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“We are at the very beginning of time for the human race. It is not unreasonable that we grapple 

with problems. But there are tens of thousands of years in the future. Our responsibility is to do 

what we can, learn what we can, improve the solutions, and pass them on.” 

 

Richard Feynman 
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1111 IntroductionIntroductionIntroductionIntroduction    

When I started working in the research group at the Analogic and Neural Computing 

Laboratory, one could literally feel an air of excitement lingering in the offices.  A new chip was 

in the final stages of the design process and was to be sent out to the foundry for fabrication.  

This new chip was one of the crown jewels of mixed-signal VLSI hardware and contained a 

relatively new type of processor, called a Cellular Neural Network Universal Machine (CNN-

UM).  The new chip was christened Ace16k, and is one of the processors used in implementing 

and testing most algorithms of this dissertation. 

CNNs were first described by prof. L. Chua and L. Yang [1] and then further developed 

into universal machines (in the Turing sense) with prof. Tamás Roska [2]-[5].  The new 

processing paradigm promised breakthrough solutions to previously untractable problems, and 

the race was on to find application areas where the CNN-UM chips would really excel.  During 

the last ten years, more and more scientists in the research community have started to use CNNs 

and especially CNN-UMs to solve diverse problems and to test the applicability of the paradigm 

in varied problem domains.  The formal model has become ever more precise and rich (Cellular 

Wave Computer) while the physical implementations are becoming more advanced (optical, 

emulated digital, FPGA-based etc.), and the “Bi-i” computer which combines a classic digital 

processor and sensor with a CNN-UM has also been introduced.  VLSI silicon-based 

implementations of the CNN-UM paradigm have advanced as well, from the initial 20x22 

resolution to 128x128 and the soon to be available 176x144. Some versions are also capable of 

executing multilayer CNNs. 

It was clear to me at the start of my research, that the discipline and the available tools have 

reached a maturity level where new problems may be tackled that were thought to be impossible, 
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or impractical to attempt before.  Many papers were written to solve important problems related 

to image processing using CNN-UMs (and their implementations), but there have been very few 

attempts to use CNN-UMs in complex systems in any application area.  I felt that solutions, 

which embrace and build on the different virtues of CNN-based and classical DSP-based 

algorithms, could allow the creation of better and more efficient algorithms than what would be 

possible with either architecture alone. 

  I started my research work with the goal of designing two systems: one used for tracking 

multiple targets in real time using optical input, the other for preprocessing the handwritten page 

images for offline handwriting recognition. Both tasks seem comparatively easy to a human 

being, but previous algorithms where only able to show modest results. 

In multitarget tracking the task is to track many rapidly moving objects in a plane, so that 

the system is able to determine the kinematic properties of the individual targets (position, speed 

and acceleration) while robustly handling errors from occlusions and illumination changes that 

may occur.  During the development of my algorithm, I relied heavily on our group’s 

accumulated knowledge gained from research into modeling the mammalian retina. In essence, 

in the retina, the input image is filtered and transformed in various different ways and the image 

streams are processed in parallel, and only very sparse and compactly coded information is sent 

toward the higher areas of the brain involved in vision.  I use this principle in the algorithm 

described in Chapter 2 of the dissertation to ensure that the measurements from a given input 

image are the best possible, increasing the accuracy of the whole tracking system.  The 

application of the same principle also made it possible for the system to adapt to changes in the 

environment while running, ensuring robust tracking. 

Offline handwriting recognition is the recognition of a handwritten text after its writing was 

completed (usually on paper, but other forms of media may also be used). In contrast to online 

handwriting recognition, where dynamic information about the writing is available (frequently 

used in PDAs, for example), offline handwriting recognition is more difficult, because no temporal 

data on the dynamics of the writing is available, which usually increases the ambiguity of the 

written text.  The successful commercial systems in use, which rely on offline handwriting 

recognition, are systems that operate in a constrained environment, where the range of possible 

handwritten input strings is limited and may be easily enumerated, such as the addressing on 

envelopes, or the writing on prescriptions, for example.  Unconstrained offline handwriting 

recognition is still an unsolved problem, largely because the shortcuts that are possible due to the 

limited number of input strings are not applicable.  I designed algorithms that would perform the 

tasks at the image preprocessing stage of an offline handwriting recognition system, which 
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consists of the segmentation of an image into handwritten lines, the segmentation of the lines 

into words, and the words into letters.  In order to improve their speed, the utilized CNN 

algorithms use dynamic, wave front propagation based methods instead of relying on 

morphologic operators embedded into iterative algorithms (whenever possible). 

1.1 The CNN Model 

This section introduces the theoretical principles of CNNs.  A Cellular Neural/Nonlinear 

Network (CNN), as an operator, is defined by the following constraints:  

• A spatially discrete collection of continuous nonlinear dynamical systems called cells 

where information can be encrypted into each cell via three independent variables 

called input (u), threshold (z), and initial state (x(0)). 

• A coupling law relating one or more relevant variables of each cell to all local 

neighboring cells located within a prescribed sphere of influence Sr(ij) of radius r 

centered at i,j. 

Figure 1.1 shows a 2D rectangular CNN composed of cells that are connected to their nearest 

neighbors. Due to its symmetry, the regular structure and simplicity of this type of arrangement 

(a rectangular grid) are of primary importance in all implementations. 

 

Figure 1.1 A two-dimensional CNN defined on a square grid.  The i,j-th cell of the array 
and cells that fall within the sphere of influence of neighborhood radius r = 1 (the nearest 
neighbors) are highlighted 

The CNN paradigm does not specify the properties of a cell. The implemented cell models 

are in Figure 1.2. As the basic framework throughout this dissertation, let us consider a two-

dimensional (MxN) CNN array in which the cell dynamics is described by nonlinear ordinary 

differential equations with linear and nonlinear terms. The extension to three dimensions is 

straightforward allowing similar interlayer interactions. 
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The bias (also referred to as the “bias map”) of a CNN layer is a grayscale image. The bias 

map can be viewed as the space-variant part of the cell threshold. By using pre-calculated bias 

maps, “linear” spatial adaptivity can be added to the templates in CNN algorithms. If the bias 

map is not specified, it is assumed to be zero. 

 

CELL MODEL NAME 
PLACE OF 

DESIGN 
NUMBER OF 

PARAMETERS 
REMARKS 

DTCNN 
Discrete time CNN 

Munich, 
1993 

 
Only the value of the state is analog, the time 

and space are discrete. 
First order 

Chua-Yang model 
Berkeley, 
1996 

19 Standard first-order CNN cell 

PHS positive high-gain 
sigmoid 

Helsinki, 
1997 

11 
Hard-limited output for binary image 

processing, 
FSR  

Full state range 
Seville, 
1998 

20 
The state and output are the same and the 

voltage swing of the transient is limited [-1;1] 
vBJP – pseudo Bipolar 
Junction Transistor 

Taiwan, 
2000 

12 4-connected, 2-neighborhood 

FSR Complex-kernel 
Seville, 
2002 

25 2nd-order FSR-based model 

R-Unit  21 3rd-order spatially isotropic templates 

Figure 1.2 The different CNN cell models 

The mask (also referred to as the “fixed-state map”) of a CNN layer is a binary image 

specifying whether the corresponding CNN cell is in active or inactive state in the actual 

operation. Using the binary mask is one of the simplest ways to incorporate “nonlinear” spatial 

adaptivity to the templates in CNN algorithms. If the mask is not specified, it is assumed that all 

CNN cells are in active state, that is, the initial state is not fixed. 

In order to specify fully the dynamics of the array, the boundary conditions have to be 

defined. Cells along the edges of the array may see the value of cells on the opposite side of the 

array (circular boundary), a fixed value (Dirichlet-boundary) or the value of mirrored cells (zero-

flux boundary). 

1.1.1 State equation of a single layer CNN with first order cell model 

The standard first order CNN array dynamics is described by the following equations, which 

are equivalent to the simplest wave instruction. The C:{A, B, z} is the cloning template. 

 Cell dynamics: ( ) ( )x t x t z
ij ij ij

τ = − +&  (1.1) 

 

 Local cell interactions: * *ij ijA y B u+  (1.2) 
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Output equations: 

1 ( ) 1

| 1| | 1|
( ) ( ( )) ( ) 1 ( ) 1

2
1 ( ) 1

if x t
ij

x x
y t f x t x t if x t
ij ij ij ij

if x t
ij

 ≥
+ + − 

= = = − ≤ ≤


− ≤ −


 (1.3) 

where 

• xij, yij, uij are the state, the output, and the input voltage of the specified CNN cell, 

respectively. The state and output vary in time, the input is static (time independent), 

ij refers to a grid point associated with a cell on the 2D grid. 

• zij is the cell bias (also referred to as threshold) which could be space and time 

variant. 

τ is the cell time-constant 

• Term A represents the linear coupling, B the linear control. 

• Term f(.) is the output nonlinearity, in our case a unity gain sigmoid. 

• t is the continuous time variable. 

 

The first part of Eq. (1.1) is called cell dynamics; the following additive terms represent the 

synaptic linear and nonlinear interactions. Though the threshold zij may be space-variant, usually 

it is added to the template (space-invariant case). Eq. (1.3) is the output equation. A CNN 

cloning template, the program of the CNN array, is given by the linear and nonlinear terms 

completed by the cell current. 

 Many times, the CNN cell dynamics are implemented via an electronic circuit and the 

interactions are added as shown in Figure 1.3. The input, state and output variables are voltages, 

the A and B templates are VCCS-s (voltage controlled current sources) and the time constant 

comes from the capacitance (C) and resistance (R) of the cells as τ = RC. 

uij
yij

xij

zijbijuij aijyij f(xij)

uByA ∗+∗

 

Figure 1.3 A CNN base cell corresponding to equations (1.1), (1.2). The linear control and 
coupling terms are represented by voltage controlled current sources (B and A). 
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1.2 The Wave Computing Model 

Since the CNN network is an analog construct, its computing dynamics are very different 

from regular digital processors.  The computational operators can be considered “waves” and 

prompted the definition of a new model of computation for CNNs.  The definitions provided 

here are based on [7]. 

1.  Data is defined as a continuous image flow ΦΦΦΦ(t) 

ΦΦΦΦ (t): {ϕij (t) ,  i = 1, 2, …, n;  j = 1, 2, …, m} ∈ R×R  t ∈ T= [0, t*] (1.1) 

A frame is obtained by setting the time variable in a given finite time instance t*, i.e. 

P = ΦΦΦΦ (t∗). Without loss of generality, we may assume that in a gray scale image +1 and -1 

represent the black and white levels, respectively, and the gray levels are in between.  

2.  Elementary instructions ΨΨΨΨ    are the basic wave instructions: 

    ΦΦΦΦoutput (t) = ΨΨΨΨ(ΦΦΦΦinput)  

 Input:  U(t) ≡≡≡≡ ΦΦΦΦinput: uij(t), t ∈ T 

 State:  X(t) ≡≡≡≡ ΦΦΦΦ(t):  xij(t), t ∈ T  Initial state: X(0) 

 Output: Y(t) ≡≡≡≡ ΦΦΦΦoutput: yij(t), t ∈ T 

 Operator: the solution of the two-dimensional spatial-temporal state equation/output 

equation not necessarily only at the equilibrium point(s) 

  ∑∑
∈∈

+++−=
)(

,

)(

, )()(
)(

ijSkl

klklij

ijSkl

klklijijij

ij

rr

tuBtyAzx
dt

tdx
τ  (1.4) 

Sr(.): sphere of influences: Sr(ij) ={C(kl):  max{|k-i|,|l-j|} ≤ r } 

yij(t) = σ(xij(t));  σ: a nonlinear, usually sigmoid function 

 Useful operator notations: ∑
∈

≡≡
)(

, )(*;
)(

ijSkl

klklij

ij

r

tyAyA
dt

tdx
x&  

dynamic layer dynamic layer 

FeedbackFeedback

ττττττττzz

InputInput

outputoutput  

Figure 1.4 The graphical representation of the elementary wave processing. The 
horizontal bar represents the processing structure as a two-dimensional layer and the arrows 
show the external connections to each cell. The color of the arrow refers to the sign of the 
connection. The individual ϕi,j(t) base units and their connections are shown on Figure 1.1. 
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1.3 The CNN Universal Machine (CNN-UM) 

All early neural network chip realizations had a common problem: they implemented a 

single instruction only, thus the weight matrix was fixed when processing some input. 

Reprogramming (i.e. changing the weight matrix) was possible for some devices but took an 

order of magnitudes longer time than the computation itself. 

This observation motivated the design of the CNN Universal Machine (CNN-UM, [2]), a 

stored program nonlinear array computer. This new architecture is able to combine analog array 

operations with local logic efficiently. Since the reprogramming time is approximately equal to 

the settling time of a non-propagating analog operation, it is capable of executing complex 

analogic algorithms. To ensure programmability, a global programming unit was added to the 

array, and to ensure an efficient reuse of intermediate results, each computing cell was extended 

by local memories. In addition to local storage, every cell might be equipped with local sensors 

and additional circuitry to perform cell-wise analog and logical operations. The architecture of 

the CNN-UM is shown in Figure 1.5.  

As illustrated in Figure 1.5, the CNN-UM is built around the dynamic computing core of a 

simple CNN. An image can be acquired through the sensory input (e.g. OPT: Optical Sensor). 

Local memories store analog (LAM: Local Analog Memory) and logic (LLM: Local Logical 

Memory) values in each cell. A Local Analog Output Unit (LAOU) and a Local Logic Unit 

(LLU) perform cell-wise analog and logic operations on the stored values. The output is always 

transferred to one of the local memories. The Local Communication and Control Unit (LCCU) 

provides for communication between the extended cell and the central programming unit of the 

machine, the Global Analogic Programming Unit (GAPU). The GAPU has four functional 

blocks. The Analog Program Register (APR) stores the analog program instructions, the CNN 

templates. In case of linear templates, for a connectivity r = 1 a set of 19 real numbers has to be 

stored. If spatial symmetry and isotropy is assumed, this is even less. All other units within the 

GAPU are registers containing the control codes for operating the cell array. The Local Program 

Register (LPR) contains control sequences for the individual cell’s LLU, the Switch 

Configuration Register (SCR) stores the codes to initiate the different switch configurations 

when accessing the different functional units (e.g. whether to run a linear or nonlinear template). 

The Global Analogic Control Unit (GACU) stores the instruction sequence of the main 

(analogic) program. The GACU also controls timing, sequence of instructions and data transfers 

on the chip and synchronizes the communication with any external controlling device. It has its 

own global analog and logic memories (GAM and GLM, respectively) and global Arithmetic 

Logic Unit (ALU). As a special case, the GACU can be implemented by a digital signal processor 
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(DSP) or a microcontroller. 

 

Figure 1.5 The architecture of the CNN Universal Machine 

Different cell models are used in the CNN-UM implementations. The simplest one is the 

discreet time CNN (DT-CNN), when the state evolution is not continuous but discreet in time. 

The so-called full signal range model (FSR) is a VLSI-friend non-linear cell model, where the 

voltage of the state variable is always the same as the output [10]. 

Synthesizing an analogic algorithm running on the CNN-UM the designer should 

decompose the solution in a sequence of analog and logical operations. A limited number of 

intermediate results can be locally stored and combined. Some of these outputs can be used as a 

bias map (space-variant current) or fixed-state map (space-variant mask) in the next operation 

adding spatial adaptivity to the algorithms without introducing complicated inter-cell couplings. 

Either linear or nonlinear templates define analog operations. The output can be defined in both 

the fixed and the non-fixed state of the network (equilibrium and non-equilibrium computing) 

depending on the control of the transient length. It can be assumed that elementary logical 

(NOT, AND, OR, etc.) and arithmetical (ADD, SUB, MUL) operations are implemented and can be 

used on the cell level between LLM and LAM locations, respectively. Certain operators (e.g. 

arithmetical) might have two input values, denoted by P and Q. In addition, data transfer and 

conversion can be performed between LAMs and LLMs. 

In most image processing tasks, the input and state of the CNN array are loaded with image 

data, and the result of CNN computation is generally defined as the steady state after the 

transient of the network. If each cell of the CNN array is equipped with analog and logic 

memory units, logic operations can be defined between these logic memory units, and these logic 
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functions along with the templates become programmable, we arrive at the concept of the CNN 

Universal Machine (CNN-UM) [2]. This (re)programmability makes the CNN a real computer, 

the first algorithmically programmable analogic (i.e., both analog and logic) computer. In this 

framework, each particular CNN operation (analog transient computation or local logic 

operation) can be thought of as an analogic instruction of this computer. This allows to store 

intermediate results of the processing, and to build up and run complex image processing 

algorithms on a CNN chip using some control hardware. 

