

AppliedAppliedAppliedApplied HighHighHighHigh----Speed Analogic AlgorithmsSpeed Analogic AlgorithmsSpeed Analogic AlgorithmsSpeed Analogic Algorithms for Multitarget for Multitarget for Multitarget for Multitarget

Tracking and Offline HandwTracking and Offline HandwTracking and Offline HandwTracking and Offline Handwriting Segmentationriting Segmentationriting Segmentationriting Segmentation

Ph.D. dissertation

Gergely Tímár

Analogical and Neural Computing Laboratory

Computer and Automation Institute

Hungarian Academy of Sciences

Scientific Adviser:

Dr. Csaba Rekeczky, Ph. D

Budapest, 2006

2

“We are at the very beginning of time for the human race. It is not unreasonable that we grapple

with problems. But there are tens of thousands of years in the future. Our responsibility is to do

what we can, learn what we can, improve the solutions, and pass them on.”

Richard Feynman

AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements

I would like thank prof. Tamás Roska for his guidance, help and support throughout my

research and daily work. I am also grateful to Dr. Csaba Rekeczky for introducing me to the world

of CNNs, for the many thoughtful discussions, the many ideas that grew into some of the

algorithms in this dissertation and the adventurous trips. To Dr. Dávid Bálya for his throrough

and constructive comments on a prior version of the manuscript, and together with György Cserey

their thought provoking and entertaining discussions could bridge multiple time zones and

continents. To Dr. István Szatmári for his insights and practical advice and to dr. Viktor Gál for

his help with biology and his offbeat jokes, which cracked me up when there was the greatest

need for it.

I would also like to thank my family: my parents, who encouraged me to enter graduate

school, and supported me throughout the years and Orsi, my sister, who was always there for me,

when I needed it, and Tamás Deli who helped with the proofreading of the manuscript and

provided valuable comments.

In addition, I would like to thank my colleagues, with whom I discussed ideas, questions and

worked together on different projects: Dr. Ákos Zarándy, Dr. Péter Szolgay, Dr. Tamás Szirányi,

Viktor Binzberger, István Horváth, Tibor Gyimesi, Dr. Levente Török, Kristóf Karacs, Dr. László Kék, Dr.

Péter Földesy, Dr. László Orzó, Zoltán Szlávik, Péter Jónás.

A heartfelt “Thank You” goes out to Katalin Keserű and Gabriella Kék for their kind help with

the intricacies of the bureaucracy.

Finally, I am sorry if I inadvertently omitted somebody. It was not intentional.

7

Table of Contents

Acknowledgements... 5

1 Introduction.. 11

1.1 The CNN Model... 13

1.1.1 State equation of a single layer CNN with first order cell model 14

1.2 The Wave Computing Model ... 16

1.3 The CNN Universal Machine (CNN-UM)... 17

1.4 CNN-UM Implementations, Utilized Hardware ... 19

1.5 Application Examples .. 22

2 Multitarget Tracking Algorithm for Video Flows... 25

2.1 Block-level overview of the MTT algorithm .. 26

2.2 The CNN-UM algorithms... 27

2.2.1 Enhancement Methods and Spatio-Temporal Channel Processing 27

2.2.2 Remarks on the Ace4k and Ace16k Chip Implementation of the Multi-channel

CNN Algorithms ... 31

2.2.3 Channel Interaction and Detection Strategies ... 32

2.2.4 Prediction Methods.. 33

2.2.5 Feature Extraction and Target Filtering ... 34

2.2.6 The Full Multichannel Algorithm.. 35

2.3 The DSP-based MTT Algorithms.. 37

2.3.1 Data Association .. 37

2.3.2 2-D Assignment Algorithms... 39

2.3.2.1 The Utilized Distance Measures ... 39

2.3.3 Track Maintenance... 40

2.3.4 State Estimation ... 41

2.3.4.1 Fixed-gain State Estimation Filters (α−β and α−β −γ Filters) 41

2.3.4.2 Multiple Model Filter with Fixed Multiple Models .. 43

2.4 Automatic Parameter Tuning.. 46

2.4.1 Response to Lighting Changes... 46

2.4.2 Response to Target Motion Changes .. 46

2.4.3 Response to Channel Output Corruption .. 48

2.5 Experiments and Results ... 49

8

2.5.1 Algorithm Accuracy Measurements .. 50

2.5.2 Algorithm Performance Measurements.. 54

2.6 Discussion.. 55

2.7 Case Study: The Multitarget Framework in a Real-time Control Environment............ 57

3 Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

 61

3.1 The Basic Structure of an Offline Handwriting Recognition System............................. 62

3.2 Description of the Test Handwriting Database ... 64

3.3 The Preprocessing Tasks And Their Solutions .. 64

3.3.1 Locating The Lines .. 64

3.3.2 Correcting the Line Skew.. 66

3.3.3 Segmentation of Lines into Words.. 67

3.4 Segmentation Of Words Into Letters .. 68

3.4.1 Localization of the Upper and Lower Baselines, Skew Correction 69

3.4.2 Images Aiding in Segmentation ... 70

3.4.3 Skeletons of the Background.. 71

3.4.3.1 Locating the Endpoints of the Background Skeleton ... 73

3.4.4 Skeletons of the Foreground .. 73

3.5 Segmenting Words into Letters .. 73

3.5.1 Post processing the Endpoints of Skeletons – Parallel Distance Approximation.... 74

3.5.2 The Letter Segmentation Algorithm ... 76

3.6 Discussion of the Results .. 77

3.7 Conclusions ... 79

4 Summary ... 81

4.1 Methods of Investigation... 82

4.2 New Scientific Results.. 82

4.3 Application Areas of the Results .. 84

5 Bibliography.. 87

5.1 Publications Related to CNNs and CNN Technology ... 87

5.2 Publications Related to Multitarget Tracking ... 88

5.3 Publications Related to Offline Handwriting Recognition... 89

5.4 The Author’s Publications... 92

5.4.1 Journal Papers... 92

5.4.2 International Conference Papers ... 93

9

6 Appendix: CNN Templates, Operators and Subroutines.. 95

6.1 Basic Operators... 95

6.2 Subroutines .. 98

6.3 Linear, Isotropic CNN Templates ... 99

6.4 Linear, Non-Isotropic Templates... 100

11

1111 IntroductionIntroductionIntroductionIntroduction

When I started working in the research group at the Analogic and Neural Computing

Laboratory, one could literally feel an air of excitement lingering in the offices. A new chip was

in the final stages of the design process and was to be sent out to the foundry for fabrication.

This new chip was one of the crown jewels of mixed-signal VLSI hardware and contained a

relatively new type of processor, called a Cellular Neural Network Universal Machine (CNN-

UM). The new chip was christened Ace16k, and is one of the processors used in implementing

and testing most algorithms of this dissertation.

CNNs were first described by prof. L. Chua and L. Yang [1] and then further developed

into universal machines (in the Turing sense) with prof. Tamás Roska [2]-[5]. The new

processing paradigm promised breakthrough solutions to previously untractable problems, and

the race was on to find application areas where the CNN-UM chips would really excel. During

the last ten years, more and more scientists in the research community have started to use CNNs

and especially CNN-UMs to solve diverse problems and to test the applicability of the paradigm

in varied problem domains. The formal model has become ever more precise and rich (Cellular

Wave Computer) while the physical implementations are becoming more advanced (optical,

emulated digital, FPGA-based etc.), and the “Bi-i” computer which combines a classic digital

processor and sensor with a CNN-UM has also been introduced. VLSI silicon-based

implementations of the CNN-UM paradigm have advanced as well, from the initial 20x22

resolution to 128x128 and the soon to be available 176x144. Some versions are also capable of

executing multilayer CNNs.

It was clear to me at the start of my research, that the discipline and the available tools have

reached a maturity level where new problems may be tackled that were thought to be impossible,

Introduction

12

or impractical to attempt before. Many papers were written to solve important problems related

to image processing using CNN-UMs (and their implementations), but there have been very few

attempts to use CNN-UMs in complex systems in any application area. I felt that solutions,

which embrace and build on the different virtues of CNN-based and classical DSP-based

algorithms, could allow the creation of better and more efficient algorithms than what would be

possible with either architecture alone.

 I started my research work with the goal of designing two systems: one used for tracking

multiple targets in real time using optical input, the other for preprocessing the handwritten page

images for offline handwriting recognition. Both tasks seem comparatively easy to a human

being, but previous algorithms where only able to show modest results.

In multitarget tracking the task is to track many rapidly moving objects in a plane, so that

the system is able to determine the kinematic properties of the individual targets (position, speed

and acceleration) while robustly handling errors from occlusions and illumination changes that

may occur. During the development of my algorithm, I relied heavily on our group’s

accumulated knowledge gained from research into modeling the mammalian retina. In essence,

in the retina, the input image is filtered and transformed in various different ways and the image

streams are processed in parallel, and only very sparse and compactly coded information is sent

toward the higher areas of the brain involved in vision. I use this principle in the algorithm

described in Chapter 2 of the dissertation to ensure that the measurements from a given input

image are the best possible, increasing the accuracy of the whole tracking system. The

application of the same principle also made it possible for the system to adapt to changes in the

environment while running, ensuring robust tracking.

Offline handwriting recognition is the recognition of a handwritten text after its writing was

completed (usually on paper, but other forms of media may also be used). In contrast to online

handwriting recognition, where dynamic information about the writing is available (frequently

used in PDAs, for example), offline handwriting recognition is more difficult, because no temporal

data on the dynamics of the writing is available, which usually increases the ambiguity of the

written text. The successful commercial systems in use, which rely on offline handwriting

recognition, are systems that operate in a constrained environment, where the range of possible

handwritten input strings is limited and may be easily enumerated, such as the addressing on

envelopes, or the writing on prescriptions, for example. Unconstrained offline handwriting

recognition is still an unsolved problem, largely because the shortcuts that are possible due to the

limited number of input strings are not applicable. I designed algorithms that would perform the

tasks at the image preprocessing stage of an offline handwriting recognition system, which

Introduction

13

consists of the segmentation of an image into handwritten lines, the segmentation of the lines

into words, and the words into letters. In order to improve their speed, the utilized CNN

algorithms use dynamic, wave front propagation based methods instead of relying on

morphologic operators embedded into iterative algorithms (whenever possible).

1.1 The CNN Model

This section introduces the theoretical principles of CNNs. A Cellular Neural/Nonlinear

Network (CNN), as an operator, is defined by the following constraints:

• A spatially discrete collection of continuous nonlinear dynamical systems called cells

where information can be encrypted into each cell via three independent variables

called input (u), threshold (z), and initial state (x(0)).

• A coupling law relating one or more relevant variables of each cell to all local

neighboring cells located within a prescribed sphere of influence Sr(ij) of radius r

centered at i,j.

Figure 1.1 shows a 2D rectangular CNN composed of cells that are connected to their nearest

neighbors. Due to its symmetry, the regular structure and simplicity of this type of arrangement

(a rectangular grid) are of primary importance in all implementations.

Figure 1.1 A two-dimensional CNN defined on a square grid. The i,j-th cell of the array
and cells that fall within the sphere of influence of neighborhood radius r = 1 (the nearest
neighbors) are highlighted

The CNN paradigm does not specify the properties of a cell. The implemented cell models

are in Figure 1.2. As the basic framework throughout this dissertation, let us consider a two-

dimensional (MxN) CNN array in which the cell dynamics is described by nonlinear ordinary

differential equations with linear and nonlinear terms. The extension to three dimensions is

straightforward allowing similar interlayer interactions.

Introduction

14

The bias (also referred to as the “bias map”) of a CNN layer is a grayscale image. The bias

map can be viewed as the space-variant part of the cell threshold. By using pre-calculated bias

maps, “linear” spatial adaptivity can be added to the templates in CNN algorithms. If the bias

map is not specified, it is assumed to be zero.

CELL MODEL NAME
PLACE OF

DESIGN
NUMBER OF

PARAMETERS
REMARKS

DTCNN
Discrete time CNN

Munich,
1993

Only the value of the state is analog, the time

and space are discrete.
First order

Chua-Yang model
Berkeley,
1996

19 Standard first-order CNN cell

PHS positive high-gain
sigmoid

Helsinki,
1997

11
Hard-limited output for binary image

processing,
FSR

Full state range
Seville,
1998

20
The state and output are the same and the

voltage swing of the transient is limited [-1;1]
vBJP – pseudo Bipolar
Junction Transistor

Taiwan,
2000

12 4-connected, 2-neighborhood

FSR Complex-kernel
Seville,
2002

25 2nd-order FSR-based model

R-Unit 21 3rd-order spatially isotropic templates

Figure 1.2 The different CNN cell models

The mask (also referred to as the “fixed-state map”) of a CNN layer is a binary image

specifying whether the corresponding CNN cell is in active or inactive state in the actual

operation. Using the binary mask is one of the simplest ways to incorporate “nonlinear” spatial

adaptivity to the templates in CNN algorithms. If the mask is not specified, it is assumed that all

CNN cells are in active state, that is, the initial state is not fixed.

In order to specify fully the dynamics of the array, the boundary conditions have to be

defined. Cells along the edges of the array may see the value of cells on the opposite side of the

array (circular boundary), a fixed value (Dirichlet-boundary) or the value of mirrored cells (zero-

flux boundary).

1.1.1 State equation of a single layer CNN with first order cell model

The standard first order CNN array dynamics is described by the following equations, which

are equivalent to the simplest wave instruction. The C:{A, B, z} is the cloning template.

 Cell dynamics: () ()x t x t z
ij ij ij

τ = − +& (1.1)

 Local cell interactions: * *ij ijA y B u+ (1.2)

Introduction

15

Output equations:

1 () 1

| 1| | 1|
() (()) () 1 () 1

2
1 () 1

if x t
ij

x x
y t f x t x t if x t
ij ij ij ij

if x t
ij

 ≥
+ + − 

= = = − ≤ ≤


− ≤ −


 (1.3)

where

• xij, yij, uij are the state, the output, and the input voltage of the specified CNN cell,

respectively. The state and output vary in time, the input is static (time independent),

ij refers to a grid point associated with a cell on the 2D grid.

• zij is the cell bias (also referred to as threshold) which could be space and time

variant.

τ is the cell time-constant

• Term A represents the linear coupling, B the linear control.

• Term f(.) is the output nonlinearity, in our case a unity gain sigmoid.

• t is the continuous time variable.

The first part of Eq. (1.1) is called cell dynamics; the following additive terms represent the

synaptic linear and nonlinear interactions. Though the threshold zij may be space-variant, usually

it is added to the template (space-invariant case). Eq. (1.3) is the output equation. A CNN

cloning template, the program of the CNN array, is given by the linear and nonlinear terms

completed by the cell current.

 Many times, the CNN cell dynamics are implemented via an electronic circuit and the

interactions are added as shown in Figure 1.3. The input, state and output variables are voltages,

the A and B templates are VCCS-s (voltage controlled current sources) and the time constant

comes from the capacitance (C) and resistance (R) of the cells as τ = RC.

uij
yij

xij

zijbijuij aijyij f(xij)

uByA ∗+∗

Figure 1.3 A CNN base cell corresponding to equations (1.1), (1.2). The linear control and
coupling terms are represented by voltage controlled current sources (B and A).

Introduction

16

1.2 The Wave Computing Model

Since the CNN network is an analog construct, its computing dynamics are very different

from regular digital processors. The computational operators can be considered “waves” and

prompted the definition of a new model of computation for CNNs. The definitions provided

here are based on [7].

1. Data is defined as a continuous image flow ΦΦΦΦ(t)

ΦΦΦΦ (t): {ϕij (t) , i = 1, 2, …, n; j = 1, 2, …, m} ∈ R×R t ∈ T= [0, t*] (1.1)

A frame is obtained by setting the time variable in a given finite time instance t*, i.e.

P = ΦΦΦΦ (t∗). Without loss of generality, we may assume that in a gray scale image +1 and -1

represent the black and white levels, respectively, and the gray levels are in between.

2. Elementary instructions ΨΨΨΨ are the basic wave instructions:

 ΦΦΦΦoutput (t) = ΨΨΨΨ(ΦΦΦΦinput)

 Input: U(t) ≡≡≡≡ ΦΦΦΦinput: uij(t), t ∈ T

 State: X(t) ≡≡≡≡ ΦΦΦΦ(t): xij(t), t ∈ T Initial state: X(0)

 Output: Y(t) ≡≡≡≡ ΦΦΦΦoutput: yij(t), t ∈ T

 Operator: the solution of the two-dimensional spatial-temporal state equation/output

equation not necessarily only at the equilibrium point(s)

 ∑∑
∈∈

+++−=
)(

,

)(

,)()(
)(

ijSkl

klklij

ijSkl

klklijijij

ij

rr

tuBtyAzx
dt

tdx
τ (1.4)

Sr(.): sphere of influences: Sr(ij) ={C(kl): max{|k-i|,|l-j|} ≤ r }

yij(t) = σ(xij(t)); σ: a nonlinear, usually sigmoid function

 Useful operator notations: ∑
∈

≡≡
)(

,)(*;
)(

ijSkl

klklij

ij

r

tyAyA
dt

tdx
x&

dynamic layer dynamic layer

FeedbackFeedback

ττττττττzz

InputInput

outputoutput

Figure 1.4 The graphical representation of the elementary wave processing. The
horizontal bar represents the processing structure as a two-dimensional layer and the arrows
show the external connections to each cell. The color of the arrow refers to the sign of the
connection. The individual ϕi,j(t) base units and their connections are shown on Figure 1.1.

Introduction

17

1.3 The CNN Universal Machine (CNN-UM)

All early neural network chip realizations had a common problem: they implemented a

single instruction only, thus the weight matrix was fixed when processing some input.

Reprogramming (i.e. changing the weight matrix) was possible for some devices but took an

order of magnitudes longer time than the computation itself.

This observation motivated the design of the CNN Universal Machine (CNN-UM, [2]), a

stored program nonlinear array computer. This new architecture is able to combine analog array

operations with local logic efficiently. Since the reprogramming time is approximately equal to

the settling time of a non-propagating analog operation, it is capable of executing complex

analogic algorithms. To ensure programmability, a global programming unit was added to the

array, and to ensure an efficient reuse of intermediate results, each computing cell was extended

by local memories. In addition to local storage, every cell might be equipped with local sensors

and additional circuitry to perform cell-wise analog and logical operations. The architecture of

the CNN-UM is shown in Figure 1.5.

As illustrated in Figure 1.5, the CNN-UM is built around the dynamic computing core of a

simple CNN. An image can be acquired through the sensory input (e.g. OPT: Optical Sensor).

Local memories store analog (LAM: Local Analog Memory) and logic (LLM: Local Logical

Memory) values in each cell. A Local Analog Output Unit (LAOU) and a Local Logic Unit

(LLU) perform cell-wise analog and logic operations on the stored values. The output is always

transferred to one of the local memories. The Local Communication and Control Unit (LCCU)

provides for communication between the extended cell and the central programming unit of the

machine, the Global Analogic Programming Unit (GAPU). The GAPU has four functional

blocks. The Analog Program Register (APR) stores the analog program instructions, the CNN

templates. In case of linear templates, for a connectivity r = 1 a set of 19 real numbers has to be

stored. If spatial symmetry and isotropy is assumed, this is even less. All other units within the

GAPU are registers containing the control codes for operating the cell array. The Local Program

Register (LPR) contains control sequences for the individual cell’s LLU, the Switch

Configuration Register (SCR) stores the codes to initiate the different switch configurations

when accessing the different functional units (e.g. whether to run a linear or nonlinear template).

The Global Analogic Control Unit (GACU) stores the instruction sequence of the main

(analogic) program. The GACU also controls timing, sequence of instructions and data transfers

on the chip and synchronizes the communication with any external controlling device. It has its

own global analog and logic memories (GAM and GLM, respectively) and global Arithmetic

Logic Unit (ALU). As a special case, the GACU can be implemented by a digital signal processor

Introduction

18

(DSP) or a microcontroller.

Figure 1.5 The architecture of the CNN Universal Machine

Different cell models are used in the CNN-UM implementations. The simplest one is the

discreet time CNN (DT-CNN), when the state evolution is not continuous but discreet in time.

