muscles partially [11-17]. Muscle forces have been studied by the famous Hungarian

born nobel laurate biologist Albert Szentgyorgyi, who studied submolecular processes

and suggested  further study of muscle activities at the level of electrons and electricity

[18]. Since then, engineering methods and modeling procedures have been developed
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12 Neuromorphic Modeling of Reaching Arm Movements

and gave us a chance for fine artificial regulation of muscle activities by well designed

electrical activity patterns.

FES driven cycling offers paraplegics the possibility of muscle and cardiovascular

training as well as the chance for independent locomotion [19]. In the study of Szecsi,

three different muscles (gluteus maximus, quadriceps, hamstring) were stimulated on

both legs by an 8-channel electrical stimulator applying bipolar electrodes. Based on the

measurements of cycling of healthy subjects it was found that at higher gear the muscles

spanning the ankle joint had to generate more torque so as to maintain a given cycling

speed [11], [20]. Beside SCI patients FES cycling has been applied in patients with

multiple sclerosis by Szecsi et al., [21]. In the studies applying FES during cycling

muscle activities were generated as a function of the pedal angle [11], [22]. Here, a

challenging task was to find the proper timing course of stimulating the knee flexor or

extensor muscle at appropriate  time instants.

For upper limb movements the Freehand system [23], [24] is an implanted FES device

for restoration of lateral and palmar grasps following C5 or C6 tetraplegia. Naito et al.,

[25] presented an FES method to stimulate the biceps brachii so as to perform supination

of the forearm.

However, FES has its own limits. Namely, a number of personalized anthropometric

parameters, neural and biomechanical features (muscle geometry, muscle action lines

with acting muscle forces) of the particular limb are not taken into account in generating

stimulation patterns.

If the results of accurate 3D modeling of the above written features were applied in the

generation of activity patterns it might increase the effectiveness of rehabilitation

techniques.

No information has been found so far whether FES based on (3D) modeling of the

human arm would be applied in general rehabilitation procedures of the whole upper

limb containing the shoulder complex.

The usefulness of 3D modeling of different motor tasks in the generation of activation

patterns has been revealed by many studies so far [26-36]. Furthermore, a virtual 3D

model of the upper limb consisting of 4 segments (the humerus, the ulna, the radius and

the hand) and personalized muscle geometries using parameters introduced by Zajac [37]

DOI:10.15774/PPKE.ITK.2012.004



Neuromorphic Modeling of Reaching Arm Movements 13

was developed for getting accurate biomechanical analysis of the arm [38]. Dynamic,

EMG (electromyogramm) driven methods are used for predicting muscle forces in single

and multi joint movements [39] and for estimating the corrective changes in muscle

activation patterns needed for a stroke patient to walk [39], [40].

Other 3D biomechanical models are applied during robot assisted rehabilitation to

enhance the functionality of therapeutic robot treatment for stroke limb injury [41-43].

Unfortunately current rehabilitation methods are not capable of fully restoring the

previously lost motor functions. For instance according to statistics from the United

States 50% of individuals suffered from a stroke may have paralysis on one side of their

body after the rehabilitation procedure [44].

In summary, it is really desirable to either improve the efficiency of the rehabilitation

techniques applied or to develop brand new methods based on both personal

anthropometric and neuro-biomechanical parameters of the patient using 3D modeling

approaches.

Graphic based multidimensional computer models were developed to discern motor

activity patterns of musculoskeletal systems [45], [46]. Furthermore, a general

framework was introduced in a neuro-mechanical transducer model to determine possible

muscle forces and firing frequencies of flexor and extensor motoneuron pools during

voluntary limb movements [47-49].

In motor control when dealing with the 3D modeling of different limb movements on the

one hand a complex 3D inverse kinematic problem must be solved to obtain muscle

forces needed to reach a selected point in the space while on the other hand the muscle

redundancy must be taken into account as well. Muscle redundancy - having more

muscles than mechanical degrees of freedom (DOF) - has long been a central problem in

biomechanics and neural control. The issue in this context is how muscle coordination

patterns are derived by the CNS from a theoretically infinite set of possibilities. In other

words any given motor task might be performed in an infinite different manner without

having any restriction on the selection of proper muscles being activated. In this sense an

optimal solution has to be found by the CNS for selecting a proper combination of

muscle activity patterns applied during movement execution.
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14 Neuromorphic Modeling of Reaching Arm Movements

The infinite number of solutions for a given arm movement task is the major issue, since

a human limb has generally more joints and around each joint the human body has much

more spanning muscles than necessary [4], [50]. There have been two major approaches

to the problem of muscle redundancy so far. The first approach is the elimination of the

redundant degrees of freedom [51]. The second approach follows the findings of Gelfand

et al., [52] who suggests that all elements within a redundant motor system are always

involved in solving the motor tasks. This means that no degrees of freedom are

eliminated.

It is still an important question to consider which solutions are chosen by the human

motor control to solve a given motor task. There are approaches based on optimization

techniques as optimization of smoothness [53], [54] or minimization of torques [55], [56]

while other methods employ statistical approaches based on the fact that the participating

muscles can work together in different ways.

This concept is called muscle synergies and was studied generally by Bernstein [51] and

in particular for arm movements by Latash [57]; Prilutsky [58]; Domkin et al. [59], [60].

Despite the fact that the muscle synergy problem was introduced more than forty years

ago, it is still not obvious what is controlled by the central nervous system and how it

chooses controlling strategies especially under altering conditions. These types of motor

control issues have been recently investigated in different studies for multi-finger quick

force production [61] and for different limb postures [62-64].

In the dissertation a new, fully 3D biomechanical model, containing personalized

segment and muscle geometry of the entire upper limb is presented based on the neuro-

mechanical framework introduced by Laczkó et al. [47], [65]. As a result of this,

activation patterns for general rehabilitation (muscle forces, joint torque) have been

revealed during the execution of complex upper limb motor tasks (lifting and putting-

down an object from a certain place to another one).

Besides, the effect of altering object conditions on motor control levels has also been

studied by analyzing the variances of measured (endpoint of the upper limb, joint

configuration, muscle activity) and simulated (muscle force) parameters resulted by the

above mentioned biomechanical model. Here, different levels of the motor apparatus
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Neuromorphic Modeling of Reaching Arm Movements 15

such as the end point of a limb, the joint configuration defined by the set of joint angles,

muscle activities and muscle forces are regarded as motor control levels.

It has been found that if the individual held a heavier object in his hand then the

stabilization of the outer descriptors (the endpoint of the arm, joint configuration) was the

consequence of an enhanced cooperation of the inner descriptors (muscle activity).

I.2. Motivation and Aims

At the beginning of this chapter it was shown that there are various ways how a

healthy individual might become a patient having a kind of a movement disorder. It has

also been mentioned that the possibility of being handicapped after rehabilitation

procedure is relatively high (50%) [44].

Thus the most important aim of the research was to find out how muscles of the upper

limb acted and cooperated while they were producing muscle forces so that they can be

reproduced  artificially by the application of modern rehabilitation techniques.

All in all, the future purpose is to define personalized stimulation patterns for FES

applied on stroke patients suffering from hemiplegia. However, the generation of FES

patterns and the development of new control methods for improving the efficacy of

current upper limb rehabilitation methods are not the scope of the thesis. Here, a

biomechanical approach for determining joint torques; muscle forces exerted by the

prime arm movers and the variability of the activity of different parts of the motor

apparatus are investigated under specific conditions.

In order to do that based on the measurements of healthy individuals, who performed

reaching and grasping arm movements, a 3D biomechanical model of the entire upper

limb was developed containing the geometry of 3D limb segments (with shoulder

complex); the location of 3D muscle attachment sites and the anatomical/biomechanical

structure of 4 muscles.

The outputs of the musculoskeletal model are the magnitude of predicted 3D force and

torque vectors; the direction of the 3D force and joint torque vectors.
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16 Neuromorphic Modeling of Reaching Arm Movements

In the future the relations between predicted muscle forces and neural activities are

planned to be revealed in order to generate muscle activation patterns taking into account

the personal characteristics of the patients.

I.3. Framework of the Dissertation

In Chapter 2, an overview on the materials and methods used in the measurement

series that had been performed in the National Institute for Medical Rehabilitation is

presented. Furthermore, elementary data processing; the steps of the model development

(determination of 3D angular acceleration (3DAA), moment of inertia (MoI), moment

arm (MA), gravitational torque, joint torque and muscle force); calculation of variances

observed at different levels of motor control and statistical tools applied are described

here as well. The most important part and the core of the dissertation can be found here:

the prediction of 3D muscle forces from measured joint coordinates.

In Chapter 3, the results and important findings of the simulation method are

summarized. The invariant nature of the predicted torque profiles under specific

conditions is revealed and the framework for displaying personalized muscle and limb

geometries is introduced.

In Chapter 4, the results of the variance analysis at four motor control levels (endpoint of

the upper limb, joint configuration, muscle activity, muscle force) are described to show

how these levels were affected by a heavier object while it had been held in the hand of

the actual subject.

In Chapter 5, new scientific results and possible applications in form of theses are

provided.

In Chapter 6, appendices concerning the variances of motor control levels are depicted

for all individuals participated in the biomechanical measurements.
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C h a p t e r  I I

MATERIALS AND METHODS

II.1. Subjects, Instrumentation, Measurement and Data Processing

A daily executed reaching arm movement task performed by healthy individuals

was measured. Twenty individuals (aged 21-25; mean±SD.: 21.1±1.9), 14 men and 6

women with no upper extremity complaints, voluntarily participated in the study at the

National Institute for Medical Rehabilitation (NIMR) in Budakeszi, Hungary.

Movements were investigated by the ultrasonic-movement analyzer (usMA) ZEBRIS

CMS 70P (Zebris Medical GMBH,Germany) [66], [67].  Eight ultrasonic markers and

four bipolar surface EMG (sEMG) electrodes were used. Seven markers (Figure 2.2,

Table 2.1) were placed on the participant and one as a reference point placed on the

object being moved.  3D coordinates of the markers and muscle activities were recorded

simultaneously for the 4 main arm muscles: biceps (BI), triceps (TR), deltoid anterior

(DA) and deltoid posterior (DP).

The total sampling rate of the usMA was 200 Hz. The sampling rate of one marker was

25 Hz because the ultrasound sensor of the system senses the 8 markers serially. The

sampling frequency of the sEMG was 1000 Hz. The different sampling rates were

synchronized by the manufacturer.

After the markers and the sEMG electrodes had been placed on the individual, the

measurement was started without having a learning phase.

II.1.1. Measurement of Kinematics and EMG – Movement Description

The individual sat in front of a 2-level-computer desk. The difference between the

heights of the two levels of the desk was 20 cm (70 cm and 90 cm above the floor). The

upper level was approximately at shoulder level. The distance between the chair and the

desk was given by the maximum stretch of the elbow. The external angle of the elbow

(the angle of the forearm in respect to the elongation of the upper arm) was required to be

about 10-15 degrees. The angular stretch was measured with a protractor.

DOI:10.15774/PPKE.ITK.2012.004



Neuromorphic Modeling of Reaching Arm Movements 18

The motor task was executed under three conditions corresponding to three objects with

different masses:

1) a 0.06 kg light CD case (CD)

2) a 1 kg object (O1)

3) a 2 kg object (O2)

Object masses were chosen taking into account the limits (pronosupination was not

allowed while the palm was facing backward) of the studied movement on obtainable

joint torques.

The shapes of the objects were the same to avoid the effects of different extrinsic and

intrinsic object properties [68].

The actual object was placed on the lower level of the desk. In the starting position the

arm of the individual was hanging alongside the body and the palm was facing

backwards. This posture was chosen because hemiplegic patients hold their lower arm in

that way and the 3D arm movement model presented in the dissertation is planned to be

used mostly in the case of hemiplegics to define artificial stimulation patterns for their

upper limb muscles.

The measured movement was divided into 3 phases (Figure 2.1):

a) lifting phase: The individual was instructed to lift his arm from the initial

position to reach and grasp the object on the lower level of the desk and had to lift

it. After that he had to place the object onto the upper level and finally release it

and move the arm back to the initial hanging position.

b) pause: In the second phase, the arm remained in the hanging position taking a

short pause (2-5sec).

c) putting-down phase: In this phase, the individual had to lift his arm to reach the

object on the upper level of the desk, grasp it and then put it back down to the

lower level, release the object and move the arm back to the starting position

again.

DOI:10.15774/PPKE.ITK.2012.004



19 Neuromorphic Modeling of Reaching Arm Movements

The entire task was repeated ten times: 10 lifting and 10 putting-down trials were

recorded under each condition. Individuals had one-minute pause between series of trials

with different conditions. The effect of fatigue was not investigated and the influence of

it was blocked by selecting the execution order of the different objects randomly.

Instructions on the speed of movement execution were not given. The average movement

execution time was 7.5 s ± 1.3 s (mean ± SD). Revealing the difference (if there were

any) between females and males was not the scope of the study.

Figure 2.1. Stick figure of the measured movement represented by the Zebris (Zebris CMS 70P, Zebris

Medical GMBH, Germany)interface.

Upper panel: A lifting phase is presented from the initial position (t=0; the arm was hanging alongside the

body) through grasping and lifting (to the upper level) the object to moving back the limb again to the

initial position.

Lower panel: A putting-down phase is presented from the initial position (t=0) through grasping and

putting-down (to the lower level) the object to moving back the limb again to the initial position.

The green arrows show how the vertical direction was changing during the execution of the motor task.
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II.1.2. Data Processing

II.1.2.1. Kinematic Data Processing

In the first and the third phases of the movement task the object was moved

upwards or downwards, respectively (Figure 2.1). During these phases 3D coordinates of

7 anatomical points of the arm, a point of the object (Figure 2.2, panel A) and muscle

activities of 4 arm muscles were recorded (Figure 2.2, panel B, Table 2.1).

Kinematic data was divided into two parts according to the measured lifting and putting-

down phases.

Figure 2.2. A) Ultrasound markers placed on seven anatomical landmarks (Table 2.1, MARKER

CHANNEL 1-7) and on the actual object (Table 2.1, MARKER CHANNEL 8) moved by the individual.  B)

The activity of 4 arm muscles (Table 2.1, EMG CHANNEL I-IV) was measured by bipolar surface EMG

electrodes.  C) iU


vectors are segment vectors representing the clavicle  ( 2U


); the upper arm ( 1U


);  the

lower arm ( 3U


) and the hand( 4U


) used in data processing and in modeling. Green lines sign the

personalized limb geometry applied during the measurements and modeling (panels A and C) while the red

ones (panel B) denote the measured and modeled muscle geometry.
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Three dimensional inter-segmental joint angles were computed in the shoulder, elbow

and wrist joints. The inter-segmental joint angle in the elbow is the internal angle

between (Figure 2.3) the upper segment vector and lower segment vector ( 1U


and 3U


);

in the shoulder it is the angle between the clavicle vector and the upper segment vector

( 2U


and 1U


); while in the wrist it is the angle between the lower segment vector and

hand vector ( 3U


and 4U


). The instantaneous joint configuration (JC) is represented by

the set of these three joint angles.

TABLE 2.1.
ULTRASONIC MARKER AND EMG CONFIGURATION

MARKER CHANNEL EMG CHANNEL

1 Proximal Clavicle I Biceps (BI)
2 AC joint II Triceps (TR)
3 Proximal Humerus III Deltoid Anterior (DA)
4 Distal Humerus IV Deltoid Posterior (DP)
5 Distal Ulna
6 Distal Radius

7 Little finger Proximal Metacarp

8 Object point
Note. In the left column the names of seven bony landmarks (1-7) marked by
ultrasound markers (Figure 2.2, panel A) are summarized. In the right column the
names of muscles (Figure 2.2, panel B) that activities were recorded are
presented.
For detailed anatomical description of bony landmarks (1-7) and muscles (I-IV)
see Szentágothai and Réthelyi[69], [70].
Remark: MARKER CHANNEL 8 was assigned to the object moved by the
individual.
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Figure 2.3. The computed inter-segmental joint angles (green stick figure, blue joint angels) and segment

vectors (black stick figure; iU


vectors were composed according to Figure 2.2, panel C) used during data

processing in the global coordinate system. The x-axis is horizontal in the frontal plane directed outward

from the body, the y-axis is horizontal in the sagittal plane directed forward, and the z-axis is

perpendicular to the x-y plane directed upwards. The upper arm segment vector ( 1U


) pointed from the

shoulder joint (Proximal Humerus) to the elbow joint (Distal Humerus); the clavicle vector ( 2U


) pointed

from the shoulder joint to the thorax (Proximal Clavicle); the lower arm vector ( 3U


) pointed from the

elbow joint to the wrist (Distal Radius) and the hand vector  ( 4U


) pointed from the wrist (Distal Radius)

to the base of the little finger (Proximal Metacarp).

All kinematic data were linearly interpolated because at some time instants “not a

number” (NaN) 3D coordinate values were recorded as a result of ultrasound sensing

error. After interpolation time normalization was performed by the SPLINE built-in

function of the MATLAB (The MathWorks Inc., Natick, MA, USA) to allow trial

alignment within the same movement phases and object conditions (Figure 2.4).
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Figure 2.4. A) Raw elbow joint angular changes with a split (signed by the blue circle). B) Linearly

interpolated and time normalized elbow joint angular changes. Time normalization was performed by

using the spline built-in MATLAB function.  C) A short time split in raw elbow joint angle.

The same data processing method was applied for the shoulder and wrist joint angles (Figure 2.3, green

stick figure).

II.1.2.2. EMG Data Processing

EMG data were processed for both the lifting and putting-down phases

considering all four muscles.

First, sEMG data were filtered as is commonly used in kinesiological electromiography

[71-74]. Frequencies below 50 Hz and above 450 Hz were cut off by the MATLAB built-

in function (4th order Butterworth band-pass filter) and the root mean square (RMS) of

the smoothed signals were extracted. For smoothed sEMG signals (Figure 2.5) the same

time normalization was applied as in kinematics.

A

B

C
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Figure 2.5.  I-IV) Raw muscle activities measured by bipolar surface electrodes at 1000 Hz sampling rate

for the biceps (blue), triceps (green), deltoid anterior (red), deltoid posterior (light blue). RMS)

Butterworth and RMS filtered EMGs of the same muscles. Filtration was solved by applying 50 – 450 Hz

bandpass Butterworth filter and RMS. TN) Time normalized EMGs.

II.2. Prediction of Muscle Forces from Joint Coordinates

II.2.1. Prediction of Muscle Forces

A general 3D musculoskeletal upper limb model is presented. The model applies the

same coordinate system which is used by the usMA (Figure 2.3). The x-axis is horizontal

in the frontal plane directed outward from the body. The y-axis is horizontal in the

sagittal plane directed forward while the z-axis is perpendicular to the x-y plane directed

upward. Primary input parameters of the model are measured 3D coordinates of

anatomical landmarks (Table 2.1, MARKER CHANNEL 1-7). The time courses of inter-

segmental joint angles were computed from these coordinates (Figure 2.3). Secondary

input parameters of the model were arm segment masses, segment lengths estimated

from the height and body mass according to Zatsiorsky [75]. Muscle forces were

determined based on muscle moment arms, angular accelerations, moment of inertias of
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all arm segments and gravitational torque. If only one muscle is active at a time t, than

the torque generated by this muscle in the joint is computed as the difference of the total

torque and the gravitational torque [47], [48]:

( )

( )( ) ( ) ( ) ( ) ( )
joint

jointm m gF t R t t I t T t   
   

(2.1)

where ( )mF t


vector is the force generated by the muscle, ( )mR t


is the moment arm vector

of the muscle, ( )t


is the angular acceleration vector of the joint spanned by the muscle,
( )

( )
joint
I t is the moment of inertia, ( ) ( )jointgT t


is the gravitational torque vector due to the

rotated body part. Depending on the direction of the required torque either the flexor or

the extensor muscle group should be activated at each instant for an artificial control of

the joint torque. Such virtual muscle forces eliciting torque in the joint were predicted for

the 4 arm muscles separately (BI, TR, DA, DP) at each time step during the desired

movement.

II.2.2. Definition of Segment and Muscle Geometry

II.2.2.1. Definition of Segment Geometry

Using recorded 3D coordinates of 7 anatomical landmarks (Figure 2.2, panel A,

Table 2.1) 4 different 3D segment vectors were defined representing the clavicle ( 2U


);

the upper arm ( 1U


); the forearm ( 3U


) and the hand ( 4U


) (Figure 2.2, panel C, Figure

2.3).