In the course of CNN template and algorithm design, many useful specialized templates and 

simple template combinations have been found, many of which are compiled in a CNN Software 

Library [16]. These provide basic components of several standard image-processing techniques. 

Beyond that, analogic CNN algorithms may utilize a number of spatio-temporal effects in their 

basic operations, which can hardly be applied if conventional image processing technology is 

used. These may be mathematical morphology or different PDE-based techniques. 

1.4 CNN-UM Implementations, Utilized Hardware 

When I started this research in 2001, the best available VLSI CNN-UM implementation in 

our lab was the Ace4k chip designed at IMSE-CNM, in Seville [8].  After about 2 years, the next 

generation Ace16k became available, with 4 times as many cells and new capabilities.  Figure 1.6 

shows a brief comparison of the two chips’ capabilities.  

Property ACE4K ACE16K 

 

  

Technology CMOS 0.5µm 3M-1P CMOS 0.35µm 5M-1P 

Die size 9.145 x 9.534 mm2 11.885 x 12.230 mm2 

Number of transistors ~1,000,000 3,748,170 

Number of cells 64 x 64 128 x 128 

Number of template 

memories 
32 32 

Number of instruction 

memories 
64 configurations 64 x 64 configurations 

Image  I/O Analog and binary Digital (8 bit), internal DAC-s and ADC-s 

Image I/O control Address buses and external timer 

based control 

Internal addressing handshake protocols, 

no timing constraints 
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Property ACE4K ACE16K 

Max. Image I/O rate 1MHz (analog), 10MHz (binary) 32 MHz (digital) 

Cell density 82 cell/mm2 180 cell/mm2 

Optical sensor Parasitic Logarithmic and linear integration 

Address event detection - Available 

Analog memory writing 

mask 
- Available 

Number of LAMs 4 8 

Number of LLMs 4 - 

Transistors per cell 172 198 

Time constant (t) ~ 1.2 µs (maximum feedback) ~ 0.8 µs (linear convolution: 160 ns) 

Power dissipation 1.5 W (worst case) < 4 W 

Figure 1.6 Comparison of the VLSI CNN-UM implementations used in the experiments 
and algorithm validation. Both chips were designed at the IMSE-CNM, in Seville, Spain 

A new commercial focal plane processor designed by AnaFocus Ltd. in Spain will also 

appear in 2006 that will be significantly more advanced than the Ace16k chip. It has an even 

larger resolution (QCIF: 176x144) with monochrome and RGB color sensors at each cell. The  

sensor’s dynamic range is 68 dB and the maximum speed of operation is 10000 frames/sec 

(Fps), with power dissipation at 30 mW @ 25Fps and 100mW @ 10000 Fps. 

Of course, the chips by themselves are not very useful in real applications, they must be 

embedded in a suitable hardware (usually a camera) which also contains additional supporting 

hardware such as memory, control circuits etc.  Since the field of VLSI CNN-UM chips is 

changing rapidly, our development hardware was constantly evolving during this research.  We 

used several platforms supplied by Analogic Computers Ltd [19].  

The Ace4k chip was enclosed in the ACE-BOX platform, which is a PC104 form factor 

expansion card for Intel compatible PCs.  It contains a Texas Instruments TMS320C6202 DSP 

running at 250Mhz and 16MB of SD-RAM.  This platform did not have optical input 

capabilities, so we had to rely on external input sources such as video files or high-speed 

cameras. Figure 1.7 shows the ACE-BOX. 
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Figure 1.7 The ACE-BOX platform (a PCI extension card) hosting the Ace4k chip 

The new Ace16k chip was hosted in a completely stand-alone hardware, which grew into an 

entire family of devices, called the Bi-i platform. The Bi-i has the unique capability of supporting 

the simultaneous image acquisition and processing from two sensors at the same time.  These 

sensors can be Ace16k CNN-UMs, or regular CMOS image sensors in any configuration.  The 

initial versions of the Bi-i cameras (Bi-i v1) contained the same TI DSP as the ACE-BOX which 

controlled the Ace16k chip. Since the Bi-i camera is stand-alone, it contains a number of IO 

interfaces to communicate with the outside world: serial ports, 100Mbit Ethernet, USB 1.1 and 

programmable digital IO.  We used these capabilities to demonstrate the control possibilities 

using the MTT algorithms.  Current versions of the Bi-i camera (Bi-i v2) contain a more 

powerful DSP, the TI TMS3206415 running 600Mhz and there have been some cosmetic 

changes to the housing as well. Figure 1.8 shows the two versions of the Bi-i cameras. 

 

Figure 1.8 The Bi-i Smart Cameras.  The left picture shows the Bi-i v1, with 2 sensors, while 
the right picture shows the Bi-i v2 with 2 sensors and the laser scanner attached 
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1.5 Application Examples 

Practical applications of the designed systems abound. The multitarget tracking system may 

form the foundation of an advanced, “intelligent” surveillance and monitoring system.  These 

systems are the more sophisticated siblings of the ubiquitous CCTV (closed circuit TV) and 

security camera networks installed in many places today.  These security cameras are currently 

manned 24 hours a day, 7 days a week by human guards, who typically have to monitor the 

images of many cameras at the same time.  This job is very tiring and very boring, which leads to 

security breaches and slow reaction to critical events.  In an “intelligent” surveillance system, the 

system can detect, analyze and act upon certain events.  Most of these events have to do with the 

motion of something: a vehicle, a human (or a group of humans) or an animal.  If the system can 

• isolate and track moving objects in a scene 

• reliably measure the properties of the movement 

• distinguish between objects based on its features 

then it is possible to set up rules to trigger alarms and other intervention responses.  The 

multitarget tracking algorithms described in the thesis can provide much of the needed 

functionality.  The MTT algorithms calculate the location, speed and acceleration of the moving 

targets. They also analyze the target features, which enable the differentiation of different classes 

of targets.  The MTT algorithm also provides a way to follow certain moving objects across 

cameras, if the location of the cameras is known a priori (which is nearly always the case). 

 

Figure 1.9 Screenshots from a prototype surveillance application utilizing the MTT 
algorithms (the targets generating an alert are highlighted in red).  In the left screenshot, 
target tracking is combined with image intensity analysis to generate an alert. The target is 
engulfed in background noise, but its distinctive intensity change profile enables successful target 
localization.  In the screenshot on the right, target size is the alert trigger. 

The MTT algorithm could also be utilized in certain unmanned arial vehicle (UAV) 
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applications, where the optical flow must be calculated from the visual input. Optical flow is 

usually determined based on local correlation based methods, which determine local 

displacement based on local similarities in texture. These methods break down, if: 

• the texture is periodic, because there will be many matches during the local search 

• the vehicle speed is too large, because the images changes will be too great 

• the vehicle speed is too small, because the images changes will be too small 

An MTT algorithm can help by identifying distinct salient features as “targets” that may be 

tracked across individual frames.  In contrast to conventional correlation-based approaches, 

these salient “targets” do not have to be located in a specified neighborhood between individual 

frames. The optical flow can be calculated from the kinematic properties of these targets even if 

the sampling of the movement is very sparse. MTT-based optical flow can also help if certain 

areas of the frame are occluded for some reason (clouds, for example). 
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Recognizing and interpreting the motion of objects in video flows is an essential task in a 

number of applications, such as security, surveillance, online quality control, vision-based control 

etc.  In many instances, the individual objects to be tracked have no known distinguishing 

features (such as a distinct color, for example) which would allow feature (or token) tracking 

[20],[21], optical flow or motion estimation [22],[23].  Therefore, the targets must be identified 

and tracked largely based on their measured positions and derived motion parameters.  These 

applications also demand real-time performance, i.e. the tracking algorithms must run fast 

enough to keep up with the input image flow; this requirement puts a severe limit on the types of 

algorithms that may be used. 

Target tracking algorithms developed for tracking targets based on sonar and radar 

measurements are widely known and can used for tracking based on visual input (also known as 

motion correspondence). However, the requirement that the system should operate at least at 

video frame-rate (possibly even higher) limits the choices between the well-established statistical 

and non-statistical tracking algorithms.  The real-time requirements motivated the use of a 

unique image sensing and processing device, the CNN-UM [1]-[9] and its VLSI implementations, 

which provide several advantages over conventional CMOS or CCD sensors: 

• Possibility of focal plane processing, which means that the acquired image does not 

have to be moved from the sensor to the processor 

• Very fast parallel image processing operators  

• Unique trigger-wave and diffusion based operators 

While planning the algorithm, we realized that the decreased running time of image 
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processing algorithms could provide some headroom within the real-time constraints that would 

allow for the use of more complex state estimation and data assignment algorithms and sensor 

adaptation possibilities.  We decided to explore these possibilities in detail, and present the 

results in section 2.2.  In the next section, we give a high-level overview of the system, and then 

we present the algorithms running on the CNN-UM.  In section 2.3, we give an overview of the 

algorithms used in estimating the state of the targets, and creating and maintaining the target 

tracks and the adaptation possibilities that the tight coupling of the track maintenance system 

(TMS) and the sensor can provide.  Finally, we present experimental results obtained by running 

the algorithms on actual hardware in section 2.5. 

2.1 Block-level overview of the MTT algorithm 

The MTT system contains two main architectural levels (Figure 2.1): the CNN-UM level, 

where all of the image processing takes place (and possibly image acquisition) and the DSP level 

where track management functions are performed.  After image acquisition, the CNN-UM can 

perform image enhancement to compensate for ambient lighting changes, motion extraction and 

related image processing tasks and feature extraction for some types of features.  The DSP runs 

the rest of the feature extraction routines, and the motion correspondence algorithms such as 

distance calculation, gating, data assignment and target state estimation.  It also calculates new 

values for some CNN-UM algorithm parameters thus adapting the processing to the current 

environment. 

DSP level

CNN-UM level
Enhancement and cellular array

processing
(sensor level processing)

Feature extraction Adaptation

State estimation

Data assignment

Gating

Distance calculation

Array sensor
input

Tracks and target
attributes

 

Figure 2.1 CNN-UM/DSP hybrid system architecture for multi-target tracking. The main 
processing blocks are divided into three categories: those that are best performed on the CNN-
UM processor, those that are especially suitable for the DSP, and those that have to be 
performed using both processors. 
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2.2 The CNN-UM algorithms 

Knowledge gained from the study of the mammalian visual system, especially the retina 

heavily influenced the algorithms presented here.  Recent studies [26] uncovered that the retina 

processes visual information in parallel spatio-temporal channels and transmits only a sparse 

encoding of the information on these channels via the optic nerve to higher visual areas in the 

brain.  Additionally, there is context and content sensitive interaction between these parallel 

channels via enhancement and suppression which results in remarkable adaptivity.  These are 

highly desirable characteristics for all image-processing systems, however they are essential for 

visual tracking tasks where degradation of input measurements can not always be compensated 

for at the later stages of processing (by domain knowledge, for example).  

In the following subsections, we will describe a conceptual framework for such a complex 

CNN-UM based front-end algorithm. First, we will discuss the computing blocks in general and 

then specify the characteristics of the test implementation on the Ace4k CNN-UM chip and 

Ace16k CNN-UM chips operating in the ACE-BOX and Bi-i systems, respectively. 

2.2.1 Enhancement Methods and Spatio-Temporal Channel Processing 

We tried to capture the main ideas from the natural system by defining three “change 

enhancing” channels on the input image flow: a spatial, a temporal and a spatio-temporal channel 

(see Figure 2.2A). The spatial channel contains the response of filters that detect spatial i.e. 

brightness changes, revealing the edges in a frame. The temporal channel contains the result of 

computing the difference between two consecutive frames, thereby giving a response to changes, 

while the spatio-temporal channel contains the non-linear combination of the spatial and 

temporal filter responses.  

To eliminate additive Gaussian noise, we use a linear low-pass filter on the input grayscale 

image before any further processing is attempted (both linear and constrained linear diffusion 

approximations can be used). The pseudo code for the filter (PreProc) is: 

1 2 1 2

1 2 1 2
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( , , , , )

( , , , , )

PP

PP
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PreProc_D

Diffus

PreProc_CD

CDiffus

σ

σ

λ σ σ

λ σ σ

Φ = Φ

Φ = Φ

Φ = Φ Φ

Φ = Φ Φ

 

The filtering on the parallel channels can be defined as causal recursive difference-type 

filtering using some linear or nonlinear filters as prototypes (typically difference of Gaussian 

(DoG) filters implemented using constrained linear diffusion [27], or difference of morphology 

(DoM) filters implemented by min-max statistical filters [10]).  These filters can be thought of as 
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band-pass filters tuned to a specific spatial/temporal frequency (or a very narrow band of 

frequencies), thus enabling highly selective filtering of grayscale images and sequences. 

The three main parameters of these change-enhancing filters are: 

- Spatial scale (σ): the spatial frequency(s) (basically the object size) the filter is tuned to 

(in pixels) 

- Temporal rate (λ): the rate of change in an image sequence the filter is tuned to (in 

pixels/frame) 

- Orientation (φ): the direction in which the filter is sensitive (in radians) 

In our current framework, the orientation parameter is not used, since we are relying on 

isotropic Gaussian kernels (or the approximations thereof) to construct our filters, but we are 

including it here because the framework does not inherently preclude the use of it.  It is possible 

to tune the spatial channel’s response to objects of a specific size (in pixels) using the σ 

parameter.  Similarly, the λ parameter allows the filtering out of all image changes except those 

occurring at a certain rate (in pixels per frame).  This enables the multi-channel framework to 

specifically detect targets with certain characteristics. 

The output of these channels is filtered through a sigmoid function: 

 
( )

1

1 x
y

e β ϑ− −
=

+
 (2.1) 

The parameters of this function are the threshold (ϑ) and slope (β). For every x > ϑ, the 

output of the function is positive, hence the threshold name.  The slope parameter specifies the 

steepness of the transition from 0 to 1 and as it becomes larger, the sigmoid approximates the 

traditional threshold step function more closely. 

The following paragraphs present the pseudo-code for the image channels.  The temporal 

filter (TeFilt) calculates the convex sum between the grayscale input image and an internal state 

(which is the result of the previous operation) and subtracts the resulting image from the 

grayscale input image (this corresponds to a causal recursive temporal motion sensitive filtering if 

the images are subsequent frames of a grayscale image flow): 
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k k k
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λ

λ λ
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The spatial filter (SpFilt) calculates the spatial local difference based enhancement (a 

Laplacian of a Gaussian, Difference of Gaussians or Sobel of Gaussians) of a grayscale input 

image: 
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The spatio-temporal filter (SPTFilt) calculates the convex sum between the low-pass filtered 

grayscale input image and an internal state (which is the result of the previous operation). It 

subtracts the resulting image from the low-pass filtered grayscale input image (this corresponds 

to a causal recursive spatio-temporal motion sensitive filtering if the images are subsequent 

frames of a grayscale image flow): 
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The output of the best performing individual channel could be used by itself as the output 

of the image processing front-end, if the conditions where the system is deployed are static and 

well controlled. If the conditions are dynamic or unknown a priori, then there is no way to 

predict the best performing channel in advance.  To circumvent this problem, we decided to 

combine the output of the individual channels through a so-called interaction matrix, and use the 

combined output for further processing.  The inclusion of the interaction matrix enables the 

flexible runtime combination of the images on these parallel channels and the prediction map 

while also specifying a framework that can be incorporated into the system at design time.  Our 

experimental results and measurements indicate that the combined output is on average more 

accurate than each single channel for different image sequences.  Figure 2.2A shows the 

conceptual block diagram of the multi-channel spatio-temporal algorithm with all computing 

blocks to be discussed in the following section.   
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Figure 2.2 A) Block overview of the channel-based image processing algorithm for 
change detection. B) Ace4k/16k implementation of the same algorithm.  The input image 
is first enhanced (histogram modified), and then it is processed in three parallel change-
enhancing channels.  These channels and the prediction image are combined through the 
interaction matrix and thresholded to form the final detection image.  Observe, that the 
framework allows the entire processing to be grayscale (using fuzzy logic); the only constraint is 
that the detection image must be binary. In the Ace4k implementation, the results of the channel 
processing are thresholded to arrive at binary images, which are then combined using Boolean 
logic functions as specified by the interaction matrix.  The parameters for the Ace4k algorithm 
are: λ – the temporal rate of change, σ – the scale (on the spatial (SP) and spatio-temporal (SPT) 
channels), ϑ – per channel threshold values, L – logical inversion (-1) or simple transfer (+1), N 
– the number of morphological opening (N > 0) or closing (N < 0) operations 
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2.2.2 Remarks on the Ace4k and Ace16k Chip Implementation of the Multi-

channel CNN Algorithms 

The change enhancing channels are actually computed serially (time multiplexed) in the 

current implementation, but this is not a problem due to the high speed of the CNN-UM chips 

used. We performed the first round of experiments using the ACE-BOX hardware containing 

the Ace4k chip, since the next generation Ace16k was not yet available. As preparation for this 

dissertation progressed, the Ace16k chips became available for experimentation in the Bi-i 

system.  We modified the original Ace4k algorithms to take advantage of the capabilities of the 

new chip: we substituted isotropic diffusion wherever iterative convolutions were used to 

achieve the same effect. This makes the algorithm much faster, since the iterative steps are 

eliminated. 