The so-called full signal range model (FSR) is a VLSI-friend non-linear cell model, where the

voltage of the state variable is always the same as the output [10].

Synthesizing an analogic algorithm running on the CNN-UM the designer should

decompose the solution in a sequence of analog and logical operations. A limited number of

intermediate results can be locally stored and combined. Some of these outputs can be used as a

bias map (space-variant current) or fixed-state map (space-variant mask) in the next operation

adding spatial adaptivity to the algorithms without introducing complicated inter-cell couplings.

Either linear or nonlinear templates define analog operations. The output can be defined in both

the fixed and the non-fixed state of the network (equilibrium and non-equilibrium computing)

depending on the control of the transient length. It can be assumed that elementary logical

(NOT, AND, OR, etc.) and arithmetical (ADD, SUB, MUL) operations are implemented and can be

used on the cell level between LLM and LAM locations, respectively. Certain operators (e.g.

arithmetical) might have two input values, denoted by P and Q. In addition, data transfer and

conversion can be performed between LAMs and LLMs.

In most image processing tasks, the input and state of the CNN array are loaded with image

data, and the result of CNN computation is generally defined as the steady state after the

transient of the network. If each cell of the CNN array is equipped with analog and logic

memory units, logic operations can be defined between these logic memory units, and these logic

Introduction

19

functions along with the templates become programmable, we arrive at the concept of the CNN

Universal Machine (CNN-UM) [2]. This (re)programmability makes the CNN a real computer,

the first algorithmically programmable analogic (i.e., both analog and logic) computer. In this

framework, each particular CNN operation (analog transient computation or local logic

operation) can be thought of as an analogic instruction of this computer. This allows to store

intermediate results of the processing, and to build up and run complex image processing

algorithms on a CNN chip using some control hardware.

In the course of CNN template and algorithm design, many useful specialized templates and

simple template combinations have been found, many of which are compiled in a CNN Software

Library [16]. These provide basic components of several standard image-processing techniques.

Beyond that, analogic CNN algorithms may utilize a number of spatio-temporal effects in their

basic operations, which can hardly be applied if conventional image processing technology is

used. These may be mathematical morphology or different PDE-based techniques.

1.4 CNN-UM Implementations, Utilized Hardware

When I started this research in 2001, the best available VLSI CNN-UM implementation in

our lab was the Ace4k chip designed at IMSE-CNM, in Seville [8]. After about 2 years, the next

generation Ace16k became available, with 4 times as many cells and new capabilities. Figure 1.6

shows a brief comparison of the two chips’ capabilities.

Property ACE4K ACE16K

Technology CMOS 0.5µm 3M-1P CMOS 0.35µm 5M-1P

Die size 9.145 x 9.534 mm2 11.885 x 12.230 mm2

Number of transistors ~1,000,000 3,748,170

Number of cells 64 x 64 128 x 128

Number of template

memories
32 32

Number of instruction

memories
64 configurations 64 x 64 configurations

Image I/O Analog and binary Digital (8 bit), internal DAC-s and ADC-s

Image I/O control Address buses and external timer

based control

Internal addressing handshake protocols,

no timing constraints

Introduction

20

Property ACE4K ACE16K

Max. Image I/O rate 1MHz (analog), 10MHz (binary) 32 MHz (digital)

Cell density 82 cell/mm2 180 cell/mm2

Optical sensor Parasitic Logarithmic and linear integration

Address event detection - Available

Analog memory writing

mask
- Available

Number of LAMs 4 8

Number of LLMs 4 -

Transistors per cell 172 198

Time constant (t) ~ 1.2 µs (maximum feedback) ~ 0.8 µs (linear convolution: 160 ns)

Power dissipation 1.5 W (worst case) < 4 W

Figure 1.6 Comparison of the VLSI CNN-UM implementations used in the experiments
and algorithm validation. Both chips were designed at the IMSE-CNM, in Seville, Spain

A new commercial focal plane processor designed by AnaFocus Ltd. in Spain will also

appear in 2006 that will be significantly more advanced than the Ace16k chip. It has an even

larger resolution (QCIF: 176x144) with monochrome and RGB color sensors at each cell. The

sensor’s dynamic range is 68 dB and the maximum speed of operation is 10000 frames/sec

(Fps), with power dissipation at 30 mW @ 25Fps and 100mW @ 10000 Fps.

Of course, the chips by themselves are not very useful in real applications, they must be

embedded in a suitable hardware (usually a camera) which also contains additional supporting

hardware such as memory, control circuits etc. Since the field of VLSI CNN-UM chips is

changing rapidly, our development hardware was constantly evolving during this research. We

used several platforms supplied by Analogic Computers Ltd [19].

The Ace4k chip was enclosed in the ACE-BOX platform, which is a PC104 form factor

expansion card for Intel compatible PCs. It contains a Texas Instruments TMS320C6202 DSP

running at 250Mhz and 16MB of SD-RAM. This platform did not have optical input

capabilities, so we had to rely on external input sources such as video files or high-speed

cameras. Figure 1.7 shows the ACE-BOX.

Introduction

21

Figure 1.7 The ACE-BOX platform (a PCI extension card) hosting the Ace4k chip

The new Ace16k chip was hosted in a completely stand-alone hardware, which grew into an

entire family of devices, called the Bi-i platform. The Bi-i has the unique capability of supporting

the simultaneous image acquisition and processing from two sensors at the same time. These

sensors can be Ace16k CNN-UMs, or regular CMOS image sensors in any configuration. The

initial versions of the Bi-i cameras (Bi-i v1) contained the same TI DSP as the ACE-BOX which

controlled the Ace16k chip. Since the Bi-i camera is stand-alone, it contains a number of IO

interfaces to communicate with the outside world: serial ports, 100Mbit Ethernet, USB 1.1 and

programmable digital IO. We used these capabilities to demonstrate the control possibilities

using the MTT algorithms. Current versions of the Bi-i camera (Bi-i v2) contain a more

powerful DSP, the TI TMS3206415 running 600Mhz and there have been some cosmetic

changes to the housing as well. Figure 1.8 shows the two versions of the Bi-i cameras.

Figure 1.8 The Bi-i Smart Cameras. The left picture shows the Bi-i v1, with 2 sensors, while
the right picture shows the Bi-i v2 with 2 sensors and the laser scanner attached

Introduction

22

1.5 Application Examples

Practical applications of the designed systems abound. The multitarget tracking system may

form the foundation of an advanced, “intelligent” surveillance and monitoring system. These

systems are the more sophisticated siblings of the ubiquitous CCTV (closed circuit TV) and

security camera networks installed in many places today. These security cameras are currently

manned 24 hours a day, 7 days a week by human guards, who typically have to monitor the

images of many cameras at the same time. This job is very tiring and very boring, which leads to

security breaches and slow reaction to critical events. In an “intelligent” surveillance system, the

system can detect, analyze and act upon certain events. Most of these events have to do with the

motion of something: a vehicle, a human (or a group of humans) or an animal. If the system can

• isolate and track moving objects in a scene

• reliably measure the properties of the movement

• distinguish between objects based on its features

then it is possible to set up rules to trigger alarms and other intervention responses. The

multitarget tracking algorithms described in the thesis can provide much of the needed

functionality. The MTT algorithms calculate the location, speed and acceleration of the moving

targets. They also analyze the target features, which enable the differentiation of different classes

of targets. The MTT algorithm also provides a way to follow certain moving objects across

cameras, if the location of the cameras is known a priori (which is nearly always the case).

Figure 1.9 Screenshots from a prototype surveillance application utilizing the MTT
algorithms (the targets generating an alert are highlighted in red). In the left screenshot,
target tracking is combined with image intensity analysis to generate an alert. The target is
engulfed in background noise, but its distinctive intensity change profile enables successful target
localization. In the screenshot on the right, target size is the alert trigger.

The MTT algorithm could also be utilized in certain unmanned arial vehicle (UAV)

Introduction

23

applications, where the optical flow must be calculated from the visual input. Optical flow is

usually determined based on local correlation based methods, which determine local

displacement based on local similarities in texture. These methods break down, if:

• the texture is periodic, because there will be many matches during the local search

• the vehicle speed is too large, because the images changes will be too great

• the vehicle speed is too small, because the images changes will be too small

An MTT algorithm can help by identifying distinct salient features as “targets” that may be

tracked across individual frames. In contrast to conventional correlation-based approaches,

these salient “targets” do not have to be located in a specified neighborhood between individual

frames. The optical flow can be calculated from the kinematic properties of these targets even if

the sampling of the movement is very sparse. MTT-based optical flow can also help if certain

areas of the frame are occluded for some reason (clouds, for example).

25

2222 Multitarget Tracking Multitarget Tracking Multitarget Tracking Multitarget Tracking Algorithm forAlgorithm forAlgorithm forAlgorithm for Video Video Video Video

FlowsFlowsFlowsFlows

Recognizing and interpreting the motion of objects in video flows is an essential task in a

number of applications, such as security, surveillance, online quality control, vision-based control

etc. In many instances, the individual objects to be tracked have no known distinguishing

features (such as a distinct color, for example) which would allow feature (or token) tracking

[20],[21], optical flow or motion estimation [22],[23]. Therefore, the targets must be identified

and tracked largely based on their measured positions and derived motion parameters. These

applications also demand real-time performance, i.e. the tracking algorithms must run fast

enough to keep up with the input image flow; this requirement puts a severe limit on the types of

algorithms that may be used.

Target tracking algorithms developed for tracking targets based on sonar and radar

measurements are widely known and can used for tracking based on visual input (also known as

motion correspondence). However, the requirement that the system should operate at least at

video frame-rate (possibly even higher) limits the choices between the well-established statistical

and non-statistical tracking algorithms. The real-time requirements motivated the use of a

unique image sensing and processing device, the CNN-UM [1]-[9] and its VLSI implementations,

which provide several advantages over conventional CMOS or CCD sensors:

• Possibility of focal plane processing, which means that the acquired image does not

have to be moved from the sensor to the processor

• Very fast parallel image processing operators

• Unique trigger-wave and diffusion based operators

While planning the algorithm, we realized that the decreased running time of image

Multitarget Tracking Algorithm for Video Flows

26

processing algorithms could provide some headroom within the real-time constraints that would

allow for the use of more complex state estimation and data assignment algorithms and sensor

adaptation possibilities. We decided to explore these possibilities in detail, and present the

results in section 2.2. In the next section, we give a high-level overview of the system, and then

we present the algorithms running on the CNN-UM. In section 2.3, we give an overview of the

algorithms used in estimating the state of the targets, and creating and maintaining the target

tracks and the adaptation possibilities that the tight coupling of the track maintenance system

(TMS) and the sensor can provide. Finally, we present experimental results obtained by running

the algorithms on actual hardware in section 2.5.

2.1 Block-level overview of the MTT algorithm

The MTT system contains two main architectural levels (Figure 2.1): the CNN-UM level,

where all of the image processing takes place (and possibly image acquisition) and the DSP level

where track management functions are performed. After image acquisition, the CNN-UM can

perform image enhancement to compensate for ambient lighting changes, motion extraction and

related image processing tasks and feature extraction for some types of features. The DSP runs

the rest of the feature extraction routines, and the motion correspondence algorithms such as

distance calculation, gating, data assignment and target state estimation. It also calculates new

values for some CNN-UM algorithm parameters thus adapting the processing to the current

environment.

DSP level

CNN-UM level
Enhancement and cellular array

processing
(sensor level processing)

Feature extraction Adaptation

State estimation

Data assignment

Gating

Distance calculation

Array sensor
input

Tracks and target
attributes

Figure 2.1 CNN-UM/DSP hybrid system architecture for multi-target tracking. The main
processing blocks are divided into three categories: those that are best performed on the CNN-
UM processor, those that are especially suitable for the DSP, and those that have to be
performed using both processors.

Multitarget Tracking Algorithm for Video Flows

27

2.2 The CNN-UM algorithms

Knowledge gained from the study of the mammalian visual system, especially the retina

heavily influenced the algorithms presented here. Recent studies [26] uncovered that the retina

processes visual information in parallel spatio-temporal channels and transmits only a sparse

encoding of the information on these channels via the optic nerve to higher visual areas in the

brain. Additionally, there is context and content sensitive interaction between these parallel

channels via enhancement and suppression which results in remarkable adaptivity. These are

highly desirable characteristics for all image-processing systems, however they are essential for

visual tracking tasks where degradation of input measurements can not always be compensated

for at the later stages of processing (by domain knowledge, for example).

In the following subsections, we will describe a conceptual framework for such a complex

CNN-UM based front-end algorithm. First, we will discuss the computing blocks in general and

then specify the characteristics of the test implementation on the Ace4k CNN-UM chip and

Ace16k CNN-UM chips operating in the ACE-BOX and Bi-i systems, respectively.

2.2.1 Enhancement Methods and Spatio-Temporal Channel Processing

We tried to capture the main ideas from the natural system by defining three “change

enhancing” channels on the input image flow: a spatial, a temporal and a spatio-temporal channel

(see Figure 2.2A). The spatial channel contains the response of filters that detect spatial i.e.

brightness changes, revealing the edges in a frame. The temporal channel contains the result of

computing the difference between two consecutive frames, thereby giving a response to changes,

while the spatio-temporal channel contains the non-linear combination of the spatial and

temporal filter responses.

To eliminate additive Gaussian noise, we use a linear low-pass filter on the input grayscale

image before any further processing is attempted (both linear and constrained linear diffusion

approximations can be used). The pseudo code for the filter (PreProc) is:

1 2 1 2

1 2 1 2

(,)

(,)

(, , , ,)

(, , , ,)

PP

PP

PP

PP

PreProc_D

Diffus

PreProc_CD

CDiffus

σ

σ

λ σ σ

λ σ σ

Φ = Φ

Φ = Φ

Φ = Φ Φ

Φ = Φ Φ

The filtering on the parallel channels can be defined as causal recursive difference-type

filtering using some linear or nonlinear filters as prototypes (typically difference of Gaussian

(DoG) filters implemented using constrained linear diffusion [27], or difference of morphology

(DoM) filters implemented by min-max statistical filters [10]). These filters can be thought of as

Multitarget Tracking Algorithm for Video Flows

28

band-pass filters tuned to a specific spatial/temporal frequency (or a very narrow band of

frequencies), thus enabling highly selective filtering of grayscale images and sequences.

The three main parameters of these change-enhancing filters are:

- Spatial scale (σ): the spatial frequency(s) (basically the object size) the filter is tuned to

(in pixels)

- Temporal rate (λ): the rate of change in an image sequence the filter is tuned to (in

pixels/frame)

- Orientation (φ): the direction in which the filter is sensitive (in radians)

In our current framework, the orientation parameter is not used, since we are relying on

isotropic Gaussian kernels (or the approximations thereof) to construct our filters, but we are

including it here because the framework does not inherently preclude the use of it. It is possible

to tune the spatial channel’s response to objects of a specific size (in pixels) using the σ

parameter. Similarly, the λ parameter allows the filtering out of all image changes except those

occurring at a certain rate (in pixels per frame). This enables the multi-channel framework to

specifically detect targets with certain characteristics.

The output of these channels is filtered through a sigmoid function:

()

1

1 x
y

e β ϑ− −
=

+
 (2.1)

The parameters of this function are the threshold (ϑ) and slope (β). For every x > ϑ, the

output of the function is positive, hence the threshold name. The slope parameter specifies the

steepness of the transition from 0 to 1 and as it becomes larger, the sigmoid approximates the

traditional threshold step function more closely.

The following paragraphs present the pseudo-code for the image channels. The temporal

filter (TeFilt) calculates the convex sum between the grayscale input image and an internal state

(which is the result of the previous operation) and subtracts the resulting image from the

grayscale input image (this corresponds to a causal recursive temporal motion sensitive filtering if

the images are subsequent frames of a grayscale image flow):

() ((),)

() () (1)

() (1) (1) ()

TF

TF H

H H

k TeFilt k

k k k

k k k

λ

λ λ

Φ = Φ

Φ = Φ − Φ −

Φ = − Φ − + Φ

The spatial filter (SpFilt) calculates the spatial local difference based enhancement (a

Laplacian of a Gaussian, Difference of Gaussians or Sobel of Gaussians) of a grayscale input

image:

Multitarget Tracking Algorithm for Video Flows

29

1 2

1 2

1 2

1 2

1 2

1

2 2

_ (, ,)

(()) ()

_ (, ,)

() ()

_ (, ,)

()

() ()

SPF

SPF

SPF

SPF

SPF

G

SPF H V

SpFilt LoG

G L

SpFilt DoG

G G

SpFilt SoG

G

S S

σ σ

σ σ

σ σ

σ σ

σ σ

σ

σ σ

Φ = Φ

Φ = Φ ∗ ∗

Φ = Φ

Φ = Φ ∗ − Φ ∗

Φ = Φ

Φ = Φ ∗

Φ = Φ ∗ + Φ ∗

The spatio-temporal filter (SPTFilt) calculates the convex sum between the low-pass filtered

grayscale input image and an internal state (which is the result of the previous operation). It

subtracts the resulting image from the low-pass filtered grayscale input image (this corresponds

to a causal recursive spatio-temporal motion sensitive filtering if the images are subsequent

frames of a grayscale image flow):

(1) ((), ,)

() () ()

() () (1)

() (1) (1) ()

SPTF

D

SPTF D H

H H D

k SPTFilt k

k k G

k k k

k k k

σ λ

σ

λ λ

Φ + = Φ

Φ = Φ ∗

Φ = Φ − Φ −

Φ = − Φ − + Φ

The output of the best performing individual channel could be used by itself as the output

of the image processing front-end, if the conditions where the system is deployed are static and

well controlled. If the conditions are dynamic or unknown a priori, then there is no way to

predict the best performing channel in advance. To circumvent this problem, we decided to

combine the output of the individual channels through a so-called interaction matrix, and use the

combined output for further processing. The inclusion of the interaction matrix enables the

flexible runtime combination of the images on these parallel channels and the prediction map

while also specifying a framework that can be incorporated into the system at design time. Our

experimental results and measurements indicate that the combined output is on average more

accurate than each single channel for different image sequences. Figure 2.2A shows the

conceptual block diagram of the multi-channel spatio-temporal algorithm with all computing

blocks to be discussed in the following section.

Multitarget Tracking Algorithm for Video Flows

30

A.

Channel processing

Enhancement

Spatial channels

(σSi, φSi)

Temporal channels

(σTi, φTi)

Spatio-temporal

channels (σSTi, φSTi)

Enhanced image

(σP, φP)

Crisp / Fuzzy Logic

Input

DetectionPrediction

Binary image flow

Channel interaction

Gray scale image flow

S ST T Pr

1 1 -1

1

-1

(ϑTi, βTi) (ϑSi, βSi) (ϑSTi, βSTi)
Configuration
and parameter

adaptation

(τPD,τPE) (τDD,τDE)

B.

PREP

TE-F SP-F SPT-F

TE-D SP-D SPT-D

OR

AND

AND

ANDAND

AND

AND

POSTPPRED

Tλ Sσ ,ST STσ λ

Tϑ Sϑ STϑ

P TI →

P STI →

P SI →

T PI →

ST PI →

S PI →

PN

T SI →

T STI →

S STI →S TI →

T STI →

ST SI →

GS Flow In

Bin Flow Out

Channel

processing

Channel

interaction &
detection

Input preprocessing

Channel prediction

σ

D
N

Output post processing

Figure 2.2 A) Block overview of the channel-based image processing algorithm for
change detection. B) Ace4k/16k implementation of the same algorithm. The input image
is first enhanced (histogram modified), and then it is processed in three parallel change-
enhancing channels. These channels and the prediction image are combined through the
interaction matrix and thresholded to form the final detection image. Observe, that the
framework allows the entire processing to be grayscale (using fuzzy logic); the only constraint is
that the detection image must be binary. In the Ace4k implementation, the results of the channel
processing are thresholded to arrive at binary images, which are then combined using Boolean
logic functions as specified by the interaction matrix. The parameters for the Ace4k algorithm
are: λ – the temporal rate of change, σ – the scale (on the spatial (SP) and spatio-temporal (SPT)
channels), ϑ – per channel threshold values, L – logical inversion (-1) or simple transfer (+1), N
– the number of morphological opening (N > 0) or closing (N < 0) operations

Multitarget Tracking Algorithm for Video Flows

31

2.2.2 Remarks on the Ace4k and Ace16k Chip Implementation of the Multi-

channel CNN Algorithms

The change enhancing channels are actually computed serially (time multiplexed) in the

current implementation, but this is not a problem due to the high speed of the CNN-UM chips

used. We performed the first round of experiments using the ACE-BOX hardware containing

the Ace4k chip, since the next generation Ace16k was not yet available. As preparation for this

dissertation progressed, the Ace16k chips became available for experimentation in the Bi-i

system. We modified the original Ace4k algorithms to take advantage of the capabilities of the

new chip: we substituted isotropic diffusion wherever iterative convolutions were used to

achieve the same effect. This makes the algorithm much faster, since the iterative steps are

eliminated.