II.2.2.2. Definition of Muscle Geometry

In the simulation approach muscle attachment sites – either the origin or the

insertion – were assumed as three dimensional points on the surface of the given bone

segment. A muscle is represented by its midline that connects its insertion and origin on

two different segments. To build an accurate muscle geometry “via points” (ViaPx,y,z) –

which are  certain 3D points located on the bisectrix vector of the joint spanned by the
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investigated muscle – were defined to build up the connection between the specific

muscle origin and insertion located in different planes. In general, the 3D coordinates of

the muscle attachments for the studied muscles were computed in 2 major steps. In the

first step a virtual subject was created (next subsection) with virtual body parameters

(segment length) based on the study using fresh cadavers by Veeger et al. [76]. In the

study of Veeger et al. [76] muscle attachments were originated for the whole upper limb

by disarticulating first the arm from the thorax and then by using the 3SpaceTM system

[77] to collect three dimensional position and orientation data of the muscle attachment

sites in different postures. On the one hand by using the data provided by Veeger et al.

[76] muscle origin and insertion points are located on the midline of the bone segment

and on the other hand accurate locations of muscle attachments are available only for the

initial position (the arm was hanging alongside the body) of the measured movement. To

avoid this, in the second step origin and insertion direction vectors were obtained (Figure

2.7). To get the spatial locations of the investigated muscle attachments for the entire

movement and not only for the initial position the rotation method of Rodrigues was

applied to rotate the direction vectors by a certain rotation angle.

Muscle Geometry – Creation of the Virtual Subject

In the study of Veeger et al. [76] the disarticulated upper extremity was mounted

on a measuring board and markers of the 3SpaceTM measurement system were placed on

the humerus (EL – epycondilus lateralis), ulna (US – processus styloideus ulnae) and

radius (RS - processus styloideus radii). To get the position and orientation of the scapula

the Angulus Acromialis (AA), the Angulus Inferior (AI), the Trigonum Spinae (TS) and

the Acromion (AC) were marked as well. The global reference frame of these

measurements had the z-axis pointing upward, the x-axis was parallel to the surface of

the measuring board pointing to the lateral side of the specimen, and the y-axis pointing

from the posterior surface to the anterior surface of the scapula. The spine of the scapula

was approximately parallel to the x-axis. This global coordinate system was the same

used in the biomechanical measurements described previously. Based on the 3D

coordinates given in the study of Veeger et al. [76] (Table 2.2) the virtual subject was

obtained (Figure 2.6).
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TABLE 2.2.
3D COORDINATES OF THE VIRTUAL SUBJECT

Joint/muscle attachment x y z

AC 252.9 12.8 409.6

EL 307.5 -11.3 51.8

US 322.1 68 -216

BIO (origin) 237 18.1 381.8

BII (insertion) 287.4 19.2 0.6

TRO (origin) 239.7 19.6 345.3

TRI (insertion) 259.5 -35.3 50.8

DO (deltoid origin) 242.7 55.4 393.3

DI (deltoid insertion) 257.2 6.4 207

Note. 3D coordinates published by Veeger et al. [76]. The global coordinate system applied by Veeger et
al. was the same as presented in Figure 2.3. Here, AC represents the AC joint (ultrasound marker 2 in the
measurement, according to Figure 2.2, panel A), EL is the elbow joint (ultrasound marker 4 in the
measurement according to Figure 2.2, panel A) and US is the wrist (ultrasound marker 6 in the
measurement according to Figure 2.2, panel A).BIO is the biceps origin, BII is the biceps insertion, TRO
is the origin of the triceps, TRI is the insertion of the triceps, DO is the origin of the deltoid muscles, DI is
the insertion of the deltoid muscles. Although the deltoid anterior and posterior muscles were discerned,
the insertion and origin of the two parts of these muscles were overlapping [78].

Figure 2.6. Virtual subject based on cadaveric measurements of Veeger [76]. Anatomical sites denoted by

bold are taken into account in the model (AC,EL,US,DA-DP,BI,TR). AC, AA, TS, AI define the geometry of

the scapula although it was omitted from the study. The clavicle was not part of the study of Veeger. Based

on the measurements done in the NIMR the clavicle was added to the virtual subject with a mean segment

length.
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Since the clavicle had been omitted from the study of Veeger et al. [76] the mean

clavicle length was composed by using the measurements that had been acquired in the

NIMR. For each individual the length of the clavicle was determined by calculating the

length of the three dimensional clavicle vector ( 2U


). After this the average clavicle

length of all participants was taken. To know the length of the clavicle was a must

because the origins of the biceps (longer head of the biceps muscle) and the deltoid are

located on this segment.

Muscle Geometry – Computation of Spatial Muscle Attachments

Using the segment and muscle parameters of the virtual subject (Figure 2.6, Table

2.2) the muscle attachment vectors ( tBIO


– biceps origin, tBII


– biceps insertion,

tTRO


– triceps origin, tTRI


– triceps insertion, tDO


– deltoid origin, tDI


– deltoid

insertion at each time (t) step) were composed pointing from the joint that was the center

of rotation to the certain muscle attachment (Figure 2.7).

Figure 2.7. Muscle attachment vectors ( t t t t t tBII ,BIO ,TRI ,TRO ,DI ,DO
     

). Vectors represented by

black are muscle attachment vectors at a certain time step (t) pointing from the joint that is the center of

rotation of the segment containing the specific muscle attachment. Green lines are segments omitted from

the model; Blue lines are segments taken into account in the model.
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The endpoint of muscle attachment vectors were then projected onto the midline of the

bone segment. The length of the projected muscle attachment vectors were obtained for

the initial time instant (t=0) of the measured movement. Using the length of the projected

muscle attachment vectors and the length of the midline of the segment the ratio was

composed for the virtual subject representing the relation of the muscle attachment

vectors to the segment vectors containing the specific attachment. As a result, the spatial

location of muscle attachments on the midline of the segment was obtained for the initial

position (the arm was hanging alongside the body).

Muscle attachments located on the surface of the bone were originated for the whole

movement time interval by using the rotation formula of Rodrigues which is a general

tool for rotating a certain vector in the 3D space around an arbitrary rotation axis (z is a

unit vector of 3z R ) by a given angle of rotation ().

Figure 2.8. Anatomical landmarks (T – thorax; S – shoulder; E – elbow; W - wrist); muscle attachments of

the biceps (BIO - origin; BII - insertion); unit muscle attachment vectors ( uBII, uBIO,
 

) used in the

rotation method of Rodrigues during the calculation of the biceps attachments located on the surface of the

bone are presented at two successive time instants (t and t+1). The rotation method was applied to

determine muscle insertions and origins for not only the initial position (t=0) but for the whole movement

interval as well.

DOI:10.15774/PPKE.ITK.2012.004



Neuromorphic Modeling of Reaching Arm Movements 30

Initial (t=0) muscle insertion and origin points were calculated as written above [79].

Equations (2.2) - (2.5) were applied to calculate biceps insertion and origin at each time

step (Figure 2.8).

T
t 1 t (e)t t t (e)t t t t (e)tuBII uBII cos (z uBII )sin z z uBII (1 cos ))          

   
(2.2)

In equation (2.2) the unit muscle attachment vector ( tuBII


) at time t was rotated about

the elbow rotation axis (zt) determined by the cross product of the two adjacent segments

(in this case the upper segment and lower segment) by (e)t angle of elbow rotation in

ordertodetermine the unit muscle attachment vector ( t 1uBII 


) at time t+1.

(e) t t 1 t(E ) (E )    (2.3)

In (2.3) the angle of elbow rotation ( (e)t ) was determined by subtracting the inter-

segmental joint angle of the elbow at time t ( t(E ) ) from the inter-segmental elbow joint

angle at time t+1 ( t 1(E ) ).

t 1 t 1 t 1 t 1 t 1BII E BII E uBII      
 

(2.4)

In (2.4) the muscle attachment vector ( t 1 t 1BII E 


) pointing from the elbow joint (Et+1) to

the biceps insertion (BIIt+1) at time t+1 was computed by multiplying the unit muscle

attachment vector of the biceps insertion ( t 1uBII 


) at t+1 by the length of the muscle

attachment vector ( t 1 t 1BII E  ) at time t+1.

To compute the spatial coordinates of the biceps insertion ( t 1OnBoneSurf _ BII  ) at time

t+1 located on the surface of the lower limb segment, the elbow joint coordinates (Et+1) at

t+1 were added to the muscle attachment vector ( t 1 t 1BII E 


) at time t+1 (Equation 2.5).

t 1 t 1 t 1 t 1OnBoneSurf _ BII BII E E    


(2.5)
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The same method as written above (Equations 2.2 – 2.5) was applied for calculating the

attachments (Figure 2.9) of the triceps; deltoid anterior; deltoid posterior by replacing the

rotation axis; the rotated unit vector and the angle of rotation to proper ones related to the

specific muscle.

Figure 2.9. In panel A) and B) 3D muscle attachments are presented for the biceps (BIOt), the triceps

(TROt, TRIt) and deltoid (DOt, DIt) muscles. The insertion of the biceps (BIIt) was covered by either the

lower segment or the triceps in both spatial view (in panel A and B). Red lines represent the midline of

muscles; green lines represent the midline of bones.

Note: The insertion and origin of the DA and DP are considered to be overlapped [78], [80].

II.2.2.3. Calculation of the Angular Acceleration

Angular acceleration - also called rotational acceleration - is in general a

quantitative expression of the change in angular velocity that a spinning object undergoes

per unit time. The angular acceleration ( ( )t


) is a vector quantity, consisting of a

magnitude component and the direction of the vector component. Generally, the direction

of the angular acceleration vector is perpendicular to the plane in which the rotation takes

place. If the increase in angular velocity appears clockwise with respect to an observer,

then the angular acceleration vector points away from the observer. If the increase in

angular velocity appears counterclockwise, then the angular acceleration vector points
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toward the observer. Thus, the angular acceleration vector does not necessarily point in

the same direction as the angular velocity vector especially not in the 3D space.

Consider a car travelling forward along a highway at an increasing speed. The 3D

angular acceleration vectors for all tires point toward the left along the lines containing

the wheel axles (axis of rotation). If the car stops accelerating and maintain a constant

velocity the 3D angular acceleration vectors break off. If the car goes forward at a

decreasing speed, the vectors reverse their directions, and point toward the right along

the lines containing the wheel axles.

Theoretically, if the car is put into reverse and increases velocity going backwards, the

3D angular acceleration (3DAA) vectors point toward the right along the axis of rotation.

If the backward velocity is constant, the 3D angular acceleration vectors disappear and

obviously if the backward velocity decreases, the 3D angular acceleration vectors point

toward the left along the axis of rotation of the wheels.

The magnitude of the angular acceleration vector ( (t) ) is directly proportional to the

rate of change of the angular velocity and it is calculated by the second time derivative of

the inter-segmental joint angle (joint(t)) of the specific joint.

2
joint

2

d (t)
(t)

dt


  (2.6)

The direction of (t)


is perpendicular to the plane of rotation defined by two adjacent

segments. The right side of this plane is assigned by the cross product of the unit vector

pointing from the joint to the direction of the distal limb segment and the unit vector

pointing from the joint to the direction of the proximal one. If its scalar product with a

particular vector is positive then that vector is directed to the right of the plane.

According to the car analogy if joint (t) was decreasing (flexion) at a magnitude of

(t) 0  (Figure 2.10, case a)) then the angular acceleration vector pointed toward the

left of the plane of rotation. In this case the speed of the flexion was decreasing.

During flexion at a magnitude of (t) 0  (Figure 2.10, case c)) the angular acceleration

vector pointed toward the right of the plane, while the speed of the flexion was

increasing. Note that flexion was associated with negative angular velocity and its speed

was the absolute value of the angular velocity.
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If joint (t) was increasing (extension) at (t) 0  (Figure 2.10, case b)) then the

acceleration vector pointed toward the right of the rotation plane while during extension

at (t) 0  (Figure 2.10, case d)) it pointed toward the left of that plane. Angular changes

at constant velocity were not observed.

Figure 2.10. The direction of the angular acceleration vector in the 3D space. Considering how the joint

angle was changing (increasing-decreasing joint angle) - panel A – and the rate of change of the joint

velocity (acceleration) - panel B - the direction of the angular acceleration vector coincide with 4 cases

assigned by a-d presented in panel C. In a) decreasing elbow angle at decreasing speed; b) increasing

elbow angle at increasing speed; c) decreasing elbow angle at increasing speed; d) increasing elbow angle

at decreasing speed are presented. The same is true for the shoulder joint. Filtration during the calculation

of the magnitude of the angular acceleration was solved by applying moving average.

II.2.2.4. Determination of the Moment Arm

The moment arm (MA) vector is perpendicular to the line of action of the muscle

and it points from the muscle action line to the axis of rotation.

DOI:10.15774/PPKE.ITK.2012.004



Neuromorphic Modeling of Reaching Arm Movements 34

The moment arm calculation method in the shoulder extensor is presented in (Figure

2.11) and is written in equations (2.7) – (2.8). Theoretical moment arms for the other

muscles are also shown in (Figure 2.11) signed by black vectors. Furthermore, in the

elbow and in the shoulder joints muscle pulleys were defined. The diameter of these

muscle pulleys were set to 10 mm. The effect of the muscle pulleys occur if the

magnitude of the MA vector is equal to the pulley radius and the muscle line touches the

curve of the pulley. In such a state the MA vector is directed from the point where the

muscle reaches the curve of the pulley to the center of rotation. However, such muscle

geometries were not present during the simulation.

As it was written above, a muscle was represented by its “midline” that connected its

attachment sites in two segments via a given point (“via point”). The geometry of the

muscle was provided as two lines originating on the proximal O(t)x,y,z and distal I(t)x,y,z

segments respectively and were connected at the via point ViaP(t)x,y,z.  The via point was

on the bisectrix vector ( )F t


of the joint angle.

Figure 2.11. Origin and insertion points (O(t)x,y,z and I(t)x,y,z); auxiliary vectors ( ( )F t


, ( )Extensor t


);

segment vectors( 1U


, 2U


) used in the computation of the DP moment arm. Black vectors denote the

muscle moment arm vectors for the investigated muscles at specific muscle geometries (dashed red lines).

Blue circles are muscle pulleys. The diameter of these muscle pulleys were set to 10 mm. The effect of the

muscle pulleys would occur if the magnitude of the MA vector was equal to the pulley radius and the

muscle line touched the curve of the pulley. In such a state the MA vector would be directed from the point

where the muscle touched the pulley curve to the center of rotation. Such muscle geometries were not

present during the simulation.
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If the distance of ViaP(t)x,y,z and I(t)x,y,z was greater than the distance of the via point and

O(t)x,y,z then point P(t)x,y,z was determined as:

x,y,z temp x,y,zP(t) (Extensor(t) dot(v (t),Extensor(t)) O(t)  
  

(2.7)

Given J(t)x,y,z as the measured 3D coordinates of the joint spanned by the investigated

muscle then:

m x,y,z x,y,zR (t) J(t) P(t) 


(2.8)

In equation (2.8) St as shoulder joint coordinates, Et as elbow joint coordinates and Wt as

wrist joint coordinates at time t were assigned to J(t)x,y,z .

The similar algorithm as presented above was used for calculating the moment arm

vector of the shoulder flexor using the unit vector ( ( )Flexor t


) pointing along the midline

of the flexor muscle. An obvious fact is that the geometry of the biceps is similar to the

geometry of the triceps although the previous one is an extensor while the latter one is a

flexor muscle with completely different functions (Figure 2.11).

II.2.2.5. Definition of the Moment of Inertial Properties

In classical mechanics, moment of inertia (MoI) or rotational inertia is the

measure of the resistance of an object to changes to its rotation. It is the inertia of a

rotating body with respect to its rotation. The moment of inertia of a certain object about

a given axis describes how difficult it is to change its angular motion about the given

axis. Therefore, it encompasses not just the overall mass of the object, but how far each

bit of mass is from the axis. Thus, the farther the bit of mass of the object is, the more

rotational inertia the object has and therefore the more force is required to change its

rotation rate.

A good example is to consider two discs (A, B) made of the same material with equal

mass. Disc A is larger in diameter but it is thinner than disc B. Hence, it requires more

force to accelerate disc A (to change its angular velocity) because its mass is distributed
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farther from its axis of rotation. In that case disc A has a larger moment of inertia than

disc B. From this example it can be figured out that the moment of inertia of an object

changes with the change of its shape. There is a good example in sport sciences to prove

this fact when for instance figure skaters begin a spin with arms outstretched providing a

striking. If they pull in their arms, they will reduce their moment of inertia resulting a

faster spin about their axis of rotation.

In general the moment of inertia has two different forms. A scalar form used if the axis of

rotation is well defined and a more general tensor form that does not require the axis of

rotation to be specified. In the presented model the axis of rotation of all segments are

specified by taking the cross product of two adjacent unit segment vectors thus the scalar

form of MoI was taken for the entire upper limb. To determine the MoI for all the rotated

body parts of the arm a general property of the scalar MoI form was used. Namely, the

moment of inertia of a given body is additive. That is, if the body can be decomposed

into several constituent parts, then the moment of inertia of the whole body about a given

axis is equal to the sum of moments of inertia of all parts around the same axis.

According to the so-called parallel axis theorem the MoI of an object about the rotation

axis going through its center of mass is the minimum MoI for an axis in that direction in

space and furthermore the MoI about any parallel axis to that axis through the center of

mass was given by:

2
parallel cmI I Md  (2.9)

where Icm is the moment of inertia about the center of mass, M is the mass of the

segment, d is the distance between the axis through the center of mass and the parallel

axis through the rotation center.

Arm segments were considered as uniform cylinders with different thickness. The

moment of inertia about the center of mass of the rotated segment is:

( )
2 21 1

4 12

segment

center
Mr MLI   (2.10)

The moment of inertia around the end of the rotated segment is:
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( )
2 21 1

4 3

segment

end
Mr MLI   (2.11)

where r is the radius, L is the length of the segment. The length of the upper segment,

lower segment, hand segment was originated by the length of the segment vectors

(Figure 2.2, panel C) respectively. The radius values of the same bone segments were set

to be ru=0.05 m, rl=0.04 m, rh=0.04 m where u, l, h denote the upper segment, lower

segment, hand segment respectively.

Figure 2.12. Distances between the center of mass of particular upper limb segments and the rotation

centers (in the shoulder and elbow joints) used in the MoI calculation method. Green lines are the

segments of the arm. St – shoulder; Et – elbow; Wt – wrist are anatomical landmarks while the little finger

Proximal Metacarp (Table 2.1, MARKER CHANNEL 7) is denoted as the endpoint.

In summary, the moment of inertia of the rotated upper limb around the shoulder if the

object was not in the hand is defined by:

( ) ( ) ( ) ( )
2 2( ) ( ) ( )

S U L H

L H
end center center

t M A t M B tI I I I     (2.12)

where (U), (L) and (H) refer to the upper arm, lower arm and the hand

respectively, )( tA is the distance between the rotation axis of the shoulder and the center

of mass of the lower arm, )( tB is the distance between the rotational axis of the

shoulder and the center of mass of the hand (Figure 2.12).
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Moment of inertia around the elbow joint when the load was not held is calculated as

follows:

( ) ( ) ( )
2( ) ( )

E L H

H
end center

t M C tI I I   (2.13)

where )( tC is given by the distance between the rotation axis of the elbow and the

center of mass of the hand (Figure 2.12).

In equations (2.10) – (2.11) the moment of inertia of elementary limb segments

considered as uniform cylinders are given. In equations (2.12) – (2.13) the moment of

inertia of all segments rotated around the shoulder and the moment of inertia of the lower

segment and the hand rotated about the elbow joint are determined respectively taken the

fact into account that in both cases the object to be moved was not the part of the

kinematic chain since it was not in the hand of the individual.

In order to get the moment of inertial properties of the entire kinematic chain - when the

object was added - first the detection of the duration of the holding the object time

intervals had to be found for each subject individually for all trials.

Figure 2.13. Detection of the holding periods for all trials. The threshold was assessed as the minimal

distance between the markers (Table 2.1, MARKER CHANNEL) number 7 (marker on the Proximal

Metacarp) and 8 (marker on the object moved by the individual) plus 25 mm to avoid measuring

inaccuracy. Variation in holding time period was handled by the time normalization of each detected

holding.
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The detection was done by using the distance between the marker placed on the little

finger (Figure 2.2, panel A, marker 7) and the marker on the actual object (Figure 2.2,

panel A, marker 8). Holding time interval within a trial was started if the distance

between the base of the little finger and the object was smaller than a threshold. The

threshold was assessed during the trial as the minimal distance between the two markers

(Figure 2.2, panel A, markers 7 and 8) plus 25 mm to avoid any measuring inaccuracy

(Figure 2.13). Holding was considered to be finished if the distance was greater than the

threshold after detecting the start of a holding time interval. The duration of detected

holding intervals were highly varied either across trials or across individuals. For further

analysis time normalization of each holding period was performed.