In the first stage of the on-going experiments, only isotropic (φ → 0) spatio-temporal 

processing has been considered followed by crisp thresholding through a hard nonlinearity 

(essentially a step function acting as a threshold). Thus, the three types of general parameters 

used to derive and control the associated CNN templates (or algorithmic blocks) are the scale 

and rate parameters (σ and λ) and the threshold parameter ϑ. Figure 2.2B shows the functional 

building blocks of the Ace4k implementation of the algorithm (a hardware-oriented 

simplification of the conceptual model) with all associated parameters.  

The enhancement (smoothing) techniques have been implemented in the form of nearest 

neighbor convolution filters (circular positive B template with entries normalized to 1) and 

applied to the actual frame (σ determines the scale of the prefiltering in pixels, i.e. the number of 

convolution steps performed). The spatio-temporal channel filtering (including the temporal 

filtering solution) was implemented as a fading memory nearest neighbor convolution filter 

applied to the actual and previous frames on the Ace4k, while it was possible to realize directly 

on the Ace16k via its resistive grid. In temporal filtering configuration (no spatial smoothing), λ 

represents the fading rate (in temporal steps), thereby specifying the temporal scale of the 

difference enhancement. In spatio-temporal filtering configuration (the fading rate is set to a 

fixed value), σ represents the spatial scale (in pixels) at which the changes are to be enhanced 

(the number of convolution operations on the current and the previous frame are calculated 

implicitly from this information). 

The pure spatial filtering is based on Sobel-type spatial processing of the actual frame along 

horizontal-vertical directions and combining the outputs into a single “isotropic” solution (here 

σS represents the spatial support in pixels in the Sobel-type difference calculation). 
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2.2.3 Channel Interaction and Detection Strategies 

The interaction between the channels may be Boolean logic based for binary images or 

fuzzy logic based for grayscale images, specified via the so-called channel interaction matrix.  Its 

role is to facilitate some kind of cross-channel interaction to further enhance relevant image 

characteristics and generate the so-called detection image, which is treated as the result of image 

processing steps in the whole tracking system.  The interaction matrix is a matrix where each 

column stands for a single image.  These images are the outputs of the parallel channels (SP, T, 

SPT) and the prediction (see next section, Pr).  The values within the matrix specify the 

interaction “weight” (w) of a given image (the image selected by the column of the matrix 

element). If using binary images, the non-zero weights are treated as follows: if w > 0, then the 

input image is used, if w < 0, then its inverse is used.   

The interaction takes place in a row-wise fashion, with the row-wise results aggregated.  The 

interactions themselves are given globally as a function pair, and must be Boolean or real valued 

functions (when using binary or grayscale images, respectively).  The first function in the pair is 

the row-wise interaction function (R); the second is the aggregation function (A).  R is used to 

generate an intermediate result (Ir) for each row. These intermediate results are the arguments of 

A, which the aggregation function uses to generate the detection image.  The number of rows in 

the interaction matrix must be at least one, but can be arbitrarily large, which allows the 

construction of sophisticated filters.  A sample interaction matrix with the calculated detection 

result is shown on Figure 2.3Figure 2.3 A sample interaction matrix, and the calculated result. 

Detection=A(R(SP,T,Pr), R(–T,SPT)) 

.   

SP T SPT Pr 

1 1  1 

 -1 1  

Figure 2.3 A sample interaction matrix, and the calculated result. 
Detection=A(R(SP,T,Pr), R(–T,SPT)) 

If using a fuzzy methodology, the detection image is thresholded, so the result of the 

channel interaction is always a binary map (the detection map) that will be the basis for further 

processing.  Ideally, this only contains black blobs where the moving targets are located. 

In our current experiments, we used only Boolean logic based method. In the binary case, 

the channels are thresholded depending on the ϑ parameters of the channel detection modules 
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then combined pair wise through AND logic and all outputs are summarized through a global 

OR gate (which corresponds to R:=AND and A:=OR.). 

We post process the output of the interaction matrix using ND-step morphological 

processing (one of the following, depending on the application scenario: erosion, dilation, 

opening or closing) to correct the target image perimeters and fill any internal errors.  The 

following pseudo code shows post processing algorithm (PostProc): 
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2.2.4 Prediction Methods 

We also compute a prediction map that specifies the likely location of the targets in the 

image solely based on the current detection map and the previous prediction.  This can then be 

used (via the interaction matrix) as a mask to filter out spurious signals.  It is hard to include 

efficiently kinematic assumptions at the cellular level of processing – other than the maximum 

speed of the moving targets – given the real-time constraints, since this would require the 

generation of a binary image based on the current detection and the kinematic state parameters.  

Therefore, the algorithms only use isotropic maximum displacement estimation implemented by 

spatial logic and trigger-wave computing. However, the experiments indicate that even 

rudimentary input masking can be very helpful in obtaining better MTT results. 

The algorithm (Pred) calculates an N-step isotropic expansion of the objects identified by 
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spatial logic from two binary input images (this corresponds to a “prediction map” given that 

one of the input images is a “detection map” containing the target objects in form of binary 

patches and the other input image is the “prediction map” from the previous operation). Only 

those objects in the prediction map that are also part of the detection map are expanded: 
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2.2.5 Feature Extraction and Target Filtering 

The DSP state-estimation and data assignment algorithms operate on position 

measurements of the detected targets, therefore these have to be extracted from the detection 

map.  During data extraction, it is also possible to filter targets according to certain criteria based 

on easily (i.e. rapidly) obtainable features.  The set of features we are currently using is: area, 

centroid, bounding box, equivalent diameter (diameter of a circle with same area), extent (the 

proportion of pixels in the bounding box that are also in the object), major and minor axis length 

(the length of the major axis of the ellipse that has the same second-moments as the object), 

eccentricity (eccentricity of the ellipse that has the same second-moments as the object), 

orientation (the angle between the x-axis and the major axis of the ellipse that has the same 

second-moments as the object) and the extremal points.  Filtering makes it possible to 

concentrate on only a certain class of targets while ignoring others. 

The calculation of all of these features can be implemented on the DSP but some of the 

features (centroid, horizontal or vertical CCD etc.) can be efficiently computed on the CNN-UM 

as well.  Since the detection map is already present on the CNN-UM, calculation of these 

features can be extremely fast. It is also possible to calculate a set of features in parallel on the 

DSP and the CNN-UM, further speeding up this processing step.  The location of the center of 
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gravity  (centroid) of each target is usually considered the position of the target, unless special 

circumstances dictate otherwise. 

Analogic chip implementation: Morphological filtering (structure and skeleton extraction) is 

implemented on the Ace4k chip. Feature extraction is performed exclusively on the DSP in the 

first test implementation. 

2.2.6 The Full Multichannel Algorithm 

In this section, we present pseudo code which implements the multichannel algorithm 

described above for MTT.  It uses subroutines presented in the previous sections, and relies on 

operators described in the Appendix. 
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CNN algorithms also have a common formal description, somewhat similar to flowcharts, 

but more adapted to the unique capabilities of CNNs, called the UMF diagram [18].  Figure 2.4 

shows the CNN implementation of the MTT multichannel front-end algorithm expressed in the 

UMF framework.  
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Figure 2.4  UMF diagram of the multichannel MTT algorithm front-end.  This diagram 
shows the implementation on an idealized CNN VLSI chip or simulator. 
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2.3 The DSP-based MTT Algorithms 

The combined estimation and data association problem of MTT has traditionally been one 

of the most difficult problems to solve.  To describe these algorithms, we need to define some 

terms and symbols. A track is a state trajectory estimated from the observations (measurements) 

that have been associated with the same target. Gating is a pruning technique to filter out highly 

unlikely candidate associations. A track gate is a region in measurement space in which the true 

measurement of interest will lie accounting for all uncertainties with a given high probability [25].  

All measurements within the gating region are considered candidates for the data association 

module. Once the existence of a track has been verified, its attributes such as velocity, future 

predicted positions and target classification characteristics can be established.  The tracking 

function consists of the estimation of the current state of the target based on the proper selection 

of uncertain measurements and the calculation of the accuracy and credibility of the state 

estimate.  The following factors degrade this estimate: 

• model uncertainties due to target maneuvers and random perturbations and 

• measurement uncertainties due to sensor noise, occlusions, clutter and false alarms 

(Figure 2.5 shows images with clutter and occlusions) 

 

Figure 2.5 Clutter and occlusion in a simulated test video.  Clutter can be anything that may 
be confused with a legitimate target, while occlusions occur when one target moves in front of 
the other, hiding it entirely (or partly) from view.  The targets are circled for easier identification. 

2.3.1 Data Association 

Data association is the linking of measurements to the measurement origin such that each 

measurement is associated with at most one origin.  For a set of measurements and tracks each 

measurement/track pair must be compared to decide if measurement i is related to track j. For m 
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measurements and n tracks, this means m*n comparisons, and for each comparison multiple 

hypotheses may be made. As n and m increase the problem becomes computationally intensive.  

Additionally, if the sensors are in an environment with significant noise and many targets, then 

the association becomes very ambiguous. 

There are two different approaches to solving the data association problem: (i) deterministic 

(assignment) – the best of several candidate associations is chosen based on a scoring function 

(accepting the possibility that this might not be correct) (ii) probabilistic (Bayesian) association – 

use classical hypothesis testing (Bayes’ rule), accepting the association hypothesis according to a 

probability of error, but treating the hypothesis as if it were certain. The most commonly used 

deterministic assignment algorithms are the following: 

Nearest Neighbor (NN) – the measurement closest to a given track is assigned in a serial 

fashion. It is computationally simple but is very sensitive to clutter. 

Global Nearest Neighbor (GNN) – the assignment seeks a minimal solution to the summed 

total distance between tracks and measurements. This is solved as a constrained 

optimization problem where the cost of associating the measurements to tracks is 

minimized subject to some feasibility constraints.  This optimization can be solved 

using a number of algorithms, such as the JVC (Jonker-Volgenant-Castanon) [28] 

algorithm, the auction algorithm [29] and signature methods [30]. These are all 

polynomial time algorithms. 

The most commonly used probabilistic algorithms are the following:  

Multihypothesis Tracking (MHT) [24],[25] – the MHT is a multi-scan approach that holds off 

the final decision as to which single observations are to be assigned to which single 

track.  This is widely considered the best algorithm but is also the most 

computationally intensive ruling out real-time implementation on our architecture. 

Probabilistic Data Association Filters (PDAF) – the PDAF technique forms multi-hypotheses 

too after each scan, but these are combined before the next scan of data is processed. 

Many versions of this filter exist, the PDA for single tracks, Joint PDA (JPDA) for 

multiple tracks, Integrated PDAF etc. [25],[31]. 

Based on data in the literature [25], we decided to work with deterministic assignment 

algorithms because they are high performance with calculable worst-case performance since they 

have a computational complexity of Ο(n3) (where n is the number of tracks and measurements) 

which was essential given our real-time constraints.  We also restricted ourselves to the so-called 

2-D assignment problems where the assignment depends only on the current and previous 

measurements (frames). The data assignment algorithms perform so-called unique assignment, 
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where each measurement is assigned to one-and-only-one track as opposed to non-unique 

assignment, when a measurement may belong to multiple tracks.  We implemented two types of 

assignment algorithms a NN approach and the JVC algorithm.  Since non-unique assignment 

would be very useful in certain situations such as occlusions, we modified the NN algorithm and 

added a non-unique assignment mode to it.   

2.3.2 2-D Assignment Algorithms 

Of the two algorithms we implemented, the NN algorithm is the faster one and for 

situations without clutter, it works adequately. It can be run in unique assignment mode, where 

each track is assigned one and only one measurement (the one closest to it) and in non-unique 

assignment mode, when all measurements within a track’s gate are assigned to the track which 

makes it possible handle cases of occlusion. 

The JVC algorithm is implemented as described in [28].  It seeks to find a unique one-to-

one track to measurement pairing as the solution ˆ
ij

x  to the following optimization problem: 

  min

1 1

n n
c xij ij

i j

 
 ∑ ∑
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Where n is the number of tracks and measurements (it is easy to generalize the algorithm if 

there are more measurements than tracks), i,j=1…n, cij is the probable cost of associating 

measurement i with track j calculated based on the distance between the track and the 

measurement and xij is a binary assignment variable such that 

 
1 if is assigned to

0 otherwiseij

j i
x


= 


 (2.5) 

The JVC algorithm consists of two steps, an auction-algorithm-like step [29] then a 

modified version of the Munkres algorithm [32] for sparse matrices. 

Our experiments indicate that the JVC algorithm is indeed superior to the nearest neighbor 

strategy while only affecting the execution time marginally. 

2.3.2.1 The Utilized Distance Measures 

The assignment cost ci,j in equation (2.2) may be calculated in many different ways. The most 

straightforward way is to simply let the cost matrix be the Euclidian distance matrix: 

 ( ) ( )T
eC M L M L= − −  (2.6) 
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where M is the matrix of measurement vectors, L is the matrix of target positions for the current 

frame and Ce is the resulting cost matrix.   

Another measure frequently used in tracking applications (a computer vision in general) is 

the Mahalanobis or statistical distance, which takes into account the correlations of the 

measurement vector data set, and is scale-invariant, i.e. not dependent on the scale of 

measurements. This property is very helpful, when the measurement vectors contain other 

coordinates besides distances, such as the features described in the next paragraph.  The 

definition for the Mahalanobis distance is: 

 
1( ) cov( ) ( )T

mC M L M M L−= − − . (2.7) 

If the covariance matrix is the identity matrix then the Mahalanobis distance is the same as 

Euclidean distance.  

An interesting possibility is the inclusion of feature measures beside position coordinates 

into the measurement vector of each target.  Features such as average grayscale intensity, major 

and minor axis can help to increase the assignment cost (thereby directly increasing the tracking 

accuracy) more easily between targets that are located near each other but are very dissimilar in 

one of these features. 

2.3.3 Track Maintenance 

We have devised a state machine for each track for easier management of a track’s state 

during its lifetime.  Each track starts out in the ‘Free’ state. If there are unassigned measurements 

after an assignment run, the remaining measurements are assigned to the available ‘Free’ tracks 

and they are moved to the ‘Initializing’ state. If in all of the next i frames the ‘Initializing’ tracks 

are assigned measurements, they become ‘Confirmed’; otherwise, they are deleted and reset to 

‘Free’.  If a ‘Confirmed’ track is not assigned any measurement in a frame, the track becomes 

‘Unconfirmed’.  If during the next ‘c’ frames it still does not get a measurement, it becomes 

‘Free’, i.e. the track is deleted. Figure 2.6 shows the state machine. 
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Figure 2.6 The track maintenance state machine of the MTT algorithm. The state machine 
starts from the Free state; ‘i’ and ‘c’ are two parameters for the number of initialization 
measurements and the number of unconfirmed frames respectively. 

2.3.4 State Estimation 

State estimation filters are a research area all by themselves with wide ranging applications. 

Since the goal of this research was not the development of new state estimation approaches, we 

decided to use method that would fit the following criteria: 

• The estimation method must be relatively light in terms of computational burden, 

since we are planning to use it in a real-time system 

• The filter must be easily tunable; i.e. the number of parameters used to tune the 

filter must be low. This is advantageous, because the tuning of these parameters is 

usually not trivial. 

• The filter must complex enough for the motion estimation of maneuvering targets 

It is obvious, that these are conflicting criteria, since estimating complex maneuvers will 

require more parameters, but we realized, that the faster our tracking systems, the less complex 

the target maneuvers seem to be, since our sampling frequency is higher.  

Considering everything, we decided to implement two types of filters: a fixed-gain state 

estimation filter and a multiple model filter with fixed multiple models. 