In the first stage of the on-going experiments, only isotropic (φ → 0) spatio-temporal

processing has been considered followed by crisp thresholding through a hard nonlinearity

(essentially a step function acting as a threshold). Thus, the three types of general parameters

used to derive and control the associated CNN templates (or algorithmic blocks) are the scale

and rate parameters (σ and λ) and the threshold parameter ϑ. Figure 2.2B shows the functional

building blocks of the Ace4k implementation of the algorithm (a hardware-oriented

simplification of the conceptual model) with all associated parameters.

The enhancement (smoothing) techniques have been implemented in the form of nearest

neighbor convolution filters (circular positive B template with entries normalized to 1) and

applied to the actual frame (σ determines the scale of the prefiltering in pixels, i.e. the number of

convolution steps performed). The spatio-temporal channel filtering (including the temporal

filtering solution) was implemented as a fading memory nearest neighbor convolution filter

applied to the actual and previous frames on the Ace4k, while it was possible to realize directly

on the Ace16k via its resistive grid. In temporal filtering configuration (no spatial smoothing), λ

represents the fading rate (in temporal steps), thereby specifying the temporal scale of the

difference enhancement. In spatio-temporal filtering configuration (the fading rate is set to a

fixed value), σ represents the spatial scale (in pixels) at which the changes are to be enhanced

(the number of convolution operations on the current and the previous frame are calculated

implicitly from this information).

The pure spatial filtering is based on Sobel-type spatial processing of the actual frame along

horizontal-vertical directions and combining the outputs into a single “isotropic” solution (here

σS represents the spatial support in pixels in the Sobel-type difference calculation).

Multitarget Tracking Algorithm for Video Flows

32

2.2.3 Channel Interaction and Detection Strategies

The interaction between the channels may be Boolean logic based for binary images or

fuzzy logic based for grayscale images, specified via the so-called channel interaction matrix. Its

role is to facilitate some kind of cross-channel interaction to further enhance relevant image

characteristics and generate the so-called detection image, which is treated as the result of image

processing steps in the whole tracking system. The interaction matrix is a matrix where each

column stands for a single image. These images are the outputs of the parallel channels (SP, T,

SPT) and the prediction (see next section, Pr). The values within the matrix specify the

interaction “weight” (w) of a given image (the image selected by the column of the matrix

element). If using binary images, the non-zero weights are treated as follows: if w > 0, then the

input image is used, if w < 0, then its inverse is used.

The interaction takes place in a row-wise fashion, with the row-wise results aggregated. The

interactions themselves are given globally as a function pair, and must be Boolean or real valued

functions (when using binary or grayscale images, respectively). The first function in the pair is

the row-wise interaction function (R); the second is the aggregation function (A). R is used to

generate an intermediate result (Ir) for each row. These intermediate results are the arguments of

A, which the aggregation function uses to generate the detection image. The number of rows in

the interaction matrix must be at least one, but can be arbitrarily large, which allows the

construction of sophisticated filters. A sample interaction matrix with the calculated detection

result is shown on Figure 2.3Figure 2.3 A sample interaction matrix, and the calculated result.

Detection=A(R(SP,T,Pr), R(–T,SPT))

.

SP T SPT Pr

1 1 1

 -1 1

Figure 2.3 A sample interaction matrix, and the calculated result.
Detection=A(R(SP,T,Pr), R(–T,SPT))

If using a fuzzy methodology, the detection image is thresholded, so the result of the

channel interaction is always a binary map (the detection map) that will be the basis for further

processing. Ideally, this only contains black blobs where the moving targets are located.

In our current experiments, we used only Boolean logic based method. In the binary case,

the channels are thresholded depending on the ϑ parameters of the channel detection modules

Multitarget Tracking Algorithm for Video Flows

33

then combined pair wise through AND logic and all outputs are summarized through a global

OR gate (which corresponds to R:=AND and A:=OR.).

We post process the output of the interaction matrix using ND-step morphological

processing (one of the following, depending on the application scenario: erosion, dilation,

opening or closing) to correct the target image perimeters and fill any internal errors. The

following pseudo code shows post processing algorithm (PostProc):

 (, ,)

 1

 (,)

 (, ,)

 1

 (,)

 (, ,)

 (, ,)

 (, ,)

PO n

PO

n

PO PO

PO n

PO

n

PO PO

PO n

PO n

PO n

PO

PostProc_E B p

for i to p

Erode B

end

PostProc_D B p

for i to p

Dilate B

end

PostProc_O B p

Open B p

PostProc_C B p

Φ = Φ

Φ = Φ

=

Φ = Φ

Φ = Φ

Φ = Φ

=

Φ = Φ

Φ = Φ

Φ = Φ

Φ = Φ

Φ = (, ,)
n

Close B pΦ

2.2.4 Prediction Methods

We also compute a prediction map that specifies the likely location of the targets in the

image solely based on the current detection map and the previous prediction. This can then be

used (via the interaction matrix) as a mask to filter out spurious signals. It is hard to include

efficiently kinematic assumptions at the cellular level of processing – other than the maximum

speed of the moving targets – given the real-time constraints, since this would require the

generation of a binary image based on the current detection and the kinematic state parameters.

Therefore, the algorithms only use isotropic maximum displacement estimation implemented by

spatial logic and trigger-wave computing. However, the experiments indicate that even

rudimentary input masking can be very helpful in obtaining better MTT results.

The algorithm (Pred) calculates an N-step isotropic expansion of the objects identified by

Multitarget Tracking Algorithm for Video Flows

34

spatial logic from two binary input images (this corresponds to a “prediction map” given that

one of the input images is a “detection map” containing the target objects in form of binary

patches and the other input image is the “prediction map” from the previous operation). Only

those objects in the prediction map that are also part of the detection map are expanded:

Pr Pr

Pr Pr

0 Pr

0

Pr

Pr 0

Pr

Pr

Pr

 Pr (, , ,)

()

()

 Re (, ,)

 1

Φ = Φ Φ
Φ

Φ = Φ

Φ = Φ Φ
Φ

Φ = Φ

Φ = Φ Φ
Φ = Φ Φ
Φ = Φ Φ

=
Φ

edOut Det ed D

Det

edOut ed

Det ed

edOut Det

DP ed

CompDP DP ed

edOut Det CompDP

D

e

ed B N

if isempty

else

and

if isempty

else

c B

xor

or

end

for i to N

Pr (,)= Φ
dOut edOut

Dilate B

end

end

2.2.5 Feature Extraction and Target Filtering

The DSP state-estimation and data assignment algorithms operate on position

measurements of the detected targets, therefore these have to be extracted from the detection

map. During data extraction, it is also possible to filter targets according to certain criteria based

on easily (i.e. rapidly) obtainable features. The set of features we are currently using is: area,

centroid, bounding box, equivalent diameter (diameter of a circle with same area), extent (the

proportion of pixels in the bounding box that are also in the object), major and minor axis length

(the length of the major axis of the ellipse that has the same second-moments as the object),

eccentricity (eccentricity of the ellipse that has the same second-moments as the object),

orientation (the angle between the x-axis and the major axis of the ellipse that has the same

second-moments as the object) and the extremal points. Filtering makes it possible to

concentrate on only a certain class of targets while ignoring others.

The calculation of all of these features can be implemented on the DSP but some of the

features (centroid, horizontal or vertical CCD etc.) can be efficiently computed on the CNN-UM

as well. Since the detection map is already present on the CNN-UM, calculation of these

features can be extremely fast. It is also possible to calculate a set of features in parallel on the

DSP and the CNN-UM, further speeding up this processing step. The location of the center of

Multitarget Tracking Algorithm for Video Flows

35

gravity (centroid) of each target is usually considered the position of the target, unless special

circumstances dictate otherwise.

Analogic chip implementation: Morphological filtering (structure and skeleton extraction) is

implemented on the Ace4k chip. Feature extraction is performed exclusively on the DSP in the

first test implementation.

2.2.6 The Full Multichannel Algorithm

In this section, we present pseudo code which implements the multichannel algorithm

described above for MTT. It uses subroutines presented in the previous sections, and relies on

operators described in the Appendix.

1

1 1

2

2 2

3

3 3

Pr

0

() ()

() ((),)

() ((),)

() ((),)

() ((),0,)

() ((),)

() ((), ,)

() ((),

ed

PP

CH PP T

CT CH T

CH PP SP

CT CH SP

CH PP SPT SPT

CT CH

if k

k empty

end

k PreProc k

k TeFilt k

k Thr k

k SpFilt k

k Thr k

k SPTFilt k

k Thr k

σ

λ

ϑ

σ

ϑ

σ λ

ϑ

=

Φ =

Φ = Φ

Φ = Φ

Φ = Φ

Φ = Φ

Φ = Φ

Φ = Φ

Φ = Φ

1 2 3

*

Pr

* *

Pr

)

() (), (), (), (-1)

() ()

1 4

1 4

() (,) () (,) ()

() () ()

() ((), ,)

() (

i j

SPT

CT CT CT CT ed

Det

CI CT CT

Det Det CI

ed Det DP

PO Det

k k k k k

k empty

for i to

for j i to

k I i j k and I j i k

k k or k

end

end

k Pred k B N

k PostProc

 Φ = Φ Φ Φ Φ 

Φ =

=

= +

Φ = Φ Φ

Φ = Φ Φ

Φ = Φ

Φ = Φ (), ,)
PO

k B N

CNN algorithms also have a common formal description, somewhat similar to flowcharts,

but more adapted to the unique capabilities of CNNs, called the UMF diagram [18]. Figure 2.4

shows the CNN implementation of the MTT multichannel front-end algorithm expressed in the

UMF framework.

Multitarget Tracking Algorithm for Video Flows

36

UT,State

Mul

Uc

Start

Sub

Diffuse

X0

z=0

USPT,State

z=0

Mul

Z

Sub

z =-ϑT

z =-ϑSPT

U

U

τ

τ

τ

(1-λ)

λ

δ2τ

τ
(1-λ)

λ

U

Diffuse

Z

δSPT
2τ

Z

U

Diffuse

Z

δSP2
2τ

U

Diffuse

Z

δSP1
2τ

z =-ϑSP

Sub

U

τ

Z

Andτ

X0

Temporal Spatial Spatial-Temporal

U

Andτ

X0 U

Andτ

X0 U

Andτ

X0 U

Andτ

X0 U

Andτ

X0 U

Orτ

X0 U

Orτ

X0 U
Orτ

X0 U

Orτ

X0 U

Orτ

X0 U

 kEτ

X0

TrW (const. dilatation) kDτ

X0

TrW (const. erosion)

z = -

z = +

Output

Figure 2.4 UMF diagram of the multichannel MTT algorithm front-end. This diagram
shows the implementation on an idealized CNN VLSI chip or simulator.

Multitarget Tracking Algorithm for Video Flows

37

2.3 The DSP-based MTT Algorithms

The combined estimation and data association problem of MTT has traditionally been one

of the most difficult problems to solve. To describe these algorithms, we need to define some

terms and symbols. A track is a state trajectory estimated from the observations (measurements)

that have been associated with the same target. Gating is a pruning technique to filter out highly

unlikely candidate associations. A track gate is a region in measurement space in which the true

measurement of interest will lie accounting for all uncertainties with a given high probability [25].

All measurements within the gating region are considered candidates for the data association

module. Once the existence of a track has been verified, its attributes such as velocity, future

predicted positions and target classification characteristics can be established. The tracking

function consists of the estimation of the current state of the target based on the proper selection

of uncertain measurements and the calculation of the accuracy and credibility of the state

estimate. The following factors degrade this estimate:

• model uncertainties due to target maneuvers and random perturbations and

• measurement uncertainties due to sensor noise, occlusions, clutter and false alarms

(Figure 2.5 shows images with clutter and occlusions)

Figure 2.5 Clutter and occlusion in a simulated test video. Clutter can be anything that may
be confused with a legitimate target, while occlusions occur when one target moves in front of
the other, hiding it entirely (or partly) from view. The targets are circled for easier identification.

2.3.1 Data Association

Data association is the linking of measurements to the measurement origin such that each

measurement is associated with at most one origin. For a set of measurements and tracks each

measurement/track pair must be compared to decide if measurement i is related to track j. For m

Multitarget Tracking Algorithm for Video Flows

38

measurements and n tracks, this means m*n comparisons, and for each comparison multiple

hypotheses may be made. As n and m increase the problem becomes computationally intensive.

Additionally, if the sensors are in an environment with significant noise and many targets, then

the association becomes very ambiguous.

There are two different approaches to solving the data association problem: (i) deterministic

(assignment) – the best of several candidate associations is chosen based on a scoring function

(accepting the possibility that this might not be correct) (ii) probabilistic (Bayesian) association –

use classical hypothesis testing (Bayes’ rule), accepting the association hypothesis according to a

probability of error, but treating the hypothesis as if it were certain. The most commonly used

deterministic assignment algorithms are the following:

Nearest Neighbor (NN) – the measurement closest to a given track is assigned in a serial

fashion. It is computationally simple but is very sensitive to clutter.

Global Nearest Neighbor (GNN) – the assignment seeks a minimal solution to the summed

total distance between tracks and measurements. This is solved as a constrained

optimization problem where the cost of associating the measurements to tracks is

minimized subject to some feasibility constraints. This optimization can be solved

using a number of algorithms, such as the JVC (Jonker-Volgenant-Castanon) [28]

algorithm, the auction algorithm [29] and signature methods [30]. These are all

polynomial time algorithms.

The most commonly used probabilistic algorithms are the following:

Multihypothesis Tracking (MHT) [24],[25] – the MHT is a multi-scan approach that holds off

the final decision as to which single observations are to be assigned to which single

track. This is widely considered the best algorithm but is also the most

computationally intensive ruling out real-time implementation on our architecture.

Probabilistic Data Association Filters (PDAF) – the PDAF technique forms multi-hypotheses

too after each scan, but these are combined before the next scan of data is processed.

Many versions of this filter exist, the PDA for single tracks, Joint PDA (JPDA) for

multiple tracks, Integrated PDAF etc. [25],[31].

Based on data in the literature [25], we decided to work with deterministic assignment

algorithms because they are high performance with calculable worst-case performance since they

have a computational complexity of Ο(n3) (where n is the number of tracks and measurements)

which was essential given our real-time constraints. We also restricted ourselves to the so-called

2-D assignment problems where the assignment depends only on the current and previous

measurements (frames). The data assignment algorithms perform so-called unique assignment,

Multitarget Tracking Algorithm for Video Flows

39

where each measurement is assigned to one-and-only-one track as opposed to non-unique

assignment, when a measurement may belong to multiple tracks. We implemented two types of

assignment algorithms a NN approach and the JVC algorithm. Since non-unique assignment

would be very useful in certain situations such as occlusions, we modified the NN algorithm and

added a non-unique assignment mode to it.

2.3.2 2-D Assignment Algorithms

Of the two algorithms we implemented, the NN algorithm is the faster one and for

situations without clutter, it works adequately. It can be run in unique assignment mode, where

each track is assigned one and only one measurement (the one closest to it) and in non-unique

assignment mode, when all measurements within a track’s gate are assigned to the track which

makes it possible handle cases of occlusion.

The JVC algorithm is implemented as described in [28]. It seeks to find a unique one-to-

one track to measurement pairing as the solution ˆ
ij

x to the following optimization problem:

 min

1 1

n n
c xij ij

i j

 
 ∑ ∑
 = = 

 (2.2)

1 1

1, 1
n n

ij ij

i j

x x
= =

= =∑ ∑ (2.3)

 0 1
ij

x≤ ≤ ,i j∀ (2.4)

Where n is the number of tracks and measurements (it is easy to generalize the algorithm if

there are more measurements than tracks), i,j=1…n, cij is the probable cost of associating

measurement i with track j calculated based on the distance between the track and the

measurement and xij is a binary assignment variable such that

1 if is assigned to

0 otherwiseij

j i
x


= 


 (2.5)

The JVC algorithm consists of two steps, an auction-algorithm-like step [29] then a

modified version of the Munkres algorithm [32] for sparse matrices.

Our experiments indicate that the JVC algorithm is indeed superior to the nearest neighbor

strategy while only affecting the execution time marginally.

2.3.2.1 The Utilized Distance Measures

The assignment cost ci,j in equation (2.2) may be calculated in many different ways. The most

straightforward way is to simply let the cost matrix be the Euclidian distance matrix:

 () ()T
eC M L M L= − − (2.6)

Multitarget Tracking Algorithm for Video Flows

40

where M is the matrix of measurement vectors, L is the matrix of target positions for the current

frame and Ce is the resulting cost matrix.

Another measure frequently used in tracking applications (a computer vision in general) is

the Mahalanobis or statistical distance, which takes into account the correlations of the

measurement vector data set, and is scale-invariant, i.e. not dependent on the scale of

measurements. This property is very helpful, when the measurement vectors contain other

coordinates besides distances, such as the features described in the next paragraph. The

definition for the Mahalanobis distance is:

1() cov() ()T

mC M L M M L−= − − . (2.7)

If the covariance matrix is the identity matrix then the Mahalanobis distance is the same as

Euclidean distance.

An interesting possibility is the inclusion of feature measures beside position coordinates

into the measurement vector of each target. Features such as average grayscale intensity, major

and minor axis can help to increase the assignment cost (thereby directly increasing the tracking

accuracy) more easily between targets that are located near each other but are very dissimilar in

one of these features.

2.3.3 Track Maintenance

We have devised a state machine for each track for easier management of a track’s state

during its lifetime. Each track starts out in the ‘Free’ state. If there are unassigned measurements

after an assignment run, the remaining measurements are assigned to the available ‘Free’ tracks

and they are moved to the ‘Initializing’ state. If in all of the next i frames the ‘Initializing’ tracks

are assigned measurements, they become ‘Confirmed’; otherwise, they are deleted and reset to

‘Free’. If a ‘Confirmed’ track is not assigned any measurement in a frame, the track becomes

‘Unconfirmed’. If during the next ‘c’ frames it still does not get a measurement, it becomes

‘Free’, i.e. the track is deleted. Figure 2.6 shows the state machine.

Multitarget Tracking Algorithm for Video Flows

41

Figure 2.6 The track maintenance state machine of the MTT algorithm. The state machine
starts from the Free state; ‘i’ and ‘c’ are two parameters for the number of initialization
measurements and the number of unconfirmed frames respectively.

2.3.4 State Estimation

State estimation filters are a research area all by themselves with wide ranging applications.

Since the goal of this research was not the development of new state estimation approaches, we

decided to use method that would fit the following criteria:

• The estimation method must be relatively light in terms of computational burden,

since we are planning to use it in a real-time system

• The filter must be easily tunable; i.e. the number of parameters used to tune the

filter must be low. This is advantageous, because the tuning of these parameters is

usually not trivial.

• The filter must complex enough for the motion estimation of maneuvering targets

It is obvious, that these are conflicting criteria, since estimating complex maneuvers will

require more parameters, but we realized, that the faster our tracking systems, the less complex

the target maneuvers seem to be, since our sampling frequency is higher.

Considering everything, we decided to implement two types of filters: a fixed-gain state

estimation filter and a multiple model filter with fixed multiple models.

2.3.4.1 Fixed-gain State Estimation Filters (α−β and α−β −γ Filters)

These filters are also called time-invariant Kalman filters, or α−β−γ filters [24]. The main

difference between a “regular” Kalman filter and time-invariant Kalman filters is that in a time-

invariant filter, plant variations through time are accommodated by modeling them as noise.