The object was considered as a solid cylinder (a disc) and its moment of inertia was

calculated by:

( )
21

2

object

object objectI M r (2.14)

where Mobject is the mass of the object and robject is the distance of its center of mass from

the rotation center. According to the measurements, three different Mobject conditions

were defined. Therefore in the three cases Mobject was set to be equal to 0.06, 1, 2

according to the mass of the actual object respectively. The radius of all objects was set

to be equal to 0.06 m.

If the object was in the hand then the moment of inertia for the whole kinematic chain

was calculated as the sum of (2.12) and (2.14) plus the square of the distance between the

center of mass of the object and the rotation center (Figure 2.12, D(t)) multiplied by the

mass of the object while for the rotation of the elbow and the hand
( )

( )
E

tI was calculated

as the sum of (2.13) and (2.14) plus the square of the distance between the center of mass

of the object and the rotation center (Figure 2.12, E(t)) multiplied by the mass of the

object.

II.2.2.6. Gravitational Torque

Gravity is a natural phenomenon by which physical bodies are attract with a force

proportional to their mass. Thus, if we would like the presented musculoskeletal model to
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be used under terrestrial conditions then the effect of the gravity must be taken into

account. According to equation (2.1) the gravitational torque vector ( ( ) ( )jointgT t


) is

subtracted in each time step from the torque generated by the given joint. The magnitude

of the gravitational torque vector was computed by multiplying the magnitude of the

gravitational force vector (Figure 2.14, vectors signed by red dashed line) pointing from

the center of mass (CoM) of the rotated segments to the ground by the magnitude of the

gravitational moment arm (Figure 2.14, black dashed lines). The magnitude of the

gravitational torque vectors are given by the equations (2.15) and (2.16) for the shoulder

and elbow joints respectively.

Figure 2.14. Schematic figure for representing the direction (perpendicular to the gravitational force) of

the gravitational torque (orange vectors) vectors. The magnitude of the gravitational torque vectors are

computed by multiplying the magnitude of the gravitational moment arm vectors ( ( )
( )

jointg
R t


) by the

magnitude of the gravitational force vectors ( ( ) ( )jointgF t


), (Equations (2.15-2.16)). The magnitude of

the gravitational moment arm vector is assigned by black dashed lines while the gravitational force is

signed by the vectors drawn by red dashed lines pointing from the center of mass (CoMi,j) of the rotated

part of the arm. Here, i and j are variables between 1≤ (i,j) ≤3 numbering the three different segments

(upper arm, lower arm and hand respectively). CoM13 is the center of mass of all upper limb segments

rotated around the shoulder joint, while CoM23 defines the CoM of the lower arm and hand segments

rotated about the elbow joint.
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( )( ) ( )( ) ( ) ( )
g shoulderg shoulder g shoulderT t R t F t 

  
(2.15)

( )( ) ( )( ) ( ) ( )
g elbowg elbow g elbowT t R t F t 

  
(2.16)

The direction of the gravitational torque was perpendicular to the force caused by the

gravity and it pointed from the rotation center along the x axis in the negative direction

(Figure 2.14, orange vectors). To determine the magnitude of the gravitational moment

arm (Figure 2.14, black dashed lines) of the rotated body segments first the center of

mass of the segments was given by:

, 1

1( ) ( )


  j
i j i ii

CoM t m s t
M (2.17)

Here, i and j indexes are variables between 1≤ (i,j) ≤3 numbering the three different

segments (upper arm, lower arm and hand respectively) used in the model. Thus, CoM13

is the center of mass of all upper limb segments rotated around the shoulder joint, while

CoM23 defines the CoM of the lower arm and hand segments rotated about the elbow

joint. Furthermore, M refers to the sum of the segment masses (mi) while si(t) assigns the

3D coordinates of the CoMs of the individual segments located on the half of the

particular segment. In this context the gravitational moment arm was the length of the

perpendicular projection of the shoulder and elbow joints to the line going through

CoM13 or CoM23 respectively which were parallel to the z axis.

3

( )
1

( )g shoulder i
i

F t m g





(2.18)

3

( )
2

( )g elbow i
i

F t m g





(2.19)

In equations (2.18) – (2.19) the calculations of the magnitude of the gravitational force

vectors for the shoulder and elbow joints are written respectively.
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II.2.2.7. Defining Biomechanical Properties

Muscle fibers generate tension through the action of actin and myosin cross-

bridge cycling. While under tension, the muscle may lengthen, shorten or remain at the

same length. Voluntary muscle contraction is controlled by the central nervous system.

Voluntary muscle contraction occurs as a result of conscious effort originating in the

brain. If the goal (for instance a movement to execute) is known for the CNS it makes a

plan to execute the desired movement. This plan is referred as the motor command. The

brain sends the motor command to the spinal cord in the form of action potentials,

through the nervous system to the motor neuron that innervates several muscle fibers.

The -moto neuron located in the ventral horn of the spinal cord generates action

potentials and send them to the innervated muscle fibers. The stimulated muscle fibers

then exert a contraction and the muscle force required to generate the desired torque is

exerted. The amount of the force exerted by the muscle fibers primarily depends on the

stimulation frequencies and the characteristics of particular muscle fibers composing the

muscle itself. Such characteristics are the force-length relationship and the force velocity

relationship.

The previous one also called the length-tension curve relates the strength of an isometric

contraction to the length of the muscle at which the contraction occurs. In general,

muscles operate at highest active force when close to an ideal length (often their resting

length). When stretched or shortened beyond this, whether due to the action of the

muscle itself or by an outside force, the maximum active force decreases [81]. This

decrease is minimal for small deviations, but the force decreases rapidly as the length

deviates further from the ideal. As a result, in most biological systems, the range of

muscle contraction will remain on the peak of the length-tension curve, in order to

maximize contraction force. Due to the presence of elastic proteins within a muscle (such

as titin), as the muscle is stretched beyond a given length, there is an entirely passive

force, which opposes lengthening.

The latter one, the speed at which a muscle changes length also affects the force a muscle

can exert. Force declines in a hyperbolic way relative to the isometric force as the

shortening velocity increases, reaching zero at some maximum velocity. The reverse

holds true for when the muscle is stretched. The force increases above isometric

maximum, until finally reaches an absolute maximum. This fact has strong effects for the

rate at which muscles can perform mechanical work. Since power is equal to force
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multiplied by the velocity, the muscle generates no power at either isometric force (due

to zero velocity) or maximal velocity (due to zero force). Instead, the optimal shortening

velocity for power generation is approximately one-third of maximum shortening

velocity.

Both fundamental biomechanical properties of muscles have several biomechanical

consequences including limiting running speed, strength, and jumping distance and

height. The force–length relationship is built in the presented model which uses

exponential equations for generating the active and passive force-length characteristics

based on data adopted from the literature.

Active-Passive Force-Length Relation

In 1938 among others Hill [81] proved that the force a muscle can exert is given

by the sum of the active force (Fa(l)) and passive force (Fp(l)).

Fa(l) is the force generated by the muscle compartment while Fp(l) is resulted by

connective tissues and tendons attaching the muscle to the bone surface. The

biomechanical function determines how the active and passive components of the exerted

force acted during the investigated movement using only computed muscle length

determined by the personalized muscle geometry presented in the above subsections.

Active and passive force components of the biceps (BI), triceps (TR), deltoid anterior

and posterior (DA, DP) were determined separately.

Muscle length for each time instant was computed by using previously determined 3D

muscle attachments originated on bone surfaces.

Active and passive characteristics of muscles were determined based on the following

studies [82-85].

According to Woittiez et al., [82], [83] the unique characteristics of a muscle structure

can be represented by the index of architecture (ia). It is calculated as the ratio of a single

muscle fiber length to muscle belly length. Muscle belly length is defined as the distance

between the proximal and distal tendon of the selected muscle.

Active and passive force-length relationships were characterized by the following

exponential equations:
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   

 

20.96343 1 1/1 1
( , ) exp

0.35327 1

ia

aF ia
ia




       
     

(2.20)

4.911( , ) 0.0195 exp 2.933pF ia
ia

          
(2.21)

where Fa(,ia) is the normalized muscle tension;  Fp(,ia) is the normalized passive

muscle force.  is the muscle strain computed as (L(t)-Lo)/Lo. Here L(t) denotes the

muscle length at an arbitrary time instant and Lo is the optimum muscle length where the

muscle is able to generate the peak force.

Lo were set as follows:

max( ) min( )min( )
2

a a
o a

L LL L     
 

(2.22)

In this context La denotes the anatomical limits of muscle length of the investigated

muscle. Thus, in order to compute the optimum muscle length of the certain muscle first

the anatomical minimum (min(La)) and maximum (max(La)) muscle length must be

determined using the given muscle geometry of the actual individual. In order to

determine the anatomical muscle limits of the biceps and the triceps the elbow joint must

be either fully outstretched or fully extended. In the previous case the inter-segmental

joint angle of the elbow is about 180o while in the latter one the inter-segmental elbow

angle reaches approximately 20o. The problem is that such angular postures were not

reached by either of the participated individuals. Hence, the previously presented rotation

method of Rodrigues was applied to virtually produce the mentioned maximum and

minimum angular ranges.

In the case of the elbow joint the lower arm segment vector was rotated around the axis

of rotation (the cross product of the lower segment and the upper arm segment vectors)

until the inter-segmental joint angle reached the desired posture. If the desired posture
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was reached the length of the muscle was obtained considering the given muscle

geometry. Using this method, in the fully extended elbow joint the maximum and

minimum anatomical length of the biceps and the triceps were determined respectively

while at the fully extended elbow posture the minimum and maximum biceps and triceps

lengths were computed. In the case of the shoulder anatomical minimum and maximum

muscle lengths were assumed to be equal to the minimum and maximum muscle lengths

achieved by the shoulder muscles.

TABLE 2.3.
INDEX OF ARCHITECTURE VALUES ADOPTED FROM THE LITERATURE

BI TR DA-DP

ia 0.67 0.39 0.7
Note. Index of architecture is the unique measure of muscles with different structures [82], [83]. It
is calculated as the ratio of a single muscle fiber length to muscle belly length. Ia. was used to

define the active ( ( , )aF ia ) and passive force ( ( , )pF ia ) as the function of muscle strain
according to equations (2.20)-(2.21) respectively.

Index of architecture values of all investigated muscles were adopted from the literature

(Table 2.3). BI ia was determined from Chang et al. [85]; TR ia was applied according to

Friden and Lieber [86]. DA and DP index of architectures were set to be equal [87]

because these two different parts of the deltoid muscle are pretty similar and strap-like

[78], [80]. Index of architecture values are summarized in (Table 2.3). Using ia

parameters and equations (2.20) – (2.22) the following biomechanical muscle

characteristics were established.
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Figure 2.15. Normalized active (Fa(l)) and passive force (Fp(l))length relations for the investigated

muscles. Note that in the case of the deltoid muscle the two different compartments (DA, DP) of the muscle

were regarded to have the same structure.

Figure 2.16 summarizes the major steps of the development of the presented

biomechanical model in the form of a block diagram.
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Figure 2.16. Block diagram of the joint torque and muscle force calculation method presented in this

subsection. Input parameters of the model were 1) measured joint coordinates 2) muscle attachment

parameters published by Veeger et al. [76] 3) biomechanical parameters of muscles (index of architecture,

active (Fa(l)) and passive force (Fp(l)) length relations). In the hidden layer personalized segment geometry

(segment vectors); personalized muscle geometry (3D muscle attachments located on the surface of the

bone) were defined. Output parameters were joint torque of the shoulder and the elbow; muscle force of

the biceps (BI), triceps (TR), deltoid anterior (DA) and deltoid posterior (DP).
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II.3. Variance Analysis of Motor Control Levels

To study how particular motor control levels are affected under changing

conditions (different object masses) variance analysis of kinematics and muscle activities

were performed for the individuals (N=20; aged 21-25; mean±SD.: 21.1±1.9)

participated  in the biomechanical study summarized in this chapter. In the analysis 4

different motor control levels were discerned:

1) endpoint of the limb (EP)

2) joint configuration (JC)

3) surface electromyogramm (EMG)

4) predicted muscle forces (FORCE)

The variance analysis contained only two object conditions corresponding to the lightest

(CD case; 0.06 kg) and the heaviest (O2; 2 kg) object masses.

II.3.1. Calculation of Variances of Motor Control Levels

The stability of the movement can be represented by calculating variances where

the variance is used as the measure of how far a set of numbers are spread out from each

other or in other words it describes how far the numbers lie from the mean (expected

value). The calculation of the variance is given by:

    222 2( )Var X E X E X E X           (2.23)

If the variance of random variables, for instance muscle forces, is high than in the sense

of motor control the exerted force differs from the average in a higher manner since the

muscle force values lies far from the mean muscle forces.

Time normalized (1 ≤ t ≤ 100) variances of ten repetitively executed trials were

calculated for the two conditions: 1) without load (CD case; 0.06 kg) 2) with load (O2; 2

kg) during lifting (UP) and putting-down (PD). In both object conditions the variances

were computed for:
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A) the whole time interval of the lifting and putting-down,

B) the interval while the object was held in the hand  (the holding)

for the above mentioned motor control levels such as the endpoint of the limb (EP) and

joint configuration (JC) as kinematic levels and measured EMG and predicted muscle

forces regarded as muscle activity levels.

As a consequence of the holding time interval every measured trial was divided into 3

time intervals (Figure 2.13). The first part was the time elapsed from movement initiation

to the instant when the hand reached the object. This is the so-called pre-holding period.

The second period was the time interval in which the object was held in the hand

(holding) while the third part started when the individual released the object and ended

when the arm was replaced to its initial position. This was the post-holding period.

The variance of the endpoint is determined by using the measured spatial coordinates of

the ultrasonic marker placed on the little finger Proximal Metacarp (Figure 2.2, panel A,

Table 2.1, [70]). Endpoint variances were determined as the sum of separately computed

variances of the 3 coordinates of the endpoint position.

; ;i xi yi zic c c c    (2.24)

First an EP vector (equation 2.24) was created by using the x,y,z coordinates (cxi,cyi,czi

respectively) of marker 7. Here, i denotes the serial number of the actual trial. Since each

condition was measured ten times in both lifting and putting-down i has a minimum

value of  1 and a maximum value of n where n  denotes the maximum number of the

trials (n =10).

1 1 1; ;
1 1 1

n n n

xi yi zi
i i i

c c c
c

n n n
  

 
 
 

   
  

  
(2.25)

In the next step by using the EP vector ( ic ) the average EP vector ( c ) was obtained

based on all measured trials in both lifting and putting-down.
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 
2

2 1

1

n

i
i

EP

c c

n
 






 (2.26)

Finally, the square deviation of the endpoint coordinates was computed based on

equation (2.26).

Joint configuration variances (arm configuration variances) were obtained as the sum of

separately computed joint angle variances. To determine the variance under different

object conditions for the joint configuration, first i JC vector was obtained by using the

shoulder inter-segmental joint angle Shoulder)i (the joint angle determined by 1U


and 2U


segment vectors); elbow inter-segmental joint angle Elbow)i (the joint angle computed

from the 1U


and 3U


segment vectors) and the inter-segmental joint angle in the wrist

Wrist)i (defined by 3U


and 4U


segment vectors) where i assigns the number of the

actual trial.

( ) ( ) ( ); ;i Shoulder i Elbow i Wrist i       (2.27)

By using the JC vector ( i ) an average JC vector ( ) was composed based on equation

(2.28).

( ) ( ) ( )
1 1 1; ;

1 1 1

n n n

Shoulder i Elbow i Wrist i
i i i

n n n

  
   

 
 
 

   
  

  
(2.28)

The variance of the JC ( 2
JC ) was then originated as the sum of squares of the difference

of the mean JC vector ( ) and the actual JC vector ( i ) divided by n-1.

 
2

2 1

1

n

i
i

JC n

 
 






 (2.29)
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The variance for muscle activities either EMGs or predicted muscle forces were

computed for each investigated muscle separately in order to present any change in

muscle activation levels.

1

1

n

i
i

EMG
EMG

n




 (2.30)

 2

2 1

1

n

i
i

EMG

EMG EMG

n
 






 (2.31)

1

1

n

i
i

FORCE
FORCE

n




 (2.32)

 2

2 1

1

n

i
i

FORCE

FORCE FORCE

n
 






 (2.33)

Using equations (2.30) and (2.32) the mean vectors of the EMG ( EMG ) and predicted

muscle forces ( FORCE ) were generated respectively. In equations (2.31) and (2.33) the

variance of the measured surface EMGs and the muscle forces were determined for the

BI, TR, DA, and DP muscles.

In A) the above summarized variance calculation methods were applied to compute

variances as a function of normalized time resulting column vectors with the length of

100  for all the twenty individuals. Thus the variances at each percentage of total

movement time were computed for each individual separately.

In B) variance calculation methods were only applied for detected and time normalized

holding periods (t=35) resulting column vectors with the length of 35 for all the twenty

individuals. The length of the time normalized holding periods was chosen by taking into

account that holding time lasted approximately the one-third of the entire movement

time. Since, the entire movement time was 100% the holding time was regarded as 35%.
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Variance vectors in both A) and B) were averaged across normalized time and then

assigned to the actual object condition during both lifting and putting-down for the

twenty participated individuals separately.

The data structure created in the variance analysis is presented in (Figure 2.17) in the

case of the endpoint either for the whole movement execution time (Figure 2.17, case B))

or for time normalized holding periods (Figure 2.17, case C-D)). The same data

processing method was applied for all motor control levels.

Figure 2.17. Schematic view of the creation of variance data structures in the case of the endpoint (EP) for

the whole movement time interval (case B)) and for detected holding periods (case C-D)). In the most left

block (A) time normalized 3D coordinates of the endpoint (Table 2.1, MARKER CHANNEL 7) are

presented. First, variance calculation of the whole movement interval was performed. As a result, a column

vector containing the variance of the EP at each percentage of total movement time was generated (B).

Red blocks in (A) are detected holding time intervals. In the second step, a block of detected holding time

intervals (C) was generated for all trials. Finally, as a result of variance calculation a column vector (D)

containing the variances of the endpoint during holding was generated. Using (B) and (D) the mean of

endpoint variances was obtained as a function of normalized time.

The same data processing method is applied for all the discerned motor control levels. As a result, the

motor variances  of an individual are represented by 1.)  the mean variances across the whole movement

time 2.) by the mean variances across the holding time interval.
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II.3.2. Computation of the Ratios of Mean Variances

The question is whether the effect of the object with distinct masses held in the

hand is different on motor variances at particular motor control levels? Thus, during the

analysis only the variances obtained in the holding period were taken into account.

In order to investigate this, first the mean variances for all individuals were obtained for

all controlling levels concerning both object conditions during lifting and putting-down

as well. Then the mean variance across holding with load (O2) was divided by the mean

variance across holding without load (CD) for both kinematic variances and muscle

activity variances for each individual separately (ratios within subjects). If the ratio is

smaller for a certain motor control level than 1 than the central control of the nervous

system tends to stabilize the movement better under O2 than under CD conditions.

Variance ratios ((meanO2/meanCD)), (Figure 2.18) across all individuals (ratios between

subjects) were generated by dividing the mean O2 (meanO2) variance across individuals

by the mean CD (meanCD) variance across all individuals.

II.3.3. Statistical Analysis – Repeated Measures ANOVA

Variances of kinematic data, measured EMGs and predicted muscle forces

observed during the entire movement and during holding were analyzed by performing a

two-way repeated-measures ANOVA (Figure 2.18) with p<0.05 significance level. The

effect of load conditions (CD, O2) were processed as within-group factors by using

repeated measured ANOVAs  executed for all investigated level of control (endpoint,

joint configuration, EMGs, predicted muscle forces). At muscle levels the effect of the

external load was analyzed for each muscle separately. Lifting and putting-down were

investigated independently from each other. The block diagram of the variance

calculation method is presented in Figure 2.18.

In summary, endpoint of the limb, joint configuration, EMG, muscle force parameters

were regarded as the input layer of the variance calculation method. In the variance layer,

the variances of ten trials for each condition (UP, DOWN, CD, O2) were composed

based on the processes presented in Figure 2.17. In the statistical layer the mean

variances for all individuals were computed. Using the mean variances of movements

performed with the O2 and the mean variances of movements executed with the CD the

ratio (meanO2/meanCD) was generated. Based on the mean variances across participants
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between and within subjects standard deviations were obtained and compared to each

other. Statistical investigations were made by using repeated measures ANOVA at

p<0.05 significance level.