2.3.4.1 Fixed-gain State Estimation Filters (α−β  and α−β −γ Filters) 

These filters are also called time-invariant Kalman filters, or α−β−γ filters [24]. The main 

difference between a “regular” Kalman filter and time-invariant Kalman filters is that in a time-

invariant filter, plant variations through time are accommodated by modeling them as noise.  
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This is often the most realistic assumption if the variations are unknown to system designer or 

user in advance.  Additionally, the filter equations are simpler, requiring less computational 

resources, but the tradeoff is that the estimation will not be accurate when the underlying 

assumptions (that the system is a kinematic system, see the next paragraph) are not met. 

We will briefly describe the algorithm behind these filters. Linear dynamical systems with 

time-invariant coefficients in their state transition and measurement equations lead to simpler 

optimal estimation techniques than are needed for the time-varying case. The state estimation 

covariance and filter gain matrices achieve steady-state values that can often be computed in 

advance. Two common time-invariant systems are constant-velocity and constant-acceleration 

systems, so called kinematic systems. 

Let us assume a constant velocity model: starting with some initial value, the object’s 

velocity evolves through time by process noise of random accelerations, constant during each 

sampling interval and independent. With no process noise, the velocity is constant; process noise 

can be used to model unknown maneuverings of a non-constant velocity target. The cumulative 

result of the accelerations can in fact change the object's velocity arbitrarily much, so we model a 

maneuvering object as one with high process noise. We assume position measurements are only 

available, subject to measurement noise of constant covariance. Clearly, the more that is known a 

priori about the motion the better the predictions will be.   

Assume the object state (its position and velocity) evolves independently in each of the (X; 

Y; Z) dimensions. For instance, in the Y dimension, it evolves according to 

 ( 1) ( ) ( )yk k k+ = +y F y v  (2.8) 

where 

 
1

0 1y

t∆ 
=  
 

F  (2.9) 

for sampling interval t∆ , error vector ( )kv , and ,
T

Y Y =  y & .  The equations for the other two 

spatial dimensions are similar, and in fact have identical F matrices.  Thus for the complete 

object state , , ,
T

x X X Y Y =  
& & , F is a (4x4) block-diagonal matrix whose blocks are identical to 

Fy. The error vector ( )kv  can be described with a simple covariance structure: 

( ( ) ( ))T
kjk j δ=E v v Q . 

The α-β filter for state prediction has the form 

 ˆˆ ˆ( 1 1) ( 1 ) ( 1) ( 1 )
/
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Where ˆ( 1 1)k k+ +x  is an updated estimate of x given z(k+1), the measurement at time k+1. 

Here we assume that z(k+1) consists of the two state components (X; Y) (but not ( , )X Y& & ). The 

state estimate is a weighted sum of a state ˆ( 1 )k k+x  predicted from the last estimate to be 

ˆ( )k kFx  and the innovation, or difference between a predicted measurement and the actual 

measurement. The predicted measurement ˆ( 1 )k k+z  is produced by applying (here a trivial) 

measurement function to the predicted state. 

The α-β filter is a special case of the Kalman filter.  For our assumptions, the optimal values 

of α and β can be derived (see [25] for details) and depend only on the ratio of the process noise 

standard deviation and the measurement noise standard deviation (which can be approximated 

based on a priori information). This ratio is called the object’s maneuvering index λ, and with the 

piecewise constant process noise we assume, 

 
( )2 28 4 8

8

λ λ λ λ λ
α

+ − + +
= −  (2.11) 

and 

 
2 24 8

4

λ λ λ λ λ
β

+ − +
= . (2.12) 

The state estimation covariances can be found in closed form as well, and are simple functions of 

α, β, and the measurement noise standard deviation. 

The α−β−γ filter is like the α−β filter only based on a uniform acceleration assumption. 

Thus, it makes a quadratic prediction instead of a linear one. Broadly, it tends to be more 

sensitive to noise but better able to predict smoothly varying velocities. Its equation is the 

following: 

 
2

ˆˆ ˆ /( 1 1) ( 1 ) ( 1) ( 1 )
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t

α

β

γ

 
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With the maneuvering index λ defined as before, the optimal α and β for the case that the 

target experiences random small changes in acceleration (random jerks) are the same as before 

and the optimal 2 /γ β α= . 

2.3.4.2 Multiple Model Filter with Fixed Multiple Models 

We assume that there is one correct model for the process, and that the model is fixed or 

does not change over time, however we do not know what that model is. Over time, as the filter 
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reaches a steady state, we want to converge on a choice for the single most likely model. For this 

approach let us assume that the correct model M is one of r possible known fixed models, 

 { }
1

r

j j
M µ

=
∈ . (2.14) 

We can use the following conditional probability density function as an indicator of the 

likelihood of a measurement z at step k: 
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where 

 T
µ µ µ µ µ

−= +C H P H R  (2.16) 

We have omitted the k subscript for clarity. Note again that the state vector xµ and error 

covariance matrix Pµ
−  are the a priori (predicted) versions at step k, already computed at each 

filter prediction step using fixed gain state estimation filter time update equations. In other 

words, the density is conditioned on the model and all of its associated a priori (predicted) 

parameters. 

Given a new measurement z at time step k, and associated a priori state and covariance 

estimates from the fixed gain state estimation filter time update equations, we can use equation 

(2.15) to compute the recursive probability pj(k) that candidate model µj is the correct model at 

that time: 
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One would initialize pj(0) with some a priori estimate of the probability that µj is the correct 

model.  For example, one could consider all models equally likely to begin with, and set 
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Note that ( )jf µz  and pj(0) are scalars, and at every time step k, 
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 The final combined or model-conditioned estimate of the state xk and error covariance Pk are 

computed as a weighted combination of each candidate filter’s a posteriori state and error 

covariance estimates. The weight for each candidate model is the model probability given by 

equation (2.15). The final model-conditioned state estimate is computed as 
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and the final model-conditioned error covariance as 

 ,
1

( )
j j j

r
T

k j k
j
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j jk kµ µε = −x x
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The Algorithm 

To begin with, one would instantiate r independent fixed-gain state estimation filters, one 

for each of the candidate models.  Each of these filters would then be run independently, in 

parallel, with the addition of the necessary individual density and final probability computations. 

At each time update, one would compute the normal a priori filter elements, and then: 

1. Using the conditional density function given in equation (2.15), compute the likelihood 

of the current (actual) measurement z for each candidate model µj 

2. Using the previous probability ( 1)jp k −  for each candidate model µj, use the recursive 

equation (2.17) to compute the probability that each individual model is correct 

3. For each candidate model µj, compute the a posteriori (corrected) state estimate ,ˆ
jk µx and 

error covariance , jkP µ using the fixed-gain filter measurement update equations. 

4. Given each candidate filter’s a posteriori (corrected) state estimate ,ˆ
jk µx , compute the 

final model-conditioned state estimate kx
) using equation (2.20); and 

5. If desired, given each candidate filter’s a posteriori (corrected) error covariance estimate 

, jkP µ , compute the final model-conditioned error covariance Pk using equation (2.21). 

As described in [25], the final mode-conditioned state estimate will converge to agree with 

one of the models, if one of the models is the correct one. In any case, it will converge to some 

constant mode represented by a fixed weighting of the individual multiple models. 

If the actual mode is not constant, i.e. if the process can be switching or varying between 

different models, one can use various ad hoc methods to prevent convergence on a single mode. 

For example: 

• One can impose an artificial lower bound on the model probabilities, 

• impose a finite memory (sliding window) on the likelihood function, or 

• impose an exponential decay on the likelihood function. 

A problem with using ad hoc means of varying the blending of fixed multiple models is that 

the error in the incorrect models (at any moment) can grow unbounded, i.e. the incorrect filters 
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can get lost. Thus, the filters might have to be re-initialized. 

2.4 Automatic Parameter Tuning 

A common problem for systems operating in unconstrained environments on visual input 

(such as a perimeter surveillance system) is that the input can vary substantially, but the systems  

are expected to work well within a range input conditions, without any intervention from the 

user.  This type of flexibility requires a way to measure the quality of the system’s output (i.e. the 

tracking quality) and to tune the front-end algorithms to improve that quality.  Measuring the 

quality of multitarget tracking algorithms is difficult even if the ground truth is known [36], but if 

there is no ground truth, then at first glance, it seems impossible. However, to quote Tom Gilb 

“Anything you need to quantify can be measured in some way that is superior to not measuring 

it at all.” [35], so there must be some good approximation of the tracking quality. 

In most tracking applications, the number of tracked targets is very slowly changing and the 

rate of change in the number of targets is constant (or nearly constant). This means that if the 

number of tracks changes drastically (from 6 to 12, for example) in a very short period (in a few 

frames), it is highly probable that the input of the tracking system (the output of the 

multichannel image processing front-end) has deteriorated. This can happen for a number of 

reasons, but the two most common are that the lighting conditions have changed, altering the 

appearance of the target and that the target motion has changed. 

2.4.1 Response to Lighting Changes 

Changes in lighting conditions are handled by varying the integration time of the sensor.  

This is a very low-level adjustment independent of all other parameter-tuning actions and could 

be considered part of the functionality offered by the sensor even though it is implemented in 

software. 

The first step is to measure the average gray value of the image for the current frame. If the 

difference between the desired average gray level G (usually 128) and the measured average (g) is 

larger than 10%, the integration time t is adjusted: If  0.1G g G− > ⋅ , then λ+ = − ⋅ +1 ( )k kt G g t  

2.4.2 Response to Target Motion Changes 

Differences in target motion from the user’s a priori assumptions can create subtle errors in 

the image processing steps that limit the accuracy of the tracking results.  We considered 

solutions to the tuning of three very important parameters in the multichannel front-end: the 

orientation of the front-end filters, the number of openings/closings during detection post 
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processing and the number of dilations during the prediction step. 

Tuning the orientation parameter (φ) of the front-end filters online can help to tackle a 

frequent phenomenon in tracking applications: even though the approximate speed (or speed 

range) of the anticipated targets is known a priori, the movement direction is not. This means 

that although our change enhancing front-end filters possess the ability to be more sensitive to 

motion in a certain direction (using the orientation parameter (φ) of the filter described in 2.2.1), 

based on knowledge available a priori, this capability cannot be leveraged. As the system is 

working online, however, the output of the tracking systems does contain the required direction 

data in the form of motion vectors for the individual targets.  The algorithm is as follows: 

1. Calculate the average motion vector for all targets and determine the direction  of 

the motion (ϑ) 

2. Set the orientation (φκ+1) for the next frame according to the following formula: 

1 (1 )k kφ α φ α ϑ+ = ⋅ + − ⋅ where 0 1α≤ ≤  

The parameter α serves to control the response speed of the system to changes in target 

movement direction: if α is close to 1, change is very slow, if α is close to 0, then change is very 

fast. 

The post processing of the detection images is also an important step in getting the image 

ready for feature extraction. This step serves as a filter to smooth out target boundaries or 

enhance target signatures.  The filtering consists of the ND number of morphological opening or 

closing steps, depending on a priori considerations regarding the tracking scenario.  The number 

of these steps is a parameter that must be consistent with the location of the targets: if two 

targets get too close to each other for example, too many closing operations could cause their 

signatures to merge and cause errors in the feature extraction phase.  It is possible to modify the 

number of morphological operations based on the distances of the targets relative to each other.  

If two targets are so close, that the ND current morphological closings would merge them, then 

ND is decreased. If, however, the average distance between the targets is sufficiently large, then 

ND may be increased, if it is less than the optimal amount specified by a human observer (and 

known a priori).  This algorithm requires the calculation of the predicted distances of each pair 

of targets.  Since the predicted locations of the targets are available from the state estimation 

module, only  Ο(n2) extra calculations are necessary, where n is the number of active targets in 

the previous frame. 

Optimizing the image-based prediction of future target positions – which can be considered 

a rough gating method to effectively filter out clutter from the input images – is possible through 
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the parameter that controls the number dilations (ND) during the prediction step.  Changing this 

parameter proportionally to the average speed of the targets allows the system consider a wider 

search area for the possible target locations, but still use the image-base gate to reduce clutter. 

The algorithm to calculate ND for the k+1th frame ( 1k
DN + ) is as follows: 

1. Calculate the maximum speed (vmax) of the targets in a given frame 

2. Let ( )1
max( 1 )k k

D DN round N vα α+ = ⋅ + − ⋅  where 0 1α≤ ≤  and DN ∈Z  

Like before, α serves to control the response speed of the system to changes in target speed to 

smooth out jitter.  The formula can be so simple, because [ ]max

pixels
v

frame
= . 

2.4.3 Response to Channel Output Corruption 

The result of the algorithms described in the previous sections is that the detection output 

image remains qualitatively constant if there are no abrupt (unanticipated) changes or errors in 

the system. However, in an unconstrained environment, it is possible that one or more channel 

outputs are corrupted beyond repair.  It is possible to detect this, because the degradation of the 

outputs of one of the parallel channels causes the degradation of the detection image. The 

challenge is then to determine which channel was corrupted and remove that channel from 

further processing through the channel interaction matrix to prevent the propagation of the error 

through the system. This is similar to the strategy a human would use to tune the tracking system 

in a given scenario.  An analogy for the algorithm’s main idea would be that of a choir: a single 

false voice can ruin the sound of the whole choir, so the sources for these voices must be 

eliminated. 

The tuning algorithm makes the following strong assumptions (which are typically valid in 

tracking applications): 

1. The parameters of the front-end channels are tuned to detect targets of interest (for 

example the temporal channel is tuned to a given target speed range) 

2. The number of targets or the rate of change in the number of targets is constant or 

stays within a very narrow interval 

3. The structure of the interaction matrix (the selection of logic functions used for row 

and column operations) is tuned for the given application, therefore it will not be 

changed. 

The insight of the algorithm is that in order to find the channel that contributed the 

erroneous tracks, it is enough to compare the channel output images with the detection image, 

without running the feature extraction routines on the images. This means that the running time 
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of the algorithm is not dependent on the number of erroneous tracks; in effect, the runtime is 

constant.   

Given the above assumptions, the adaptation algorithm is as follows: 

1. Let Nk be  the number of live tracks at frame k, 

2. If 1k kN N δ−− > , then continue, else stop. 

3. Let S, ST and T be the binary channel output images for the spatial, spatio-temporal and 

temporal images respectively, and D the detection image used for feature extraction. 

4. Let A, or Age of target t be the number of frames a given target was present during 

tracking so far. Find and tag all targets, where: tA τ< . 

5. Create a seed image by setting the centroid pixels of the tagged targets, let this be Seed. 

6. Generate an image containing only the erroneous targets (TSeed,), using the RECONSTR 

template: Re ( , )SeedT c D Seed=  

7. Calculate the channel error images:  

S Seed

ST Seed

T Seed

E S T

E ST T

E T T

= ⊗

= ⊗

= ⊗

 

8. Count the number of white pixels on the channel error images, let these be CS, CST, CT. 

3
S ST TC C C

C
+ +

=  

9. If S ST TC C and C C and C Cε ε ε− < − < − < , then the errors are coming from all 

channels, so the filters must be tuned manually. Otherwise, find max(CS, CST, CT), and 

choose the channel with them maximum error count. 

10. If more than one channel is active (the number of 1-s in the channel interaction matrix 

is greater than 2), then zero out the row and column of the channel in the channel 

interaction matrix; otherwise stop. 

2.5   Experiments and Results 

During algorithmic development, we targeted a real-time application for the ACE-BOX [19] 

platform. The ACE-BOX is a PCI extension stack that contains a Texas Instruments 

TMS320C6202B-233 DSP and either an Ace4k or an Ace16k CNN-UM chip in addition to 

16MBs of onboard memory.  The Ace4k chip is a 64x64, single-layer, nearest-neighbor CNN-

UM implementation with 4 LAMs (Local Analog Memory for grayscale images) and 4 LLMs 

(Local Logical Memory for binary images) [24]. We also experimented with the newer Ace16k 

chips that have 128x128 cells, an optical input and 2 LLMs and 8 LAMs.  The Ace4k chip was 
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manufactured on a 0.5 micron process, while the Ace16k on 0.35.  We hosted the Ace16k chip 

on the Bi-i platform developed by Analogic Ltd (see the Section 1.4 for details). 

2.5.1 Algorithm Accuracy Measurements 

To validate our choice of using multiple interacting channels during the image-processing 

phase of the system vs. using a single channel, we ran measurements on five image sequences 

containing rapidly moving and maneuvering targets in images with differing amounts of noise 

and clutter.  All videos were manually tracked by a human viewer to obtain reference 

measurements for the target positions in each frame.  These positions were compared to the 

measurements given by the multi-channel front-end and each of the constituent channels as well.  

The mean square position error was calculated for each of the target locations, and averaged for 

each image sequence.  The relative error compared to the best performing channel was also 

calculated, since this is a good indicator of the overall performance of a channel under varying 

conditions.  The results of these experiments are shown in Figure 2.7. 