Multitarget Tracking Algorithm for Video Flows

42

This is often the most realistic assumption if the variations are unknown to system designer or

user in advance. Additionally, the filter equations are simpler, requiring less computational

resources, but the tradeoff is that the estimation will not be accurate when the underlying

assumptions (that the system is a kinematic system, see the next paragraph) are not met.

We will briefly describe the algorithm behind these filters. Linear dynamical systems with

time-invariant coefficients in their state transition and measurement equations lead to simpler

optimal estimation techniques than are needed for the time-varying case. The state estimation

covariance and filter gain matrices achieve steady-state values that can often be computed in

advance. Two common time-invariant systems are constant-velocity and constant-acceleration

systems, so called kinematic systems.

Let us assume a constant velocity model: starting with some initial value, the object’s

velocity evolves through time by process noise of random accelerations, constant during each

sampling interval and independent. With no process noise, the velocity is constant; process noise

can be used to model unknown maneuverings of a non-constant velocity target. The cumulative

result of the accelerations can in fact change the object's velocity arbitrarily much, so we model a

maneuvering object as one with high process noise. We assume position measurements are only

available, subject to measurement noise of constant covariance. Clearly, the more that is known a

priori about the motion the better the predictions will be.

Assume the object state (its position and velocity) evolves independently in each of the (X;

Y; Z) dimensions. For instance, in the Y dimension, it evolves according to

 (1) () ()yk k k+ = +y F y v (2.8)

where

1

0 1y

t∆ 
=  
 

F (2.9)

for sampling interval t∆ , error vector ()kv , and ,
T

Y Y =  y & . The equations for the other two

spatial dimensions are similar, and in fact have identical F matrices. Thus for the complete

object state , , ,
T

x X X Y Y =  
& & , F is a (4x4) block-diagonal matrix whose blocks are identical to

Fy. The error vector ()kv can be described with a simple covariance structure:

(() ())T
kjk j δ=E v v Q .

The α-β filter for state prediction has the form

 ˆˆ ˆ(1 1) (1) (1) (1)
/

k k k k k k k
t

α

β
 

+ + = + + + − +    ∆ 
x x z z (2.10)

Multitarget Tracking Algorithm for Video Flows

43

Where ˆ(1 1)k k+ +x is an updated estimate of x given z(k+1), the measurement at time k+1.

Here we assume that z(k+1) consists of the two state components (X; Y) (but not (,)X Y& &). The

state estimate is a weighted sum of a state ˆ(1)k k+x predicted from the last estimate to be

ˆ()k kFx and the innovation, or difference between a predicted measurement and the actual

measurement. The predicted measurement ˆ(1)k k+z is produced by applying (here a trivial)

measurement function to the predicted state.

The α-β filter is a special case of the Kalman filter. For our assumptions, the optimal values

of α and β can be derived (see [25] for details) and depend only on the ratio of the process noise

standard deviation and the measurement noise standard deviation (which can be approximated

based on a priori information). This ratio is called the object’s maneuvering index λ, and with the

piecewise constant process noise we assume,

()2 28 4 8

8

λ λ λ λ λ
α

+ − + +
= − (2.11)

and

2 24 8

4

λ λ λ λ λ
β

+ − +
= . (2.12)

The state estimation covariances can be found in closed form as well, and are simple functions of

α, β, and the measurement noise standard deviation.

The α−β−γ filter is like the α−β filter only based on a uniform acceleration assumption.

Thus, it makes a quadratic prediction instead of a linear one. Broadly, it tends to be more

sensitive to noise but better able to predict smoothly varying velocities. Its equation is the

following:

2

ˆˆ ˆ /(1 1) (1) (1) (1)

/

tk k k k k k k

t

α

β

γ

 
 ∆+ + = + + + − +   
 ∆ 

x x z z (2.13)

With the maneuvering index λ defined as before, the optimal α and β for the case that the

target experiences random small changes in acceleration (random jerks) are the same as before

and the optimal 2 /γ β α= .

2.3.4.2 Multiple Model Filter with Fixed Multiple Models

We assume that there is one correct model for the process, and that the model is fixed or

does not change over time, however we do not know what that model is. Over time, as the filter

Multitarget Tracking Algorithm for Video Flows

44

reaches a steady state, we want to converge on a choice for the single most likely model. For this

approach let us assume that the correct model M is one of r possible known fixed models,

 { }
1

r

j j
M µ

=
∈ . (2.14)

We can use the following conditional probability density function as an indicator of the

likelihood of a measurement z at step k:

()

() ()11

2
/2

1
()

2

T
z

nf e
µ µ µ µ µ

µ

µ

µ
π

−− − −
=

z H x C H x

z
C

 (2.15)

where

 T
µ µ µ µ µ

−= +C H P H R (2.16)

We have omitted the k subscript for clarity. Note again that the state vector xµ and error

covariance matrix Pµ
− are the a priori (predicted) versions at step k, already computed at each

filter prediction step using fixed gain state estimation filter time update equations. In other

words, the density is conditioned on the model and all of its associated a priori (predicted)

parameters.

Given a new measurement z at time step k, and associated a priori state and covariance

estimates from the fixed gain state estimation filter time update equations, we can use equation

(2.15) to compute the recursive probability pj(k) that candidate model µj is the correct model at

that time:

1

() (1)
()

() (1)

j j
j r

h h
h

f p k
p k

f p k

µ

µ
=

−
=

−∑

z

z

. (2.17)

One would initialize pj(0) with some a priori estimate of the probability that µj is the correct

model. For example, one could consider all models equally likely to begin with, and set

1

(0) , 1, 2, ...,jp j r
r

= = . (2.18)

Note that ()jf µz and pj(0) are scalars, and at every time step k,

1

() 1
r

j
j

p k
=

=∑ . (2.19)

 The final combined or model-conditioned estimate of the state xk and error covariance Pk are

computed as a weighted combination of each candidate filter’s a posteriori state and error

covariance estimates. The weight for each candidate model is the model probability given by

equation (2.15). The final model-conditioned state estimate is computed as

Multitarget Tracking Algorithm for Video Flows

45

 ,
1

ˆ()
j

r

k j k
j

p k µ
=

=∑x x
) , (2.20)

and the final model-conditioned error covariance as

 ,
1

()
j j j

r
T

k j k
j

P p k P µ µ µε ε
=

 = + ∑ , (2.21)

where ,ˆ
j jk kµ µε = −x x

) .

The Algorithm

To begin with, one would instantiate r independent fixed-gain state estimation filters, one

for each of the candidate models. Each of these filters would then be run independently, in

parallel, with the addition of the necessary individual density and final probability computations.

At each time update, one would compute the normal a priori filter elements, and then:

1. Using the conditional density function given in equation (2.15), compute the likelihood

of the current (actual) measurement z for each candidate model µj

2. Using the previous probability (1)jp k − for each candidate model µj, use the recursive

equation (2.17) to compute the probability that each individual model is correct

3. For each candidate model µj, compute the a posteriori (corrected) state estimate ,ˆ
jk µx and

error covariance , jkP µ using the fixed-gain filter measurement update equations.

4. Given each candidate filter’s a posteriori (corrected) state estimate ,ˆ
jk µx , compute the

final model-conditioned state estimate kx
) using equation (2.20); and

5. If desired, given each candidate filter’s a posteriori (corrected) error covariance estimate

, jkP µ , compute the final model-conditioned error covariance Pk using equation (2.21).

As described in [25], the final mode-conditioned state estimate will converge to agree with

one of the models, if one of the models is the correct one. In any case, it will converge to some

constant mode represented by a fixed weighting of the individual multiple models.

If the actual mode is not constant, i.e. if the process can be switching or varying between

different models, one can use various ad hoc methods to prevent convergence on a single mode.

For example:

• One can impose an artificial lower bound on the model probabilities,

• impose a finite memory (sliding window) on the likelihood function, or

• impose an exponential decay on the likelihood function.

A problem with using ad hoc means of varying the blending of fixed multiple models is that

the error in the incorrect models (at any moment) can grow unbounded, i.e. the incorrect filters

Multitarget Tracking Algorithm for Video Flows

46

can get lost. Thus, the filters might have to be re-initialized.

2.4 Automatic Parameter Tuning

A common problem for systems operating in unconstrained environments on visual input

(such as a perimeter surveillance system) is that the input can vary substantially, but the systems

are expected to work well within a range input conditions, without any intervention from the

user. This type of flexibility requires a way to measure the quality of the system’s output (i.e. the

tracking quality) and to tune the front-end algorithms to improve that quality. Measuring the

quality of multitarget tracking algorithms is difficult even if the ground truth is known [36], but if

there is no ground truth, then at first glance, it seems impossible. However, to quote Tom Gilb

“Anything you need to quantify can be measured in some way that is superior to not measuring

it at all.” [35], so there must be some good approximation of the tracking quality.

In most tracking applications, the number of tracked targets is very slowly changing and the

rate of change in the number of targets is constant (or nearly constant). This means that if the

number of tracks changes drastically (from 6 to 12, for example) in a very short period (in a few

frames), it is highly probable that the input of the tracking system (the output of the

multichannel image processing front-end) has deteriorated. This can happen for a number of

reasons, but the two most common are that the lighting conditions have changed, altering the

appearance of the target and that the target motion has changed.

2.4.1 Response to Lighting Changes

Changes in lighting conditions are handled by varying the integration time of the sensor.

This is a very low-level adjustment independent of all other parameter-tuning actions and could

be considered part of the functionality offered by the sensor even though it is implemented in

software.

The first step is to measure the average gray value of the image for the current frame. If the

difference between the desired average gray level G (usually 128) and the measured average (g) is

larger than 10%, the integration time t is adjusted: If 0.1G g G− > ⋅ , then λ+ = − ⋅ +1 ()k kt G g t

2.4.2 Response to Target Motion Changes

Differences in target motion from the user’s a priori assumptions can create subtle errors in

the image processing steps that limit the accuracy of the tracking results. We considered

solutions to the tuning of three very important parameters in the multichannel front-end: the

orientation of the front-end filters, the number of openings/closings during detection post

Multitarget Tracking Algorithm for Video Flows

47

processing and the number of dilations during the prediction step.

Tuning the orientation parameter (φ) of the front-end filters online can help to tackle a

frequent phenomenon in tracking applications: even though the approximate speed (or speed

range) of the anticipated targets is known a priori, the movement direction is not. This means

that although our change enhancing front-end filters possess the ability to be more sensitive to

motion in a certain direction (using the orientation parameter (φ) of the filter described in 2.2.1),

based on knowledge available a priori, this capability cannot be leveraged. As the system is

working online, however, the output of the tracking systems does contain the required direction

data in the form of motion vectors for the individual targets. The algorithm is as follows:

1. Calculate the average motion vector for all targets and determine the direction of

the motion (ϑ)

2. Set the orientation (φκ+1) for the next frame according to the following formula:

1 (1)k kφ α φ α ϑ+ = ⋅ + − ⋅ where 0 1α≤ ≤

The parameter α serves to control the response speed of the system to changes in target

movement direction: if α is close to 1, change is very slow, if α is close to 0, then change is very

fast.

The post processing of the detection images is also an important step in getting the image

ready for feature extraction. This step serves as a filter to smooth out target boundaries or

enhance target signatures. The filtering consists of the ND number of morphological opening or

closing steps, depending on a priori considerations regarding the tracking scenario. The number

of these steps is a parameter that must be consistent with the location of the targets: if two

targets get too close to each other for example, too many closing operations could cause their

signatures to merge and cause errors in the feature extraction phase. It is possible to modify the

number of morphological operations based on the distances of the targets relative to each other.

If two targets are so close, that the ND current morphological closings would merge them, then

ND is decreased. If, however, the average distance between the targets is sufficiently large, then

ND may be increased, if it is less than the optimal amount specified by a human observer (and

known a priori). This algorithm requires the calculation of the predicted distances of each pair

of targets. Since the predicted locations of the targets are available from the state estimation

module, only Ο(n2) extra calculations are necessary, where n is the number of active targets in

the previous frame.

Optimizing the image-based prediction of future target positions – which can be considered

a rough gating method to effectively filter out clutter from the input images – is possible through

Multitarget Tracking Algorithm for Video Flows

48

the parameter that controls the number dilations (ND) during the prediction step. Changing this

parameter proportionally to the average speed of the targets allows the system consider a wider

search area for the possible target locations, but still use the image-base gate to reduce clutter.

The algorithm to calculate ND for the k+1th frame (1k
DN +) is as follows:

1. Calculate the maximum speed (vmax) of the targets in a given frame

2. Let ()1
max(1)k k

D DN round N vα α+ = ⋅ + − ⋅ where 0 1α≤ ≤ and DN ∈Z

Like before, α serves to control the response speed of the system to changes in target speed to

smooth out jitter. The formula can be so simple, because []max

pixels
v

frame
= .

2.4.3 Response to Channel Output Corruption

The result of the algorithms described in the previous sections is that the detection output

image remains qualitatively constant if there are no abrupt (unanticipated) changes or errors in

the system. However, in an unconstrained environment, it is possible that one or more channel

outputs are corrupted beyond repair. It is possible to detect this, because the degradation of the

outputs of one of the parallel channels causes the degradation of the detection image. The

challenge is then to determine which channel was corrupted and remove that channel from

further processing through the channel interaction matrix to prevent the propagation of the error

through the system. This is similar to the strategy a human would use to tune the tracking system

in a given scenario. An analogy for the algorithm’s main idea would be that of a choir: a single

false voice can ruin the sound of the whole choir, so the sources for these voices must be

eliminated.

The tuning algorithm makes the following strong assumptions (which are typically valid in

tracking applications):

1. The parameters of the front-end channels are tuned to detect targets of interest (for

example the temporal channel is tuned to a given target speed range)

2. The number of targets or the rate of change in the number of targets is constant or

stays within a very narrow interval

3. The structure of the interaction matrix (the selection of logic functions used for row

and column operations) is tuned for the given application, therefore it will not be

changed.

The insight of the algorithm is that in order to find the channel that contributed the

erroneous tracks, it is enough to compare the channel output images with the detection image,

without running the feature extraction routines on the images. This means that the running time

Multitarget Tracking Algorithm for Video Flows

49

of the algorithm is not dependent on the number of erroneous tracks; in effect, the runtime is

constant.

Given the above assumptions, the adaptation algorithm is as follows:

1. Let Nk be the number of live tracks at frame k,

2. If 1k kN N δ−− > , then continue, else stop.

3. Let S, ST and T be the binary channel output images for the spatial, spatio-temporal and

temporal images respectively, and D the detection image used for feature extraction.

4. Let A, or Age of target t be the number of frames a given target was present during

tracking so far. Find and tag all targets, where: tA τ< .

5. Create a seed image by setting the centroid pixels of the tagged targets, let this be Seed.

6. Generate an image containing only the erroneous targets (TSeed,), using the RECONSTR

template: Re (,)SeedT c D Seed=

7. Calculate the channel error images:

S Seed

ST Seed

T Seed

E S T

E ST T

E T T

= ⊗

= ⊗

= ⊗

8. Count the number of white pixels on the channel error images, let these be CS, CST, CT.

3
S ST TC C C

C
+ +

=

9. If S ST TC C and C C and C Cε ε ε− < − < − < , then the errors are coming from all

channels, so the filters must be tuned manually. Otherwise, find max(CS, CST, CT), and

choose the channel with them maximum error count.

10. If more than one channel is active (the number of 1-s in the channel interaction matrix

is greater than 2), then zero out the row and column of the channel in the channel

interaction matrix; otherwise stop.

2.5 Experiments and Results

During algorithmic development, we targeted a real-time application for the ACE-BOX [19]

platform. The ACE-BOX is a PCI extension stack that contains a Texas Instruments

TMS320C6202B-233 DSP and either an Ace4k or an Ace16k CNN-UM chip in addition to

16MBs of onboard memory. The Ace4k chip is a 64x64, single-layer, nearest-neighbor CNN-

UM implementation with 4 LAMs (Local Analog Memory for grayscale images) and 4 LLMs

(Local Logical Memory for binary images) [24]. We also experimented with the newer Ace16k

chips that have 128x128 cells, an optical input and 2 LLMs and 8 LAMs. The Ace4k chip was

Multitarget Tracking Algorithm for Video Flows

50

manufactured on a 0.5 micron process, while the Ace16k on 0.35. We hosted the Ace16k chip

on the Bi-i platform developed by Analogic Ltd (see the Section 1.4 for details).

2.5.1 Algorithm Accuracy Measurements

To validate our choice of using multiple interacting channels during the image-processing

phase of the system vs. using a single channel, we ran measurements on five image sequences

containing rapidly moving and maneuvering targets in images with differing amounts of noise

and clutter. All videos were manually tracked by a human viewer to obtain reference

measurements for the target positions in each frame. These positions were compared to the

measurements given by the multi-channel front-end and each of the constituent channels as well.

The mean square position error was calculated for each of the target locations, and averaged for

each image sequence. The relative error compared to the best performing channel was also

calculated, since this is a good indicator of the overall performance of a channel under varying

conditions. The results of these experiments are shown in Figure 2.7.

The use of the multi-channel architecture allows the system to be able to process markedly

different inputs within the same framework and achieve acceptably low error levels. If an

“oracle” (a different system, or a human) can provide quantitative input on the performance of

each channel, then the system can adapt (through changing values in the interaction matrix) to

give more weight to the best performing channel. If no such information can be acquired, the

system will still perform relatively well (see the relative errors in Figure 2.7), often very close to

the best performing channel.

MSE Relative MSE Relative MSE Relative MSE Relative MSE Relative
Sequence1 1.36 0.00% 2.13 56.62% 7.01 415.44% 1.73 27.21% 1.83 34.56%

Sequence2 2.07 81.58% 24.84 2078.95% 1.14 0.00% 34.26 2905.26% 10.05 781.58%

Sequence4 0.82 0.00% 0.94 14.63% 1.1 34.15% 0.92 12.20% 0.99 20.73%

Sequence5 1.34 67.50% 0.8 0.00% 6.04 655.00% 0.95 18.75% 0.89 11.25%

Sequence6 1.43 1.42% 1.42 0.71% 10.28 629.08% 4.58 224.82% 1.41 0.00%

Avg. relative error: 30.10% 430.18% 346.73% 637.65% 169.62%

Spatio-temporalMulti Threshold Temporal Spatial

Figure 2.7 Accuracy comparison of different front-end channels and the multi-channel
arrangement. The best performing channel is highlighted in bold type for each sequence. The
mean square position error (MSE) was calculated for each of the target locations, and averaged
for each image sequence and the relative error was compared to the best performing channel.
Observe that the output of the multi-channel architecture is – on average – the best performer in
these sequences.

We also tested the developed algorithms on several artificially generated sequences in

addition to video clips recorded in natural settings (such as a flock of birds flying). We hand

tracked some of these videos to be used as ground truth references for assessing the quality of

Multitarget Tracking Algorithm for Video Flows

51

the tracking algorithms as measured at the output of the complete MTT system. Figure 2.8

shows a few sample frames from the “birds” clip along with the detection images generated by

the multi-channel front-end. This sequence contains 68 frames of seagulls moving rapidly in

front of a cluttered background.

Figure 2.8 Sample consecutive frames from a test video and the corresponding detection
maps of the system. The input video shows birds flying in front of a cluttered background
(birds are circled in red on the input frames). Since the birds, leaves and branches of the trees are
all moving, detecting the targets (birds) is very difficult and must make full use of the capabilities
of the multi-channel front-end (such as the ability to filter based on object size and object speed).

The accuracy of image processing also depends heavily on the noise characteristics of the

input image sequence. To measure this, we developed a program to generate artificial image

sequences, which allowed us to specify carefully the kinematic properties of the moving targets.

We could also mix additive noise to the generated images to study the noise sensitivity of the

system. To describe noise levels, we defined the signal to noise ratio (SNR) and peak signal to

noise ratio (PSNR) according to the definitions commonly used in image compression

applications [33]:

[]

2

1 1

10
2

1 1

(,)

10 log

(,) '(,)

N M

i j

N M

i j

f i j

SNR

f i j f i j

= =

= =

 
 
 

=  
 −
  

∑∑

∑∑
 (2.22)

 []2

1 1

1
(,) '(,)

N M

i j

MSE f i j f i j
N M = =

= −
⋅ ∑∑ (2.23)

2

10

255
10logPSNR

MSE

 
=  

 
 (2.24)

Multitarget Tracking Algorithm for Video Flows

52

where M and N are the dimensions of the image in pixels and f(i,j) and f’(i,j) are the pixel values at

position (i,j) in the original image and the noisy image, respectively.