Figure 2.18. The block diagram of the variance analysis method used to demonstrate the effect of altering

object conditions on motor control levels (endpoint, joint configuration, EMG, muscle force). These

parameters were regarded as the input layer of the variance calculation method. In the variance layer, the

variances of ten trials for each condition (UP, DOWN, CD, O2) were composed based on the processes

presented in Figure 2.17. In the statistical layer the mean variances for all individuals were computed.

Using the mean variances of movements performed with the O2 and the mean variances of movements

executed with CD the ratio (meanO2/meanCD) was generated. Based on the mean variances across

participants between and within subjects standard deviations were obtained and compared to each other.

Statistical investigations were made by using repeated measures ANOVA at p<0.05 significance level.
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C h a p t e r  I I I

PREDICTION OF MUSCLE FORCES FROM JOINT
COORDINATES

III.1. Introduction

Functional electrical stimulation is a rehabilitation technology that can restore

some degree of motor function in individuals who have sustained a spinal cord injury or

stroke. The effective application of FES in the rehabilitation of both the lower and the

upper limbs was summarized in the preface, although the development of FES control

methods are not in the scope of the dissertation.

However, by extending the electrical stimulation methods with 3D simulation results of

muscle forces based on particular muscle and segment characteristics would improve the

effectiveness of the rehabilitation procedure.

No information have been found so far whether FES applied together with 3D

biomechanical modeling would be applied for the entire upper extremity. This is caused

by the high complexity of the shoulder girdle which makes the number of DOF increased

resulting a more complex methodology.

Whole upper limb models ([26], [27], [88-91] or partial studies [29-31], [34], [92] have

been described over the past decades. These models were mostly developed to study the

static effects of muscles and joint torques. Other models include dynamic control of Hill

type muscles [93], [94]. A general issue with dynamic models is that the correctness of

these models was only verified under simple limb movements (elbow flexion-extension;

pronation-supination; shoulder abduction-adduction) in restricted planes.

Another virtual 3D model of the arm consisting of 4 segments (the humerus, the ulna, the

radius and the hand) and personalized muscle geometries using parameters published by

Zajac [95] and Zajac and Gordon [37] were developed for getting accurate biomechanical

analysis by Pennestri et al. [38].

EMG driven models are used for predicting muscle forces in single and multi joint

movements and for estimating the corrective changes in muscle activation patterns

needed for stroke patients to walk [40].
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These approaches gave some insight into human limb coordination. Further 3D

biomechanical models are applied in robot assisted rehabilitation of after stroke limb

injury [41], [96].

All in all it would be desirable to 1) improve the efficiency of rehabilitation techniques or

2) to develop new methods using 3D muscle force simulation approaches based on both

individual anthropometric and neuro-biomechanical limb properties. Simulation models

for two dimensional (2D) movements have been developed to discern motor activity

patterns of musculoskeletal systems [45], [46]. 2D inverse kinematic problem was

studied in a neuro-mechanical transducer model that computes possible muscle forces

and firing frequencies of flexor and extensor motoneuron pools during voluntary limb

movements [48].

The model and the predicted muscle forces and joint torques presented in this dissertation

are based on both 3D kinematic properties and electrical muscle activities of the upper

limb. Furthermore, the prediction of muscle forces and joint torques was done for a

slightly restricted (avoiding pronation-supination), complex point to point movement

with objects having distinct masses in the hand.

Principally, in this chapter the results and important findings of the simulation method

are summarized. The invariant nature of the predicted torque profiles under specific

conditions is revealed and the framework for displaying personalized muscle and limb

geometries is introduced.

III.2. Results

In the previous chapter a new method for predicting 3D muscle force vectors

were presented to generate the torque to establish the required joint angular changes in

the shoulder and elbow joints during the execution of point to point upper limb

movements under altering load conditions only using previously measured 3D

coordinates of 7 anatomical landmarks (Figure 2.2, panels A and C).

The force a muscle can exert was determined by using the equation (2.1.) for the cases

when only one muscle was activated at a given time instant. The presented model was

simulated on healthy individuals (N=20) by using the measured joint coordinates as the

inputs of the model. The outputs (without details) are the magnitude of predicted 3D
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force (Figure 3.1) and torque vectors (Figure 3.2); the direction of the 3D muscle force

(Figure 3.4) and joint torque vectors (Figure 3.4) for all object conditions (CD, O1, O2)

in both directions (LIFTING, PUTTING DOWN). Mean torque profiles (magnitude of

torque as the function of time) of all trials were generated within each individual for the

three object conditions during lifting and putting-down separately for both the entire and

the holding movement periods. Ten trials of each individual were averaged. The mean

muscle force of one representative subject for the whole movement time and the mean

joint torque profiles for holding are shown in Figure 3.1, Figure 3.2 respectively.

Figure 3.1. Mean muscle force magnitudes as the function of normalized time are depicted for one

representative individual. 10 trials of lifting with O2 (upper panel) and 10 trials of putting-down with O2

(lower panel) were averaged.
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Figure 3.2. Mean predicted torque profiles of ten trials in each object conditions (CD, O1, O2) for both

movement directions (UP, DOWN) observed during holding time interval (the period during which the

subject was holding the object) for one representative individual (number 1). Dotted lines (linear

regression fit) sign the linear increasing or decreasing tendency of the torque during lifting and putting-

down respectively. Only the range but not the shape of the torque-time curve depended on the mass of the

object held in the hand. The magnitude of joint torques was larger for heavier objects than for the lightest

one in both joints. The invariance of the shape is supported by the correlation coefficients performed for

all conditions (considering all movement directions and object masses) in both joints (shoulder and elbow)

summarized in Table 3.1.

To present the effect of changing object conditions on mean torque profiles correlation

analysis was performed for the holding time intervals (Table 3.1). The strongest (0.77 ≤ r

≤ 0.99) Pearson’s coefficients were observed when comparing the linear relation between

O1 and O2 torque curves. Weaker (0.35 ≤ r ≤ 0.98) but still strong linear correlation was

present between CD and O1 torque profiles while the weakest (0.12 ≤ r ≤ 0.96)

correlation was found between CD and O2 conditions. Because mean correlation

coefficients are higher than 0.58 in all object conditions for both directions indicating

high linear connection between separate conditions, the torque profile is considered to be

object invariant for both directions (Table 3.1).
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TABLE 5.1.
PEARSON’S R-VALUES OF ALL SUBJECTS FOR THE ELBOW AND SHOULDER JOINT TORQUES OBSERVED DURING
HOLDING CONSIDERING ALL OBJECT CONDITIONS.

SUBJID

ELBOW TORQUE SHOULDER TORQUE
UP DOWN UP DOWN

CD-
O1

CD-
O2

O1-
O2

CD-
O1

CD-
O2

O1-
O2

CD-
O1

CD-
O2

O1-
O2

CD-
O1

CD-
O2

O1-
O2

1 0.71 0.58 0.85 0.89 0.87 0.97 0.69 0.79 0.9 0.91 0.77 0.8
2 0.69 0.51 0.88 0.9 0.82 0.95 0.75 0.87 0.9 0.92 0.87 0.95
3 0.89 0.74 0.92 0.89 0.87 0.9 0.98 0.97 0.99 0.95 0.9 0.97
4 0.63 0.55 0.86 0.87 0.83 0.94 0.51 0.71 0.87 0.9 0.84 0.98
5 0.83 0.66 0.88 0.66 0.76 0.89 0.79 0.93 0.73 0.97 0.86 0.87
6 0.86 0.72 0.91 0.55 0.72 0.92 0.88 0.81 0.93 0.92 0.91 0.97
7 0.67 0.62 0.86 0.97 0.96 0.98 0.45 0.5 0.8 0.95 0.94 0.99
8 0.85 0.74 0.92 0.95 0.94 0.97 0.82 0.76 0.83 0.9 0.75 0.98
9 -0.3 -0.01 0.87 0.4 0.72 -0.08 0.35 0.12 0.86 0.87 0.75 0.79
10 0.44 0.37 0.86 0.9 0.87 0.97 0.75 0.74 0.89 0.79 0.72 0.94
11 0.64 0.58 0.85 0.81 0.7 0.82 0.9 0.8 0.91 0.9 0.89 0.93
12 0.33 0.63 0.83 0.9 0.69 0.98 0.22 0.2 0.87 0.79 0.64 0.9
13 0.79 0.78 0.87 0.97 0.86 0.98 0.64 0.6 0.94 0.97 0.96 0.98
14 0.68 0.54 0.91 0.86 0.63 0.88 0.9 0.85 0.91 0.96 0.76 0.87
15 0.87 0.8 0.91 0.85 0.84 0.95 0.97 0.96 0.98 0.95 0.94 0.97
16 0.16 0.42 0.46 -0.6 -0.6 0.8 0.04 0.05 0.33 -0.83 -0.92 -0.8
17 0.48 0.40 0.9 0.3 0.25 0.84 0.83 0.74 0.86 0.9 0.89 0.94
18 0.47 0.4 0.91 0.52 0.33 0.77 0.85 0.81 0.94 0.94 0.9 0.96
19 0.76 0.71 0.98 0.81 0.79 0.85 0.91 0.79 0.85 0.9 0.98 0.94
20 0.81 0.79 0.98 0.67 0.61 0.77 0.83 0.81 0.88 0.78 0.7 0.8

Mean 0.61 0.58 0.87 0.70 0.67 0.85 0.70 0.69 0.85 0.81 0.75 0.83
SD 0.29 0.24 0.10 0.38 0.35 0.23 0.25 0.26 0.13 0.39 0.40 0.39

Note. Generally, the strongest (0.77 ≤ r ≤ 0.99) (close to perfect + correlation) correlation coefficients
were found between O1 and O2; weaker but strong (0.35 ≤ r ≤ 0.98) correlation appeared between CD
and O1; the weakest coefficients (0.12 ≤ r ≤ 0.96) occured between CD and O2 for both directions and
joints. Correlation coefficients in the case of subjects 9 and 16 showed negative correlation in the
comparison of CD-O1 and CD-O2. Since the mean of all coefficients is higher than 0.58 with small SD,
torque profiles are regarded object invariant under the given object circumstances.

The magnitude but not the shape of the torque-time curve depended on the object held in

the hand. The magnitude and the amplitude of joint torques were larger for heavier

objects than for the lightest one in both the elbow and the shoulder. For lifting

movements the joint torques show increasing profiles, though for putting-down they

show decreasing profiles (Figure 3.2).

Mean joint torques are depicted as a function of mean elbow and shoulder joint angles to

demonstrate the dependence of torque on individual joint angles under all object

conditions (Figure 3.3). Mean torque curves were fitted by 4th order polynomials. Note

that elbow and shoulder angles are in increasing order and not in order of occurrence

during the movement execution. Similar polynomially approximated torque

characteristics were observed during putting-down.
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Figure 3.3. Mean joint torque of ten trials under each load condition (CD, O1, O2)  of two individuals

(number 1 and 11) are depicted as a function of mean elbow and shoulder joint angles during lifting for the

entire time of movement execution. Elbow and shoulder joint angles are in increasing order and not in

order of occurrence during movement execution. Torque curves were approximated by 4th order

polynomial fits. Joint angles may span different angular domains but with similar torque-angle curves.

Subject 11 has a smaller angular domain than subject 1. but the torque-angle curves are similar in the

sense that the fourth order polinom associated to subject 1 is transformed into a fourth order polinom with

a smaller angular domain associated to subject 11. The predicted torque in the elbow slightly increased

and then decreased with the extension of the elbow which is in agreement with the findings of Uchiyama et.

al., (1998). The torque in the shoulder coincides with the results of the shoulder torque profiles provided

by Landin & Thompson (2011). Similar polynomially approximated torque characteristics are present

during putting-down.
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To be competitive with other biomechanical models [28], [89-91], [97] besides the

modeling part of the research work (written in Chapter 2) a framework was also

developed for displaying the direction and magnitude components of the predicted force

vectors on a moving 3D stick figure referring the individual whose joint coordinates were

used as the inputs of the model. Furthermore, some other parameters characterizing the

movement were added as references of the investigated trial. Such parameters are

primarily the angular changes of the shoulder, elbow and wrist joints, 3D angular

acceleration, 3D torques generated by the spanning muscles in the rotation center,

measured EMG activities of 4 upper limb muscles (BI, TR, DA, DP) (Figure 3.4).

Remark: The brachioradialis muscle was defined in the model geometrically. However

its activity was not taken into account either during the simulation of all individuals or in

the variance analysis of different movement control levels (see Chapter 4).

Figure 3.4. A framework for displaying the predicted 3D muscle force and joint torque vectors was

developed. It is divided into 3 different parts. From left to the right these are the parts for displaying the

magnitude of predicted time normalized muscle force vectors; time normalized filtered and smoothed

muscle activities; moving 3D stick figure with given muscle geometry. Light green lines represent the

upper limb segments, red lines show personalized muscle geometry, light blue lines are torques in the joint

generated by the spanning flexor (green) and extensor (dark blue) muscle forces.
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Mainly, the framework is divided into 3 different parts. From left to the right these are

the parts for displaying the magnitude of predicted time normalized muscle force vectors;

time normalized filtered and smoothed muscle activities; moving 3D stick figure with

given muscle geometry respectively.

Remark: Basically, the presented 3D biomechanical model can be used for muscle force

prediction and for the proper analysis of the motor behavior under changing conditions.

In this result section the analysis of the motor control levels under different object

conditions was not involved since the results of the variance analysis are summarized in

details in the following chapter.

III.3. Discussion

To make a voluntary movement, the motor system must be capable of converting

a desired goal (e.g. reaching and grasping an object in front of us) into an action plan and

principally into the spinal motoneuron activity that is able to produce the required muscle

contractions through innervations of muscle fibers. This involves coupled open-loop

feed-forward and closed-loop feedback control mechanisms. Feed-forward processes

performed by neurons convert the goal into a motor command that is further transformed

by the spinal cord into muscle activity. Proprioceptive and visual feedback closes the

motor control loop by sending information to the motor system about the physical

consequences of the motor command [98].

Figure 3.5 illustrates different internal models that describe various aspects of the

properties of the limb. The inverse kinematics part of the system is able to determine the

relationship e.g. between hand position in space and limb joint angles while inverse

dynamics gives the relationship between joint angles and muscle force required to

establish the desired torque. These parts of the motor system are used to perform feed-

forward sensorimotor transformations in order to convert signals on target location and

current limb position into motor commands or to transform sensory information and

motor-command within feedback pathways into estimates of current behavioral state.

Such state estimates can be compared with information about desired behavior to

generate on-line error-correction signals.
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Figure 3.5. Schematic figure of internal models in the central nervous system for executing a movement

and for adaptation to different external effects (changing object condition).

In the above presented 3D neuro-biomechanical model the feed-forward part of the

system was focused to have proper information on the torques required to be generated

through muscle forces so as to execute a desired point to point upper limb movement at a

certain amount of angular changes.

An inverse dynamic problem solver in the 3D space was presented to predict joint and

muscle activation patterns (joint torque, muscle force). The prediction was made by using

previously measured 3D coordinates of anatomical landmarks and anthropometric

features of the upper limb during the execution of dynamic, slightly constrained upper

limb movements (see Chapter 2).

The presented model has pointed out that the studied movement (lifting and putting-

down an object with distinct masses along the sagittal plane) can be executed only by

activating the flexor muscles of the elbow and shoulder joints separately considering the

time courses of the activation patterns while the gravity might be considered acting as an

extensor. This finding is supported by Landin et al. [99] and Landin and Thompson [100]

who investigated the contribution of the biceps brachii and triceps brachii to the

activation of shoulder muscles in different static postures and found that these flexors

had only a minimal influence on shoulder muscle activation during the elevation of the

arm. Furthermore, Landin and Thompson [100] demonstrated that the torque in the

shoulder joint was the greatest at about 800 of shoulder elevation and slightly decreased

as the shoulder angle moved to higher angular ranges. These findings coincide with the

shoulder torque generation profiles that are resulted by the model (Figure 3.3). An

important finding is that the torque profile is object invariant (Table 3.1).
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The same correlation analysis was performed for muscle forces of the biceps and deltoid

anterior (Table 6.1). The strongest (0.21 ≤ r ≤ 0.99) correlation coefficients were

observed between O1 and O2, weaker correlation (-0.1 ≤ r ≤ 0.98) was present between

CD and O1 and the weakest coefficients (-0.89 ≤ r ≤ 0.97) were obtained between CD

and O2 in the case of the force exerted by the biceps during lifting. Such correlation

patterns were not present either during putting-down in the case of the biceps or in the

case of the deltoid anterior muscle considering both directions. Therefore, the object

invariant feature observed for the torque profiles is not true for the force profiles.

The results show that under different conditions the joint angles may span different

domains but with similar torque-angle curves (Figure 3.3). The predicted torque in the

elbow increased and then decreased with the extension of the elbow (Figure 3.3).

Such elbow joint torque behavior was elicited by Uchiyama et al. [101] during the

investigation of angle - joint torque and angle - EMG relations. In the shoulder the

domain of the measured joint angles under O1 condition is smaller than for the other

conditions, thus the related 4th order polynom has a smaller domain.

This reflects that there is a general central action pattern that is implemented under

different external conditions. This finding can be compared with other observations that

presented the dependence of arm movement trajectories on the size of the movement. For

instance if the motor task is to draw a figure under the following conditions: on a paper

of A4 size, or on a large blackboard then the endpoint trajectory differs in size but the

trajectory profile is invariant due to a certain pattern [4].

The applicability and reality of the model was checked by comparing computed moment

arm data with experimental results adopted from the literature. It has been shown by

many studies that physical features such as inertia and MA vary over a wide range

depending on anthropometric properties and muscle path [29], [102], [103]. Thus, from

the modeling point of view it is important to have accurate attachments, since MA and

torque are sensitive to the location of muscle insertion and origin areas. Furthermore, it is

difficult to resolve the inconsistencies on the range of peak MAs because either

anatomical or modeling studies have investigated peak magnitudes of MAs under

restricted, static conditions.
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TABLE 3.2.
COMPARISON OF PREDICTED AND MEASURED PEAK MOMENT ARMS ADOPTED FROM THE LITERATURE
GIVEN AS A FUNCTION OF JOINT ANGULAR RANGE.

Peak Magn.
(cm)

Ang. Range
(o)

Peak Magn.
(cm)

Ang. Range
(o)

Murray et. al. Predictive Model
BI 3.5-5 >80 2.2-5 110-150
TR 2.5-3.5 0-40 2-3 140-160

Kuechle et. al.
DA 3-4 65-80 4-8 80-95
DP 0.4-2.2 20-40 2-2.5 80-85

Note.  In the left peak moment arm magnitudes and angular ranges concerning to the peak
moment arms are presented based on data adopted from the literature. In the right the same
values predicted by the presented biomechanical model are summarized. The presented model
predicted similar moment arm ranges for all individuals considering the three object conditions
than it had been published for dynamic and static movements by Murray et al. [102] and
Kuechle et al. [104] respectively.

Table 3.2 summarizes the minimum and maximum predicted peak MAs observed in

holding under all object conditions. Minimum and maximum were computed across all

individuals and all conditions. Moment arm ranges predicted by the model are similar to

those published for dynamic and static movements by Murray et al. [102] and Kuechle et

al. [104] respectively for all individuals.

In the future the model will be extended to be capable of predicting the relationship

between the generated muscle forces and stimulation frequencies (motor command)

applied by the central nervous system. If this relationship is revealed then the model will

be capable of predicting movement patterns for reproducing reaching and grasping arm

movements artificially by using FES. In that case it would be desirable to take the feed-

back part of the motor control system (Figure 3.5) into account by using visual feed-back

and error correction in all levels of the system.

Eventually, the 3D biomechanical model described in this chapter is a general model that

is applicable for various motor tasks performed by the human arm. It was applied to a

task without planar restrictions which was similar to a motor task executed in the real

life.

Having the model it is achievable to study the effect of external conditions on muscle

forces. Particularly, in the next chapter this model is applied to discern how the mass of

an object during holding time interval affected both kinematic and muscle activity

patterns.

DOI:10.15774/PPKE.ITK.2012.004



C h a p t e r  I V

VARIANCE ANALYSIS OF MOTOR CONTROL LEVELS

IV.1. Introduction

The answer to the question of how the nervous system is able to control multiple

muscles and body segments while handling the redundancy problem in choosing a unique

action from the set of finite possible actions is still contradictory [105] and has been

recently investigated by many studies. In an attempt to make this answer clear, Feldman

et al. [105], [106] showed that motor actions emerge from central resetting of the

threshold position of proper body segments e.g. the virtual position at which muscles are

silent but deviations from the muscle are going to evoke activity and resistive forces.