The use of the multi-channel architecture allows the system to be able to process markedly 

different inputs within the same framework and achieve acceptably low error levels.  If an 

“oracle” (a different system, or a human) can provide quantitative input on the performance of 

each channel, then the system can adapt (through changing values in the interaction matrix) to 

give more weight to the best performing channel.  If no such information can be acquired, the 

system will still perform relatively well (see the relative errors in Figure 2.7), often very close to 

the best performing channel. 

MSE Relative MSE Relative MSE Relative MSE Relative MSE Relative
Sequence1 1.36 0.00% 2.13 56.62% 7.01 415.44% 1.73 27.21% 1.83 34.56%

Sequence2 2.07 81.58% 24.84 2078.95% 1.14 0.00% 34.26 2905.26% 10.05 781.58%

Sequence4 0.82 0.00% 0.94 14.63% 1.1 34.15% 0.92 12.20% 0.99 20.73%

Sequence5 1.34 67.50% 0.8 0.00% 6.04 655.00% 0.95 18.75% 0.89 11.25%

Sequence6 1.43 1.42% 1.42 0.71% 10.28 629.08% 4.58 224.82% 1.41 0.00%

Avg. relative error: 30.10% 430.18% 346.73% 637.65% 169.62%

Spatio-temporalMulti Threshold Temporal Spatial

 

Figure 2.7 Accuracy comparison of different front-end channels and the multi-channel 
arrangement.  The best performing channel is highlighted in bold type for each sequence. The 
mean square position error (MSE) was calculated for each of the target locations, and averaged 
for each image sequence and the relative error was compared to the best performing channel. 
Observe that the output of the multi-channel architecture is – on average – the best performer in 
these sequences. 

We also tested the developed algorithms on several artificially generated sequences in 

addition to video clips recorded in natural settings (such as a flock of birds flying).  We hand 

tracked some of these videos to be used as ground truth references for assessing the quality of 
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the tracking algorithms as measured at the output of the complete MTT system. Figure 2.8 

shows a few sample frames from the “birds” clip along with the detection images generated by 

the multi-channel front-end.  This sequence contains 68 frames of seagulls moving rapidly in 

front of a cluttered background. 

 

Figure 2.8 Sample consecutive frames from a test video and the corresponding detection 
maps of the system.  The input video shows birds flying in front of a cluttered background 
(birds are circled in red on the input frames). Since the birds, leaves and branches of the trees are 
all moving, detecting the targets (birds) is very difficult and must make full use of the capabilities 
of the multi-channel front-end (such as the ability to filter based on object size and object speed). 

The accuracy of image processing also depends heavily on the noise characteristics of the 

input image sequence. To measure this, we developed a program to generate artificial image 

sequences, which allowed us to specify carefully the kinematic properties of the moving targets.  

We could also mix additive noise to the generated images to study the noise sensitivity of the 

system.  To describe noise levels, we defined the signal to noise ratio (SNR) and peak signal to 

noise ratio (PSNR) according to the definitions commonly used in image compression 

applications [33]: 
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where M and N are the dimensions of the image in pixels and f(i,j) and f’(i,j) are the pixel values at 

position (i,j) in the original image and the noisy image, respectively. 

Figure 2.9 shows the results of our analyses.  We did not calculate the SNR and PSNR 

values for the natural image sequences since there was no reference image available to compare 

to our inputs.  The measurement errors were obtained by calculating the distance between a 

hand tracked / generated target reference position and the output of the multi-channel front-

end.  The modeling errors were calculated by injecting the reference target positions into the 

system and measuring the tracking error, while the tracking errors were the difference between 

the target reference positions and the output of the whole MTT system.   

As can be seen from the data in Figure 2.9, the tracking error is always lower than the 

measurement and modeling error combined, which suggests that these errors cancel each other 

out somewhat.  The performance of the multi-channel front-end is very good in cases where the 

images are corrupted with high levels of noise, which is due to the noise suppression capabilities 

of DoG type filters.  Lastly, the magnitude of the overall tracking errors is within two pixels for 

these sequences. 

Content Type  Motion Type SNR PSNR
Tracking 

Error

Measurement 

Error

Modeling 

Error

Natural
maneuvering and linear, 

constant speed
N/A N/A 2.07 1.69 0.49

Natural
stochastic, overlapping, 

varying speed
N/A N/A 1.36 0.92 0.82

Generated
maneuvering and linear, 

constant speed
14.01 17.56 0.82 0.52 0.64

Generated
maneuvering and linear, 

constant speed
7.63 11.18 1.43 1.17 0.64

Generated
maneuvering and linear, 

overlapping, constant speed
18.35 20.50 1.34 0.71 0.72

 

Figure 2.9 Tracking accuracy and noise levels for sample videos.  All errors are in pixels.  
Sub-pixel error values are the result of the sub-pixel accuracy of our state estimation and 
centroid calculation routines.  Higher SNR and PSNR values show lower noise levels.  All videos 
in the table are different image sequences, the 3rd and 4th however contain targets with the same 
motion properties moving on the same path, but with different image noise levels, which is why 
the measurement errors are different and the modeling errors are the same for the two 
sequences. 
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Figure 2.10 Target tracking results for two sample videos.  The plots show the tracking 
results in 3D: two spatial dimensions that correspond to the coordinates in the videos, and a 
third temporal dimension, which corresponds to the frame number in the sequence.  Target 
tracks are continuous lines in these 3D plots, with different gray levels signifying different tracks. 
The targets were hand tracked by human observers to generate reference target positions (upper 
left plots (‘ref’) in A and B).  The track states (‘sta’, lower left plots in A and B) are the target 
location outputs of the MTT system.  The ‘meas’ plots (upper right corner on A and B) show the 
outputs of the data-assignment subsystem.  Observe that the kinematic state estimation 
algorithms smooth out some of the jitter in the direct measurements.  Finally, the input 
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measurements (the coordinates of the centroids of the black blobs in the detection maps) 
generated by the multi-channel framework are shown in the lower right plots (in both A and B). 

Figure 2.10 shows the results of running the system on two video flows (A and B) that 

contain targets which are maneuvering and sometimes move in front of each other, effectively 

stress testing the tracking algorithms.  Sequence A. was artificially generated while sequence B. is 

a short natural video clip showing rapidly maneuvering targets with a priori unknown motion 

and trajectory.  We hand tracked each frame of these video flows to facilitate a rigorous 

comparison of the system’s performance against a human observer.  It must be noted, that 

sometimes even we humans had trouble identifying targets in a frame without flipping back-and-

forth between frames, which illustrates the need for temporal change detection in the image 

processing front-end. 

We measured the performance of the system at three stages: the output of the multi-channel 

framework, the output of the data-assignment subsystem and the output of the whole MTT 

system.  This enabled us to visualize and study the effect of different input sequences on various 

subsystems.  We observed, for example, how the kinematic state estimators smooth out the 

target trajectories when fed the somewhat jittery data from the multi-channel front-end (this was 

expected and desired).   

The measured MTT system outputs show that the system tracked the targets fairly well, 

although occlusion and missing sensor measurements have caused significant errors as the 

system merged tracks together and split others (this is common error in tracking systems).  To 

address this issue, we are currently working on incorporating a more advanced state estimation 

algorithm to model target motion better and include a priori knowledge of target behavior. 

2.5.2 Algorithm Performance Measurements 

Before implementing the algorithms in C++, we first prototyped them in MATLAB using a 

flexible simulation framework based on the MatCNN simulator [12].  After the algorithms 

“stabilized”, we ported them to work on the ACE-BOX hardware using the Aladdin 

Professional programming environment [19].   

To enable better comparison of the Ace4k-based algorithm implementation with the pure 

DSP version, we coded the same algorithms in both cases.  Since the data assignment and state 

estimation algorithms run on the DSP in both cases, only the operations in the multi-channel 

framework had to coded for both platforms.  We optimized the algorithms to run as fast as 

possible on each platform, using methods optimized for the platform’s characteristics.  For 

example, we used the optimized image processing routines provided by Texas Instruments 
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Image Processing Library to construct our multi-channel algorithm on the DSP.  Figure 2.11 

shows the running times of various steps of the algorithms for different parameter settings.  The 

runs differed only in the number of opening/closing iterations applied to the images in the 

multi-channel front-end, since this is the most costly step of processing.  These iterations 

smooth out the input binary maps to provide better inputs for further processing. 
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Operation Ace4k+DSP Net Ace4k+DSP DSP Ace4k+DSP Net Ace4k+DSP DSP Ace4k+DSP Net Ace4k+DSP DSP

Spatial Channel 1.20 ms 0.42 ms 0.20 ms 1.25 ms 0.47 ms 0.53 ms 1.31 ms 0.53 ms 0.93 ms

Temporal Channel 1.88 ms 1.20 ms 0.99 ms 2.00 ms 1.32 ms 1.69 ms 2.14 ms 1.46 ms 2.57 ms

Spatio-Temporal Channel 1.88 ms 1.20 ms 0.99 ms 2.00 ms 1.32 ms 1.69 ms 2.14 ms 1.46 ms 2.57 ms

Channel Logic 0.15 ms 0.15 ms 0.15 ms 0.15 ms 0.15 ms 0.15 ms 0.15 ms 0.15 ms 0.15 ms

Prediction 0.29 ms 0.17 ms 0.40 ms 0.29 ms 0.17 ms 0.40 ms 0.29 ms 0.17 ms 0.40 ms

Feature Extraction 0.11 ms 0.11 ms 0.11 ms 0.11 ms 0.11 ms 0.11 ms 0.11 ms 0.11 ms 0.11 ms

Total Frontend Time 5.51 ms 3.25 ms 2.84 ms 5.80 ms 3.54 ms 4.57 ms 6.14 ms 3.88 ms 6.73 ms

Data Association

State Estimation

Total MTT Time

Total Time 8.47 ms 6.21 ms 2.84 ms 5.80 ms 6.50 ms 4.57 ms 6.14 ms 6.84 ms 6.73 ms

Frames/sec 118.06 161.03 352.11 172.41 153.85 218.82 162.87 146.20 148.59

Grayscale download: 0.37 ms

Grayscale upload: 0.25 ms

Binary download: 0.02 ms

Binary upload: 0.04 ms

1 Opening/Closing iteration 5 Opening/Closing iterations 10 Opening/Closing iterations

Ace4k Datatransfer Times:

0.73 ms

2.23 ms

2.96 ms

 

Figure 2.11 Running times for the various subtasks of the MTT system in different 
configurations.  The 2 configurations were: the image processing steps of the multi-channel 
front-end running on the Ace4k and everything else running on the DSP (Ace4k+DSP and Net 
Ace4k+DSP column), and all algorithms running on the DSP (DSP column).  The Net 
Ace4k+DSP column contains only the net computing time (without data transfers, which is very 
significant for the Ace4k).  Observe that because of the data transfers, the Ace4k-DSP tandem is 
slower than DSP-only algorithms if the iteration count is small, but as the iteration count 
increases, the data transfer speed is balanced by the linear slowing down of the DSP.  Using the 
Ace4k chip, net computing times are always close to, or significantly better than those using the 
DSP. 

2.6 Discussion 

During the interpretation of the performance data in Figure 2.11, it is important to note that 

the Ace4k chip was manufactured on a 0.5 micron process while the TMS320C6202B-233 DSP 

on a 0.15 micron process, which is a significant advantage for the DSP.  Nonetheless, the results 
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for the multi-channel front-end performance tests highlight several important facts.  First, the 

numbers indicate that the Ace4k has limited potential in practical image processing scenarios, 

because it is hampered by the slow data transfer speed of its bus and the limited number of 

onboard memories (4 LAMs and 4 LLMs).  Since it does not have an optical sensor, data must 

be transferred from a DSP for processing, and frequently, partial results of the algorithms must 

be transferred back to the DSP for storage, because of the limited on-chip memory capacity of 

the chip.  This is the reason why the DSP is faster than the Ace4k-DSP duo if the number of 

opening/closing iterations is small. As the iteration count increases, the transfer cost is balanced 

by the linear slowing down of the DSP, which is why the Ace4k becomes the clear winner at 

higher iterations. 

We have some preliminary data of our work with the newer Ace16k processor.  This chip is 

larger (128x128 vs. 64x64), but has a faster data bus, so data transfer times for native size 

grayscale images are about half that of the Ace4k.  Unfortunately, the chip does not have a 

dedicated binary image readout mode, which slows down the readout of binary images to speeds 

about 10 times slower than the Ace4k.   

The Ace16k has one other nice feature: a built-in resistive grid.  The resistive grid can 

calculate diffused images in as low as 30ns, which enables the very rapid generation of DoG 

filtered images (which is just a difference of two diffused images). Our experiments indicate that 

using the resistive grid we can perform the front-end channel calculations about 4 times faster 

than the DSP for 128x128 sized images (including transfers).  

Several lessons can be learned from the tests that have to be addressed to design a 

competitive topographic visual microprocessor.  The clear advantage that topographic image 

processor have over conventional digital image processors is that all other things being equal, the 

processing speed remains essentially constant as the size of the array increases, while on DSPs, 

processing time increases linearly with the image area (which grows quadratically).  Further 

advantages can be gained by using diffusion and trigger-wave based image-processing operators, 

which are very fast constant time operations on CNN-UM chips, but can only be approximated 

with iterative approaches on DSPs.  However, to realize the full potential of these architectures, 

they must designed with practical application scenarios in mind. 

They have to feature focal plane input, so the initial images do not have to be transferred 

through the data bus.  The transfer speed of the digital communication bus has to be increased 

by one, preferably two orders of magnitude, if we factor in the need for higher resolution images.  

Even though a topographic processor is capable of performing many operations at constant 

speeds (with respect to image size, as long as the image size is equal to, or smaller than the 
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number of processing units), some operations are much better suited to traditional DSP 

implementation (2D FFTs for example).  Without a high-speed bus, the transfer of images itself 

becomes a significant bottleneck that negates the advantages of using a topographic processor in 

the first place. 

2.7 Case Study: The Multitarget Framework in a Real-time Control 

Environment 

The real time performance characteristics of the MTT algorithm framework lend themselves 

naturally to applications where the control of some physical device is required base on visual 

input.  These applications demand control signals at a predictable rate from the algorithm 

processing the video input. With the model application, we wanted to verify and demonstrate the 

following capabilities: 

• high frame rate operation 

• real time control 

• visually verifiable tracking accuracy 

These abilities are highly desirable for any system relying on visual input for control purposes.  

Our model application imitates a scenario, where a laser pointer has to follow and “tag” up 

to six rapidly moving targets by shining a laser on them.  The targets are moving rapidly in a 

rectangular area within a plane and our MTT algorithm, which runs on a Bi-i camera, tracks 

them.  The laser is connected directly to the Bi-i camera, and is controlled from the MTT 

software. A PC communicates with the Bi-i to provide visual confirmation of the tracking and to 

show an interface for setting algorithm parameters.   Figure 1.1 shows the system and 

connections. 

XY Laser 
Scanner

Bi-i camera 
running the MTT 

algorithm

Screen

Laser beams

Target

 

Figure 2.12 Bi-i Controlled Laser Scanner System 
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The laser positioning system consists of laser scanners in the X and Y planes and some 

additional driver circuitry.  A laser scanner is a galvanometer with an attached mirror. When 

current is applied, the galvanometer's shaft rotates through part of a circle, when the current is 

removed, the shaft returns to the rest position.  This gives the scanners the ability to scan a 

rectangle with the stationary laser source.  The additional circuits contain digital-analog 

converters to provide the currents needed to drive the scanners and the logic devices used to 

interface to the Bi-i camera.  The Bi-i camera communicates with the laser scanners through 

memory-mapped registers.  Figure 2.13 shows the schematic diagram of Bi-i-based laser scanner 

setup, while Figure 2.13 shows the actual hardware itself. 

 

Figure 2.13 The Bi-i camera with the laser scanner attached.  On the left image, the Bi-i 
camera is shown in silver, with the laser scanner assembly attached on top (black).  The front 
window serves as a shutter for the laser light.  The right picture shows a close-up of the mirror 
assembly inside the scanner. 

We developed a small calibration routine to map the virtual 2D space of the tracking 

algorithm to the 2D plane of the environment in order to display the tracking results accurately.  

The routine displays – using the laser – an adjustable rectangular target area, which encloses the 

area where the laser will shoot. This has to be aligned with the projected image, but the aspect 

ratio of the rectangle can be arbitrary.  The pixel coordinates received from the MTT routine are 

translated into this rectangular space, and then the desired mirror angles are calculated from the 

rectangular coordinates. 