Figure 2.9 shows the results of our analyses. We did not calculate the SNR and PSNR

values for the natural image sequences since there was no reference image available to compare

to our inputs. The measurement errors were obtained by calculating the distance between a

hand tracked / generated target reference position and the output of the multi-channel front-

end. The modeling errors were calculated by injecting the reference target positions into the

system and measuring the tracking error, while the tracking errors were the difference between

the target reference positions and the output of the whole MTT system.

As can be seen from the data in Figure 2.9, the tracking error is always lower than the

measurement and modeling error combined, which suggests that these errors cancel each other

out somewhat. The performance of the multi-channel front-end is very good in cases where the

images are corrupted with high levels of noise, which is due to the noise suppression capabilities

of DoG type filters. Lastly, the magnitude of the overall tracking errors is within two pixels for

these sequences.

Content Type Motion Type SNR PSNR
Tracking

Error

Measurement

Error

Modeling

Error

Natural
maneuvering and linear,

constant speed
N/A N/A 2.07 1.69 0.49

Natural
stochastic, overlapping,

varying speed
N/A N/A 1.36 0.92 0.82

Generated
maneuvering and linear,

constant speed
14.01 17.56 0.82 0.52 0.64

Generated
maneuvering and linear,

constant speed
7.63 11.18 1.43 1.17 0.64

Generated
maneuvering and linear,

overlapping, constant speed
18.35 20.50 1.34 0.71 0.72

Figure 2.9 Tracking accuracy and noise levels for sample videos. All errors are in pixels.
Sub-pixel error values are the result of the sub-pixel accuracy of our state estimation and
centroid calculation routines. Higher SNR and PSNR values show lower noise levels. All videos
in the table are different image sequences, the 3rd and 4th however contain targets with the same
motion properties moving on the same path, but with different image noise levels, which is why
the measurement errors are different and the modeling errors are the same for the two
sequences.

Multitarget Tracking Algorithm for Video Flows

53

A.

20
40

60

20

40

60

20

40

60

Frame number

Multiple target tracking - object motion (ref) in 3D

Column number

R
o
w

 n
u
m

b
e
r

20
40

60

20

40

60

20

40

60

Frame number

Multiple target tracking - object motion (meas input) in 3D

Column number

R
o
w

 n
u
m

b
e
r

20
40

60

20

40

60

20

40

60

Frame number

Multiple target tracking - object motion (sta) in 3D

Column number

R
o
w

 n
u
m

b
e
r

20
40

60

20

40

60

20

40

60

Frame number

Multiple target tracking - measurements from sensor in 3D

Column number
R

o
w

 n
u
m

b
e
r

B.

20
40

60

20

40

60

20

40

60

Frame number

Multiple target tracking - object motion (ref) in 3D

Column number

R
o
w

 n
u
m

b
e
r

20
40

60

20

40

60

20

40

60

Frame number

Multiple target tracking - object motion (meas input) in 3D

Column number

R
o
w

 n
u
m

b
e
r

20
40

60

20

40

60

20

40

60

Frame number

Multiple target tracking - object motion (sta) in 3D

Column number

R
o
w

 n
u
m

b
e
r

20
40

60

20

40

60

20

40

60

Frame number

Multiple target tracking - measurements from sensor in 3D

Column number

R
o
w

 n
u
m

b
e
r

Figure 2.10 Target tracking results for two sample videos. The plots show the tracking
results in 3D: two spatial dimensions that correspond to the coordinates in the videos, and a
third temporal dimension, which corresponds to the frame number in the sequence. Target
tracks are continuous lines in these 3D plots, with different gray levels signifying different tracks.
The targets were hand tracked by human observers to generate reference target positions (upper
left plots (‘ref’) in A and B). The track states (‘sta’, lower left plots in A and B) are the target
location outputs of the MTT system. The ‘meas’ plots (upper right corner on A and B) show the
outputs of the data-assignment subsystem. Observe that the kinematic state estimation
algorithms smooth out some of the jitter in the direct measurements. Finally, the input

Multitarget Tracking Algorithm for Video Flows

54

measurements (the coordinates of the centroids of the black blobs in the detection maps)
generated by the multi-channel framework are shown in the lower right plots (in both A and B).

Figure 2.10 shows the results of running the system on two video flows (A and B) that

contain targets which are maneuvering and sometimes move in front of each other, effectively

stress testing the tracking algorithms. Sequence A. was artificially generated while sequence B. is

a short natural video clip showing rapidly maneuvering targets with a priori unknown motion

and trajectory. We hand tracked each frame of these video flows to facilitate a rigorous

comparison of the system’s performance against a human observer. It must be noted, that

sometimes even we humans had trouble identifying targets in a frame without flipping back-and-

forth between frames, which illustrates the need for temporal change detection in the image

processing front-end.

We measured the performance of the system at three stages: the output of the multi-channel

framework, the output of the data-assignment subsystem and the output of the whole MTT

system. This enabled us to visualize and study the effect of different input sequences on various

subsystems. We observed, for example, how the kinematic state estimators smooth out the

target trajectories when fed the somewhat jittery data from the multi-channel front-end (this was

expected and desired).

The measured MTT system outputs show that the system tracked the targets fairly well,

although occlusion and missing sensor measurements have caused significant errors as the

system merged tracks together and split others (this is common error in tracking systems). To

address this issue, we are currently working on incorporating a more advanced state estimation

algorithm to model target motion better and include a priori knowledge of target behavior.

2.5.2 Algorithm Performance Measurements

Before implementing the algorithms in C++, we first prototyped them in MATLAB using a

flexible simulation framework based on the MatCNN simulator [12]. After the algorithms

“stabilized”, we ported them to work on the ACE-BOX hardware using the Aladdin

Professional programming environment [19].

To enable better comparison of the Ace4k-based algorithm implementation with the pure

DSP version, we coded the same algorithms in both cases. Since the data assignment and state

estimation algorithms run on the DSP in both cases, only the operations in the multi-channel

framework had to coded for both platforms. We optimized the algorithms to run as fast as

possible on each platform, using methods optimized for the platform’s characteristics. For

example, we used the optimized image processing routines provided by Texas Instruments

Multitarget Tracking Algorithm for Video Flows

55

Image Processing Library to construct our multi-channel algorithm on the DSP. Figure 2.11

shows the running times of various steps of the algorithms for different parameter settings. The

runs differed only in the number of opening/closing iterations applied to the images in the

multi-channel front-end, since this is the most costly step of processing. These iterations

smooth out the input binary maps to provide better inputs for further processing.

Performance Comparison

0

1

2

3

4

5

6

7

Ace4k+DSP Net

Ace4k+DSP

DSP Ace4k+DSP Net

Ace4k+DSP

DSP Ace4k+DSP Net

Ace4k+DSP

DSP

1 Opening/Closing iteration 5 Opening/Closing iterations 10 Opening/Closing iterations

Configurations

T
im

e
 [

m
s
]

Feature Extraction

Prediction

Channel Logic
Spatio-Temporal Channel

Temporal Channel

Spatial Channel

Operation Ace4k+DSP Net Ace4k+DSP DSP Ace4k+DSP Net Ace4k+DSP DSP Ace4k+DSP Net Ace4k+DSP DSP

Spatial Channel 1.20 ms 0.42 ms 0.20 ms 1.25 ms 0.47 ms 0.53 ms 1.31 ms 0.53 ms 0.93 ms

Temporal Channel 1.88 ms 1.20 ms 0.99 ms 2.00 ms 1.32 ms 1.69 ms 2.14 ms 1.46 ms 2.57 ms

Spatio-Temporal Channel 1.88 ms 1.20 ms 0.99 ms 2.00 ms 1.32 ms 1.69 ms 2.14 ms 1.46 ms 2.57 ms

Channel Logic 0.15 ms 0.15 ms 0.15 ms 0.15 ms 0.15 ms 0.15 ms 0.15 ms 0.15 ms 0.15 ms

Prediction 0.29 ms 0.17 ms 0.40 ms 0.29 ms 0.17 ms 0.40 ms 0.29 ms 0.17 ms 0.40 ms

Feature Extraction 0.11 ms 0.11 ms 0.11 ms 0.11 ms 0.11 ms 0.11 ms 0.11 ms 0.11 ms 0.11 ms

Total Frontend Time 5.51 ms 3.25 ms 2.84 ms 5.80 ms 3.54 ms 4.57 ms 6.14 ms 3.88 ms 6.73 ms

Data Association

State Estimation

Total MTT Time

Total Time 8.47 ms 6.21 ms 2.84 ms 5.80 ms 6.50 ms 4.57 ms 6.14 ms 6.84 ms 6.73 ms

Frames/sec 118.06 161.03 352.11 172.41 153.85 218.82 162.87 146.20 148.59

Grayscale download: 0.37 ms

Grayscale upload: 0.25 ms

Binary download: 0.02 ms

Binary upload: 0.04 ms

1 Opening/Closing iteration 5 Opening/Closing iterations 10 Opening/Closing iterations

Ace4k Datatransfer Times:

0.73 ms

2.23 ms

2.96 ms

Figure 2.11 Running times for the various subtasks of the MTT system in different
configurations. The 2 configurations were: the image processing steps of the multi-channel
front-end running on the Ace4k and everything else running on the DSP (Ace4k+DSP and Net
Ace4k+DSP column), and all algorithms running on the DSP (DSP column). The Net
Ace4k+DSP column contains only the net computing time (without data transfers, which is very
significant for the Ace4k). Observe that because of the data transfers, the Ace4k-DSP tandem is
slower than DSP-only algorithms if the iteration count is small, but as the iteration count
increases, the data transfer speed is balanced by the linear slowing down of the DSP. Using the
Ace4k chip, net computing times are always close to, or significantly better than those using the
DSP.

2.6 Discussion

During the interpretation of the performance data in Figure 2.11, it is important to note that

the Ace4k chip was manufactured on a 0.5 micron process while the TMS320C6202B-233 DSP

on a 0.15 micron process, which is a significant advantage for the DSP. Nonetheless, the results

Multitarget Tracking Algorithm for Video Flows

56

for the multi-channel front-end performance tests highlight several important facts. First, the

numbers indicate that the Ace4k has limited potential in practical image processing scenarios,

because it is hampered by the slow data transfer speed of its bus and the limited number of

onboard memories (4 LAMs and 4 LLMs). Since it does not have an optical sensor, data must

be transferred from a DSP for processing, and frequently, partial results of the algorithms must

be transferred back to the DSP for storage, because of the limited on-chip memory capacity of

the chip. This is the reason why the DSP is faster than the Ace4k-DSP duo if the number of

opening/closing iterations is small. As the iteration count increases, the transfer cost is balanced

by the linear slowing down of the DSP, which is why the Ace4k becomes the clear winner at

higher iterations.

We have some preliminary data of our work with the newer Ace16k processor. This chip is

larger (128x128 vs. 64x64), but has a faster data bus, so data transfer times for native size

grayscale images are about half that of the Ace4k. Unfortunately, the chip does not have a

dedicated binary image readout mode, which slows down the readout of binary images to speeds

about 10 times slower than the Ace4k.

The Ace16k has one other nice feature: a built-in resistive grid. The resistive grid can

calculate diffused images in as low as 30ns, which enables the very rapid generation of DoG

filtered images (which is just a difference of two diffused images). Our experiments indicate that

using the resistive grid we can perform the front-end channel calculations about 4 times faster

than the DSP for 128x128 sized images (including transfers).

Several lessons can be learned from the tests that have to be addressed to design a

competitive topographic visual microprocessor. The clear advantage that topographic image

processor have over conventional digital image processors is that all other things being equal, the

processing speed remains essentially constant as the size of the array increases, while on DSPs,

processing time increases linearly with the image area (which grows quadratically). Further

advantages can be gained by using diffusion and trigger-wave based image-processing operators,

which are very fast constant time operations on CNN-UM chips, but can only be approximated

with iterative approaches on DSPs. However, to realize the full potential of these architectures,

they must designed with practical application scenarios in mind.

They have to feature focal plane input, so the initial images do not have to be transferred

through the data bus. The transfer speed of the digital communication bus has to be increased

by one, preferably two orders of magnitude, if we factor in the need for higher resolution images.

Even though a topographic processor is capable of performing many operations at constant

speeds (with respect to image size, as long as the image size is equal to, or smaller than the

Multitarget Tracking Algorithm for Video Flows

57

number of processing units), some operations are much better suited to traditional DSP

implementation (2D FFTs for example). Without a high-speed bus, the transfer of images itself

becomes a significant bottleneck that negates the advantages of using a topographic processor in

the first place.

2.7 Case Study: The Multitarget Framework in a Real-time Control

Environment

The real time performance characteristics of the MTT algorithm framework lend themselves

naturally to applications where the control of some physical device is required base on visual

input. These applications demand control signals at a predictable rate from the algorithm

processing the video input. With the model application, we wanted to verify and demonstrate the

following capabilities:

• high frame rate operation

• real time control

• visually verifiable tracking accuracy

These abilities are highly desirable for any system relying on visual input for control purposes.

Our model application imitates a scenario, where a laser pointer has to follow and “tag” up

to six rapidly moving targets by shining a laser on them. The targets are moving rapidly in a

rectangular area within a plane and our MTT algorithm, which runs on a Bi-i camera, tracks

them. The laser is connected directly to the Bi-i camera, and is controlled from the MTT

software. A PC communicates with the Bi-i to provide visual confirmation of the tracking and to

show an interface for setting algorithm parameters. Figure 1.1 shows the system and

connections.

XY Laser
Scanner

Bi-i camera
running the MTT

algorithm

Screen

Laser beams

Target

Figure 2.12 Bi-i Controlled Laser Scanner System

Multitarget Tracking Algorithm for Video Flows

58

The laser positioning system consists of laser scanners in the X and Y planes and some

additional driver circuitry. A laser scanner is a galvanometer with an attached mirror. When

current is applied, the galvanometer's shaft rotates through part of a circle, when the current is

removed, the shaft returns to the rest position. This gives the scanners the ability to scan a

rectangle with the stationary laser source. The additional circuits contain digital-analog

converters to provide the currents needed to drive the scanners and the logic devices used to

interface to the Bi-i camera. The Bi-i camera communicates with the laser scanners through

memory-mapped registers. Figure 2.13 shows the schematic diagram of Bi-i-based laser scanner

setup, while Figure 2.13 shows the actual hardware itself.

Figure 2.13 The Bi-i camera with the laser scanner attached. On the left image, the Bi-i
camera is shown in silver, with the laser scanner assembly attached on top (black). The front
window serves as a shutter for the laser light. The right picture shows a close-up of the mirror
assembly inside the scanner.

We developed a small calibration routine to map the virtual 2D space of the tracking

algorithm to the 2D plane of the environment in order to display the tracking results accurately.

The routine displays – using the laser – an adjustable rectangular target area, which encloses the

area where the laser will shoot. This has to be aligned with the projected image, but the aspect

ratio of the rectangle can be arbitrary. The pixel coordinates received from the MTT routine are

translated into this rectangular space, and then the desired mirror angles are calculated from the

rectangular coordinates.

For demonstration and testing purposes, we used a moving target generator utility to

generate short videos with rapidly moving targets. The utility enables us to specify flexibly the

look, the path and the motion characteristics (speed and acceleration) of the individual targets,

the complexity of the background and the noise level of the video.

We used an LCD projector to project these videos onto a reflective screen and set up the

Multitarget Tracking Algorithm for Video Flows

59

laser tracking system to track the simulated targets on the screen. The projector was attached to a

computer that was not running the tracking algorithms; its only purpose was to generate the

target images.

The laser scanner system “tags” the targets by moving the laser light to a target, and staying

at the given position for a few milliseconds. Since the laser has a noticeable warm up time, we

switch on the laser light before the first target is highlighted and turn it off after last one was

tagged. This does not create visible lines over the path of the laser, because the laser moves very

fast. Figure 2.14 shows the laser scanner running on a typical video.

Figure 2.14 The laser scanner system in action

61

3333 Analogic Preprocessing Analogic Preprocessing Analogic Preprocessing Analogic Preprocessing andandandand Segmentation Segmentation Segmentation Segmentation

Algorithms Algorithms Algorithms Algorithms forforforfor Offline Handwriting Offline Handwriting Offline Handwriting Offline Handwriting

RecognitionRecognitionRecognitionRecognition

In many industries, there is a substantial demand for the automatic processing of different

types of handwritten materials. Obvious applications include the automatic indexing and

processing of archived documents, forms, postal envelopes, notes etc. Even though human

handwriting processing has gone through considerable improvement during the past decades,

relatively well performing systems are only available for vertical applications. In these scenarios,

the utilized vocabulary is very narrow and well defined, such as the recognition of postal

addresses on envelopes and the recognition of medical prescriptions; or the writer has to learn a

new writing style (graffiti alphabet on PDA-s) so the machine can interpret it.

The area of handwriting recognition consists of two completely different problems: online

and offline handwriting recognition. Offline recognition is the reading of handwritten text

sometime after the writer has created it. This means that the input of the recognition engine is a

binary or grayscale image containing the handwriting. Online handwriting recognition is the

interpretation of the human handwriting “real-time” as it is created. Input is usually with a

special pen on an electronic notepad, which provides temporal information and trajectory data.

The significantly larger amount of input data available makes online recognition an easier task

than offline recognition. Our paper is concerned strictly with offline handwriting recognition

because it does not require special input devices. The offline handwriting recognition task

contains character recognition as a sub-problem that has been studied using CNN algorithms

[37] and Gabor filters for hand-printed letters [38].

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

62

Producing reasonably well performing offline handwriting recognition systems has been an

elusive goal for researchers because of two things: handwriting is a form of self-expression, and

as such, the same words can be written in many different styles. Many handwritten words are

also ambiguous and can only be recognized in context. This is especially true for the recognition

of unconstrained texts, where the vocabulary may be arbitrarily large. The complete research

area of offline handwriting recognition is very large, as it comprises the preprocessing of the

input, recognition and post-processing of the results, and each of these tasks is an actively

researched subject in its own right. This chapter is concerned with solving the preprocessing and

segmentation tasks of an offline handwriting system without the use of a grammatical model or

input from the character recognizer.

3.1 The Basic Structure of an Offline Handwriting Recognition System

Even though the many recognition systems try to solve the problem in different ways there

is a general module structure used by all systems that stems from the properties of the problem

itself [42], which is shown in Figure 3.1.

Preprocessing

Linguistic postproc.

Recognition

Feature extraction

Letter segmentation

Thresholding

Line localization

Word localization

Downing

Figure 3.1 Block diagram of an offline handwriting recognition system

For a thorough overview of different handwriting recognition systems and architectures the

reader is referred to [40],[41] and [74]. The first step is preprocessing of the input picture. The

aim is to maximize the signal to noise ratio of the input and to suppress non-relevant data. This

phase contains the thresholding and filtering of the input because the subsequent operations

work on binary images. The localization of the lines and words on the image is also performed

in this step. The line and word location information permits the subsequent analysis of the

words in context, which may boost the recognition rate substantially.

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

63

The letter segmentation and feature extraction steps may be performed serially or in parallel.

Some systems try to segment the located words into letters then build feature vectors from them

that will be processed by the recognition engine; others begin to build the feature vectors from

the words before segmenting them into letters [41].

The next step is the recognition of letters or words based on the feature vectors obtained in

the previous steps. Many methods exist to accomplish this task, such as neural networks, hidden

Markov models (HMMs) and dynamic programming techniques [43],[48],[41]. It is assumed that

a suitable recognizer and feature extractor exists to process the segmented letter images. An

example system is described in detail in [67], [70].

The output of the recognition engine is a list of [word, confidence] pairs that contain the

recognized words and the confidence level of the recognition. The linguistic postprocessor takes

this list as its input and based on grammatical and context information chooses the most

appropriate word from the list. The postprocessor also corrects syntactic mistakes of the

recognition.