Furthermore, the difference between the centrally-set threshold position and the sensory-

signaled actual position may be responsible for the activation of neuromuscular elements

between them and the environment. These elements tend to decrease the activity level

and interactions by minimizing the gap between the actual position and the position

determined by a given threshold. However, threshold control the so-called Lambda-

model [106], [107] does not solve the redundancy issue, it only limits the set of possible

actions coded by the central nervous system. In the study made by Terrier et al. [108] the

applicability of using a pseudo-inverse and null-space optimization approach in the

modeling of the shoulder biomechanics to diminish the effect of multiple spanning

muscles on the shoulder joint considered as a spherical joint was investigated. Such

frameworks appear to be a useful tool in the explanation of the control and production of

different variety of motor actions like reach-to-grasp movements [79], specification of

different hand configurations and grip force generation [109-112].

The major issue in the investigation of motor synergies [113], [114] is that there are an

infinity number of solutions for a given motor task, due to the high number of DOF of

the musculoskeletal system.

In other words in each joint the human body has much more muscles than necessary. An

important question to consider is which combinations of muscle activities and which

criterion is supposed to be chosen by the human motor control to have the optimal

solution. Hence, muscles cooperate in different ways depending on the chosen criterion.
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This concept is called muscle synergy phenomena and was studied primarily by

Bernstein [51] and among others for arm movements by Latash [57] and Prilutsky [58].

The effect of load on arm movement variances has recently been studied by Laczkó and

Keresztenyi [115]. Further models using different optimum principles such as minimal

jerk [116-118]; minimum torque change [55], [56], [116], [119-121]; or the minimum

energy [122] investigate the motor synergy phenomena from different point of view of

optimized parameters.

To get the whole arm moved by means of an artificial control method is rather

complicated partly because the complexity of the shoulder mechanism and because the

high variances of muscle activities [79]. To define proper activation patterns, it is

advantageous to model those flexor and extensor muscle groups planned to be stimulated

in the shoulder and elbow.

Variances of the movements of a kinematic chain are affected by neuro-motor diseases

such as stroke and Parkinson’s disease [4], [123]. In the case of the upper limb it was

found that both hand position variances and joint configuration variances were higher for

Parkinson patients than for healthy individuals. Variance increment was observed

between the healthy and patients for both hand position and joint configuration. The rate

of increment was the same for both cases. But the effect of external load on motor

variances at different levels of movement controlling (hand position, arm configuration,

muscle activity) has not yet been compared despite the fact that an object in the hand

may have serious effects on either movement execution or the kinematics of the upper

limb [79].

IV.2. Results

In the analysis of the whole movement period (A) results (Table 4.1) did not show

significant difference at p<0.05 between the 2 load conditions either in the case of the

endpoint (F(1,19)=0.073 p=0.79; F(1,19)=0.005 p=0.943) or in joint configuration

(F(1,19)=0.242 p=0.628; F(1,19)=0.05 p=0.825)  variances in both lifting and putting-

down.

DOI:10.15774/PPKE.ITK.2012.004



Neuromorphic Modeling of Reaching Arm Movements 68

TABLE 4.1.
R-ANOVA PARAMETERS OF THE WHOLE MOVEMENT PERIOD

LIFTING PUTTING-DOWN

F p F p

EP 0.073 0.79 0.005 0.943

JC 0.242 0.628 0.05 0.825

EMG

BI TR DA DP BI TR DA DP

F 9.711 1.124 6.154 1.1 9.053 1.316 10.683 3.276

p 0.006 0.302 0.023 0.3 0.007 0.266 0.004 0.086

FORCE

BI TR DA DP BI TR DA DP

F 10.486 0.363 16.909 0.92 5.754 0.026 17.796 0.82

p 0.004 0.554 0.001 0.349 0.027 0.874 0.001 0.377

Note. Values signed by bold assign significant differences between the investigated object
conditions at p<0.05 significance level. At kinematic levels (EP-JC) the difference was not
significant. In muscle activity levels (EMG-FORCE) significant differences were only observed in
the case of the flexor muscles.

At both muscle activity levels (EMG and FORCE) significant differences were found

only in the case of the flexor muscles (Table 4.1).

In the analysis of the time interval when the object was in the hand (B) of the actual

individual  endpoint variances did not show significant (Table 4.2) difference between

TABLE 4.2.
R-ANOVA PARAMETERS OF THE HOLDING PERIOD

LIFTING PUTTING-DOWN

F p F p

EP 1.62 0.21 1.99 0.17

JC 0.73 0.4 8.11 0.01

EMG

BI TR DA DP BI TR DA DP

F 10.724 16.791 6.385 5.979 10.775 12.853 10.945 7.87

p 0.004 0.001 0.021 0.024 0.004 0.002 0.004 0.011

FORCE

BI TR DA DP BI TR DA DP

F 30.63 17.24 32.27 0.26 27.15 19.63 21.73 1.26

p 0.000024 0.00054 0.000018 0.61 0.00005 0.00028 0.00017 0.27

Note: Values signed by bold assign significant differences between the investigated object conditions at
p<0.05 significance level. At kinematic levels (EP-JC) significant difference was only present in JC
during putting-down indicating the enhanced effect of the gravity on joint configuration. Contrary to
Table 4.1 at EMG level the difference was significant in all muscles. At FORCE level the difference
was not significant only in the case of the DP. The different behavior of the DP compared to the EMG
level may be because the main action lines of muscle forces may alter and influence the muscle force
variances. The access of DP activity highly depends on the muscle geometry [78].
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the two object conditions either in lifting (F(1,19)=1.62, p=0.21) or in putting-down

(F(1,19)=1.99, p=0.17) (Figure 6.1, Table 4.2).

In the case of the joint configuration variances (Figure 6.2) there was no significant

difference between the two object conditions during lifting (F(1,19)=0.73, p=0.4) (Table

4.2) while during the putting-down phase the arm configuration variance was greater if

movements were executed with load than without load and this difference was significant

(F(1,19)=8.11, p=0.01) (Table 4.2).

This may caused by the fact that the load had a notably smaller effect on joint

configuration variability if the movement was executed against the gravity.

In EMG variances during both lifting and putting-down significant differences were

observed in BI, TR, DA, DP (Table 4.2). EMG variances of the elbow flexor and

extensor muscles are presented during lifting and putting-down in Figure 6.3 and Figure

6.4 respectively for all participated individuals. The EMG variances of the shoulder

muscles are seen in Figure 6.5 and Figure 6.6 for both directions separately. Predicted

muscle force variances showed significant difference (Table 4.2) between the two object

conditions either during lifting or putting-down for all muscles except DP. Predicted

muscle force variances for the elbow and shoulder flexor and extensor muscles are

presented in Figure 6.7, Figure 6.8, Figure 6.9, Figure 6.10 respectively for both

movement directions.

To compare the effect of a certain object with a distinct mass on different motor control

levels, ratios of variances (Table 4.7) were computed by dividing the mean variance of

movements executed under the heavier object (O2) by the mean variance of movements

performed with the CD case (CD) for 1) the endpoint (Table 4.3); 2) the joint

configuration (Table 4.4); 3) the sEMG muscle activities (Table 4.5); 4) the predicted

muscle forces (Table 4.6); separately in both directions.
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TABLE 4.3.
MEAN VARIANCES AND THEIR STANDARD DEVIATION  FOR THE ENDPOINT

EP UP PD

CD O2 CD O2

Mean(mm^2) 599 448 501 653

SD (mm) 477 342 470 447

Note. Variances were computed for each individual separately considering both directions and
both object conditions (Figure 6.1) by using the measured coordinates of marker number
7(Table 2.1, MARKER CHANNEL 7) placed on the little finger Proximal Metacarp. Individual
variances (Figure 6.1) were then averaged across all individuals. SD is the standard deviation
of mean variances between individuals. Values signed by blue represent the mean and SD of the
CD while values signed by red represent the mean and SD of the O2 according to the colors
used in Figure 6.1.

TABLE 4.4.
MEAN VARIANCES AND THEIR STANDARD DEVIATION  FOR THE JOINT CONFIGURATION

JC UP PD

CD O2 CD O2

Mean(o ^2) 49 57 37 53

SD

(o)
22 26 15 24

Note. Variances were originated for each individual separately considering both directions and
both object conditions (Figure 6.2). Individual variances (Figure 6.2) were then averaged
across all individuals. SD is the standard deviation of mean variances between individuals.
Values signed by blue represent the mean and SD of the CD while values signed by red
represent the mean and SD of the O2 according to the colors used in Figure 6.2.
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TABLE 4.5.
MEAN VARIANCES AND THEIR STANDARD DEVIATION FOR EMG

EMG

Elbow Shoulder

UP PD UP PD
CD O2 CD O2 CD O2 CD O2

Mean
(mV^2)

FLEXOR 49 193 40 192 1100 2137 846 1898

EXTENSOR 13 32 7 23 68 193 55 188

SD
(mV)

FLEXOR 56 199 41 220 605 1149 523 1677

EXTENSOR 11 23 6 18 143 206 61 147
Note. Variances were computed for each individual separately considering both directions and
both object conditions (Figure 6.3)-(Figure 6.6). Individual (Figure 6.3)-(Figure 6.6) variances
were then averaged across all individuals. SD is the standard deviation of mean variances
between individuals. Values signed by blue represent the mean and SD of the CD while values
signed by red represent the mean and SD of the O2 according to the colors used in Figure 6.3 -
Figure 6.6.

TABLE 4.6.
MEAN VARIANCES AND THEIR STANDARD DEVIATION FOR PREDICTED MUSCLE FORCES

FORCE [N^2]

Elbow Shoulder

UP PD UP PD

CD O2 CD O2 CD O2 CD O2

Mean
(N^2)

FLEXOR 23 220 32 184 12 64 17 82

EXTENSOR 24 55 18 51 679 742 785 886

SD
(N)

FLEXOR 16 168 28 143 8 42 14 70

EXTENSOR 15 38 14 36 839 604 928 758
Note. Variances were computed for each individual separately considering both directions and
both object conditions (Figure 6.7)-(Figure 6.10). Individual variances (Figure 6.7)-(Figure
6.10) were then averaged across all individuals. SD is the standard deviation of mean variances
between individuals. Values signed by blue represent the mean and SD of the CD while values
signed by red represent the mean and SD of the O2 according to the colors used in Figure 6.7 –
Figure 6.10.
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Table 4.7 presents the mean ratios across 20 individuals. The ratio was higher for joint

configuration variances than for endpoint variances for both lifting and putting-down.

Endpoint variances during lifting with load were smaller than without load (the ratio of

endpoint variances was smaller than 1).

For  joint configurations ratios remained only in six individuals less than 1 (Figure 6.2).

For EMG variances and for simulated muscle force variances, ratios were much higher

than 1 concerning all measured muscles. Hence, muscle activity variances in all muscles

except DP in both directions were affected by the given object at a higher rate than

kinematic variances. According to the table it is seen that the effect of load on variances

was the highest at muscle activity levels (EMG and virtual muscle forces) while it was

smaller at joint configuration level and it was the smallest at the level of the endpoint.

TABLE 4.7.
RATIOS  OF MEAN VARIANCES (MEANO2/MEANCD)

UP PD

EP 0,7 1,3

JC 1,2 1,4

EMG

BI TR BI TR

3,9 2,5 4,79 3,05

DA DP DA DP

1,9 2,8 2,24 3,43

Force

BI TR BI TR

9,6 2,3 5.75 2,83

DA DP DA DP

5,3 1,1 4,82 1,12
Note.  In the table the RATIO of movement variances with load (O2) to movement
variances without load (CD) is summarized for the studied motor control levels. As a
result it can be seen that the RATIO was smaller for endpoint and joint configuration
variances than for sEMG and muscle FORCE variances respectively representing
that enhanced muscle synergies stabilize the movement at kinematic level by
controlling primarely through the hand position and less by the combined joint
rotations and not by individual muscle activities.

Results of the muscle motor control levels showed that either in simulated muscle force

variances (Figure 6.7 - 6.10, Table 4.7) or in measured muscle activity variances (Figure

6.3 - 6.6, Table 4.7) the larger mass of the object was associated with increased variances
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in both flexor and extensor activities.  The mean variances are presented for both

conditions for all levels of motor control (Figure 4.1) summarizing the values presented

in tables (4.3 – 4.6).

Figure 4.1. The mean variances across individuals (Table 4.3 - 4.6) for both object conditions and for both

directions of movement execution considering kinematics (EP-JC) and muscle activities (EMG-FORCE) of

motor control levels.CD and O2 sign the cases at certain motor control levels (EP, JC during lifting,

FORCE shoulder extensor during either lifting or putting-down)  where the mean variances of movements

executed under 2 kg was higher but not significantly higher than mean variances of movements performed

under CD across all individuals.

The difference between variances of the two conditions was higher for muscle activities

than for kinematic variances.  The variances of EMGs were higher for flexors than for

extensors both for elbow and shoulder muscles. However, the shoulder extensor (DP)

behaved differently than the other muscles. The variances of shoulder muscle forces were

higher for extensor than for flexor in contrast to EMG variances. Note that only DP
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muscle force variances were not affected significantly by the load (Table 4.2). This may

be because the main action lines of the muscle forces may alter and influence the muscle

force variances. The access of DP activity highly depends on the muscle geometry [78].

The increment in muscle force variances for flexors was larger than for extensors when

the mass of the object increased (Table 4.7).

As it is presented in tables (4.3 - 4.6) the standard deviations of the variances of

kinematic variables and especially muscle activity variables were remarkably high

comparing to the mean values. The high predicted muscle force standard deviations

across all individuals indicate unique force patterns between individuals exerted by

individual muscles under the execution of the same point to point movement. Therefore,

the execution of movements under differing object conditions varies individual by

individual. To demonstrate the presence of muscle force uniqueness across individuals,

standard deviations were computed within subjects (for 10 trials) for both directions (UP,

DOWN) under each load condition (CD, O2) to all individuals separately and then

averaged across all individuals (Table 4.8, SD within subjects).

TABLE 4.8.
WITHIN AND BETWEEN SUBJECTS STANDARD DEVIATIONS OF MUSCLE FORCES

SD within subjects

(N)

SD between subjects

(N)

CD O2 CD O2

UP BI 2.4 5.5 16 168

TR 2.7 2.9 15 38

DA 2 5 8 42

DP 16 30 839 604

DOWN BI 3.2 4.7 28 143

TR 2.5 3 14 36

DA 2.3 3.6 14 70

DP 19 16 928 758
Note. Between subjects standard deviations of predicted muscle forces (Table 4.6) were
remarkably high compared to the mean of predicted muscle forces across subjects indicating
different execution patterns between subjects. Furthermore, averaged within subjects standard
deviations were significantly smaller than between subjects standard deviations at p<0.05
significance level. Thus, generalized activation patterns cannot be applied during rehabilitation
procedures. Instead of using generalized action patterns for all patients, personalized
movement patterns rather lead to adequate rehabilitation processes of individuals.
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Within subjects averaged SDs (Table 4.8, SD within subjects) were significantly smaller

(p<0.05) than between subjects SDs (Table 4.8, SD between subjects)  for both

directions under each object condition.

IV.3. Discussion

The particular aim of this study was to investigate how the variances of arm

movements were affected if a load was held in the hand. The variances were analyzed at

different levels of the motor apparatus. The central neural control may take responsibility

for smaller variances of the most relevant variables for instance the endpoint trajectory

and joint configuration at kinematic level while the required mechanical action was

distributed between the muscles at the muscular level with higher variances.

The joint configuration variances were averaged during the whole movement interval for

all individuals separately. Statistical methods did not prove any significant difference

between the two object conditions for these averaged variances. This may be because

averaged variances  remained high in the pre and post-holding parts (when the

individuals didn’t hold the object) and reached their top out at about 300 Degree^2 and

during holding only at about 100 Degree^2. This was true for lifting and putting-down

suggesting that movement performed with an object held in the hand varied less than

without an object.

Therefore, the investigation was focused on the holding time interval. The dependence of

motor stability on different object conditions can be revealed by analysing variances in

external workspace, in internal joint space and in the space of muscle activation patterns.

For instance the effect of load was studied to discern muscle synergies while individuals

shifted their body weight forward and backward [124], [125].

Here muscle synergies were investigated while individuals moved their whole arm

upward and downward holding different loads. Freitas et al. [126], [127] investigated

whether kinematic synergies are more related to stabilization of the instantaneous

anterior-posterior position of the center of mass or the center of pressure in whole-body

movements executed in standing. By applying uncontrolled manifold (UCM) analysis

they found that more 'good' and less 'bad' joint variance related to stability of the center

of mass than to the center of pressure position. It has been recently proven by Gera et al.

[127] that the orientation constraint does not affect the stability of the hand's spatial path
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during placing a certain object from one place to another that required either precise or

minimal orientation to the target. The effects of learning was studied on muscle activity

and kinematic variability by Gabriel [128] during maximal performance task. It was

found that at increased limb speed both target error and trajectory (velocity versus

position) variability decreased in the case of kinematics of the limb while in EMG of the

biceps brachii and the triceps an increase was observed in the absolute measure of total

EMG variability. Further studies were performed to investigate the variability of surface

EMG during maximum voluntary isometric and anisometric contractions for the upper

limb [129] and for the lower limb muscles [130].

As a consequence of the results, generalized movement patterns using predicted muscle

forces for FES rehabilitation cannot be generated because it changes between individuals.

However, using the musculoskeletal model, personalized movement patterns are to be

applicable in FES rehabilitation procedures of handicapped patients.

The muscle force calculation model offers muscle forces for the studied point to point

arm movements. As the model shows, these specific movements can be performed

activating only one muscle around each joint at any given instant, and it is the flexor for

both the elbow and shoulder joint. .

For artificial control of joint rotations this would be a possible solution even for 3D arm

movements. This was the motivation of the muscle force computation method proposed

in the previous chapter and this may be used to define muscle activity patterns for FES

assisted movements. Even if only one muscle group is activated, muscle geometry may

ensure that high increment in muscle activity variance is related to a smaller increment in

joint and endpoint variances. Additional muscles may be considered for generating

neuromorphic muscle activity patterns.

Measured surface EMG variances also showed a higher range of increment for flexors

than for extensors in the elbow but the opposite was observed for shoulder muscles while

variances of shoulder flexor activity were exceptionally high (Figure 4.1, Table 4.7).

As a main conclusion the enhanced muscle synergies stabilize the movement at

kinematic level by controlling mostly through the hand position and less by the joint

rotations and not by individual muscle activities. Therefore, peripheral patterns reflect

central neural processes (joint or muscle synergies) rather than being separately

controlled components of the action. Such findings were suggested for grip force
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adjustment [131]. This finding supports furthermore the results that external conditions

or practice of movements effect joint configuration variances and endpoint variances at a

different rate. Practice helps to stabilize the hand position by decreasing those variances

of the joint configurations that affect the hand position while giving space to the joint

configurations that do not affect the hand position [59], [60].

Here, the effect of load on kinematic variances, on measured muscle activity variances

and on virtual muscle activity variances was compared. The analysis of variance

suggested that kinematic variability of the studied arm movement was restricted in such a

way that enhanced joint synergies helped to stabilize hand position while an object was

held in the hand. Reasonable variances of endpoint positions and joint rotations reflected

enhanced muscle synergies rather than being directly determined by individual muscle

activity variances. Otherwise high muscle activity variances would increase kinematic

variances at the same rate. In the dissertation study of the structure of the joint

configuration variance was not involved as this was done for other arm movement tasks

[126], [131] where higher dimensional joint spaces were applied.

Finally, the results summarized in this chapter are applicable in occupational

biomechanics and in medical rehabilitation processes. These kinds of task specific

movements are frequent in industrial environment [132]. The research confirms that not

only individual muscle performance but the cooperation of muscle groups should also be

trained and enhanced for stable and reproducible movement execution.
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C h a p t e r  V

SUMMARY

V.1. New Scientific Results

Thesis I. Three dimensional model for establishing the direction and magnitude of

3D muscle force vectors and joint torques in general upper limb movements using

measured 3D kinematic and anthropometric data.

Related publications: [Tibold et al., 2011; Tibold and Laczkó, 2011; Laczkó and Tibold,

2010; Laczkó et al., 2009]

In the case of 3D movement modeling the direction of torques and muscle forces acting

in a given joint are not an obvious questions especially not if one would like to consider

how muscles (agonists and antagonists) are operating together at a given time instant.

Another important issue is the determination of either proper 3D muscle geometry

(containing 3D muscle insertions and origins) or the biomechanical characteristics of

muscles (the active (Fa(l)) and passive (Fp(l)) force length relations). In the following

groups of theses results of these are summarized.