For demonstration and testing purposes, we used a moving target generator utility to 

generate short videos with rapidly moving targets.  The utility enables us to specify flexibly the 

look, the path and the motion characteristics (speed and acceleration) of the individual targets, 

the complexity of the background and the noise level of the video. 

We used an LCD projector to project these videos onto a reflective screen and set up the 
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laser tracking system to track the simulated targets on the screen. The projector was attached to a 

computer that was not running the tracking algorithms; its only purpose was to generate the 

target images. 

The laser scanner system “tags” the targets by moving the laser light to a target, and staying 

at the given position for a few milliseconds.  Since the laser has a noticeable warm up time, we 

switch on the laser light before the first target is highlighted and turn it off after last one was 

tagged.  This does not create visible lines over the path of the laser, because the laser moves very 

fast.  Figure 2.14 shows the laser scanner running on a typical video. 

 

Figure 2.14 The laser scanner system in action 
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In many industries, there is a substantial demand for the automatic processing of different 

types of handwritten materials.  Obvious applications include the automatic indexing and 

processing of archived documents, forms, postal envelopes, notes etc. Even though human 

handwriting processing has gone through considerable improvement during the past decades, 

relatively well performing systems are only available for vertical applications. In these scenarios, 

the utilized vocabulary is very narrow and well defined, such as the recognition of postal 

addresses on envelopes and the recognition of medical prescriptions; or the writer has to learn a 

new writing style (graffiti alphabet on PDA-s) so the machine can interpret it. 

The area of handwriting recognition consists of two completely different problems: online 

and offline handwriting recognition.  Offline recognition is the reading of handwritten text 

sometime after the writer has created it.  This means that the input of the recognition engine is a 

binary or grayscale image containing the handwriting.  Online handwriting recognition is the 

interpretation of the human handwriting “real-time” as it is created.  Input is usually with a 

special pen on an electronic notepad, which provides temporal information and trajectory data.  

The significantly larger amount of input data available makes online recognition an easier task 

than offline recognition.  Our paper is concerned strictly with offline handwriting recognition 

because it does not require special input devices. The offline handwriting recognition task 

contains character recognition as a sub-problem that has been studied using CNN algorithms 

[37]  and Gabor filters for hand-printed letters [38]. 
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Producing reasonably well performing offline handwriting recognition systems has been an 

elusive goal for researchers because of two things: handwriting is a form of self-expression, and 

as such, the same words can be written in many different styles.  Many handwritten words are 

also ambiguous and can only be recognized in context.  This is especially true for the recognition 

of unconstrained texts, where the vocabulary may be arbitrarily large.  The complete research 

area of offline handwriting recognition is very large, as it comprises the preprocessing of the 

input, recognition and post-processing of the results, and each of these tasks is an actively 

researched subject in its own right.  This chapter is concerned with solving the preprocessing and 

segmentation tasks of an offline handwriting system without the use of a grammatical model or 

input from the character recognizer. 

3.1 The Basic Structure of an Offline Handwriting Recognition System 

Even though the many recognition systems try to solve the problem in different ways there 

is a general module structure used by all systems that stems from the properties of the problem 

itself [42], which is shown in Figure 3.1. 

Preprocessing

Linguistic postproc.

Recognition

Feature extraction

Letter segmentation

Thresholding

Line localization

Word localization

Downing  

Figure 3.1 Block diagram of an offline handwriting recognition system 

For a thorough overview of different handwriting recognition systems and architectures the 

reader is referred to [40],[41] and  [74].  The first step is preprocessing of the input picture.  The 

aim is to maximize the signal to noise ratio of the input and to suppress non-relevant data.  This 

phase contains the thresholding and filtering of the input because the subsequent operations 

work on binary images.  The localization of the lines and words on the image is also performed 

in this step.  The line and word location information permits the subsequent analysis of the 

words in context, which may boost the recognition rate substantially. 



Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition 

63 

The letter segmentation and feature extraction steps may be performed serially or in parallel.  

Some systems try to segment the located words into letters then build feature vectors from them 

that will be processed by the recognition engine; others begin to build the feature vectors from 

the words before segmenting them into letters [41]. 

The next step is the recognition of letters or words based on the feature vectors obtained in 

the previous steps.  Many methods exist to accomplish this task, such as neural networks, hidden 

Markov models (HMMs) and dynamic programming techniques [43],[48],[41].  It is assumed that 

a suitable recognizer and feature extractor exists to process the segmented letter images.  An 

example system is described in detail in [67], [70]. 

The output of the recognition engine is a list of [word, confidence] pairs that contain the 

recognized words and the confidence level of the recognition.  The linguistic postprocessor takes 

this list as its input and based on grammatical and context information chooses the most 

appropriate word from the list.  The postprocessor also corrects syntactic mistakes of the 

recognition. 

 

Figure 3.2  An excerpt from the handwritten text database  
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3.2 Description of the Test Handwriting Database 

The described algorithms were tested on a database of 25 handwritten pages collected by 

Andrew Senior [53],[54].  The database contains 7000 words from the LOB corpus (Lancaster-

Oslo / Bergen) that were written by a single writer.  An excerpt is shown in Figure 3.2.  There is 

a segmentation file for every page that specifies the words and their location in the image in 

order to ease verification of the developed algorithms. We have also created a word-count file 

that specifies the number of lines and the number of words on a page for each page.  Since the 

segmentation algorithms do not distinguish punctuation marks from real words, and the 

segmentation files do not contain punctuation information either, we have erased the 

punctuation marks from the page images.  This database was chosen because it was the only 

database found that is freely available and was documented thoroughly. 

3.3 The Preprocessing Tasks And Their Solutions 

In almost every procedure of the preprocessing algorithms tens or even hundreds of image 

processing operations are performed on the input images.  This is one of the most 

computationally intensive parts of offline handwriting recognition and motivated the use of the 

fastest possible parallel hardware architectures (i.e. CNNs) during the design of the algorithms. 

These algorithms were designed to take advantage of dual digital and analog processing 

capabilities of the target ACE-BOX platform [19].  The experiments were performed with the 

MatCNN simulator in Matlab.  We chose this approach because we could relatively quickly test 

the capabilities of the algorithms.  We tried to devise algorithms that could be run entirely on the 

CNN chip to further explore the possibilities of analogic programming, careful to utilize only 

linear and nearest-neighbor templates that can be efficiently run on existing hardware 

implementations.  The resolution requirements of the algorithms vary, but all single word 

algorithms require less than 128x128 pixels, not exceeding the resolution of the ACE16K chip. 

In all flowcharts, the steps designed for CNNs are shown in italic on gray background, and 

the ones in normal type and white background use traditional digital methods.  The utilized 

CNN templates may be found in the Appendix.  

3.3.1 Locating The Lines 

The algorithm found in the literature [42] attempts to find the lines based on local features, 

but it seemed to us that a line can more readily be thought of as a global structure.  Our 

algorithm is similar to the ones used in OCR systems [44] where lines are localized by computing 

the horizontal histograms for the entire image at a couple of relevant skew angles then the angle 



Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition 

65 

and position where the histograms have local minima are chosen as the location between lines. 

Calculating the horizontal histograms requires non-linear templates on CNNs, but can be 

substituted in this case with the horizontal projection operator. 

We refined the line-finding algorithm in a number of ways.  In our early experiments, the 

histograms were quite noisy, so we began using a method to blur the words without affecting 

their location.  Based on [68] we compute the pseudo convex hull of each word using the 

HOLLOW template.  This template computes the convex hull of the objects in the image if it is 

run sufficiently long (i.e. till there are no changes on the image).  If it is stopped “some time” 

earlier, then the hull will only be pseudo convex.  The running time of the template (37τ) was 

found by experimentation and appears to be consistent across the images in our handwriting 

database.  The optimal value is slightly dependent on the overall style and size of the 

handwriting, but the histogram calculation is very robust against small errors in the convex hull 

calculation, so the overall algorithm is not affected if the writing is different. 

The horizontal histogram computed on the pseudo convex hulls is smoothed further via 

sliding-window averaging with a window size (p1) of 10 (it is effectively low pass filtered).  The 

window size was found experimentally, but as a rule of thumb, it can be said that the smaller the 

average character size of the handwriting, the smaller the needed window.  The next step of the 

algorithm is to find the local maxima of the histogram since these correspond to the location of 

the lines.  Sometimes, more than one closely spaced local maxima correspond to the same line, 

usually because the skew of a line is substantial.  To correct this we introduced a second 

parameter (p2) that specifies a threshold within which we associate all maxima with one line.  This 

parameter is se to 80% of the largest local maximum.  Finally, we drop those maxima that are 

smaller than a given percentage of the average local maxima (p3=25%).  The execution of the 

algorithm is illustrated in Figure 3.3.  By adjusting the parameters p1, p2 and p3 the sensitivity of 

the algorithm can be varied widely. 

The raw histogram The histogram after smoothing 
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Figure 3.3 The results of the line localization algorithm 

3.3.2 Correcting the Line Skew 

After we have localized the lines in a given image, it is possible to correct their skew to 

somewhat normalize the word images.  This is needed because the skewed line images introduce 

extra noise from the point of view of further processing and the word recognizer.  It is 

somewhat like histogram equalization for image processing algorithms.   

The skew correction algorithm first finds the lowest points of the pseudo convex hulls using 

the LOCAL SOUTHERN ELEMENT (LSE) detector template from the CNN Template Library 

[16].  These points follow the baseline of the lines closely, but contain some noise due to letters 

such as g, j, y, p, and q.  To eliminate this noise, the PRUNE and FIGREC templates are applied 

in succession.  The PRUNE template keeps those black pixels that have a black neighbor (in 4-

connected sense) while the FIGREC template recalls only those parts of the original LSE filtered 

image that remained after the application of PRUNE.   The last step of the algorithm uses linear 

regression with outlier rejection to fit a line to remaining black pixels, to calculate the angle of 

that line and to rotate the original image with that angle.  The results of each step of the 

algorithm are shown in Figure 3.4. 
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Figure 3.4 The line skew correction algorithm 

3.3.3 Segmentation of Lines into Words 

To aid further grammatical processing, context analysis and later reconstruction of each run 

of the algorithm, the lines are stored separately and in sequence as they appear on a page.  

Relevant information is also stored with each line, such as its original image, the de-skewed 

image etc.  The data about the constituent words is also stored along with each line. 

After the lines have been processed, the next step is to locate the words on each line.  This 

could be easily achieved with the calculation of vertical histograms and identifying the local 

minima in those histograms, but we looked for a fast analogic approach that provides almost the 

same results in this particular application.  The conceived algorithm is as follows: first, we 

compute the pseudo convex hull for the line, and then apply the VCCD template.  This template 

detects the vertically connected components in an image by shifting them downwards until they 

disappear.  The result of the template for these types of images is (since there is usually only 

vertically connected component, i.e. a word) that horizontal lines appear in the last row of the 

image corresponding to the largest horizontal extent of the word images.  This makes it possible 

to extract the word images from the line very easily.  The steps of the algorithm are illustrated in 

Figure 3.5.  One may ask, what happens, if the pseudo convex hulls of the words overlap?  This 

is not nearly as big a problem as it may first seem (in fact there are no instances of such a 

configuration in our database), but these sites can be identified because there will be two parallel 

horizontal lines where the overlap occurs. 
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Figure 3.5 Locating the words within a line. The bottom red lines mark the location of words 

 

Figure 3.6 Word and line location results for a sample page.  Red lines mark the start of 
words and green lines mark the end 

3.4 Segmentation Of Words Into Letters 

After the words have been located within the lines, all successive operations proceed at the 

word level since larger context information is only used at the linguistic post processing stage of 

recognition.  In segmentation-based systems, where the basic units of recognition are letters, it is 

crucial to segment the words into letters as accurately as possible.  Unfortunately, this is almost 

impossible to do correctly as illustrated by the Sayre paradox [56]: “To recognize a letter, one 

must know where it starts and where it ends, to isolate a letter, one must recognize it first”.  This 

problem can be circumvented by over-segmentation.  Over-segmentation means that we first try 

to find the smallest possible meaningful segments (letters, or parts of letters), which are called 
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primitive segments, and then later we try to assemble these primitive segments into letters based 

on input from the character recognizer.  Our algorithm also uses this approach, but tries its best 

to segment the words into letters as accurately as possible in order to minimize the 

computational cost associated with the assembly and re-recognition of compound segments.  

Under segmentation must also be avoided because later these errors cannot be corrected easily 

and may degrade the performance of the recognizer severely.  It is also a great problem that 

many times the word image in itself does not contain enough information to correctly segment it 

into letters as illustrated in Figure 3.7. 

 

Figure 3.7 An example for a word that cannot be correctly segmented based on the word 
image alone (the word is “Conservative”) 

3.4.1 Localization of the Upper and Lower Baselines, Skew Correction 

Vertical location of a character within a word is important information for its recognition, 

even human readers rely on it to discern letters [37].  This location is best described relative to 

the upper and lower baselines of the word. The parts of letters that descend under the lower 

baseline are called descenders while parts that ascend over the upper baseline are called 

ascenders.  Ascenders and descenders are distinguishing features of many letters such as p, q, b, l, 

j, k etc.  Encoding the location and number of descenders in the feature vectors passed to the 

character recognizer could aid in the accurate recognition of the letters.  For this to be possible 

however, the baselines of the words must be calculated.  The algorithm is somewhat similar to 

the one used to calculate the line skew, but there are important differences. 

The pseudo convex hulls are created as before, but a mask needs to be generated to 

exclude parts of the word where only erroneous elements would be located (the upper half, when 

computing the lower baseline, and the lower half for the upper baseline).  This is not needed 

when calculating the baseline for the whole line because there are enough local southern 

elements on a line (since it is much longer), that the regression fitting will still be accurate.  We 

generated this mask by letting the HOLLOW template run longer (for 58τ), running the 

FINDCENTER CNN algorithm [16] on the result, and then generating a shadow from the center 
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point using the SHADOWUP or SHADOWDOWN templates.  The result is a mask that can be 

used to specify where the following templates should be applied. 

Once this is done, the local northern elements (LNE-s) have to be calculated in addition 

to the southern elements because the upper baselines are also needed.  The LNE-s are calculated 

with the LNE template.  Linear regression line fitting with outlier rejection is used to estimate 

the baselines.  Outliers are points that are farther from the word center than a given threshold; 

this threshold can be estimated from the writing, it should be about half of the average word 

height.  After the baselines are found, the image is rotated so the lower baseline is horizontal. 

The whole process is illustrated in Figure 3.8. 
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Figure 3.8 The word baseline locator algorithm 

3.4.2 Images Aiding in Segmentation 

The letter segmentation algorithm developed by us is based on the same ideas as the 

segmentation algorithm described for touching numerals in [55].  The basic idea is that we can 

gain meaningful information about the structure of a word by skeletonizing it and its 

background, and locating the junction- and endpoints of the skeleton.  By using these special 

points, we are (mostly) able to construct the segmentation boundaries. 
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3.4.3 Skeletons of the Background 

While pondering the problem of letter segmentation, we noticed an interesting property of 

the skeletonized word image backgrounds and their correct segmentation boundaries: each 

correct boundary line should start above the foreground skeleton (i.e. the word) and end under 

it, and it may only cross the foreground skeleton once.  This is a necessary condition.  If we 

skeletonize the whole background at the same time, identifying which endpoints are above and 

below the word skeleton becomes an extra and not so trivial task.  However if we take a different 

approach, this step can be skipped. 

Our main idea was that if the foreground skeleton image is 4-connected, then the skeleton 

could be used as a barrier between the upper and lower parts of the background skeleton.  This 

can be exploited by flood filling the background from the upper and lower baselines at the same 

time.  This ensures, that if there are breaks in the word then the flood will not “overflow”.  

These floods can then be separately skeletonized, and the characteristic points of the skeleton 

identified.  Flood filling can be very efficiently accomplished with trigger waves on CNNs.  A 

thorough description of trigger waves with CNNs, their properties and some applications can be 

found in [58].  The template used for filling the background is the BPROP template and the 

filling process is shown in Figure 3.9. 

 

Figure 3.9  The background filling process using the BPROP template 

The skeletonization algorithm described in [16] is suitable for general purposes but in this 

particular application, the structure of the resulting skeleton is crucial, so we experimented with 

different ordering of the skeletonization templates.  This has a huge impact on the final skeleton, 

as shown in Figure 3.10, which shows a selection of the possible different skeleton template 

orderings. The most import criteria for the skeletonized background were: 

• the vertical skeleton branches should split as little as possible, since this makes the 

endpoint connection step (see next section) much easier 

• the endpoints of the vertical skeleton branches should be as close to each other as 

possible (for the same reason as in the previous point) 

After running tests with different orderings of the skeleton templates, we analysed the 

results and selected the ordering f) for later use. This method also generated skeletons that 

contain relatively long straight segments, which is advantageous. 



Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition 

72 

a) SKELE1-2-3-4-5-6-7-8 

  

b) SKELE8-7-6-5-4-3-2-1 

  
c) SKELE1-5-2-6-3-7-4-8 

  
d)  SKELE5-1-6-2-7-3-8-4 

  
e)  SKELE1-5-3-7, SKELE2-6-4-8, SKELE1-2-3-4-5-6-7-8 

  
f)  SKELE5-7-1-3, SKELE6-8-2-4, SKELE1-2-3-4-5-6-7-8 

  
g)  SKELE1-3-5-7, SKELE2-4-6-8, SKELE1-2-3-4-5-6-7-8 

  
h) SKLHV1-2-3-4-5-6-7-8 

  

Figure 3.10  Effect of different orderings of the skeletonization on the skeleton. The 
number sequences after the template base name represent the order of the individual templates 
used in the iterative skeletonization algorithm (these templates may be found in the Appendix) 
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3.4.3.1 Locating the Endpoints of the Background Skeleton 

The endpoints of the background skeleton must be found since they form the basis of the 

letter segmentation algorithm.  By definition, a point on an 8-connected skeleton is an endpoint 

if and only if it has exactly one neighbor.  This definition closely follows our intuitive notion of 

an endpoint except for two special cases. These two exceptions occur when there are branches 

on the skeleton that are exactly 1 pixel long (this is shown in Figure 3.11).  Even though the 

interpretation is ambiguous (they could be considered only slight curves), we will mark them as 

endpoints since we do not want to lose an endpoint of the skeleton under any circumstances. 

a) b)  

Figure 3.11 Special endpoint morphologies relevant for letter segmentation.  The grey 
pixels may be black or white. Only those morphologies are important for letter segmentation, 
where the 1 pixel branch could be a vertical endpoint (these are shown in the figure) 

To find the endpoints we first erase those points that have only 1 neighbor with the GETEP 

template, then subtract the result from the original image.  Afterwards, we find the special cases 

with the TOPEP and BOTEP templates and merge these points with the previous ones.  We use 

the pseudo convex hulls as a mask to constrain the search area near the writing, because 

skeletons sometimes have stray endpoints. 

3.4.4 Skeletons of the Foreground 

The foreground skeleton must be 4-connected for the above algorithm to work and 

skeletonizing with the SKLHV templates (applying them in ascending order) can ensure this.  

However, if the original word image was itself not 4-connected, then the resulting skeleton will 

not be 4-connected either; therefore the original image has to be preprocessed to ensure 4-

connectedness.  This can be done using the CONN4SE, CONN4SW, CONN4NE and 

CONN4NW templates that fill a given pixel according to local rules. 

3.5 Segmenting Words into Letters 

After studying the skeletonization images of handwritten words, we have found only two 

requirements that have to be filled by a correct segmentation boundary: 

• no endpoint can be part of two boundaries at the same time 

• a segmentation boundary must start at a top endpoint and end at a bottom endpoint 
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Unfortunately, these are not enough to filter and match the already identified skeleton endpoints 

so some other heuristics are needed, which are illustrated in Figure 3.12. 

     

Figure 3.12 Segmentation heuristics using skeleton endpoints.  Sample locations where 
different skeleton endpoint relationships require connection heuristics: locations 1, 3 and 4 
require distance measurement while location 4 requires further post-processing  

At location 1, the top and a bottom endpoints are located right next to each other so it is 

certainly a segment boundary, since this can only happen where the top and bottom floods have 

met because of a word break (here it signifies the start of the first letter).  Location 2 shows an 

instance where the skeleton needs post processing to unite the short branches that add only 

clutter to the problem.  We present a novel approach to solve this in the next section.  Location 

3 shows the average case where the top and bottom endpoints are located close to (within a 

specified distance d), but not right next to each other.  There is a boundary point where the 

shortest path connecting these points intersects the word skeleton.  Finally location 4 shows a 

special case that is quite common, when there is only a top endpoint with a horizontal (or near 

horizontal) line segment on the lower background skeleton. This is usually a segmentation point, 

but has to be found separately from the other cases. 

3.5.1 Post processing the Endpoints of Skeletons – Parallel Distance 

Approximation 

The objective of the algorithm is to replace the endpoints of two short branches of a 

skeleton with one endpoint located approximately halfway between the original points and on 

the same side of the word skeleton.  

This problem can be efficiently solved using trigger waves with isotropic templates.  Trigger 

waves generated by an isotropic template (CPATCH) propagate with the same speed in all 

directions, so they can be used to measure distance on and image. 

In order to measure the distance between two points, we must be able to tell whether the 
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two wave fronts met while the waves propagated for a specified time (say t).  If they have met, 

then the two points are closer than two times the distance the individual wave fronts covered.  

We can detect whether the wave fronts merged by running the inverse template (CWPATCH) for 

the same amount of time (t).  This will have the effect that in all places where the patches stayed 

convex (which is the same as saying where the circles did not merge) only the original starting 

pixels will remain, but where the wave fronts did merge, multi-pixel patches will be visible. This 

is illustrated in Figure 3.13.  We can give an upper estimate of the distance based on the running 

time of the templates.  

This algorithm has a very nice property from a performance point of view: the execution 

time is only dependent on the distance one wants to measure and not on the number of points in 

the image.  The absolute or relative position of the points also does not affect the execution 

time.  This is in stark contrast to algorithms possible on a serial digital processor, where the point 

relationships must be evaluated one pair at a time, resulting in an algorithm whose runtime is 

Ο(n2), where n is the number of points in the image.  Notice that the digital algorithm is not 

dependent on the distance of the points.  In a situation where the question is what the distances 

between points (or certain points) are, the digital algorithm might be more appropriate, since the 

distances are explicitly calculated.  In the current application, however, only points within an a 

priori given distance must be detected, and here the wave-based approach is faster. 

 

Figure 3.13  Distance approximation with trigger waves. The black points are the starting 
points; the red circles show the maximal extent of the wave fronts (after CPATCH) and the green 
patches the result after applying the CWPATCH template 

The “skeleton short branch merger” algorithm proceeds as follows (its flow chart is shown on 

Figure 3.14): 

1. Initialize a white image with the branch endpoints as the only black pixels. 

2. Run the template CPATCH for xτ.  This generates black circles with a radius r around 

the initial points.  Where the starting points were close to each other, the circles will 

merge. 

3. Run the inverse template CWPATCH for xτ.  This shrinks the circles back to a point 

everywhere where the circles did not merge (they stayed convex), and to more than one 
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pixel where they did. 

4. Remove single pixels from the image with the FIGEXT template. 

5. Find the center pixels of the remaining patches with the FINDCENTER CNN algorithm.  

Skeleton Short Branch Merger

White image with branch endpoints as the only black pixels

The remaining points are the merged endpoints

Run CPatch for φφφφ

Run CWPatch for φφφφ

Run FigExt

FindCenter

 

Figure 3.14 Flowchart of the skeleton short branch merger algorithm 

3.5.2 The Letter Segmentation Algorithm 

1. Find the skeleton endpoints 

2. Merge the endpoints on short branches, separately for the top half of the background 

skeleton and for the bottom half (post-processing for situations similar to location 2 in 

Figure 3.12)  

3. Find the word breaks, i.e. those locations, where the top endpoints and bottom 

endpoints are right next to each other (location 1 in Figure 3.12). Store these as 

segmentation boundaries and remove them from further processing. 

4. Find those skeleton endpoint pairs where one is on the top skeleton, the other on the 

bottom skeleton and they are closer to each other than some predefined distance d 

(location 3).  This can accomplished by the algorithm described in 3.5.1, but run 

FINDCENTER on the intersection of the foreground skeleton and the patches 

remaining after CWPATCH.  Add the center points to the segmentation boundaries and 

remove them from further processing. 
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5. From the remaining top endpoints, generate vertical lines that are at most n pixels long 

using the DPROP template.  If these reach the bottom skeleton and the lines intersect 

the foreground skeleton, then add the lowest intersection points to the segment 

boundaries. 

Letter segmentation

Word image with baseline data

Skeletonize the top half

of the background

(8-connected)

Skeletonize the bottom half

of the background

(8-connected)

Skeletonize the

foreground
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Detect background skeleton endpoints

Find word breaks
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endpoints
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Figure 3.15 Flowchart of the letter segmentation algorithm 

3.6 Discussion of the Results 

We have run these line, word and letter segmentation algorithms on 10 pages of the 

database.  The line segmentation algorithm found every line on every page correctly.  Statistics 

for the word segmentation algorithm are shown in Figure 3.16. 

 

Total number of lines processed:  169 

Correctly segmented lines:  146 (86.39 %) 

Incorrectly segmented lines: 

 Lines w. more words than expected: 

 Lines w. fewer words than expected: 

 23 (13.61 %) 

 12 (7.1 %) 

 11 (6.51 %) 

Figure 3.16  Word segmentation results 

These results are quite good, since 87% of the lines were segmented correctly into words, 
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and out of the erroneous 23 there were only 11 lines with less words than expected.  This is 

important, because merging words afterwards is easier than splitting up words.  This means, that 

93.49% of the lines were either correctly segmented, or can be easily corrected. 

Assessing the results of the letter segmentation algorithm is not as straight forward as that 

of the other two.  The problem is that there are many equivalent segmentation boundaries, 

which cannot be identified easily by a computer program; one has to inspect the word images 

manually, one by one, which requires an enormous amount of time and is error prone.  Using a 

statistical approach, we can evaluate the algorithm differently.  Since the goal was over-

segmentation, we can assess the algorithm by comparing the number of segmentation boundaries 

with the number of letters specified in the segmentation file, which will give us a rough estimate 

of the effectiveness of the algorithm.  These statistics are shown in Figure 3.17. 

Total number of words found:  1201 

Total correctly (over)segmented words:  890 (74.10 %) 

Total incorrectly (under)segmented words:  311 (25.90 %) 

Figure 3.17 Letter segmentation results for 7 pages 

We also inspected the segmentation of random words visually to further grade the 

algorithm.  Results for a few words can be seen in Figure 3.18.  Note, that there are a couple of 

problem sites (encircled in blue), some of which are difficult to resolve even for a human reader.  

It is also evident why automatic evaluation of the segment boundaries is very hard. 

 

“real”  

“judge” 

 

“difficult” 

 

“about” 

 

“executive”  

“segregation” 
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Figure 3.18 Letter segmentation results for a few sample words.  The segment boundaries 
have been manually enlarged to be clearly visible.  The circles indicate problem spots 

3.7 Conclusions 

We have demonstrated that analogic algorithms can be utilized effectively in the 

preprocessing and segmentation problems of off-line handwriting recognition.  By avoiding 

iterative methods and using propagating wave-based approaches where possible, the inherent 

parallel processing capabilities of CNN arrays can be greatly exploited.   

It is also evident from the results of the letter segmentation algorithms, that a linear “feed-

forward” approach (segmentation � recognition � preprocessing) may not be the best and 

most robust way to tackle the problem, if additional linguistic information is available.  Without 

linguistic resources it is very hard to handle ambiguities in the handwriting styles, but it is true 

the better the letter level segmentation of a word, the easier it is to recognize it even without 

linguistic input. 

Studies conducted on human subjects indicate that readers do not read a word linearly from 

left to right, letter by letter, rather they try to identify the most distinctive letters first, such as the 

ones that are at the beginning and the end of the word [37], and those with some prominent 

features.  If this limited information is sufficient to recognize the word with the help of context 

information, they move on, otherwise they attempt to recognize more letters from the word.  

Based on this knowledge and the results of the research described in this thesis, my colleague, 

Kristóf Karacs started working on an offline handwriting recognition system that would utilize 

an experimental framework, which would enable us to imitate this recognition process.  It is 

evident that the use of a lexicon based linguistic system - which is able to generate all 

grammatically correct forms of the words of a language – from the earliest stages of processing 

can provide additional information to support the segmentation and recognition phase.  This 

information could enable the dynamic reduction of lexicon size, selecting only candidate words 

that fit a given feature set.  Since segmentation is so tightly coupled to recognition, an approach 

that utilizes recognition information during segmentation is expected to work better than a feed-

forward mechanism [75].  The structure of the described handwriting recognition system is 

shown on Figure 3.19. 
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Figure 3.19 Block diagram of the proposed handwriting recognition system.  The 
numbered lines represent alternative paths to recognition.  Path 1 shows the case when the 
lexicon cannot help in reducing the number of candidate words and the word must be further 
segmented and recognized.  Path 2 illustrates the case when the lexicon lookup narrows down 
the number of candidate words so effectively that recognition is “trivial”. 

Human subjects rely heavily on so-called perceptual features such as ascenders, descenders, 

t-crossings, loops and word length to identify words and letters when reading.  The use of these 

features as the basis of recognition is also worth considering, since the detection of these features 

lends itself well to CNN algorithms. 

Finally, it is worth noting that the same principle – using linguistics from the early stages of 

recognition in a constructive way – would probably be equally promising in speech recognition, 

where the problem is essentially the same, but instead of letters, the words and phonemes must 

be correctly segmented and recognized. 
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4444 SummarySummarySummarySummary    

In the dissertation, I have described two applications of the CNN-UM based wave 

computing combined with conventional digital algorithms.  These applications tackle real world 

problems for which no adequate solutions have been presented in the literature. 

I introduced a multitarget tracking system, which is capable of tracking targets moving at 

high speed in a plane, and generating control signals to drive actuation.  The CNN-based image 

processing front-end of the MTT system is based on principles gleamed from the modeling of 

mammalian retinal processing. The input image is processed in parallel channels that enhance 

different aspects of the image, and these parallel channels are later combined into a single – and 

very sparse – input representation, which is the basis of all further processing.  The targets are 

characterized by numeric features extracted (measured) from the input, and these features may 

be used to filter out unwanted ones.  Several different (and very efficient) measurement-to-track 

data association routines were implemented along with fixed gain state estimation filters.  The 

output of the tracking algorithm was used to tune the internal parameters of the image 

processing front-end to adapt to changes in the environment and hardware instability.  I also 

presented a demo application of the algorithm where the tracking results are used to drive a laser 

scanner device to tag certain tracked targets. 

In the 3rd chapter, I presented algorithms to handle the tasks of preprocessing handwriting 

for recognition.  These algorithms segment a handwritten page into lines, the lines into words, 

and the words into letters solely based on the image of the handwriting.  During the course of 

this research, I devised an algorithm that is able to detect points in an image that are closer than 

a given distance.  The advantage of this algorithm compared to previous approaches is that it is 

parallel so the execution time is independent of the number of points and their location in the 
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image.  Based on the results of the segmentation algorithms and discussions with my colleagues 

we decided that much better segmentation results – and hence recognition accuracy – can only 

be obtained if available linguistic knowledge is exploited in a constructive way during the 

segmentation process, much like the way humans approach the same problem.  

4.1 Methods of Investigation 

During my research, I relied on the tools of many disciplines.  In the design of the tracking 

algorithms I applied algorithms used in radar tracking and the results of studies that describe 

their accuracy and efficiency.  I analyzed the efficiency of algorithms with methods from 

algorithm theory to be able to compare the proposed algorithms with those previously published 

in the literature.  For the CNN-UM algorithms, I utilized the template classes and the accrued 

experience with them previously published in the literature.  It was an important consideration to 

choose templates that could be executed reliably on the CNN-UM chips available in our 

laboratory ensuring the immediate practical use of the algorithms.  In image processing 

algorithms, I relied on the results of binary mathematical morphology and their CNN-UM 

implementations. 

In general, an important aspect of my algorithms is that for maximum speed and efficiency, 

they utilize CNN and classical digital solutions executed on their respective platforms.  I tested 

the algorithm on PCs with Intel x86 architecture processors using the Matlab software suite 

augmented with the MatCNN simulator and executed them on the ACE-BOX and Bi-i systems.  

Both systems contain mixed-mode (analog-digital) CNN-UM chips; the former contains the 

Ace4k with 64x64 resolution, the latter the Ace16k with 128x128.  I also actively participated in 

the design and development of the development environments of these systems.  