Figure 3.2 An excerpt from the handwritten text database

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

64

3.2 Description of the Test Handwriting Database

The described algorithms were tested on a database of 25 handwritten pages collected by

Andrew Senior [53],[54]. The database contains 7000 words from the LOB corpus (Lancaster-

Oslo / Bergen) that were written by a single writer. An excerpt is shown in Figure 3.2. There is

a segmentation file for every page that specifies the words and their location in the image in

order to ease verification of the developed algorithms. We have also created a word-count file

that specifies the number of lines and the number of words on a page for each page. Since the

segmentation algorithms do not distinguish punctuation marks from real words, and the

segmentation files do not contain punctuation information either, we have erased the

punctuation marks from the page images. This database was chosen because it was the only

database found that is freely available and was documented thoroughly.

3.3 The Preprocessing Tasks And Their Solutions

In almost every procedure of the preprocessing algorithms tens or even hundreds of image

processing operations are performed on the input images. This is one of the most

computationally intensive parts of offline handwriting recognition and motivated the use of the

fastest possible parallel hardware architectures (i.e. CNNs) during the design of the algorithms.

These algorithms were designed to take advantage of dual digital and analog processing

capabilities of the target ACE-BOX platform [19]. The experiments were performed with the

MatCNN simulator in Matlab. We chose this approach because we could relatively quickly test

the capabilities of the algorithms. We tried to devise algorithms that could be run entirely on the

CNN chip to further explore the possibilities of analogic programming, careful to utilize only

linear and nearest-neighbor templates that can be efficiently run on existing hardware

implementations. The resolution requirements of the algorithms vary, but all single word

algorithms require less than 128x128 pixels, not exceeding the resolution of the ACE16K chip.

In all flowcharts, the steps designed for CNNs are shown in italic on gray background, and

the ones in normal type and white background use traditional digital methods. The utilized

CNN templates may be found in the Appendix.

3.3.1 Locating The Lines

The algorithm found in the literature [42] attempts to find the lines based on local features,

but it seemed to us that a line can more readily be thought of as a global structure. Our

algorithm is similar to the ones used in OCR systems [44] where lines are localized by computing

the horizontal histograms for the entire image at a couple of relevant skew angles then the angle

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

65

and position where the histograms have local minima are chosen as the location between lines.

Calculating the horizontal histograms requires non-linear templates on CNNs, but can be

substituted in this case with the horizontal projection operator.

We refined the line-finding algorithm in a number of ways. In our early experiments, the

histograms were quite noisy, so we began using a method to blur the words without affecting

their location. Based on [68] we compute the pseudo convex hull of each word using the

HOLLOW template. This template computes the convex hull of the objects in the image if it is

run sufficiently long (i.e. till there are no changes on the image). If it is stopped “some time”

earlier, then the hull will only be pseudo convex. The running time of the template (37τ) was

found by experimentation and appears to be consistent across the images in our handwriting

database. The optimal value is slightly dependent on the overall style and size of the

handwriting, but the histogram calculation is very robust against small errors in the convex hull

calculation, so the overall algorithm is not affected if the writing is different.

The horizontal histogram computed on the pseudo convex hulls is smoothed further via

sliding-window averaging with a window size (p1) of 10 (it is effectively low pass filtered). The

window size was found experimentally, but as a rule of thumb, it can be said that the smaller the

average character size of the handwriting, the smaller the needed window. The next step of the

algorithm is to find the local maxima of the histogram since these correspond to the location of

the lines. Sometimes, more than one closely spaced local maxima correspond to the same line,

usually because the skew of a line is substantial. To correct this we introduced a second

parameter (p2) that specifies a threshold within which we associate all maxima with one line. This

parameter is se to 80% of the largest local maximum. Finally, we drop those maxima that are

smaller than a given percentage of the average local maxima (p3=25%). The execution of the

algorithm is illustrated in Figure 3.3. By adjusting the parameters p1, p2 and p3 the sensitivity of

the algorithm can be varied widely.

The raw histogram The histogram after smoothing

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

66

Figure 3.3 The results of the line localization algorithm

3.3.2 Correcting the Line Skew

After we have localized the lines in a given image, it is possible to correct their skew to

somewhat normalize the word images. This is needed because the skewed line images introduce

extra noise from the point of view of further processing and the word recognizer. It is

somewhat like histogram equalization for image processing algorithms.

The skew correction algorithm first finds the lowest points of the pseudo convex hulls using

the LOCAL SOUTHERN ELEMENT (LSE) detector template from the CNN Template Library

[16]. These points follow the baseline of the lines closely, but contain some noise due to letters

such as g, j, y, p, and q. To eliminate this noise, the PRUNE and FIGREC templates are applied

in succession. The PRUNE template keeps those black pixels that have a black neighbor (in 4-

connected sense) while the FIGREC template recalls only those parts of the original LSE filtered

image that remained after the application of PRUNE. The last step of the algorithm uses linear

regression with outlier rejection to fit a line to remaining black pixels, to calculate the angle of

that line and to rotate the original image with that angle. The results of each step of the

algorithm are shown in Figure 3.4.

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

67

Line skew correction

Linear regression
fitting with outlier

rejection

PatchMaker
&

LSE

Calculate skew
angle,
Rotate

Figure 3.4 The line skew correction algorithm

3.3.3 Segmentation of Lines into Words

To aid further grammatical processing, context analysis and later reconstruction of each run

of the algorithm, the lines are stored separately and in sequence as they appear on a page.

Relevant information is also stored with each line, such as its original image, the de-skewed

image etc. The data about the constituent words is also stored along with each line.

After the lines have been processed, the next step is to locate the words on each line. This

could be easily achieved with the calculation of vertical histograms and identifying the local

minima in those histograms, but we looked for a fast analogic approach that provides almost the

same results in this particular application. The conceived algorithm is as follows: first, we

compute the pseudo convex hull for the line, and then apply the VCCD template. This template

detects the vertically connected components in an image by shifting them downwards until they

disappear. The result of the template for these types of images is (since there is usually only

vertically connected component, i.e. a word) that horizontal lines appear in the last row of the

image corresponding to the largest horizontal extent of the word images. This makes it possible

to extract the word images from the line very easily. The steps of the algorithm are illustrated in

Figure 3.5. One may ask, what happens, if the pseudo convex hulls of the words overlap? This

is not nearly as big a problem as it may first seem (in fact there are no instances of such a

configuration in our database), but these sites can be identified because there will be two parallel

horizontal lines where the overlap occurs.

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

68

Figure 3.5 Locating the words within a line. The bottom red lines mark the location of words

Figure 3.6 Word and line location results for a sample page. Red lines mark the start of
words and green lines mark the end

3.4 Segmentation Of Words Into Letters

After the words have been located within the lines, all successive operations proceed at the

word level since larger context information is only used at the linguistic post processing stage of

recognition. In segmentation-based systems, where the basic units of recognition are letters, it is

crucial to segment the words into letters as accurately as possible. Unfortunately, this is almost

impossible to do correctly as illustrated by the Sayre paradox [56]: “To recognize a letter, one

must know where it starts and where it ends, to isolate a letter, one must recognize it first”. This

problem can be circumvented by over-segmentation. Over-segmentation means that we first try

to find the smallest possible meaningful segments (letters, or parts of letters), which are called

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

69

primitive segments, and then later we try to assemble these primitive segments into letters based

on input from the character recognizer. Our algorithm also uses this approach, but tries its best

to segment the words into letters as accurately as possible in order to minimize the

computational cost associated with the assembly and re-recognition of compound segments.

Under segmentation must also be avoided because later these errors cannot be corrected easily

and may degrade the performance of the recognizer severely. It is also a great problem that

many times the word image in itself does not contain enough information to correctly segment it

into letters as illustrated in Figure 3.7.

Figure 3.7 An example for a word that cannot be correctly segmented based on the word
image alone (the word is “Conservative”)

3.4.1 Localization of the Upper and Lower Baselines, Skew Correction

Vertical location of a character within a word is important information for its recognition,

even human readers rely on it to discern letters [37]. This location is best described relative to

the upper and lower baselines of the word. The parts of letters that descend under the lower

baseline are called descenders while parts that ascend over the upper baseline are called

ascenders. Ascenders and descenders are distinguishing features of many letters such as p, q, b, l,

j, k etc. Encoding the location and number of descenders in the feature vectors passed to the

character recognizer could aid in the accurate recognition of the letters. For this to be possible

however, the baselines of the words must be calculated. The algorithm is somewhat similar to

the one used to calculate the line skew, but there are important differences.

The pseudo convex hulls are created as before, but a mask needs to be generated to

exclude parts of the word where only erroneous elements would be located (the upper half, when

computing the lower baseline, and the lower half for the upper baseline). This is not needed

when calculating the baseline for the whole line because there are enough local southern

elements on a line (since it is much longer), that the regression fitting will still be accurate. We

generated this mask by letting the HOLLOW template run longer (for 58τ), running the

FINDCENTER CNN algorithm [16] on the result, and then generating a shadow from the center

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

70

point using the SHADOWUP or SHADOWDOWN templates. The result is a mask that can be

used to specify where the following templates should be applied.

Once this is done, the local northern elements (LNE-s) have to be calculated in addition

to the southern elements because the upper baselines are also needed. The LNE-s are calculated

with the LNE template. Linear regression line fitting with outlier rejection is used to estimate

the baselines. Outliers are points that are farther from the word center than a given threshold;

this threshold can be estimated from the writing, it should be about half of the average word

height. After the baselines are found, the image is rotated so the lower baseline is horizontal.

The whole process is illustrated in Figure 3.8.

Word skew correction

PatchMaker &

FindCenter

ShadowDown

LSE

Linear regression

fitting with

outlier rejection

Calculate

skew

angle,

Rotate

PatchMaker &

FindCenter

ShadowUp

LNE

Linear regression

fitting with

outlier rejection

Figure 3.8 The word baseline locator algorithm

3.4.2 Images Aiding in Segmentation

The letter segmentation algorithm developed by us is based on the same ideas as the

segmentation algorithm described for touching numerals in [55]. The basic idea is that we can

gain meaningful information about the structure of a word by skeletonizing it and its

background, and locating the junction- and endpoints of the skeleton. By using these special

points, we are (mostly) able to construct the segmentation boundaries.

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

71

3.4.3 Skeletons of the Background

While pondering the problem of letter segmentation, we noticed an interesting property of

the skeletonized word image backgrounds and their correct segmentation boundaries: each

correct boundary line should start above the foreground skeleton (i.e. the word) and end under

it, and it may only cross the foreground skeleton once. This is a necessary condition. If we

skeletonize the whole background at the same time, identifying which endpoints are above and

below the word skeleton becomes an extra and not so trivial task. However if we take a different

approach, this step can be skipped.

Our main idea was that if the foreground skeleton image is 4-connected, then the skeleton

could be used as a barrier between the upper and lower parts of the background skeleton. This

can be exploited by flood filling the background from the upper and lower baselines at the same

time. This ensures, that if there are breaks in the word then the flood will not “overflow”.

These floods can then be separately skeletonized, and the characteristic points of the skeleton

identified. Flood filling can be very efficiently accomplished with trigger waves on CNNs. A

thorough description of trigger waves with CNNs, their properties and some applications can be

found in [58]. The template used for filling the background is the BPROP template and the

filling process is shown in Figure 3.9.

Figure 3.9 The background filling process using the BPROP template

The skeletonization algorithm described in [16] is suitable for general purposes but in this

particular application, the structure of the resulting skeleton is crucial, so we experimented with

different ordering of the skeletonization templates. This has a huge impact on the final skeleton,

as shown in Figure 3.10, which shows a selection of the possible different skeleton template

orderings. The most import criteria for the skeletonized background were:

• the vertical skeleton branches should split as little as possible, since this makes the

endpoint connection step (see next section) much easier

• the endpoints of the vertical skeleton branches should be as close to each other as

possible (for the same reason as in the previous point)

After running tests with different orderings of the skeleton templates, we analysed the

results and selected the ordering f) for later use. This method also generated skeletons that

contain relatively long straight segments, which is advantageous.

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

72

a) SKELE1-2-3-4-5-6-7-8

b) SKELE8-7-6-5-4-3-2-1

c) SKELE1-5-2-6-3-7-4-8

d) SKELE5-1-6-2-7-3-8-4

e) SKELE1-5-3-7, SKELE2-6-4-8, SKELE1-2-3-4-5-6-7-8

f) SKELE5-7-1-3, SKELE6-8-2-4, SKELE1-2-3-4-5-6-7-8

g) SKELE1-3-5-7, SKELE2-4-6-8, SKELE1-2-3-4-5-6-7-8

h) SKLHV1-2-3-4-5-6-7-8

Figure 3.10 Effect of different orderings of the skeletonization on the skeleton. The
number sequences after the template base name represent the order of the individual templates
used in the iterative skeletonization algorithm (these templates may be found in the Appendix)

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

73

3.4.3.1 Locating the Endpoints of the Background Skeleton

The endpoints of the background skeleton must be found since they form the basis of the

letter segmentation algorithm. By definition, a point on an 8-connected skeleton is an endpoint

if and only if it has exactly one neighbor. This definition closely follows our intuitive notion of

an endpoint except for two special cases. These two exceptions occur when there are branches

on the skeleton that are exactly 1 pixel long (this is shown in Figure 3.11). Even though the

interpretation is ambiguous (they could be considered only slight curves), we will mark them as

endpoints since we do not want to lose an endpoint of the skeleton under any circumstances.

a) b)

Figure 3.11 Special endpoint morphologies relevant for letter segmentation. The grey
pixels may be black or white. Only those morphologies are important for letter segmentation,
where the 1 pixel branch could be a vertical endpoint (these are shown in the figure)

To find the endpoints we first erase those points that have only 1 neighbor with the GETEP

template, then subtract the result from the original image. Afterwards, we find the special cases

with the TOPEP and BOTEP templates and merge these points with the previous ones. We use

the pseudo convex hulls as a mask to constrain the search area near the writing, because

skeletons sometimes have stray endpoints.

3.4.4 Skeletons of the Foreground

The foreground skeleton must be 4-connected for the above algorithm to work and

skeletonizing with the SKLHV templates (applying them in ascending order) can ensure this.

However, if the original word image was itself not 4-connected, then the resulting skeleton will

not be 4-connected either; therefore the original image has to be preprocessed to ensure 4-

connectedness. This can be done using the CONN4SE, CONN4SW, CONN4NE and

CONN4NW templates that fill a given pixel according to local rules.

3.5 Segmenting Words into Letters

After studying the skeletonization images of handwritten words, we have found only two

requirements that have to be filled by a correct segmentation boundary:

• no endpoint can be part of two boundaries at the same time

• a segmentation boundary must start at a top endpoint and end at a bottom endpoint

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

74

Unfortunately, these are not enough to filter and match the already identified skeleton endpoints

so some other heuristics are needed, which are illustrated in Figure 3.12.

Figure 3.12 Segmentation heuristics using skeleton endpoints. Sample locations where
different skeleton endpoint relationships require connection heuristics: locations 1, 3 and 4
require distance measurement while location 4 requires further post-processing

At location 1, the top and a bottom endpoints are located right next to each other so it is

certainly a segment boundary, since this can only happen where the top and bottom floods have

met because of a word break (here it signifies the start of the first letter). Location 2 shows an

instance where the skeleton needs post processing to unite the short branches that add only

clutter to the problem. We present a novel approach to solve this in the next section. Location

3 shows the average case where the top and bottom endpoints are located close to (within a

specified distance d), but not right next to each other. There is a boundary point where the

shortest path connecting these points intersects the word skeleton. Finally location 4 shows a

special case that is quite common, when there is only a top endpoint with a horizontal (or near

horizontal) line segment on the lower background skeleton. This is usually a segmentation point,

but has to be found separately from the other cases.

3.5.1 Post processing the Endpoints of Skeletons – Parallel Distance

Approximation

The objective of the algorithm is to replace the endpoints of two short branches of a

skeleton with one endpoint located approximately halfway between the original points and on

the same side of the word skeleton.

This problem can be efficiently solved using trigger waves with isotropic templates. Trigger

waves generated by an isotropic template (CPATCH) propagate with the same speed in all

directions, so they can be used to measure distance on and image.

In order to measure the distance between two points, we must be able to tell whether the

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

75

two wave fronts met while the waves propagated for a specified time (say t). If they have met,

then the two points are closer than two times the distance the individual wave fronts covered.

We can detect whether the wave fronts merged by running the inverse template (CWPATCH) for

the same amount of time (t). This will have the effect that in all places where the patches stayed

convex (which is the same as saying where the circles did not merge) only the original starting

pixels will remain, but where the wave fronts did merge, multi-pixel patches will be visible. This

is illustrated in Figure 3.13. We can give an upper estimate of the distance based on the running

time of the templates.

This algorithm has a very nice property from a performance point of view: the execution

time is only dependent on the distance one wants to measure and not on the number of points in

the image. The absolute or relative position of the points also does not affect the execution

time. This is in stark contrast to algorithms possible on a serial digital processor, where the point

relationships must be evaluated one pair at a time, resulting in an algorithm whose runtime is

Ο(n2), where n is the number of points in the image. Notice that the digital algorithm is not

dependent on the distance of the points. In a situation where the question is what the distances

between points (or certain points) are, the digital algorithm might be more appropriate, since the

distances are explicitly calculated. In the current application, however, only points within an a

priori given distance must be detected, and here the wave-based approach is faster.

Figure 3.13 Distance approximation with trigger waves. The black points are the starting
points; the red circles show the maximal extent of the wave fronts (after CPATCH) and the green
patches the result after applying the CWPATCH template

The “skeleton short branch merger” algorithm proceeds as follows (its flow chart is shown on

Figure 3.14):

1. Initialize a white image with the branch endpoints as the only black pixels.

2. Run the template CPATCH for xτ. This generates black circles with a radius r around

the initial points. Where the starting points were close to each other, the circles will

merge.

3. Run the inverse template CWPATCH for xτ. This shrinks the circles back to a point

everywhere where the circles did not merge (they stayed convex), and to more than one

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

76

pixel where they did.

4. Remove single pixels from the image with the FIGEXT template.

5. Find the center pixels of the remaining patches with the FINDCENTER CNN algorithm.

Skeleton Short Branch Merger

White image with branch endpoints as the only black pixels

The remaining points are the merged endpoints

Run CPatch for φφφφ

Run CWPatch for φφφφ

Run FigExt

FindCenter

Figure 3.14 Flowchart of the skeleton short branch merger algorithm

3.5.2 The Letter Segmentation Algorithm

1. Find the skeleton endpoints

2. Merge the endpoints on short branches, separately for the top half of the background

skeleton and for the bottom half (post-processing for situations similar to location 2 in

Figure 3.12)

3. Find the word breaks, i.e. those locations, where the top endpoints and bottom

endpoints are right next to each other (location 1 in Figure 3.12). Store these as

segmentation boundaries and remove them from further processing.

4. Find those skeleton endpoint pairs where one is on the top skeleton, the other on the

bottom skeleton and they are closer to each other than some predefined distance d

(location 3). This can accomplished by the algorithm described in 3.5.1, but run

FINDCENTER on the intersection of the foreground skeleton and the patches

remaining after CWPATCH. Add the center points to the segmentation boundaries and

remove them from further processing.

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

77

5. From the remaining top endpoints, generate vertical lines that are at most n pixels long

using the DPROP template. If these reach the bottom skeleton and the lines intersect

the foreground skeleton, then add the lowest intersection points to the segment

boundaries.

Letter segmentation

Word image with baseline data

Skeletonize the top half

of the background

(8-connected)

Skeletonize the bottom half

of the background

(8-connected)

Skeletonize the

foreground

(4-connected)

Detect background skeleton endpoints

Find word breaks

Filter close bottom

endpoints
Filter close top endpoints

Match endpoints

List of segmentation points

Figure 3.15 Flowchart of the letter segmentation algorithm

3.6 Discussion of the Results

We have run these line, word and letter segmentation algorithms on 10 pages of the

database. The line segmentation algorithm found every line on every page correctly. Statistics

for the word segmentation algorithm are shown in Figure 3.16.