I.1. I have given a mathematical algorithm for determining the direction

of three dimensional muscle force vectors to generate a desired joint torque

during the execution of general, three dimensional point-to-point arm

movements. As a part of the algorithm I have elaborated a novel general

method to determine three dimensional muscle insertion and origin areas

located on the surface of the bone by applying both cadaveric parameters

and personal anthropometric values to have accurate muscle geometry.

If only one muscle is active at a time instant t, than the torque generated by the muscle in

the spanned joint is computed as the difference of the total torque and the gravitational

torque:

( )

( )( ) ( ) ( ) ( ) ( )
joint

jointm m gF t R t t I t T t   
   

(5.1)
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where ( )mF t


is the force generated by the muscle, ( )mR t


is the moment arm of the

muscle, ( )t


is the angular acceleration of the joint spanned by the muscle,
( )

( )
joint
I t is the

moment of inertia , ( ) ( )jointgT t


is the gravitational torque due to the rotated body part.

Depending on the direction of the required torque either the flexor or the extensor muscle

group should be activated at each instant for an artificial control of the joint torque. Such

virtual muscle forces (Figure 5.1) were predicted for 4 arm muscles separately (BI, TR,

DA, DP) at each time step during the desired movement. The novelty of my computation

is that I considered that all parameters (except
( )

( )
joint
I t ) were three dimensional vectors

and not only their magnitude but their direction was changing in time throughout the

movement.  Modeling approaches usually have been elaborated by restricting joint

rotations around predefined rotational axes [28], [89], [90], although natural human

movements do not comply with such restrictions [133], [134]. I elaborated 3D

computation for all of the vectors as the function of time.

Figure 5.1. Virtual determination of 3D muscle forces for flexor (blue) and extensor (green) muscles

needed to generate the 3D joint torque (light blue) in the spanned joint at a discrete time instant.

I determined personalized 3D coordinates of muscle attachments located on the surface

of the bone. First, based on the cadaver study of Veeger et al. [76] I put the questioned

muscle insertion-origin points to the midline of the bone segment containing either the

insertion or the origin. But since 1) muscles are located on the bone surface and not on

the midline of the bone segment and since 2) Veeger provided data for only fully
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stretched elbow - which was only the initial posture of the measured movement - I

applied the Rodrigues’ rotation formula to predict 3D coordinates of muscle attachments

(Figure 5.2) for the entire movement interval.

     1 ( ) ( ) ( )cos sin (1 cos )          T
t t e t t t e t t t t e tuBII uBII z uBII z z uBII (5.2)

   ( ) 1e t t tE E    (5.3)

1 1 1 1 1t t t t tE BII E BII uBII       (5.4)

1 1 1 1_ t t t tOnBoneSurf BII E BII E     (5.5)

Remark: A mathematical method for computing the biceps insertion. The same method as

above was applied by replacing the rotation axis zt ; the rotated muscle attachment unit

vector; the angle of rotation t to particular ones related to the specific muscle.

Figure 5.2. Anatomical landmarks (T – thorax; S – shoulder; E – elbow; W - wrist); muscle

attachments of the biceps (BIO - origin; BII - insertion); unit muscle attachment vectors

( u B I I , u B I O ,
          

) used in the rotation method of Rodrigues during the calculation of the biceps

attachments located on the surface of the bone are presented at two successive time instants (t and t+1).

The rotation method was applied to determine muscle insertions and origins for not only the initial

position (t=0) but for the whole movement interval as well.

DOI:10.15774/PPKE.ITK.2012.004



81 Neuromorphic Modeling of Reaching Arm Movements

I.2. I have proven that the elbow and shoulder joint torque profiles

predicted by the 3D biomechanical model are invariant to changes of the

mass of the object held in the hand. The range but not the shape of the

torque-time curve depended on the object held in the hand.

Mean torque profiles of all trials were generated within each subject for the three object

conditions during lifting and putting-down separately for the holding movement periods

(the actual object is in the hand of the individual). Each subject’s ten trials were

averaged. Data of one representative subject are shown in (Figure 5.3).

Figure 5.3.  Mean predicted torque profiles of ten trials in each object conditions (CD, O1, O2) for both

movement directions (UP, DOWN) observed during holding time interval (the period during which the

subject was holding the object) for one representative individual (number 1). Dotted lines (linear

regression fit) sign the linear increasing or decreasing tendency of the torque during lifting and putting-

down respectively. Only the range but not the shape of the torque-time curve depended on the mass of the

object held in the hand. The magnitude of joint torques was larger for heavier objects than for the lightest

one in both joints. The invariance of the shape is supported by the correlation coefficients performed for

all conditions (considering all movement directions and object masses) in both joints (shoulder and elbow)

summarized in Table 5.1.

To present the effect of changing object conditions on mean torque profiles correlation

analysis was performed for holding time intervals (Table 5.1). The strongest (0.77 ≤ r ≤
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0.99) Pearson’s coefficients were observed when comparing the linear relation between

O1 and O2 torque curves. Weaker (0.35 ≤ r ≤ 0.98), but still strong linear correlation was

present between CD and O1 torque profiles while the weakest (0.12 ≤ r ≤ 0.96)

correlation was found between CD and O2 conditions. Because mean correlation

coefficients (Table 5.1) are higher than 0.58 in all object conditions for both directions

indicating high linear connection between separate conditions the torque profile is

considered to be object invariant for both directions (Table 5.1). The magnitude but not

the shape of the torque-time curve depended on the object held in the hand. The

magnitude and the amplitude of joint torques were larger for heavier objects than for the

lightest one in both the elbow and shoulder. For lifting movements the joint torques show

increasing profiles, though for putting-down they show decreasing profiles (Figure 5.3).

TABLE 5.1.
PEARSON’S R-VALUES OF ALL SUBJECTS FOR THE ELBOW AND SHOULDER JOINT TORQUES OBSERVED DURING
HOLDING CONSIDERING ALL OBJECT CONDITIONS.

SUBJID

ELBOW TORQUE SHOULDER TORQUE
UP DOWN UP DOWN

CD-
O1

CD-
O2

O1-
O2

CD-
O1

CD-
O2

O1-
O2

CD-
O1

CD-
O2

O1-
O2

CD-
O1

CD-
O2

O1-
O2

1 0.71 0.58 0.85 0.89 0.87 0.97 0.69 0.79 0.9 0.91 0.77 0.8
2 0.69 0.51 0.88 0.9 0.82 0.95 0.75 0.87 0.9 0.92 0.87 0.95
3 0.89 0.74 0.92 0.89 0.87 0.9 0.98 0.97 0.99 0.95 0.9 0.97
4 0.63 0.55 0.86 0.87 0.83 0.94 0.51 0.71 0.87 0.9 0.84 0.98
5 0.83 0.66 0.88 0.66 0.76 0.89 0.79 0.93 0.73 0.97 0.86 0.87
6 0.86 0.72 0.91 0.55 0.72 0.92 0.88 0.81 0.93 0.92 0.91 0.97
7 0.67 0.62 0.86 0.97 0.96 0.98 0.45 0.5 0.8 0.95 0.94 0.99
8 0.85 0.74 0.92 0.95 0.94 0.97 0.82 0.76 0.83 0.9 0.75 0.98
9 -0.3 -0.01 0.87 0.4 0.72 -0.08 0.35 0.12 0.86 0.87 0.75 0.79
10 0.44 0.37 0.86 0.9 0.87 0.97 0.75 0.74 0.89 0.79 0.72 0.94
11 0.64 0.58 0.85 0.81 0.7 0.82 0.9 0.8 0.91 0.9 0.89 0.93
12 0.33 0.63 0.83 0.9 0.69 0.98 0.22 0.2 0.87 0.79 0.64 0.9
13 0.79 0.78 0.87 0.97 0.86 0.98 0.64 0.6 0.94 0.97 0.96 0.98
14 0.68 0.54 0.91 0.86 0.63 0.88 0.9 0.85 0.91 0.96 0.76 0.87
15 0.87 0.8 0.91 0.85 0.84 0.95 0.97 0.96 0.98 0.95 0.94 0.97
16 0.16 0.42 0.46 -0.6 -0.6 0.8 0.04 0.05 0.33 -0.83 -0.92 -0.8
17 0.48 0.40 0.9 0.3 0.25 0.84 0.83 0.74 0.86 0.9 0.89 0.94
18 0.47 0.4 0.91 0.52 0.33 0.77 0.85 0.81 0.94 0.94 0.9 0.96
19 0.76 0.71 0.98 0.81 0.79 0.85 0.91 0.79 0.85 0.9 0.98 0.94
20 0.81 0.79 0.98 0.67 0.61 0.77 0.83 0.81 0.88 0.78 0.7 0.8

Mean 0.61 0.58 0.87 0.70 0.67 0.85 0.70 0.69 0.85 0.81 0.75 0.83
SD 0.29 0.24 0.10 0.38 0.35 0.23 0.25 0.26 0.13 0.39 0.40 0.39

Note. Generally, the strongest (0.77 ≤ r ≤ 0.99) (close to perfect + correlation) correlation coefficients
were found between O1 and O2; weaker but strong (0.35 ≤ r ≤ 0.98) correlation appeared between CD
and O1; the weakest coefficients (0.12 ≤ r ≤ 0.96) occured between CD and O2 for both directions and
joints. Correlation coefficients in the case of subjects 9 and 16 showed negative correlation in the
comparison of CD-O1 and CD-O2. Since the mean of all coefficients is higher than 0.58 with small SD,
torque profiles are regarded object invariant under the given object circumstances.
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Thesis II. The effect of objects with distinct masses on the variances of endpoint

(EP), joint configuration (JC), sEMG and simulated muscle forces (FORCE) as

levels of the bilogical motor apparatus during holding the object in the hand.

Related publications: [Tibold et al., 2011; Tibold et al., 2009; Laczkó and Tibold, 2009]

In order to reproduce complex arm movements artificially first the issue of muscle

synergies namely how the CNS chooses its strategy to select proper muscles for optimal

solution of a given motor task and what is controlled by the nervous system under

changing object conditions must be understood.

The following group of theses summarizes how different levels of motor control and the

cooperation of flexor and extensor muscles were affected by a heavier object during the

time interval of holding through variance analysis. Variances of the performed

movements were computed during holding as functions of normalized time and were

averaged across time for both object conditions (CD, O2) within all subjects in lifting

and putting-down. These values were computed for the endpoint, joint configuration,

sEMG of 4 arm muscles (BI, TR, DA, DP) and for computed muscle forces of the same

muscles separately. The mean variance across holding with load was divided by the mean

variance across holding without load for 1) all subject separately and for 2) the mean of

individual variances (Figure 5.4) across all subjects (RATIO), (Table 5.2).

II.1. I have proven that motor stability highly depends on altering load

conditions. Movements executed with load (O2) varied in a higher manner

than movements executed without load (CD) during holding time interval.

This has been proven by analyzing variances (Figure 5.4) in external workspace, in

internal joint space and in the space of muscle activation patterns when an object was in

the hand of the actual subject (HOLDING time interval).

In endpoint variances results didn’t show significant difference between the two object

conditions either in lifting (F(1,19)=1.62, p=0.21) or in putting-down (F(1,19)=1.99,

p=0.17) at p<0.05. In joint configuration there was no significant difference between the

object conditions during lifting (F(1,19)=0.73, p=0.4). However, in putting-down the arm

configuration variance was significantly (F(1,19)=8.11, p=0.01) greater if movements
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were executed with load proving a less enhanced effect of the gravity on movement

execution while acting against the gravity. High significant differences occurred in both

surface EMG and virtually computed muscle force levels depicting minimal p values in

the ranges of 0.0002≤pEMG≤0.024 and 0.00002≤pFORCE≤0.0005 respectively. But in

computed muscle forces DP showed no difference between the object conditions either in

lifting or in putting-down.

Figure 5.4.    Mean values of variances across 20 subjects for all motor control levels in both directions

(UPLIFTING, PUTTING DOWN) under both conditions (CD, O2). In the cases of coherent CD-O2 pairs *

means that even though the variance of movements executed with O2 is higher than movements executed

with CD but this difference was not significant at p<0.05.
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II.2. I have shown that RATIO of movement variances with load (O2) to

movement variances without load (CD) was smaller for endpoint and joint

configuration variances than for sEMG and muscle FORCE variances

respectively representing that enhanced muscle synergies stabilize the

movement at kinematic level by controlling primarely through the hand

position and less by the combined joint rotations and not by individual

muscle activities.

To compare the effect of load on different control levels I computed the ratios of mean

variances across all subjects by dividing the mean variance of movements with load by

the mean variance of movements without load. (RATIO)

RATIOJC>RATIOEP for both lifting and putting-down. RATIOEMG>>1 and

RATIOFORCE>>1 concerning all investigated muscles except DP.

Thus, it’s obvious that the load effected the muscle variances at a higher rate than

kinematic variances (Table 5.2) proving that the effect of the heavier object on variances

was the highest at muscle activity level, smaller at joint configuration level and it was the

smallest at endpoint level.

TABLE 5.2.
RATIOS OF MEAN VARIANCES

UP DOWN

EP 0.7 1.3

JC 1.2 1.4

EMG

BI TR BI TR

3.9 2.5 4.8 3.3

DA DP DA DP

1.9 2.83 2.2 3.42

FORCE

BI TR BI TR

9.6 2.3 5.75 2.83

DA DP DA DP

5.3 1.1 4,83 1,12

Note.  In the table the RATIO of movement variances with load (O2) to

movement variances without load (CD) is summarized for the studied

motor control levels. As a result it can be seen that the RATIO was smaller

for endpoint and joint configuration variances than for sEMG and muscle

FORCE variances respectively representing that enhanced muscle

synergies stabilize the movement at kinematic level by controlling

primarely through the hand position and less by the combined joint

rotations and not by individual muscle activities.
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The shoulder extensor (DP) had a slightly different behavior than the other muscles

because the variances of DP were higher than the variances of DA in contrast to EMG

variances (Figure 5.4). A possible reason of this is that the main action lines of muscle

forces may alter and influence muscle force variances caused by the complex structure of

the deltoid muscle [78].

II.3. I have shown that using virtually predicted muscle forces, generalized

muscle activity patterns for rehabilitation of the upper extremity containing

the shoulder complex cannot be generated in the cases of the main arm

muscles. Instead of using generalized action patterns for all patients,

personalized movement patterns rather lead to adequate rehabilitation

processes of individuals.

TABLE 5. 3.
BETWEEN SUBJECTS MEAN AND SD OF PREDICTED MUSCLE FORCES

Mean

(N)

SD

(N)

CD O2 CD O2

UP

BI 23 220 16 168

TR 24 55 15 38

DA 12 64 8 42

DP 679 742 839 604

DOWN

BI 32 184 28 143

TR 18 51 14 36

DA 17 82 14 70

DP 785 886 928 758

Note. Between subjects mean and SD of predicted muscle forces (BI, TR,

DA, DP) for all individuals. Standard deviations of predicted muscle

forces were remarkably high compared to the mean of predicted muscle

forces across subjects indicating different execution patterns between

subjects.

Predicted muscle force standard deviations (SD) across all subjects were relatively high

compared to the mean across subjects for both object conditions (Table 5.3) indicating

distinctive force patterns between subjects exerted by individual muscles under the
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execution of the same point-to-point movement. Thus, the execution of movements under

differing object conditions varies subject by subject. To demonstrate this across subjects,

standard deviations were computed within subjects (for 10 trials) for both directions (UP,

DOWN) under each load condition (CD, O2) to all subjects separately and then averaged

across all subjects (Table 5.4).

TABLE 5. 4.
WITHIN SUBJECTS PREDICTED MUSCLE FORCE SD-S

[N] UP DOWN

CD

BI TR BI TR

2.4542 2.7512 3.255 2.5224

DA DP DA DP

2.0863 16.166 2.3067 19.475

O2

BI TR BI TR

5.5247 2.8967 4.7365 3.0204

DA DP DA DP

5.0782 30.423 3.6851 16.128

Note. In the table averaged, within subjects predicted muscle force SD can

be seen. Averaged within subjects standard deviations were significantly

smaller than between subjects standard deviations (Table 3) at p<0.05

significance level. Thus, generalized activation patterns cannot be applied

during rehabilitation procedures. Instead of using generalized action

patterns for all patients, personalized movement patterns rather lead to

adequate rehabilitation processes of individuals.

Within subjects SDs (Table 5.4) were significantly smaller (p<0.05) than between

subjects SDs for both directions under each object condition.

As a consequence of this fact, generalized movement patterns using predicted muscle

forces for FES rehabilitation cannot be generated because it changes between subjects.

However, using the presented 3D biomechanical model (Theses I.) personalized

movement patterns are applicable in FES rehabilitation procedures of tetraplegic patients.
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V.2. Possible Applications

In the first theses group I summarized the most important novel results of a

personalized biomechanical model.

These results will be useful to generate personalized muscle activity patterns for patients

having rehabilitation of their upper extremity. Personalized movement patterns will be

created based on anthropometric data to define typical muscle geometries characterizing

the subjects anatomical muscle geometries as accurately as possible. Furthermore, in the

next step of the research I plan to reveal the relationship between virtually computed

muscle forces and stimulation patterns. Such stimulation patterns should be applied by

using electrical stimulators in FES applications to activate the main muscles of the upper

limb and generate reaching-grasping arm movements artificially in the 3D space.  In the

second theses group I summarized how the heavier object affected different levels of the

motor apparatus thus supporting that enhanced muscle synergy stabilizes the movement

at kinematic levels.

This issue is going to be very useful in medical rehabilitation and in occupational therapy

by assisting medical doctors in selecting which muscles or body parts should be trained

for more efficient motor performance.