4.2 New Scientific Results 

 

1. Thesis: Adaptive, multitarget tracking algorithm and system 

An important subtask in video flow processing is the tracking of targets moving at arbitrary 

speeds with high precision and reliability.  The challenges in these applications are the 

filtering of the objects, the modeling of their motion, and – especially – the tuning of the 

algorithm parameters during execution because of change environmental conditions.  I 

created an algorithm to solve these problems, which utilizes CNN-UM processors to filter 

efficiently out the objects in the images and allows the easy adjustment of its parameters in 

order to generate consistent output.  I combined this algorithm with one of the best so-called 
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data association algorithms described in the literature and created a complete system that is 

able to track multiple objects in real-time. Publications: [1],[10],[11],[15] 

 

1.1 I developed an algorithm, which is able to efficiently track multiple objects in a 

video flow and extract and classify their kinematic properties 

The algorithm – relying on ideas from the mammalian retina – extracts the important 

image features relevant to the task in several parallel channels, and combines them 

through a special method developed by me. The results are then further filtered, and 

using optimal data association methods the kinematic properties extracted, once the 

objects have been located on the filtered image.  The method also enables the user to 

filter the tracked objects based on morphologic or kinematic properties. 

 

1.2 I demonstrated that using the above algorithm, object saliency is better on the 

filtered image in an average sense than on the individual channels.  

I combine the output of the individual filter channels using a custom method (which can 

be tuned thru several parameters). I showed that the data association algorithms provide 

better results in an average sense (when no a priori assumptions can be used) if executed 

on the combined filtered image than if run on the individual channels. 

 

1.3 I demonstrated that by feeding back the results of the tracking to the 

multichannel front-end, the accuracy of the tracking could be enhanced. 

I used statistical and qualitative analysis on the tracking results to compute measures to 

judge the accuracy of the tracking. I developed an algorithm to adjust the parameters of 

the multichannel front-end based on these measures to increase the tracking accuracy. 

  

2. Analogic segmentation algorithms for offline handwriting recognition 

Segmentation problems are among the most difficult in offline handwriting recognition: 

segmenting pages, lines and words before the commencement of the actual recognition.  The 

more accurate the segmentation, the easier and more accurate the recognition will be.  I 

developed analogic algorithms that are able to efficiently locate and segment an image of a 

handwritten page into lines, the lines into words and the words into letters.  The algorithms 

exploit the wave computing capabilities of the CNN-UM architecture. Publications: [3], [14] 
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2.1 I developed methods to segment handwritten images into lines, and lines into 

words. 

I created an efficient algorithm to segment handwritten pages into lines, even if the lines 

are somewhat skewed or non-straight. I also showed a method to reliably segment lines 

into words for further processing. 

 

2.2 I created a new algorithm to segment handwritten words into letters and showed 

a new wave computing-based solution to find pairs of points in parallel, which are 

closer to each other than a given distance. 

I developed a word segmentation algorithm, which does not rely on semantic 

information, thus it can be used for unfamiliar languages and texts.  I utilized a wave 

computing based method to detect points, which are within a given distance from each 

other. An important advantage of this algorithm compared to conventional methods is 

that the execution time is independent of the number of points and their location. 

4.3 Application Areas of the Results 

All of the algorithms described in the dissertation present solutions to real-world problems. 

I showed that execution speed and accuracy of the multitarget tracking algorithm (1st thesis) 

enables its use in control applications. To demonstrate this, with the help of my colleagues, I 

built a laser targeting-tracking system, which is able to track and target with a laser multiple 

objects moving at high speed in real time. 

The multitarget tracking algorithm is also used in a software system whose task is the 

surveillance and monitoring of indoor and outdoor industrial areas.  There is great demand today 

for complex surveillance systems, which take over the boring and error-prone tasks from human 

personnel, but are able to trigger alarms, when needed.  The use of the algorithm in this setting 

has many advantages: 

• It enables the triggering of alarms based on complex motion patterns (motion 

trajectory, direction and speed, the number of moving objects, etc.) 

• Kinematic properties may be used during object identification and classification, 

which –  in many cases – simplifies the task. 

• The object tracking system supplies object location and speed prediction 

information, which may be used to optimize processing at the later stages of the 

surveillance algorithm 

I also designed the algorithms for the preprocessing tasks of offline handwriting recognition 
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(2nd thesis) with ease of use in mind.  This means, that each of the templates is executable on one 

of the commercially available VLSI CNN-UM chips, and the (possibly) low resolution of the 

processors is not a barrier to application (128x128 in the case of Ace16k).  I collaborated closely 

with my colleagues who are working on the recognition of handwritten characters and words so 

that it would be possible to interface the systems easily. 
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6666 Appendix: Appendix: Appendix: Appendix: CNN CNN CNN CNN Templates, Operators and Templates, Operators and Templates, Operators and Templates, Operators and 

SubroutinesSubroutinesSubroutinesSubroutines    

This appendix lists the templates, basic operators and subroutines used in the dissertation.  

Where the Ace4k implementations are identified as ‘not stable’, it means that the operation of 

that particular function could not be implemented in a way that could be run reliably and 

repeatedly across different Ace4k chips.  The operations themselves are possible and stable in 

principle, but not on the Ace4k. 

6.1 Basic Operators 

Threshold – thresholds a grayscale input image at a given grayscale level. The output is a 

binary image defined as follows: 

1
( , )

0

ij

ij

if
Thr

otherwise

ϑ
ϑ

Φ ≥
Φ =


 

CNN implementation: by using the THRESH template. 

Ace4k, Ace16k implementation: available (not stable). 

Erode – calculates erosion of a binary input image with a specified structuring element B. 

The set theoretical definition of the erosion based on Minkowski subtraction is as follows (- 

denotes translation): 

( , ) { : }B in B in B inE ro d e B B b b BΦ = Φ ⊗ = ∩ Φ − ∈  

CNN implementation: by using the EROSION template (feed-forward single-step erosion using 

B-templates) or PROPE (feedback continuous erosion by a trigger-wave using A templates). 

Ace4k, Ace16k implementation: iterated single step morphology - available (stable), continuous 

trigger-wave computing – available (not stable). 
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Dilate - calculates dilation of a binary input image with a specified structuring element B. 

The set theoretical definition of the dilation based on Minkowski addition is as follows (+ 

denotes translation): 

( , ) { : }B in B in B inD ila te B B b b BΦ = Φ ⊕ = ∪ Φ + ∈  

CNN implementation: by using the DILATION template (feed-forward single-step dilation 

using B-templates) or PROPD (feedback continuous dilation by a trigger-wave using A 

templates). 

Ace4k, Ace16k implementation: iterated single step morphology - available (stable), continuous 

trigger-wave computing – available (not stable). 

Reconstruct * - calculates conditional (specified by a binary mask M) dilation of a binary 

input image with a specified structuring element B. The set theoretical definition of the 

reconstruction based on Minkowski addition is as follows (+ denotes translation): 

( , , ) ( ) { ( ) : }
B inB in B in B in M B in B inR e c B M B B Mφ φΦ = Φ + = ∪ + ∩ ∈ Φ  

CNN implementation: by using the RECONSTR template (single-step conditional dilation) or 

PROPR (conditional continuous dilation by a trigger-wave). 

Ace4k, Ace16k implementation: iterated conditional single step morphology - available (stable), 

continuous conditional trigger-wave computing – available (not stable). 

Sobel – enhances the edges on a grayscale input by performing a convolution with a nearest 

neighbor directional Sobel-type operators (this assumes an 8-connected image): 
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Out SH SV

S

B B B B

B B

B B

σ
σ

Φ = Φ
=

− − − − −       
       = = = − = −
       − − − − −       

Φ = Φ + Φ

Φ = Φ + Φ
Φ = Φ + Φ

 

CNN implementation: by using the different variants of the SOBEL template. 

Ace4k, Ace16k implementation: available (stable). 

Laplace – enhances the edges on a grayscale input by performing a convolution with the 

nearest neighbor discrete Laplace operator (the image can be either 4-connected or 8-connected): 

                                                 
* This operator is also called “Recall” in  the CNN literature 
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(4) (8)

0

0 0

0

( , )

0 1 0 1 1 1
1 4 1 , 1 8 1
0 1 0 1 1 1

1

*

Out Gray

Gray

Out

L

B B

for i to

B

end

σ

σ

Φ = Φ

   
   = − = −
   
   

Φ = Φ
=

Φ = Φ

Φ = Φ

 

CNN implementation: by using the different variants of the LAPLACE template. 

Ace4k, Ace16k implementation: available (stable). 

Gauss – calculates a low-pass filtered version of a grayscale image by performing a 

convolution with the nearest neighbor discrete Gaussian operator (the image can be either 4-

connected or 8-connected): 

(4) (8)

0

0 0

0

( , )

0 1 0 1 2 11 1
1 0 1 , 2 0 2

4 120 1 0 1 2 1

1

*

Out Gray

Gray

Out

G

B B

for i to

B

end

σ

σ

Φ = Φ

   
   = × =
   
   

Φ = Φ
=

Φ = Φ

Φ = Φ

 

CNN implementation: by using the GAUSS template. 

Ace4k, Ace16k implementation: available (stable). 

Diffuse – calculates a linear low-pass filtered version of a grayscale input image. The 

formulation of the operation is as follows (* denotes convolution): 

( , ) * ( )D iffu s Gσ σΦ = Φ  

CNN implementation: the above equation describes a linear convolution by a Gaussian kernel. 

Under fairly mild conditions at some time t this corresponds to the solution of a diffusion type 

partial differential equation. After spatial discretization this can be mapped to a CNN structure 

programmed by template DIFFUS. In this form the transient length is explicitly related to G (t ≈ 

√σ1). 

Ace4k implementation: iterated convolution - available (stable), continuous diffusion – 

available (not stable). 

Ace16k implementation:  continuous diffusion using the chip’s resistive grid capability 

CDiffuse – calculates a linear low-pass filtered version of a grayscale input image. The 

formulation of the operation is as follows (* denotes convolution): 
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1 2 1 2 1 1 1 2 2 2( , , , , ) * ( ) (1 ) * ( )C D iffu s G Gα σ σ α σ α σΦ Φ = Φ + − Φ  

CNN implementation: the above equation describes a homotopy in between two different 

linear convolutions by a Gaussian kernel. Under fairly mild conditions at some time t this 

corresponds to the solution of a constrained diffusion type partial differential equation. After 

spatial discretization this can be mapped to a CNN structure programmed by template CDIFFUS. 

In this form the B term directly approximates G2, while the transient length is explicitly related to 

G1 (t ≈ √σ1). 

Ace4k implementation: iterated convolution - available (stable), continuous diffusion – 

available (not stable). 

Ace16k implementation:  continuous diffusion using the chip’s resistive grid capability and on 

chip image arithmetic 

6.2 Subroutines 

Open – calculates N - step opening on a binary input image: 

( )

0

0 0

0 0

( )

0

  ( , , )

  

  1

  ( , )

  1

  ( , )

  

n

Open Bin n

Bin

n

n

n

Open

F Open F B p

F F

for i to p

F Erode F B

end

for i to p

F Dilate F B

end

F F

=
=

=
=

=
=

=

 

Close – calculates N - step closing on a binary input image: 

( )

0

0 0

0 0

( )

0

  ( , , )

  

  1

  ( , )

  1

  ( , )

  

n

Close Bin n

Bin

n

n

n

Close

Close B p

for i to p

Dilate B

end

for i to p

Erode B

end

Φ = Φ
Φ = Φ

=
Φ = Φ

=
Φ = Φ

Φ = Φ
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6.3 Linear, Isotropic CNN Templates 

2 1 2 2 1 2

1 0 1 1 0 1

2 1 2 2 1 2

, ,

a a a b b b

A a a a B b b b z

a a a b b b

   
   = =   
      

 

 

Template Feedback (A) Control (B) Threshold BCond 

 a0 a1 a2 b0 b1 b2 z Bc 

HOLE  3 1 0 4 0 0 -1 -1 
FIGREC 4 0.5 0.5 4 0 0 3 -1 
FIGEXT 1 0 0 8 1 1 -1 -1 

PRUNE 3 0.5 0 0 0 0 -1.5 0 

BPROP  3 0.25 0.25 0 0 0 3.75 -1 

WPROP  3 0.25 0.25 0 0 0 -3.75 1 

CPATCH 3 0.25 0.2 0 0 0 3.65 -1 

CWPATCH 3 0.25 0.2 0 0 0 -3.65 -1 

HOLLOW  3 0.25 0.25 0 0 0 2.25 -1 

GETEP 3 0.25 0.25 0 0 0 -1.25 -1 

THRESH 2 0 0 0 0 0 -0.5 X 

EROSION4 0 0 0 1 1 0 -4 1 

EROSION8 0 0 0 1 1 1 8 1 

DILATION4 0 0 0 1 1 0 4 -1 

DILATION8 0 0 0 1 1 1 8 -1 

RECONSTR4+ 0 0 0 1 1 0 4 -1 

RECONSTR8+ 0 0 0 1 1 1 8 -1 

GAUSS4 0 0 0 0 1/4 0 0 ZF 

GAUSS8 0 0 0 0 2/12 1/12 0 ZF 

LAPLACE4 0 0 0 -1 1/4 0 0 ZF 

LAPLACE8 0 0 0 -1 1/8 1/8 0 ZF 

SOBEL* 0 0 0 0 * * 0 ZF 

PROPE 3 0.25 0.25 0 0 0 -3.75 1 

PROPD 3 0.25 0.25 0 0 0 3.75 -1 

PROPR 2 0.25 0.25 2 0 0 0.75 -1 

DIFFUS 0 0.15 0.1 0 0 0 0 ZF 

CDIFFUS 0 2/24 1/24 0 2/12 1/24 0 ZF 

Figure 6.1 Table of the linear isotropic CNN templates used by the algorithms referred to 
in the paper 

Remarks:  
 tF >= 5τ : the transient length of a non-coupled CNN operation 

 + : this solution is a conditional iterative dilation 

* : see the possible non-isotropic B operators in basic operator description 
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6.4 Linear, Non-Isotropic Templates  

DPROP: 

0 1.75 0

0 3 0 , 0 , 3.75

0 0 0

A B z

 
 = = = 
  

 

LSE: 

0 0 0 0 0 0

0 1 0 , 0 1 0 , 3

0 0 0 1 1 1

A B z

   
   = = = −   
   − − −   

 

LNE:  Same as LSE, but the B matrix must be rotated around the center element by 180° 

VCCD: 

0 1 0 0 0 0

0 2 0 , 0 0 0 , 0

0 1 0 0 0 0

A B z

   
   = = =   
   −   

 

CONN4SE: 

0 0 0 0 0 0

0 3 0 , 0 1 1 , 3

0 0 0 0 1 1

A B z

   
   = = = −   
   − −   

 

CONN4SW, CONN4NW, CONN4NE:  Same as CONN4SW, but the B matrix must be 

rotated around the center element by 90°, 180° and 270° 

TOPEP:  

0 0 0 0 0 0

0 1 0 , 1 1 1 , 5.5

0 0 0 1 1 1

A B z

   
   = = − − = −   
   − − −   

 

BOTEP:  

0 0 0 1 1 1

0 1 0 , 1 1 1 , 5.5

0 0 0 0 0 0

A B z

− − −   
   = = − − = −   
      

 

SKELE1: 

0 0 0 1 1 0

0 1 0 , 1 7 1 , 3

0 0 0 0 1 0

A B z

   
   = = − = −   
   −   

 

SKELE2: 
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0 0 0 1 1 1

0 1 0 , 0 7 0 , 3.4

0 0 0 0.5 1 0.5

A B z

   
   = = = −   
   − − −   

 

SKELE3: 

0 0 0 0 1 1

0 1 0 , 1 7 1 , 3

0 0 0 0 1 0

A B z

   
   = = − = −   
   −   

 

SKELE4: 

0 0 0 0.5 0 1

0 1 0 , 1 7 1 , 3.4

0 0 0 0.5 0 1

A B z

−   
   = = − = −   
   −   

 

SKELE5: 

0 0 0 0 1 0

0 1 0 , 1 7 1 , 3

0 0 0 0 1 1

A B z

−   
   = = − = −   
      

 

SKELE6: 

0 0 0 0.5 1 0.5

0 1 0 , 0 7 0 , 3.4

0 0 0 1 1 1

A B z

− − −   
   = = = −   
      

 

SKELE7: 

0 0 0 0 1 0

0 1 0 , 1 7 1 , 3

0 0 0 1 1 0

A B z

−   
   = = − = −   
      

 

SKELE8: 

0 0 0 1 0 0.5

0 1 0 , 1 7 1 , 3.4

0 0 0 1 0 0.5

A B z

−   
   = = − = −   
   −   

 

SKLHV1: 

0 0 0 1 1 0

0 1 0 , 1 7 1 , 2

0 0 0 0 1 1

A B z

− −   
   = = − = −   
      

 

SKLHV2 … SKLHV8:  Same as SklHV1, but the B matrix must be rotated around the 

center element one by one 