Total number of lines processed: 169

Correctly segmented lines: 146 (86.39 %)

Incorrectly segmented lines:

 Lines w. more words than expected:

 Lines w. fewer words than expected:

 23 (13.61 %)

 12 (7.1 %)

 11 (6.51 %)

Figure 3.16 Word segmentation results

These results are quite good, since 87% of the lines were segmented correctly into words,

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

78

and out of the erroneous 23 there were only 11 lines with less words than expected. This is

important, because merging words afterwards is easier than splitting up words. This means, that

93.49% of the lines were either correctly segmented, or can be easily corrected.

Assessing the results of the letter segmentation algorithm is not as straight forward as that

of the other two. The problem is that there are many equivalent segmentation boundaries,

which cannot be identified easily by a computer program; one has to inspect the word images

manually, one by one, which requires an enormous amount of time and is error prone. Using a

statistical approach, we can evaluate the algorithm differently. Since the goal was over-

segmentation, we can assess the algorithm by comparing the number of segmentation boundaries

with the number of letters specified in the segmentation file, which will give us a rough estimate

of the effectiveness of the algorithm. These statistics are shown in Figure 3.17.

Total number of words found: 1201

Total correctly (over)segmented words: 890 (74.10 %)

Total incorrectly (under)segmented words: 311 (25.90 %)

Figure 3.17 Letter segmentation results for 7 pages

We also inspected the segmentation of random words visually to further grade the

algorithm. Results for a few words can be seen in Figure 3.18. Note, that there are a couple of

problem sites (encircled in blue), some of which are difficult to resolve even for a human reader.

It is also evident why automatic evaluation of the segment boundaries is very hard.

“real”

“judge”

“difficult”

“about”

“executive”

“segregation”

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

79

Figure 3.18 Letter segmentation results for a few sample words. The segment boundaries
have been manually enlarged to be clearly visible. The circles indicate problem spots

3.7 Conclusions

We have demonstrated that analogic algorithms can be utilized effectively in the

preprocessing and segmentation problems of off-line handwriting recognition. By avoiding

iterative methods and using propagating wave-based approaches where possible, the inherent

parallel processing capabilities of CNN arrays can be greatly exploited.

It is also evident from the results of the letter segmentation algorithms, that a linear “feed-

forward” approach (segmentation � recognition � preprocessing) may not be the best and

most robust way to tackle the problem, if additional linguistic information is available. Without

linguistic resources it is very hard to handle ambiguities in the handwriting styles, but it is true

the better the letter level segmentation of a word, the easier it is to recognize it even without

linguistic input.

Studies conducted on human subjects indicate that readers do not read a word linearly from

left to right, letter by letter, rather they try to identify the most distinctive letters first, such as the

ones that are at the beginning and the end of the word [37], and those with some prominent

features. If this limited information is sufficient to recognize the word with the help of context

information, they move on, otherwise they attempt to recognize more letters from the word.

Based on this knowledge and the results of the research described in this thesis, my colleague,

Kristóf Karacs started working on an offline handwriting recognition system that would utilize

an experimental framework, which would enable us to imitate this recognition process. It is

evident that the use of a lexicon based linguistic system - which is able to generate all

grammatically correct forms of the words of a language – from the earliest stages of processing

can provide additional information to support the segmentation and recognition phase. This

information could enable the dynamic reduction of lexicon size, selecting only candidate words

that fit a given feature set. Since segmentation is so tightly coupled to recognition, an approach

that utilizes recognition information during segmentation is expected to work better than a feed-

forward mechanism [75]. The structure of the described handwriting recognition system is

shown on Figure 3.19.

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

80

Preprocessing

Letter segmentation

Linguistic postprocessing

Thresholding Line localization
Word

localization

Downing

Feature extraction Lexicon lookup

Recognition

1

1

2

2

Figure 3.19 Block diagram of the proposed handwriting recognition system. The
numbered lines represent alternative paths to recognition. Path 1 shows the case when the
lexicon cannot help in reducing the number of candidate words and the word must be further
segmented and recognized. Path 2 illustrates the case when the lexicon lookup narrows down
the number of candidate words so effectively that recognition is “trivial”.

Human subjects rely heavily on so-called perceptual features such as ascenders, descenders,

t-crossings, loops and word length to identify words and letters when reading. The use of these

features as the basis of recognition is also worth considering, since the detection of these features

lends itself well to CNN algorithms.

Finally, it is worth noting that the same principle – using linguistics from the early stages of

recognition in a constructive way – would probably be equally promising in speech recognition,

where the problem is essentially the same, but instead of letters, the words and phonemes must

be correctly segmented and recognized.

81

4444 SummarySummarySummarySummary

In the dissertation, I have described two applications of the CNN-UM based wave

computing combined with conventional digital algorithms. These applications tackle real world

problems for which no adequate solutions have been presented in the literature.

I introduced a multitarget tracking system, which is capable of tracking targets moving at

high speed in a plane, and generating control signals to drive actuation. The CNN-based image

processing front-end of the MTT system is based on principles gleamed from the modeling of

mammalian retinal processing. The input image is processed in parallel channels that enhance

different aspects of the image, and these parallel channels are later combined into a single – and

very sparse – input representation, which is the basis of all further processing. The targets are

characterized by numeric features extracted (measured) from the input, and these features may

be used to filter out unwanted ones. Several different (and very efficient) measurement-to-track

data association routines were implemented along with fixed gain state estimation filters. The

output of the tracking algorithm was used to tune the internal parameters of the image

processing front-end to adapt to changes in the environment and hardware instability. I also

presented a demo application of the algorithm where the tracking results are used to drive a laser

scanner device to tag certain tracked targets.

In the 3rd chapter, I presented algorithms to handle the tasks of preprocessing handwriting

for recognition. These algorithms segment a handwritten page into lines, the lines into words,

and the words into letters solely based on the image of the handwriting. During the course of

this research, I devised an algorithm that is able to detect points in an image that are closer than

a given distance. The advantage of this algorithm compared to previous approaches is that it is

parallel so the execution time is independent of the number of points and their location in the

Summary

82

image. Based on the results of the segmentation algorithms and discussions with my colleagues

we decided that much better segmentation results – and hence recognition accuracy – can only

be obtained if available linguistic knowledge is exploited in a constructive way during the

segmentation process, much like the way humans approach the same problem.

4.1 Methods of Investigation

During my research, I relied on the tools of many disciplines. In the design of the tracking

algorithms I applied algorithms used in radar tracking and the results of studies that describe

their accuracy and efficiency. I analyzed the efficiency of algorithms with methods from

algorithm theory to be able to compare the proposed algorithms with those previously published

in the literature. For the CNN-UM algorithms, I utilized the template classes and the accrued

experience with them previously published in the literature. It was an important consideration to

choose templates that could be executed reliably on the CNN-UM chips available in our

laboratory ensuring the immediate practical use of the algorithms. In image processing

algorithms, I relied on the results of binary mathematical morphology and their CNN-UM

implementations.

In general, an important aspect of my algorithms is that for maximum speed and efficiency,

they utilize CNN and classical digital solutions executed on their respective platforms. I tested

the algorithm on PCs with Intel x86 architecture processors using the Matlab software suite

augmented with the MatCNN simulator and executed them on the ACE-BOX and Bi-i systems.

Both systems contain mixed-mode (analog-digital) CNN-UM chips; the former contains the

Ace4k with 64x64 resolution, the latter the Ace16k with 128x128. I also actively participated in

the design and development of the development environments of these systems.

4.2 New Scientific Results

1. Thesis: Adaptive, multitarget tracking algorithm and system

An important subtask in video flow processing is the tracking of targets moving at arbitrary

speeds with high precision and reliability. The challenges in these applications are the

filtering of the objects, the modeling of their motion, and – especially – the tuning of the

algorithm parameters during execution because of change environmental conditions. I

created an algorithm to solve these problems, which utilizes CNN-UM processors to filter

efficiently out the objects in the images and allows the easy adjustment of its parameters in

order to generate consistent output. I combined this algorithm with one of the best so-called

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

83

data association algorithms described in the literature and created a complete system that is

able to track multiple objects in real-time. Publications: [1],[10],[11],[15]

1.1 I developed an algorithm, which is able to efficiently track multiple objects in a

video flow and extract and classify their kinematic properties

The algorithm – relying on ideas from the mammalian retina – extracts the important

image features relevant to the task in several parallel channels, and combines them

through a special method developed by me. The results are then further filtered, and

using optimal data association methods the kinematic properties extracted, once the

objects have been located on the filtered image. The method also enables the user to

filter the tracked objects based on morphologic or kinematic properties.

1.2 I demonstrated that using the above algorithm, object saliency is better on the

filtered image in an average sense than on the individual channels.

I combine the output of the individual filter channels using a custom method (which can

be tuned thru several parameters). I showed that the data association algorithms provide

better results in an average sense (when no a priori assumptions can be used) if executed

on the combined filtered image than if run on the individual channels.

1.3 I demonstrated that by feeding back the results of the tracking to the

multichannel front-end, the accuracy of the tracking could be enhanced.

I used statistical and qualitative analysis on the tracking results to compute measures to

judge the accuracy of the tracking. I developed an algorithm to adjust the parameters of

the multichannel front-end based on these measures to increase the tracking accuracy.

2. Analogic segmentation algorithms for offline handwriting recognition

Segmentation problems are among the most difficult in offline handwriting recognition:

segmenting pages, lines and words before the commencement of the actual recognition. The

more accurate the segmentation, the easier and more accurate the recognition will be. I

developed analogic algorithms that are able to efficiently locate and segment an image of a

handwritten page into lines, the lines into words and the words into letters. The algorithms

exploit the wave computing capabilities of the CNN-UM architecture. Publications: [3], [14]

Summary

84

2.1 I developed methods to segment handwritten images into lines, and lines into

words.

I created an efficient algorithm to segment handwritten pages into lines, even if the lines

are somewhat skewed or non-straight. I also showed a method to reliably segment lines

into words for further processing.

2.2 I created a new algorithm to segment handwritten words into letters and showed

a new wave computing-based solution to find pairs of points in parallel, which are

closer to each other than a given distance.

I developed a word segmentation algorithm, which does not rely on semantic

information, thus it can be used for unfamiliar languages and texts. I utilized a wave

computing based method to detect points, which are within a given distance from each

other. An important advantage of this algorithm compared to conventional methods is

that the execution time is independent of the number of points and their location.

4.3 Application Areas of the Results

All of the algorithms described in the dissertation present solutions to real-world problems.

I showed that execution speed and accuracy of the multitarget tracking algorithm (1st thesis)

enables its use in control applications. To demonstrate this, with the help of my colleagues, I

built a laser targeting-tracking system, which is able to track and target with a laser multiple

objects moving at high speed in real time.

The multitarget tracking algorithm is also used in a software system whose task is the

surveillance and monitoring of indoor and outdoor industrial areas. There is great demand today

for complex surveillance systems, which take over the boring and error-prone tasks from human

personnel, but are able to trigger alarms, when needed. The use of the algorithm in this setting

has many advantages:

• It enables the triggering of alarms based on complex motion patterns (motion

trajectory, direction and speed, the number of moving objects, etc.)

• Kinematic properties may be used during object identification and classification,

which – in many cases – simplifies the task.

• The object tracking system supplies object location and speed prediction

information, which may be used to optimize processing at the later stages of the

surveillance algorithm

I also designed the algorithms for the preprocessing tasks of offline handwriting recognition

Analogic Preprocessing and Segmentation Algorithms for Offline Handwriting Recognition

85

(2nd thesis) with ease of use in mind. This means, that each of the templates is executable on one

of the commercially available VLSI CNN-UM chips, and the (possibly) low resolution of the

processors is not a barrier to application (128x128 in the case of Ace16k). I collaborated closely

with my colleagues who are working on the recognition of handwritten characters and words so

that it would be possible to interface the systems easily.

87

5555 BibliograBibliograBibliograBibliographyphyphyphy

5.1 Publications Related to CNNs and CNN Technology

[1] L. O. Chua and L. Yang, “Cellular Neural Networks: Theory and Applications”, IEEE

Trans. on Circ. & Syst., Vol. 35, pp. 1257-1290, 1988.

[2] T. Roska and L. O. Chua, “The CNN Universal Machine”, IEEE Trans. on Circuits and

Systems, Vol. 40, pp. 163-173, 1993.

[3] L. O. Chua, and T. Roska, “The CNN Paradigm”, IEEE Trans. on Circuits and Systems., Vol.

40, pp.147-156, 1993.

[4] L. O. Chua and T. Roska, “Cellular Neural Networks and Visual Computing” Cambridge

University Press, Cambridge, UK 2002.

[5] L. O. Chua “CNN: A Paradigm for Complexity”, World Scientific Pub. Co., 1998.

[6] L. O. Chua, “CNN: a Vision of Complexity ”, Int. J. of Bifurcation and Chaos, Vol. 7, No. 10,

pp. 2219-2425, 1997.

[7] T. Roska „Computational and Computer Complexity of Analogic Cellular Wave

Computers”, Proc. IEEE Intl. Workshop on Cellular Neural Networks and their Applications, 2002.

pp. 323-335.

[8] G. Liñán, S. Espejo, R. Domínguez-Castro, A. Rodríguez-Vázquez, “Ace4k: An analog I/O

64×64 visual microprocessor chip with 7-bit analog accuracy”, International Journal of Circuit

Theory and Applications, Vol. 30, No. 2-3, pp.: 89-116, 2002

[9] A. Rodríguez-Vázquez, G. Liñán, L. Carranza, E. Roca, R. Carmona, F. Jiménez, R.

Domínguez-Castro, and S. Espejo, “ACE16k: The Third Generation of Mixed-Signal

SIMD-CNN ACE Chips Toward VSoCs”, IEEE Transactions On Circuits and Systems, Vol. 51,

No. 5, pp. 851-863, 2004.

Bibliography

88

[10] S. Espejo, R. Carmona, R. Domínguez-Castro and A. Rodríguez-Vázquez “A VLSI

Oriented Continuous-Time CNN Model”, International Journal of Circuit Theory and

Applications, Vol. 24, No. 3, pp. 341-356, 1996.

[11] Cs. Rekeczky, T. Roska, and A. Ushida, "CNN-based Difference-controlled Adaptive

Nonlinear Image Filters", International Journal of Circuit Theory and Applications, Vol. 26, pp.

375-423, July-August 1998.

[12] Á. Zarándy: “The Art of CNN Template Design”, International Journal of Circuit Theory and

Applications, Vol. 27, No. 1, pp. 5-23, 1999

[13] T. Kozek, T. Roska and L. O. Chua: “Genetic Algorithm for CNN Template Learning”,

IEEE Transactions on Circuits and Systems−I: Fundamental Theory and Applications, Vol. 40,

pp. 392-402, June 1993.

[14] L. Nemes, L. O. Chua, and T. Roska: “Implementation of Arbitrary Boolean Functions on

the CNN Universal Machine”, International Journal of Circuit Theory and Applications, Vol. 26,

No. 6, pp. 593-610, 1998.

[15] H. Harrer and J. A. Nossek, "Discrete-time Cellular Neural Networks", International Journal of

Circuit Theory and Applications, Vol. 20, pp. 453-468, 1992.

[16] T. Roska and L. Kék, “CNN Software Library (Templates and Algorithms), Version 7.2”,

Analogical and Neural Computing Laboratory, Computer and Automation Research Institute, Hungarian

Academy of Sciences (MTA SzTAKI), DNS-CADET-15, Budapest, 1998.

[17] MatCNN is available from: http://lab.analogic.sztaki.hu/Candy/matcnn.html

[18] UMF Diagrams of CNN Algorithms and Specifications:

http://cnn-technology.itk.ppke.hu/UMF_Library.pdf

[19] Analogic Computers Ltd. http://www.analogic-computers.com

5.2 Publications Related to Multitarget Tracking

[20] V.S.S Hwang, “Tracking feature points in time-varying images using an opportunistic

selection approach”, Pattern Recognition, Vol. 22, No. 3, pp. 247-256, 1989.

[21] K. Sethi and R. Jain, “Finding trajectories of feature points in a monocular image sequence”,

IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 9., No. 1, pp.56-73, 1987.

[22] B. K. P. Horn and B.G. Schunck, “Determining optical flow”, Artificial Intelligence, Vol. 17, pp.

185-203, 1981.

[23] H.H. Nagel, “Displacement vectors derived from second order intensity variations in image

sequences”, Computer Vision Graphics and Image Processing, Vol. 21., No. 1, pp. 85-117,

1983.

Bibliography

89

[24] S. Blackman and R. Popoli, “Design and Analysis of Modern Tracking Systems”, Artech

House, 1999.

[25] Y. Bar-Shalom W.D. Blair ed., “Multitarget-Multisensor Tracking: Applications and

Advances, Vol. III”, Artech House 2000.

[26] B. Roska and F.S Werblin, “Vertical Interactions across Ten Parallel Stacked

Representations in Mammalian Retina”, Nature 410 (2001) pp 583-587.

[27] D. Marr, “Vision”, Freeman Publishers, 1982.

[28] R. Jonker R. and A. Volgenant, “A Shortest Augmenting Path Algorithm for Dense and

Sparse Linear Assignment Problems”, J. Computing, Vol. 38,pp. 325-430, 1987.

[29] D.P. Bertsekas, “The Auction Algorithm: a Distributed Relaxation Method for the

Assignment Problem”, Annals of Operation Research: special issue on parallel optimization, Vol. 14,

pp. 105-123, 1988.

[30] M. Balinski, “Signature Methods for the Assignment Problem”, Operations Research, Vol. 33,

No. 3, pp. 527-536, May 1985.

[31] Y. Bar-Shalom and E. Tse, “Tracking in a cluttered environment with probabilistic data

association, Automatica, Vol. 11, pp. 451-460, 1975.

[32] J. Munkres, “Algorithms for the Assignment and Transportation Problems”, J. Soc. Indust.

Applied Math, Vol. 5, No. 1, pp. 32-38, 1957.

[33] Jain, A. K., “Fundamentals of Digital Image Processing”, Prentice Hall, Englewood Cliffs,

NJ, 1989.

[34] Cs. Rekeczky, I. Szatmári, D. Bálya, G. Tímár, and Á. Zarándy, “Cellular Multi-Adaptive

Analogic Architecture: A Computational Framework For UAV Applications”, IEEE

Transactions on Circuits and Systems I, Vol. 51, No. 5, pp. 864-884, 2004

[35] T. DeMarco and T. Lister, “Peopleware – Productive Projects and Teams”, 2nd ed., Dorset

House Publishing, New York, NY, 1999.

[36] O. E. Drummond “Methodology for Performance Evaluation of Multitarget Multisensor

Tracking”, Signal and Data Processing of Small Targets, 1999, Proc. SPIE, Vol. 3809, pp. 355-369

5.3 Publications Related to Offline Handwriting Recognition

[37] Ertugrul Saatci and Vedat Tavsanoglu: “Multiscale Handwritten Character Recognition

Using CNN Image Filters”, Proceedings of the 13th International Joint Conference on Neural

Networks, IJCNN 2002, Honolulu, 2002.

Bibliography

90

[38] Tamás Szirányi and József Csicsvári: “High-Speed Character Recognition Using a Dual

Cellular Neural Network Architecture (CNND)”, IEEE Transactions on Circuits and Systems,

Vol. 40, pp.223-231, 1993.

[39] L. Schomaker and E. Segers: „Finding features used in the human reading of cursive

handwriting”, International Journal On Document Analysis And Recognition, Vol. 2, pp.13-18,

1999.

[40] G. Lorette: „Handwriting recognition or reading? What is the situation at the dawn of the

3rd millenium?”, International Journal On Document Analysis And Recognition, Vol. 2, pp.2-12,

1999.

[41] T. Steinherz, E. Rivlin and N. Intrator: Offline cursive script recognition – a survey,

International Journal On Document Analysis And Recognition, Vol. 2, pp.90-110, 1999.

[42] G. Kim, V. Govindaraju and S. Shrihari: An architecture for handwritten text recognition

systems, International Journal On Document Analysis And Recognition, Vol. 2, pp. 37-44, 1999.

[43] A. El-Yacoubi, M. Gilloux, R. Sabourin and C.Y Suen: „An HMM-based approach for

offline unconstrained handwritten word modeling and recognition”, IEEE Transactions On

Pattern Matching And Machine Intelligence, Vol. 21, No. 8, pp.752-760, 1999.