My theses contribute to human motor control research by better understanding how the

central nervous system (CNS) reacts for changing external conditions.
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APPENDICES

VI.1. Endpoint Variances – All Individuals

Figure 6.1.Variances of the endpoint during holding movement period for the 20 individuals separately. In

the upper panel variances observed during lifting while in the lower panel variances observed during

putting-down are presented. Significant difference was not observed between CD and O2 conditions in

either cases at p<0.05 significance level (Table 4.2). meanCD>meanO2 across individuals occurred only

during lifting.
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VI.2. Joint Configuration Variances – All Individuals

Figure 6.2. Variances of the joint configuration during holding movement period for the 20 individuals

separately. In the upper panel variances observed during lifting while in the lower panel variances

observed during putting-down are presented. Significant difference was observed at p<0.05 significance

level between CD and O2 conditions only during putting-down proving the remarkable effect of the gravity

on movement execution (Table 4.2).  Higher CD variance than O2 variance was observed only in 6

subjects during lifting and only in 5 subjects during putting-down. meanCD<meanO2 across subjects

occurred in both directions.
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VI.3. EMG Variances – All Individuals

Figure 6.3. Variances of  elbow muscle EMGs during holding period in lifting for the 20 individuals

separately.  In the upper panel variances observed in the flexor while in the lower panel variances

observed in the extensor are presented. Significant difference was observed at p<0.05 significance level

between CD and O2 conditions either for flexor or extensor (Table 4.2).  Higher CD variance than O2

variance was observed only in 2 individuals for flexor and only in 1 individual for extensor activity.

meanCD<meanO2 occurred across individuals.
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Figure 6.4. Variances of  elbow muscle EMGs during holding period in putting-down for the 20

individuals separately. In the upper panel variances observed in the flexor while in the lower panel

variances observed in the extensor are presented. Significant difference was observed at p<0.05

significance level between CD and O2 conditions either for flexor or extensor (Table 4.2).  Higher CD

variance than O2 variance was not observed in either muscle types. meanCD<meanO2 occured across

individuals.
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Figure 6.5. Variances of shoulder muscle EMGs during holding period in lifting for the 20 individuals

separately.  In the upper panel variances observed in the flexor while in the lower panel variances

observed in the extensor are presented. Significant difference was observed at p<0.05 significance level

between CD and O2 conditions either for flexor or extensor (Table 4.2).  Higher CD variance than O2

variance was observed only in 2 individuals for flexor and only in 1 individual for extensor activity.

meanCD<meanO2 occurred across individuals.
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Figure 6.6. Variances of  shoulder muscle EMGs during holding period in putting-down  for the 20

individuals separately.  In the upper panel variances observed in the flexor while in the lower panel

variances observed in the extensor are presented. Significant difference was observed at p<0.05

significance level between CD and O2 conditions either for flexor or extensor (Table 4.2).  Higher CD

variance than O2 variance was observed only in 2 individuals for flexor and only in 1 individual for

extensor activity. meanCD<meanO2 occurred across individuals.
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VI.4. Predicted Muscle Force Variances – All Individuals

Figure 6.7. Variances of  elbow muscle FORCEs during holding period in lifting for the 20 individuals

separately.  In the upper panel variances observed in the flexor while in the lower panel variances

observed in the extensor are presented. Significant difference was observed at p<0.05 significance level

between CD and O2 conditions either for flexor or extensor (Table 4.2).  Higher CD variance than O2

variance was not observed for flexor and only in 1 individual for extensor activity. meanCD<meanO2

occurred across individuals.
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Figure 6.8. Variances of  elbow muscle FORCEs during holding period in putting-down for the 20

individuals separately.  In the upper panel variances observed in the flexor while in the lower panel

variances observed in the extensor are presented. Significant difference was observed at p<0.05

significance level between CD and O2 conditions either muscle types (Table 4.2).  Higher CD variance

than O2 variance was observed only in 1 individual for both flexor and extensor activity.

meanCD<meanO2 occurred across individuals.
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Figure 6.9. Variances of  shoulder muscle FORCEs during holding period in lifting for the 20 individuals

separately.  In the upper panel variances observed in the flexor while in the lower panel variances

observed in the extensor are presented. Significant difference was observed at p<0.05 significance level

between CD and O2 conditions only  for the  flexor muscle (Table 4.2).  Higher CD variance than O2

variance was observed only in 1 individual  for flexor and  in 7 individuals for extensor activity.

meanCD<meanO2 occurred across individuals.
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Figure 6.10. Variances of  shoulder muscle FORCEs during holding period in putting-down for the 20

individuals separately.  In the upper panel variances observed in the flexor while in the lower panel

variances observed in the extensor are presented. Significant difference was observed at p<0.05

significance level between CD and O2 conditions only for the  flexor muscle (Table 4.2).  Higher CD

variance than O2 variance was not observed for flexor and in 4 individuals for extensor activity.

meanCD<meanO2 occurred across individuals.
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TABLE 6.1.
PEARSON’S R-VALUES OF ALL SUBJECTS FOR THE BI AND DA MUSCLE FORCES OBSERVED DURING HOLDING
CONSIDERING ALL OBJECT CONDITIONS.
SubjID BI FORCE DA FORCE

UP DOWN UP DOWN
CDO1 CDO2 O1O2 CDO1 CDO2 O1O2 CDO1 CDO2 O1O2 CDO1 CDO2 O1O2

1 0.38 0.3 0.83 0.69 0.8 0.91 -0.1 -0.1 0.9 0.88 0.68 0.7
2 0.27 -0.2 0.63 0.9 0.87 0.94 -0.1 0.01 0.61 0.82 0.8 0.83
3 0.53 0.43 0.88 0.98 0.97 0.99 -0.1 0.01 0.61 0.98 0.93 0.92
4 -0.2 0.03 0.63 0.83 0.77 0.86 0.04 0.15 0.77 0.87 0.52 0.7
5 0.4 0.39 0.86 0.86 0.98 0.85 0.47 0.68 0.82 0.98 0.95 0.94
6 0.75 0.71 0.9 0.9 0.84 0.93 0.17 0.47 0.89 0.95 0.96 0.98
7 0.6 -0.04 0.24 0.89 0.85 0.94 0.41 0.71 0.52 0.89 0.88 0.86
8 0.54 0.45 0.55 0.81 0.56 0.67 -0.44 -0.67 0.7 0.63 0.6 0.89
9 0.21 -0.02 -0.25 0.76 -0.01 0.1 -0.53 -0.89 0.8 0.93 0.72 0.73

10 -0.4 -0.3 0.87 0.75 0.47 0.85 0.18 -0.04 0.87 0.9 0.86 0.95
11 0.6 0.32 0.76 0.98 0.89 0.91 0.86 0.72 0.87 0.96 0.94 0.94
12 0.72 0.68 0.95 0.98 0.96 0.98 0.83 0.47 0.7 0.98 0.95 0.97
13 0.33 0.35 0.88 0.73 0.85 0.67 -0.12 -0.08 0.81 0.82 0.64 0.8
14 0.15 0.08 0.88 0.97 0.9 0.95 0.29 0.07 0.84 0.96 0.84 0.93
15 0.78 0.65 0.92 0.93 0.8 0.92 0.7 0.57 0.81 0.99 0.95 0.99
16 0.41 0.26 0.55 -0.8 0.87 -0.67 0.29 0.46 0.51 -0.8 0.96 -0.71
17 0.29 0.11 0.89 0.91 0.3 0.85 0 -0.2 0.75 0.83 0.9 0.92
18 0.38 0.39 0.87 0.86 0.9 0.96 -0.01 0.001 0.71 0.87 0.81 0.94
19 0.65 0.64 0.98 0.94 0.8 0.87 0.62 0.74 0.81 0.94 0.89 0.92
20 0.57 0.51 0.94 0.95 0.84 0.86 0.49 0.14 0.88 0.88 0.84 0.96

Mean 0.38 0.28 0.73 0.79 0.76 0.76 0.19 0.16 0.75 0.81 0.83 0.80
SD 0.30 0.29 0.29 0.38 0.24 0.39 0.39 0.44 0.11 0.38 0.13 0.36

Note. The strongest (0.21 ≤ r ≤ 0.99) correlation coefficients were observed between O1 and O2; weaker
correlation (-0.1 ≤ r ≤ 0.98) was present between CD and O1; the weakest coefficients (-0.89 ≤ r ≤ 0.97)
were obtained between CD and O2 in the case of the force exerted by the biceps during lifting (strongest
correlation; strong, but weaker correlation; the weakest correlation). Such correlation patterns were not
present either during putting-down in the case of the biceps or in the case of the deltoid anterior muscle
considering both directions. Therefore, the object invariant feature observed for the torque profiles is NOT
true for the force profiles.

DOI:10.15774/PPKE.ITK.2012.004



BIBLIOGRAPHY

PUBLICATIONS OF THE AUTHOR

Journal papers

R. Tibold, G. Fazekas, J. Laczkó, „Three-dimensional model to predict muscle forces
and their relation to motor variances in reaching arm movements”, Journal of
Applied Biomechanics (in press), 2011

R. Tibold, J. Laczkó, „The effect of load on torques in point to point arm movements, a
3D model”, Journal of Motor Behavior (submitted), 2011

J. Laczkó, R. Tibold, „Implications on Upper Extremity FES – A systematic review”,
Ideggyógyászati Szemle/Clinical Neuroscience (submitted), 2011

Conference papers

R. Tibold, A. Poka, B. Borbely, J. Laczkó, „The effect of load on joint- and muscle
synergies in reaching arm movements”. Accepted at VII. Conference on Progress
in Motor Control, Marseille, France 2009. July, 2009

J. Laczkó, R. Tibold, G. Fazekas, „Neuromuscular synergy ensures kinematic stability
during 3D reaching arm movements with load”. Program No. 272.2 2009
Neuroscience Meeting. Chicago, IL: Soc. for Neuroscience, 2009. Online, 2009.

J. Laczkó, R. Tibold, „3D analysis to reveal muscle activity timing in object replacing
arm movements”, 11th International Symposium on the 3D Analysis of Human
Movement, San Francisco, 2010

J. Laczkó, T. Pilissy, R. Tibold, „Neuro-mechanical Modeling
and Controlling of Human Limb Movements of Spinal Cord Injured Patients”.
Proc. of the  2nd International Symposium on Applied Sciences in Biomedical and
Communication Technologies.  ISBN 978-80-227-3216-1, 2009

DOI:10.15774/PPKE.ITK.2012.004



CITED PUBLICATIONS

[1] J. Sanyal, D. P. Chakraborty, and V. R. Rao, “Environmental and familial risk
factors of Parkinsons disease: case-control study.,” The Canadian journal of
neurological sciences. Le journal canadien des sciences neurologiques, vol. 37,
no. 5, pp. 637-642, 2010.

[2] C. Fazekas, T. Vörös, Z. Keresztényi, G. Kozmann, and J. Laczkó, “Computer
aided interactive remote diagnosis of Parkinsonians.,” Studies In Health
Technology And Informatics, vol. 90, pp. 572-576, 2002.

[3] Z. Keresztényi, J. Laczkó, and K. Bötzel, “The time course of the return of upper
limb bradykinesia after cessation of subthalamic stimulation in Parkinson’s
disease.,” Parkinsonism related disorders, vol. 13, no. 7, pp. 438-442, 2007.

[4] Z. Keresztényi, P. Cesari, G. Fazekas, and J. Laczkó, “The relation of hand and
arm configuration variances while tracking geometric figures in Parkinson’s
disease: aspects for rehabilitation.,” International journal of rehabilitation
research Internationale Zeitschrift fur Rehabilitationsforschung Revue
internationale de recherches de readaptation, vol. 32, no. 1, pp. 53-63, 2009.

[5] S. Judd, Genetic Disorder Sourcebook, Fourth Edi. Omnigraphics.

[6] S. Meunier, S. Lehéricy, L. Garnero, and M. Vidailhet, “Dystonia: lessons from
brain mapping.,” The Neuroscientist a review journal bringing neurobiology
neurology and psychiatry, vol. 9, no. 1, pp. 76-81, 2003.

[7] P. Czobor, J. Vitrai, S. Marosfi, and I. Toth, “Steady-state visual evoked-potential
tests in Sclerosis Multiplex.,” Electroencephalography and Clinical
Neurophysiology, vol. 50, no. 3-4, p. 117, 1980.

[8] J. Czopf, K. Hegedus, M. Kissantal, and G. Karmos, “Statistical-analysis of EEG
and clinical data in multiple-sclerosis - significance of visual evoked-response in
diagnosis of multiple-sclerosis.,” Electroencephalography and Clinical
Neurophysiology, vol. 41, no. 2, p. 210, 1976.

[9] C. Bowen, A. MacLehose, and J. G. Beaumont, “Advanced multiple sclerosis and
the psychosocial impact on families.,” Psychology health, vol. 26, no. 1, pp. 113-
127, 2011.

[10] R. I. Spain, M. H. Cameron, and D. Bourdette, “Recent developments in multiple
sclerosis therapeutics.,” BMC Medicine, vol. 7, no. 1, p. 74, 2009.

DOI:10.15774/PPKE.ITK.2012.004



Neuromorphic Modeling of Reaching Arm Movements 102

[11] T. Pilissy, K. Pad, G. Fazekas, M. Horvath, G. Stefanik, and J. Laczkó, “The role
of ankle-joint during cycling movement task.,” International Journal of
Rehabilitation Research, vol. 30, pp. 58-59, 2007.

[12] J. Szecsi, C. Krewer, F. Müller, and A. Straube, “Functional electrical stimulation
assisted cycling of patients with subacute stroke: kinetic and kinematic analysis.,”
Clinical Biomechanics, vol. 23, no. 8, pp. 1086-1094, 2008.

[13] A. Frotzler, S. Coupaud, and P. Eser, “High-volume FES-cycling partially reverses
bone loss in people with chronic spinal cord injury.,” Bone, vol. 43, no. 1, pp. 169-
176, 2008.

[14] E. Ambrosini, S. Ferrante, T. Schauer, G. Ferrigno, F. Molteni, and A. Pedrocchi,
“Design of a symmetry controller for cycling induced by electrical stimulation:
preliminary results on post-acute stroke patients.,” Artificial Organs, vol. 34, no.
8, pp. 663-667, 2010.

[15] E. Ambrosini, S. Ferrante, and T. Schauer, “Simulation and experimental design
of a symmetry controller for fes cycling optimised on stroke patients.,”
Technology, pp. 245-250, 2007.

[16] L. A. Johnson and A. J. Fuglevand, “Mimicking muscle activity with electrical
stimulation.,” Journal of Neural Engineering, vol. 8, no. 1, pp. 9-16, 2011.

[17] P. F. Li, Y. Hong, and J. Zhang, “An FES cycling control system based on CPG.,”
Conference Proceedings of the International Conference of IEEE Engineering in
Medicine and Biology Society, vol. 2009, pp. 1569-1572, 2009.

[18] A. Szentgyorgyi, “Muscle research.,” Scientific American, vol. 180, no. 6, pp. 22-
25, 1949.

[19] J. Szecsi, S. Krafczyk, J. Quintern, M. Fiegel, A. Straube, and T. Brandt,
“Paraplegic cycling using functional electrical stimulation. Experimental and
model-based study of power output,” Der Nervenarzt, vol. 75, no. 12, pp. 1209-
1216, 2004.

[20] A. J. Van Soest, M. Gföhler, and L. J. R. Casius, “Consequences of ankle joint
fixation on FES cycling power output: a simulation study.,” Medicine & Science in
Sports & Exercise, vol. 37, no. 5, pp. 797-806, 2005.

[21] J. Szecsi, C. Schlick, M. Schiller, W. Pöllmann, N. Koenig, and A. Straube,
“Functional electrical stimulation-assisted cycling of patients with multiple
sclerosis: biomechanical and functional outcome--a pilot study.,” Journal of
rehabilitation medicine official journal of the UEMS European Board of Physical
and Rehabilitation Medicine, vol. 41, no. 8, pp. 674-680, 2009.

[22] L. Comolli, S. Ferrante, A. Pedrocchi, M. Bocciolone, G. Ferrigno, and F.
Molteni, “Metrological characterization of a cycle-ergometer to optimize the

DOI:10.15774/PPKE.ITK.2012.004



103 Neuromorphic Modeling of Reaching Arm Movements

cycling induced by functional electrical stimulation on patients with stroke.,”
Medical Engineering & Physics, vol. 32, no. 4, pp. 339-348, 2010.

[23] P. N. Taylor, J. Esnouf, and J. Hobby, “Pattern of use and user satisfaction of
Neuro Control Freehand system.,” Spinal cord the official journal of the
International Medical Society of Paraplegia, vol. 39, no. 3, pp. 156-160, 2001.

[24] P. N. Taylor, J. Esnouf, and J. Hobby, “The functional impact of the Freehand
system on tetraplegic hand function - Clinical results.,” Spinal cord the official
journal of the International Medical Society of Paraplegia, vol. 40, no. 11, pp.
560-566, 2002.

[25] A. Naito, M. Yajima, H. Fukamachi, and Y. Shimizu, “Functional electrical
stimulation (FES) to the biceps brachii for controlling forearm supination in the
paralyzed upper extremity.,” The Tohoku journal of experimental medicine, vol.
173, no. 2, pp. 269-273, 1994.

[26] R. Raikova, “A general approach for modelling and mathematical investigation of
the human upper limb.,” Journal of Biomechanics, vol. 25, no. 8, pp. 857-867,
1992.

[27] J. Langenderfer, S. A. Jerabek, V. B. Thangamani, J. E. Kuhn, and R. E. Hughes,
“Musculoskeletal parameters of muscles crossing the shoulder and elbow and the
effect of sarcomere length sample size on estimation of optimal muscle length.,”
Clinical Biomechanics, vol. 19, no. 7, pp. 664-670, 2004.

[28] K. R. S. Holzbaur, S. L. Delp, G. E. Gold, and W. M. Murray, “Moment-
generating capacity of upper limb muscles in healthy adults.,” Journal of
Biomechanics, vol. 40, no. 11, pp. 2442-2449, 2007.

[29] A. A. Amis, D. Dowson, V. Wright, and J. H. Miller, “The derivation of elbow
joint forces, and their relation to prosthesis design.,” Journal of medical
engineering technology, vol. 3, no. 5, pp. 229-234, 1979.

[30] A. A. Amis, D. Dowson, and V. Wright, “Analysis of elbow forces due to high-
speed forearm movements.,” Journal of Biomechanics, vol. 13, no. 10, pp. 825-
831, 1980.

[31] A. A. Amis, J. H. Miller, D. Dowson, and V. Wright, “Elbow joint forces – Basic
data for prosthesis designers.,” Journal of Bone and Joint Surgery-British, vol. 62,
no. 2, pp. 251-252, 1980.

[32] K. N. An, F. C. Hui, B. F. Morrey, R. L. Linscheid, and E. Y. Chao, “Muscles
across the elbow joint: A biomechanical analysis.,” Journal of Biomechanics, vol.
14, no. 10, pp. 659-669, 1981.

DOI:10.15774/PPKE.ITK.2012.004



Neuromorphic Modeling of Reaching Arm Movements 104

[33] K. N. An, K. R. Kaufman, and E. Y. Chao, “Physiological considerations of
muscle force through the elbow joint.,” Journal of Biomechanics, vol. 22, no. 11-
12, pp. 1249-1256, 1989.

[34] S. I. Backus, J. D. Mabry, M. A. Kroll, R. F. Warren, and J. C. Otis, “Torque
production in the shoulder of the normal young-adult male.,” Physical Therapy,
vol. 65, no. 5, p. 715, 1985.

[35] J. T. London, “Kinematics of the elbow.,” The Journal of Bone and Joint Surgery,
vol. 63, no. 4, pp. 529-535, 1981.

[36] J. C. Otis, R. F. Warren, S. I. Backus, T. J. Santner, and J. D. Mabrey, “Torque
production in the shoulder of the normal young adult male. The interaction of
function, dominance, joint angle, and angular velocity.,” The American Journal of
Sports Medicine, vol. 18, no. 2, pp. 119-123, 1990.

[37] F. E. Zajac and M. E. Gordon, “Determining muscle’s force and action in multi-
articular movement.,” Exercise and Sport Sciences Reviews, vol. 17, no. 1, pp.
187-230, 1989.

[38] E. Pennestrì, R. Stefanelli, P. P. Valentini, and L. Vita, “Virtual musculo-skeletal
model for the biomechanical analysis of the upper limb.,” Journal of
Biomechanics, vol. 40, no. 6, pp. 1350-1361, 2007.

[39] Q. Shao, D. N. Bassett, K. Manal, and T. S. Buchanan, “An EMG-driven model to
estimate muscle forces and joint moments in stroke patients.,” Computers in
Biology and Medicine, vol. 39, no. 12, pp. 1083-1088, 2009.

[40] Q. Shao and T. S. Buchanan, “A biomechanical model to estimate corrective
changes in muscle activation patterns for stroke patients.,” Journal of
Biomechanics, vol. 41, no. 14, pp. 3097-3100, 2008.

[41] G. Fazekas, M. Horvath, T. Troznai, and A. Toth, “Robot-mediated upper limb
physiotherapy for patients with spastic hemiparesis: a preliminary study.,” Journal
of rehabilitation medicine official journal of the UEMS European Board of
Physical and Rehabilitation Medicine, vol. 39, no. 7, pp. 580-582, 2007.

[42] H. A. Abdullah, C. Tarry, R. Datta, G. S. Mittal, and M. Abderrahim, “Dynamic
biomechanical model for assessing and monitoring robot-assisted upper-limb
therapy.,” Journal Of Rehabilitation Research And Development, vol. 44, no. 1,
pp. 43-62, 2007.

[43] H. Abdullah, C. Tarry, and G. Mittal, “A biomechanical model to aid robot-
assisted therapy of upper limb impairment,” in IECON 200632nd, 2006, no. 519,
pp. 4107-4112.

[44] “Stroke Center,” 2011. [Online]. Available:
http://www.strokecenter.org/patients/stats.htm.

DOI:10.15774/PPKE.ITK.2012.004



105 Neuromorphic Modeling of Reaching Arm Movements

[45] J. Laczkó, A. J. Pellionisz, B. W. Peterson, and T. S. Buchanan,
“Multidimensional sensorimotor ‘patterns’ arising from a graphics-based tensorial
model of the neck-motor system.,” Society for Neuroscience Abstracts, vol. 13, no.
1, p. 372, 1987.

[46] J. Laczkó, A. Pellionisz, H. Jongen, and S. C. A. M. Gielen, “Computer modeling
of human forelimb muscle activation in multidimensional Intrinsic coordinate
frames.,” Society fot Neuroscience. Abstract, vol. 14, no. 2, p. 955, 1988.

[47] J. Laczkó, “Modeling of limb movements as a function of motoneuron activities.,”
Kalokagathia, vol. 43, no. 3, pp. 24-34, 2005.

[48] J. Laczkó, K. Walton, and R. Llinas, “A neuro-mechanical transducer model for
controlling joint rotations and limb movements.,” Ideggyogyaszati Szemle, vol. 59,
no. 1-2, pp. 32-43, 2006.

[49] J. Laczkó, T. Pilissy, and A. Klauber, “Modeling of limb movements for
controlling functional electrical stimulation of paraplegics.,” Proc. of the Third
Hungarian Conference on Biomechanics, pp. 151-157, 2008.

[50] J. Laczkó, “Modeling of multi-joint movements.,” Kalokagathia 2001, Spec. Issue,
pp. 91-96, 2001.

[51] N. Bernstein, “The co-ordination and regulation of movements.,”
Neuropsychologia, vol. 6, no. 1, p. 215, 1967.

[52] I. M. Gelfand, M. L. Tsetlin, V. S. Gurfinkel, and S. V. Fomin, “Mathematical
modeling of the mechanisms of the central nervous system,” Models of the
structuralfunctional organization of certain biological systems, pp. 1-22, 1971.

[53] T. Flash and N. Hogan, “The coordination of arm movements: an experimentally
confirmed mathematical model.,” Journal of Neuroscience, vol. 5, no. 7, pp. 1688-
1703, 1985.

[54] J. Laczkó, S. Jaric, J. Tihanyi, V. M. Zatsiorsky, and M. L. Latash, “Components
of the end-effector jerk during voluntary arm movements.,” Journal of Applied
Biomechanics, no. 16, pp. 14-26, 2000.

[55] M. Kawato, Y. Maeda, Y. Uno, and R. Suzuki, “Trajectory formation of arm
movement by cascade neural network model based on minimum torque-change
criterion.,” Biological Cybernetics, vol. 62, no. 4, pp. 275-288, 1990.

[56] Y. Uno, M. Kawato, and R. Suzuki, “Formation and control of optimal trajectory
in human multijoint arm movement,” Biological Cybernetics, vol. 61, no. 2, pp.
89-101, 1989.

[57] M. L. Latash, Control of human movement. Human Kinetics, 1993.

DOI:10.15774/PPKE.ITK.2012.004

http://www.strokecenter.org/patients/stats.htm


Neuromorphic Modeling of Reaching Arm Movements 106

[58] B. I. Prilutsky, “Coordination of two- and one-joint muscles: functional
consequences and implications for motor control.,” Motor Control, vol. 4, no. 1,
pp. 1-44, 2000.

[59] D. Domkin, J. Laczkó, S. Jaric, H. Johansson, and M. L. Latash, “Structure of
joint variability in bimanual pointing tasks.,” Experimental Brain Research, vol.
143, no. 1, pp. 11-23, 2002.

[60] D. Domkin, J. Laczkó, M. Djupsjöbacka, S. Jaric, and M. L. Latash, “Joint angle
variability in 3D bimanual pointing: uncontrolled manifold analysis.,”
Experimental Brain Research, vol. 163, no. 1, pp. 44-57, 2005.

[61] M. L. Latash, J. K. Shim, and V. M. Zatsiorsky, “Is there a timing synergy during
multi-finger production of quick force pulses?,” Psychopharmacology, vol. 177,
no. 1-2, pp. 217-223, 2004.

[62] M. L. Latash, V. Krishnamoorthy, J. P. Scholz, and V. M. Zatsiorsky, “Postural
synergies and their development.,” Neural Plasticity, vol. 12, no. 2-3, pp. 119-30;
discussion 263-72, 2005.

[63] G. Torres-Oviedo, J. M. Macpherson, and L. H. Ting, “Muscle synergy
organization is robust across a variety of postural perturbations.,” Journal of
Neurophysiology, vol. 96, no. 3, pp. 1530-1546, 2006.

[64] E. Kellis and A. Katis, “Hamstring antagonist moment estimation using clinically
applicable models: Muscle dependency and synergy effects.,” Journal of
Electromyography and Kinesiology, vol. 18, no. 1, pp. 144-153, 2008.

[65] J. Laczkó, K. Walton, and R. Llinas, “Modeling study of the relationship between
spinal motoneuron pool firing rate and hindlimb posture during locomotion:
consideration of the effects of alerting gravity during development.,” in Program
No. 448.5. 2006 Abstract Viewer. Society for Neuroscience., 2006.

[66] T. Schaaf, J. Hartmann, and E. J. Seidel, “Comparison of measurement devices
Zebris (R) CMS 70 P and Varilux Essilor VisionPrint System (TM) for
identification of neuro-muscular patterns ‘head-or-eye-mover’,” Physikalische
Medizin Rehabilitationsmedizin Kurortmedizin, vol. 20, no. 1, pp. 20-26, 2010.

[67] E.-M. Malmström, M. Karlberg, A. Melander, and M. Magnusson, “Zebris versus
Myrin: a comparative study between a three-dimensional ultrasound movement
analysis and an inclinometer/compass method: intradevice reliability, concurrent
validity, intertester comparison, intratester reliability, and intraindividual variab,”
Spine, vol. 28, no. 21, p. E433-E440, 2003.

[68] L. D. Loukopoulos, S. F. Engelbrecht, and N. E. Berthier, “Planning of reach-and-
grasp movements: effects of validity and type of object information.,” Journal of
Motor Behavior, vol. 33, no. 3, pp. 255-264, 2001.

DOI:10.15774/PPKE.ITK.2012.004



107 Neuromorphic Modeling of Reaching Arm Movements

[69] J. Szentágothai and M. Réthelyi, A felső végtag izmai, Funckionális anatómiai I.
Medicina, 2002, pp. 583-607.

[70] J. Szentágothai and M. Réthelyi, A felső végtag csontjai és ízületei, Funckionális
anatómiai I. Medicina, 2002, pp. 412-433.

[71] K. S. Erer, “Adaptive usage of the Butterworth digital filter.,” Journal of
Biomechanics, vol. 40, no. 13, pp. 2934-2943, 2007.

[72] M. Horvath and G. Fazekas, “Assessment of motor impairment with
electromyography--the kinesiological EMG.,” Ideggyogyaszati Szemle, vol. 56,
no. 11-12. pp. 360-369, 2003.

[73] J. Becher, J. Harlaar, T. W. Vogelaar, and H. Bakker, “Assessment of muscle
function in hemiplegic and healthy-subjects by kinesiological emg-registration
during repetitive movements.,” Electrophysiological Kinesiology, vol. 804, pp.
357-360, 1988.

[74] D. H. Sutherland, “The evolution of clinical gait analysis part l: kinesiological
EMG.,” Gait & Posture, vol. 14, no. 1, pp. 61-70, 2001.

[75] V. M. Zatsiorsky, Kinematics of Human Motion. Champaign IL: Human Kinetics,
2008.

[76] H. E. J. Veeger, B. Yu, K. N. An, and R. H. Rozendal, “Parameters for modeling
the upper extremity.,” Journal of Biomechanics, vol. 30, no. 6, pp. 647-652, 1997.

[77] K. N. An, M. Jacobsen, L. Berglund, and E. Chao, “Application of a magnetic
tracking device to kinesiologic studies,” Journal of Biomechanics, vol. 21, no. 7,
pp. 613–615, 1988.

[78] J. B. Wickham and J. M. Brown, “Muscles within muscles: the neuromotor control
of intra-muscular segments.,” European Journal Of Applied Physiology And
Occupational Physiology, vol. 78, no. 3, pp. 219-225, 1998.

[79] R. Tibold, G. Fazekas, and J. Laczkó, “Three-dimensional model to predict muscle
forces and their relation to motor variances in reaching arm movements.,” Journal
of Applied Biomechanics, p. (in press), 2011.

[80] J. M. Brown, J. B. Wickham, D. J. McAndrew, and X. F. Huang, “Muscles within
muscles: Coordination of 19 muscle segments within three shoulder muscles
during isometric motor tasks.,” Journal of Electromyography and Kinesiology,
vol. 17, no. 1, pp. 57-73, 2007.

[81] A. V. Hill, “The heat of shortening and the dynamic constants of muscle.,”
Proceedings of the Royal Society B Biological Sciences, vol. 126, no. 843, pp.
136-195, 1938.

DOI:10.15774/PPKE.ITK.2012.004



Neuromorphic Modeling of Reaching Arm Movements 108

[82] R. D. Woittiez, P. A. Huijing, and R. H. Rozendal, “Influence of muscle
architecture on the length-force diagram a model and its verification.,” Pfliigers
Arch, vol. 397, pp. 73-74, 1983.

[83] R. D. Woittiez, P. A. Huijing, H. B. Boom, and R. H. Rozendal, “A three-
dimensional muscle model: a quantified relation between form and function of
skeletal muscles.,” Journal of Morphology, vol. 182, no. 1, pp. 95-113, 1984.

[84] P. A. Huijing and R. D. Woittiez, “The effect of architecture on skeletal muscle
performance: a simple planimetric model.,” Netherlands Journal of Zoology, vol.
34, no. 1, pp. 21-32, 1984.

[85] Y. W. Chang, F. C. Su, H. W. Wu, and K. N. An, “Optimum length of muscle
contraction.,” Clinical Biomechanics, vol. 14, no. 8, pp. 537-542, 1999.

[86] J. Fridén and R. L. Lieber, “Quantitative evaluation of the posterior deltoid to
triceps tendon transfer based on muscle architectural properties.,” The Journal of
hand surgery, vol. 26, no. 1, pp. 147-155, 2001.

[87] L. De Wilde, E. Audenaert, E. Barbaix, A. Audenaert, and K. Soudan,
“Consequences of deltoid muscle elongation on deltoid muscle performance: a
computerised study.,” Clinical Biomechanics, vol. 17, no. 7, pp. 499-505, 2002.

[88] G. L. Gottlieb, “A computational model of the simplest motor program.,” Journal
of Motor Behavior, vol. 25, pp. 153-161, 1993.

[89] K. R. S. Holzbaur, W. M. Murray, and S. L. Delp, “A model of the upper
extremity for simulating musculoskeletal surgery and analyzing neuromuscular
control.,” Annals of Biomedical Engineering, vol. 33, no. 6, pp. 829-840, 2005.

[90] S. L. Delp, J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen, “An
interactive graphics-based model of the lower extremity to study orthopaedic
surgical procedures.,” IEEE Transactions on Biomedical Engineering, vol. 37, no.
8, pp. 757-767, 1990.

[91] S. L. Delp and J. P. Loan, “A graphics-based software system to develop and
analyze models of musculoskeletal structures.,” Computers in Biology and
Medicine, vol. 25, no. 1, pp. 21-34, 1995.

[92] J. Vaughan, D. A. Rosenbaum, C. J. Harp, L. D. Loukopoulos, and S. F.
Engelbrecht, “Finding final postures.,” Journal of Motor Behavior, vol. 30, no. 3,
pp. 273-284, 1998.

[93] M. A. Lemay, P. E. Crago, M. Katorgi, and G. J. Chapman, “Automated tuning of
a closed-loop hand grasp neuroprosthesis.,” IEEE Transactions on Biomedical
Engineering, vol. 40, no. 7, pp. 675-685, 1993.

DOI:10.15774/PPKE.ITK.2012.004



109 Neuromorphic Modeling of Reaching Arm Movements

[94] M. A. Lemay and P. E. Crago, “A dynamic model for simulating movements of
the elbow, forearm, and wrist.,” Journal of Biomechanics, vol. 29, no. 10, pp.
1319-1330, 1996.

[95] F. E. Zajac, “Muscle and tendon: properties, models, scaling, and application to
biomechanics and motor control.,” Critical Reviews in Biomedical Engineering,
vol. 17, no. 4, pp. 359-411, 1989.

[96] C. Fleischer and G. Hommel, “Calibration of an EMG-based body model with six
muscles to control a leg exoskeleton.,” Proceedings 2007 IEEE International
Conference on Robotics and Automation, no. April, pp. 2514-2519, 2007.

[97] E. M. Arnold, S. R. Ward, R. L. Lieber, and S. L. Delp, “A model of the lower
limb for analysis of human movement.,” Annals of Biomedical Engineering, vol.
38, no. 2, pp. 269-279, 2010.

[98] A. M. Green and J. F. Kalaska, “Learning to move machines with the mind.,”
Trends in Neurosciences, vol. 34, no. 2, pp. 61-75, 2011.

[99] D. Landin, J. Myers, M. Thompson, R. Castle, and J. Porter, “The role of the
biceps brachii in shoulder elevation.,” Journal of Electromyography and
Kinesiology, vol. 18, no. 2, pp. 270-275, 2008.

[100] D. Landin and M. Thompson, “The shoulder extension function of the triceps
brachii.,” Journal of Electromyography and Kinesiology, vol. 21, no. 1, pp. 161-
165, 2011.

[101] T. Uchiyama, T. Bessho, and K. Akazawa, “Static torque-angle relation of human
elbow joint estimated with artificial neural network technique.,” Journal of
Biomechanics, vol. 31, no. 6, pp. 545-554, 1998.

[102] W. M. Murray, S. L. Delp, and T. S. Buchanan, “Variation of muscle moment
arms with elbow and forearm position.,” Journal of Biomechanics, vol. 28, no. 5,
pp. 513-525, 1995.

[103] J. M. Winters and D. G. Kleweno, “Effect of initial upper-limb alignment on
muscle contributions to isometric strength curves.,” Journal of Biomechanics, vol.
26, no. 2, pp. 143-153, 1993.

[104] D. K. Kuechle, S. R. Newman, E. Itoi, G. L. Niebur, B. F. Morrey, and K. N. An,
“The relevance of the moment arm of shoulder muscles with respect to axial
rotation of the glenohumeral joint in four positions.,” Clinical Biomechanics, vol.
15, no. 5, pp. 322-329, 2000.

[105] A. G. Feldman, V. Goussev, A. Sangole, and M. F. Levin, “Threshold position
control and the principle of minimal interaction in motor actions,” Brain, vol. 165,
pp. 267-281, 2007.

DOI:10.15774/PPKE.ITK.2012.004



Neuromorphic Modeling of Reaching Arm Movements 110

[106] A. G. Feldman, “Once more on the equilibrium-point hypothesis (l model) for
motor control,” Journal of Motor Behavior, vol. 18, no. 1, pp. 17-54, 1986.

[107] M. F. Levin and A. G. Feldman, “The lambda-model for motor control - more than
meets the eye - authors response,” Behavioral and Brain Sciences, vol. 18, no. 4,
p. 786, 1995.

[108] A. Terrier, M. Aeberhard, and D. P. Pioletti, “A musculoskeletal shoulder model
based on pseudo-inverse and null-space optimization.,” Medical Engineering &
Physics, vol. 32, no. 9, pp. 1050-1056, 2010.

[109] F. Gao, M. L. Latash, and V. M. Zatsiorsky, “Similar motion of a hand-held object
may trigger nonsimilar grip force adjustments.,” Journal of hand therapy official
journal of the American Society of Hand Therapists, vol. 20, no. 4, pp. 300-307,
2007.

[110] F. Danion and V. K. Jirsa, “Motor prediction at the edge of instability: alteration
of grip force control during changes in bimanual coordination.,” Journal of
Experimental Psychology: Human Perception and Performance, vol. 36, no. 6, pp.
1684-1692, 2010.

[111] T. H. Falk, C. Tam, H. Schwellnus, and T. Chau, “Grip force variability and its
effects on children’s handwriting legibility, form, and strokes.,” Journal of
Biomechanical Engineering, vol. 132, no. 11, pp. 1145-1150, 2010.

[112] J. Valvano, J. Davis, N. Denniston, and T. Nicklas, “Grip force production linked
to upper extremity kinematics describes impairments in bimanual motor control in
children with hemiplegic cerebral palsy.,” Journal of Sport & Exercise
Psychology, vol. 32, pp. 133-134, 2010.

[113] J. Jacquier-Bret, N. Rezzoug, and P. Gorce, “Adaptation of joint flexibility during
a reach-to-grasp movement.,” Motor Control, vol. 13, no. 3, pp. 342-361, 2009.

[114] J. Nishii and Y. Taniai, “Evaluation of trajectory planning models for arm-
reaching movements based on energy cost.,” Neural Computation, vol. 21, no. 9,
pp. 2634-2647, 2009.

[115] J. Laczkó and Z. Keresztényi, “Variances of hand positions and arm
configurations during arm movements under external load and without external
load.,” Motor Control, no. 11, p. 127, 2007.

[116] M. D. Klein Breteler, R. G. J. Meulenbroek, and S. C. A. M. Gielen, “An
evaluation of the minimum-jerk and minimum torque-change principles at the
path, trajectory, and movement-cost levels.,” Motor Control, vol. 6, no. 1, pp. 69-
83, 2002.

DOI:10.15774/PPKE.ITK.2012.004



111 Neuromorphic Modeling of Reaching Arm Movements

[117] A. Piazzi and A. Visioli, “Global minimum-jerk trajectory planning of robot
manipulators.,” IEEE Transactions on Industrial Electronics, vol. 47, no. 1, pp.
140-149, 2000.

[118] M. Suzuki, K. Matsunami, Y. Yamazaki, and N. Mizuno, “Application of the
minimum jerk model to formation of the trajectory of the centre of mass during
multijoint limb movements.,” Folia primatologica international journal of
primatology, vol. 66, no. 1-4, pp. 240-252, 1996.

[119] E. Nakano, H. Imamizu, Y. Uno, and M. Kawato, “Quantitative examinations of
internal representations for arm trajectory planning: minimum commanded torque
change model.,” Journal of Neurophysiology, vol. 81, no. 5, pp. 2140-2155, 1999.

[120] T. Matsui, M. Honda, and N. Nakazawa, “A new optimal control model for
reproducing human arm’s two-point reaching movements: A modified minimum
torque change model,” 2006 IEEE International Conference on Robotics and
Biomimetics, pp. 1541-1546, 2006.

[121] T. Matsui, “A new optimal control model for reproducing two-point reaching
movements of human three-joint arm with wrist joint’s freezing mechanism.,”
2008 IEEE International Conference on Robotics and Biomimetics, pp. 383-388,
2009.

[122] M. Ackermann and A. J. Van Den Bogert, “Optimality principles for model-based
prediction of human gait.,” Journal of Biomechanics, vol. 43, no. 6, pp. 1055-
1060, 2010.

[123] M. F. Levin, “Interjoint coordination during pointing movements is disrupted in
spastic hemiparesis.,” Brain: A journal of neurology, vol. 119, no. 1, pp. 281-293,
1996.

[124] V. Krishnamoorthy, M. L. Latash, J. P. Scholz, and V. M. Zatsiorsky, “Muscle
synergies during shifts of the center of pressure by standing persons.,”
Experimental Brain Research, vol. 152, no. 3, pp. 281-292, 2003.

[125] V. Krishnamoorthy, S. Goodman, V. Zatsiorsky, and M. L. Latash, “Muscle
synergies during shifts of the center of pressure by standing persons: identification
of muscle modes.,” Biological Cybernetics, vol. 89, no. 2, pp. 152-161, 2003.

[126] S. Freitas, J. P. Scholz, and M. L. Latash, “Analyses of joint variance related to
voluntary whole-body movements performed in standing.,” Journal of
Neuroscience Methods, vol. 188, no. 1, pp. 89-96, 2010.

[127] G. Gera, S. Freitas, M. Latash, K. Monahan, G. Schöner, and J. Scholz, “Motor
abundance contributes to resolving multiple kinematic task constraints.,” Motor
Control, vol. 14, no. 1, pp. 83-115, 2010.

DOI:10.15774/PPKE.ITK.2012.004



Neuromorphic Modeling of Reaching Arm Movements 112

[128] D. A. Gabriel, “Changes in kinematic and EMG variability while practicing a
maximal performance task.,” Journal of Electromyography and Kinesiology, vol.
12, no. 5, pp. 407-412, 2002.

[129] J. E. Kasprisin and M. D. Grabiner, “EMG variability during maximum voluntary
isometric and anisometric contractions is reduced using spatial averaging.,”
Journal of Electromyography and Kinesiology, vol. 8, no. 1, pp. 45-50, 1998.

[130] M. M. Bamman, S. G. Ingram, J. F. Caruso, and M. C. Greenisen, “Evaluation of
surface electromyography during maximal voluntary contraction.,” Journal of
Strength and Conditioning Research, vol. 11, no. 2, pp. 68-72, 1997.

[131] J. P. Scholz and M. L. Latash, “A study of a bimanual synergy associated with
holding an object.,” Human Movement Science, vol. 17, pp. 753-779, 1998.

[132] S. E. Mathiassen, T. Möller, and M. Forsman, “Variability in mechanical exposure
within and between individuals performing a highly constrained industrial work
task.,” Ergonomics, vol. 46, no. 8, pp. 800-824, 2003.

[133] J. Laczkó, J. Quintern, and S. Krafczyk, “Modeling of joint-rotations during line
tracking arm movements” In: Neuroprosthetics. From basic research to clinical
application, Eds. A. Pedotti, M. Ferrarin, J. Quintern, Publ. Springer-Verlag, pp.
305-314, 1996.

[134] J. Laczkó, J. Quintern, I. Kovacs, and J. Tihanyi, “Simulation of joint-rotations
during human arm-movement control.,” in Proc. of the 9th. International
Conference on Mechanics in Medicine and Biology, 1996, pp. 383-386.

DOI:10.15774/PPKE.ITK.2012.004