[44] S. N. Shrihari et al.: „Analysis of Textual Images Using The Hough Transform”, Machine

Vision and Applications, Vol. 2, pp.141-153, 1989.

[45] Y. Nakajima, S. Mori, S. Takegami and S. Sato: „Global methods for stroke segmentation”,

International Journal On Document Analysis And Recognition, Vol. 2, pp. 19-23, 1999.

[46] Il-Seok Oh and C.Y. Suen: „Distance features for neural network-based recognition of

handwritten characters”, International Journal On Document Analysis And Recognition, Vol. 1,

pp.73-88, 1998.

[47] P. Gader, M. Mohamed and J.H. Chiang: „Comparison of Crisp and Fuzzy Character

Neural Networks in Handwritten Word Recognition”, IEEE Transactions On Fuzzy Systems,

Vol. 3, pp. 357-363, 1995.

[48] M. Mohamed and P. Gader: „Generalized Hidden Markov Models – Part II: Application to

Handwritten Word Recognition”, IEEE Transactions On Fuzzy Systems, Vol. 8, pp. 82-94,

2000.

[49] Chiang: „A hybrid neural network model in handwritten word recognition”, Neural Networks,

Vol. 11, pp.337-346, 1998.

[50] Horváth G., Dunay R., Pataki B., Strausz Gy., Szabó T., Várkonyiné Kóczy A.: Neurális

hálózatok és műszaki alkalmazásaik, Műegyetemi Kiadó, 1998.

Bibliography

91

[51] MATLAB (4. és 5. Verzió). Numerikus módszerek, grafika, statisztika, eszköztárak, Typotex

Kft. Elektronikus Kiadó, 1999.

[52] Postal Service tests handwriting recognition system, (1999)

http://www.govexec.com/dailyfed/0299/020199k1.htm

[53] A. Senior and A.J Robinson: „An Off-line Cursive Handwriting Recognition System”,

IEEE Transactions On Pattern Matching And Machine Intelligence, Vol. 20, pp. 309-321, 1998.

[54] A. Senior LOB Database: ftp://svr-ftp.eng.cam.ac.uk/pub/reports/Senior_tr105.ps.Z

[55] Y. Chen and J. Wang: „Segmentation of Single- or Multiple-Touching Handwritten Numeral

String Using Background and Foreground analysis”, IEEE Transactions On Pattern Matching

And Machine Intelligence, Vol. 22, pp.1304-1317, 2000.

[56] Sayre: „Machine Recognition of Handwritten Words: A Project Report”, Pattern Recognition,

Vol. 5, No. 3, pp. 213-228, 1973.

[57] R.C Gonzales and R.E Woods: Digital Image Processing, Boston, Addison-Wesley, 1992.

[58] Cs. Rekeczky, L. Chua : „Computing with Front Propagation: Active Contour and Skeleton

Models in Continuous-Time CNN”, Journal of VLSI Signal Processing, Vol. 23, pp. 373-402,

1999.

[59] ParaScript Inc. AddressScript Literature:

http://www.parascript.com/objects/addressscript.pdf

[60] IBM Document Analysis and Recognition:

http://www.almaden.ibm.com/cs/DARE/homepage.html and

http://www.almaden.ibm.com/cs/dare.html

[61] B. Chandler, Cs. Rekeczky, Y. Nishio, and A. Ushida: “CNN Template Optimization by

Adaptive Simulated Annealing”, Proceedings of the International Symposium on Nonlinear Theory and

its Applications (NOLTA'96), pp. 445-448, Kochi, Japan, October 1996.

[62] T. Roska and L. O. Chua, “The CNN Universal Machine: An Analogic Array Computer”,

IEEE Transactions on Circuits and Systems−II: Analog and Digital Signal Processing, Vol. 40,

pp. 163-173, March 1993.

[63] P. Kinget and M. Steyaert. “Analog VLSI Integration of Massive Parallel Processing

Systems”, Ed.Kluwer Academic Publishers, 1996.

[64] P.P Civallierie and M. Gilli, “On Stability Of CNNs”, Journal of VLSI Signal Processing,

Vol. 23, pp. 429-437, 1999.

[65] K. R. Crounse and L. O. Chua, "Methods for Image Processing in Cellular Neural

Networks: A Tutorial", IEEE Trans. on Circuits and Systems, Vol. 42, pp. 583-601, October

1995.

Bibliography

92

[66] P. Thiran, K. R. Crounse, L. O. Chua, and M. Hasler, "Pattern Formation Properties of

Autonomous Cellular Neural Networks", IEEE Trans. on Circuits and Systems, Vol. 42, pp.

757-774, 1995.

[67] Tímár Gergely, Karacs Kristóf, “Offline-kézírásfelismerés hibrid neurális architektúrával”,

XXV. Országos Tudományos Diákköri Konferencia, Eger, 2001.

[68] Morita M., Bortolozzi F., Facon J. and Sabourin R., „Morphological approach of

handwritten word skew correction”, X SIBGRAPI’98, International Symposium on

Computer Graphics, Image Processing and Vision, Rio de Janeiro, Brazil, Oct. 1998.

[69] Graham R. L., Yao F. F.: „Finding the Convex Hull of a Simple Polygon”, J. Algorithms, Vol.

4, pp. 324-331, 1983.

[70] Karacs Kristóf, „Kézírás-felismerés”, Budapesti Műszaki és Gazdaságtudományi Egyetem,

2001.

[71] S. Edelman, T. Flash, and S. Ullman., „Reading cursive handwriting by alignment of letter

prototypes”, International Journal of Computer Vision, Vol. 5, pp. 303-331, 1990.

[72] M. Cheriet and C. Y. Suen, „Extraction of key letters for cursive script recognition”, Pattern

Recognition Letters, Vol. 14, pp.1009-1017, 1993.

[73] M. Cote, E. Lecolinet, M. Cheriet, and C. Y. Suen, „Automatic reading of cursive scripts

using human knowledge”, Proceedings Of The Int. Conf. on Document Analysis and

Recognition, pp. 107-111, 1997.

[74] R. Plamondon and S. Shrihari: “On-Line and Off-Line Handwriting Recognition: A

Comprehensive Survey”, IEEE Transactions On Pattern Matching And Machine Intelligence, Vol.

22, pp. 63-84, 2000.

[75] S. Madhvanath and V. Govindaraju: “The Role of Holistic Paradigms in Handwritten Word

Recognition”, IEEE Transactions On Pattern Matching And Machine Intelligence, Vol. 23, pp.149-

164, 2001.

5.4 The Author’s Publications

5.4.1 Journal Papers

[1] G. Timar, Cs. Rekeczky: “A real-time multitarget tracking system with robust multichannel

CNN-UM algorithms”, IEEE Transactions on Circuits and Systems I., Vol. 52(7), pp. 1358

– 1371, July 2005

[2] Cs. Rekeczky, I. Szatmari, D. Balya, G. Timar, A. Zarandy: “Cellular multiadaptive analogic

architecture: a computational framework for UAV applications”, IEEE. Transactions on

Circuits and Systems I,Vol. 51(5), pp. 864 – 884, May 2004

Bibliography

93

[3] G. Tímár, K. Karacs, Cs. Rekeczky, “Analogic Preprocessing and Segmentation Algorithms

For Off-line Handwriting Recognition”, Journal of Circuits, Systems and Computers, Vol.

12(6), pp. 783-804, Dec. 2003

5.4.2 International Conference Papers

[4] Cs. Rekeczky, G. Timar: „Multiple Laser Dot Detection and Localization within an

Attention Driven Sensor Fusion Framework”, IEEE International Workshop On CNN Theory

and Applications CNNA 2005, Vol 1., May 2005

[5] D. Balya, G. Timar, I. Szatmari, Cs. Rekeczky: “Efficient off-line feature selection strategies

for on-line classifier systems”, IEEE International Joint Conference on Neural Networks IJCNN

2004, Vol. 1, July 2004

[6] Cs. Rekeczky, G. Timar, D. Balya, I. Szatmari, A. Zarandy: “Topographic and non-

topographic neural network based computational platform for UAV applications”

IEEE International Joint Conference on Neural Networks IJCNN 2004,

Vol. 3, July 2004, pp:1763 - 1768

[7] D. Balya, G. Tímár, Gy. Cserey, T. Roska: “A New Computational Model for CNN-UMs

and its Computational Complexity”, IEEE International Workshop On CNN Theory and

Applications CNNA 2004, Vol 1., July 2004

[8] G. Timar, D. Balya: “Regular small-world cellular neural networks: key properties and

experiments” International Symposium on Circuits and Systems, ISCAS 2004. Vol. 3, May

2004 pp. III - 69-72

[9] D. Bálya, G. Tímár, I. Szatmári, and Cs. Rekeczky: "Classification of Spatio-Temporal

Features: the Nearest Neighbor Family", IEEE European Conference on Circuit Theory and Design

ECCTD 2003, Krakow, Sept., 2003

[10] G. Tímár, Cs. Rekeczky, L. Orzó and Sz. Tőkés: " Sensing-Computing-Actuation in a

Multi-Target Tracking Framework", IEEE European Conference on Circuit Theory and Design

ECCTD 2003, Krakow Sept., 2003

[11] G. Tímár, D. Bálya, I. Szatmári, and Cs. Rekeczky: „Feature Guided Visual Attention with

Topographic Array Processing and Neural Network-Based Classification”, Proc. International

Joint Conference on Neural Networks, Portland, USA, July 20-24 2003.

[12] Szatmári, D. Bálya, G. Tímár, Cs. Rekeczky, and T. Roska: "Multi-Channel Spatio-

Temporal Topographic Processing for Visual Search and Navigation", SPIE Microtechnologies

for the New Millennium 2003, Gran Canaria May, pp. 297-306

Bibliography

94

[13] Cs. Rekeczky, D. Bálya, G. Tímár, and I. Szatmári: "Bio-Inspired Flight Control and Visual

Search with CNN Technology", IEEE International Symposium on Circuits and Systems ISCAS

2003, Bangkok May, pp.III-774-777

[14] G. Tímár, K. Karacs, Cs. Rekeczky, "Analogic Preprocessing and Segmentation Algorithms

For Off-line Handwriting Recognition", Proc. 7th IEEE International Workshop on Cellular

Neural Networks and their Applications, Frankfurt am Main, Germany, July 2002., pp. 407-414

[15] Cs. Rekeczky, G. Tímár, and Gy. Cserey, „Multi-Target Tracking With Stored Program

Adaptive CNN Universal Machines”, Proc. 7th IEEE International Workshop on Cellular Neural

Networks and their Applications, Frankfurt am Main, Germany, July 2002., pp. 299-306

95

6666 Appendix: Appendix: Appendix: Appendix: CNN CNN CNN CNN Templates, Operators and Templates, Operators and Templates, Operators and Templates, Operators and

SubroutinesSubroutinesSubroutinesSubroutines

This appendix lists the templates, basic operators and subroutines used in the dissertation.

Where the Ace4k implementations are identified as ‘not stable’, it means that the operation of

that particular function could not be implemented in a way that could be run reliably and

repeatedly across different Ace4k chips. The operations themselves are possible and stable in

principle, but not on the Ace4k.

6.1 Basic Operators

Threshold – thresholds a grayscale input image at a given grayscale level. The output is a

binary image defined as follows:

1
(,)

0

ij

ij

if
Thr

otherwise

ϑ
ϑ

Φ ≥
Φ =



CNN implementation: by using the THRESH template.

Ace4k, Ace16k implementation: available (not stable).

Erode – calculates erosion of a binary input image with a specified structuring element B.

The set theoretical definition of the erosion based on Minkowski subtraction is as follows (-

denotes translation):

(,) { : }B in B in B inE ro d e B B b b BΦ = Φ ⊗ = ∩ Φ − ∈

CNN implementation: by using the EROSION template (feed-forward single-step erosion using

B-templates) or PROPE (feedback continuous erosion by a trigger-wave using A templates).

Ace4k, Ace16k implementation: iterated single step morphology - available (stable), continuous

trigger-wave computing – available (not stable).

Appendix

96

Dilate - calculates dilation of a binary input image with a specified structuring element B.

The set theoretical definition of the dilation based on Minkowski addition is as follows (+

denotes translation):

(,) { : }B in B in B inD ila te B B b b BΦ = Φ ⊕ = ∪ Φ + ∈

CNN implementation: by using the DILATION template (feed-forward single-step dilation

using B-templates) or PROPD (feedback continuous dilation by a trigger-wave using A

templates).

Ace4k, Ace16k implementation: iterated single step morphology - available (stable), continuous

trigger-wave computing – available (not stable).

Reconstruct * - calculates conditional (specified by a binary mask M) dilation of a binary

input image with a specified structuring element B. The set theoretical definition of the

reconstruction based on Minkowski addition is as follows (+ denotes translation):

(, ,) () { () : }
B inB in B in B in M B in B inR e c B M B B Mφ φΦ = Φ + = ∪ + ∩ ∈ Φ

CNN implementation: by using the RECONSTR template (single-step conditional dilation) or

PROPR (conditional continuous dilation by a trigger-wave).

Ace4k, Ace16k implementation: iterated conditional single step morphology - available (stable),

continuous conditional trigger-wave computing – available (not stable).

Sobel – enhances the edges on a grayscale input by performing a convolution with a nearest

neighbor directional Sobel-type operators (this assumes an 8-connected image):

1 2 2 1

1 2

1 2

(,)

1:

1 2 1 1 2 1 1 0 1 1 0 1
0 0 0 0 0 0 2 0 2 2 0 2
1 2 1 1 2 1 1 0 1 1 0 1

(*) (*)

(*) (*)

Out Gray

SH SH SV SV

SH SH

SH Gray Gray

SH SH

SV Gray Gray

Out SH SV

S

B B B B

B B

B B

σ
σ

Φ = Φ
=

− − − − −       
       = = = − = −
       − − − − −       

Φ = Φ + Φ

Φ = Φ + Φ
Φ = Φ + Φ

CNN implementation: by using the different variants of the SOBEL template.

Ace4k, Ace16k implementation: available (stable).

Laplace – enhances the edges on a grayscale input by performing a convolution with the

nearest neighbor discrete Laplace operator (the image can be either 4-connected or 8-connected):

* This operator is also called “Recall” in the CNN literature

Appendix

97

(4) (8)

0

0 0

0

(,)

0 1 0 1 1 1
1 4 1 , 1 8 1
0 1 0 1 1 1

1

*

Out Gray

Gray

Out

L

B B

for i to

B

end

σ

σ

Φ = Φ

   
   = − = −
   
   

Φ = Φ
=

Φ = Φ

Φ = Φ

CNN implementation: by using the different variants of the LAPLACE template.

Ace4k, Ace16k implementation: available (stable).

Gauss – calculates a low-pass filtered version of a grayscale image by performing a

convolution with the nearest neighbor discrete Gaussian operator (the image can be either 4-

connected or 8-connected):

(4) (8)

0

0 0

0

(,)

0 1 0 1 2 11 1
1 0 1 , 2 0 2

4 120 1 0 1 2 1

1

*

Out Gray

Gray

Out

G

B B

for i to

B

end

σ

σ

Φ = Φ

   
   = × =
   
   

Φ = Φ
=

Φ = Φ

Φ = Φ

CNN implementation: by using the GAUSS template.

Ace4k, Ace16k implementation: available (stable).

Diffuse – calculates a linear low-pass filtered version of a grayscale input image. The

formulation of the operation is as follows (* denotes convolution):

(,) * ()D iffu s Gσ σΦ = Φ

CNN implementation: the above equation describes a linear convolution by a Gaussian kernel.

Under fairly mild conditions at some time t this corresponds to the solution of a diffusion type

partial differential equation. After spatial discretization this can be mapped to a CNN structure

programmed by template DIFFUS. In this form the transient length is explicitly related to G (t ≈

√σ1).

Ace4k implementation: iterated convolution - available (stable), continuous diffusion –

available (not stable).

Ace16k implementation: continuous diffusion using the chip’s resistive grid capability

CDiffuse – calculates a linear low-pass filtered version of a grayscale input image. The

formulation of the operation is as follows (* denotes convolution):

Appendix

98

1 2 1 2 1 1 1 2 2 2(, , , ,) * () (1) * ()C D iffu s G Gα σ σ α σ α σΦ Φ = Φ + − Φ

CNN implementation: the above equation describes a homotopy in between two different

linear convolutions by a Gaussian kernel. Under fairly mild conditions at some time t this

corresponds to the solution of a constrained diffusion type partial differential equation. After

spatial discretization this can be mapped to a CNN structure programmed by template CDIFFUS.

In this form the B term directly approximates G2, while the transient length is explicitly related to

G1 (t ≈ √σ1).

Ace4k implementation: iterated convolution - available (stable), continuous diffusion –

available (not stable).

Ace16k implementation: continuous diffusion using the chip’s resistive grid capability and on

chip image arithmetic

6.2 Subroutines

Open – calculates N - step opening on a binary input image:

()

0

0 0

0 0

()

0

 (, ,)

 1

 (,)

 1

 (,)

n

Open Bin n

Bin

n

n

n

Open

F Open F B p

F F

for i to p

F Erode F B

end

for i to p

F Dilate F B

end

F F

=
=

=
=

=
=

=

Close – calculates N - step closing on a binary input image:

()

0

0 0

0 0

()

0

 (, ,)

 1

 (,)

 1

 (,)

n

Close Bin n

Bin

n

n

n

Close

Close B p

for i to p

Dilate B

end

for i to p

Erode B

end

Φ = Φ
Φ = Φ

=
Φ = Φ

=
Φ = Φ

Φ = Φ

Appendix

99

6.3 Linear, Isotropic CNN Templates

2 1 2 2 1 2

1 0 1 1 0 1

2 1 2 2 1 2

, ,

a a a b b b

A a a a B b b b z

a a a b b b

   
   = =   
      

Template Feedback (A) Control (B) Threshold BCond

 a0 a1 a2 b0 b1 b2 z Bc

HOLE 3 1 0 4 0 0 -1 -1
FIGREC 4 0.5 0.5 4 0 0 3 -1
FIGEXT 1 0 0 8 1 1 -1 -1

PRUNE 3 0.5 0 0 0 0 -1.5 0

BPROP 3 0.25 0.25 0 0 0 3.75 -1

WPROP 3 0.25 0.25 0 0 0 -3.75 1

CPATCH 3 0.25 0.2 0 0 0 3.65 -1

CWPATCH 3 0.25 0.2 0 0 0 -3.65 -1

HOLLOW 3 0.25 0.25 0 0 0 2.25 -1

GETEP 3 0.25 0.25 0 0 0 -1.25 -1

THRESH 2 0 0 0 0 0 -0.5 X

EROSION4 0 0 0 1 1 0 -4 1

EROSION8 0 0 0 1 1 1 8 1

DILATION4 0 0 0 1 1 0 4 -1

DILATION8 0 0 0 1 1 1 8 -1

RECONSTR4+ 0 0 0 1 1 0 4 -1

RECONSTR8+ 0 0 0 1 1 1 8 -1

GAUSS4 0 0 0 0 1/4 0 0 ZF

GAUSS8 0 0 0 0 2/12 1/12 0 ZF

LAPLACE4 0 0 0 -1 1/4 0 0 ZF

LAPLACE8 0 0 0 -1 1/8 1/8 0 ZF

SOBEL* 0 0 0 0 * * 0 ZF

PROPE 3 0.25 0.25 0 0 0 -3.75 1

PROPD 3 0.25 0.25 0 0 0 3.75 -1

PROPR 2 0.25 0.25 2 0 0 0.75 -1

DIFFUS 0 0.15 0.1 0 0 0 0 ZF

CDIFFUS 0 2/24 1/24 0 2/12 1/24 0 ZF

Figure 6.1 Table of the linear isotropic CNN templates used by the algorithms referred to
in the paper

Remarks:
 tF >= 5τ : the transient length of a non-coupled CNN operation

 + : this solution is a conditional iterative dilation

* : see the possible non-isotropic B operators in basic operator description

Appendix

100

6.4 Linear, Non-Isotropic Templates

DPROP:

0 1.75 0

0 3 0 , 0 , 3.75

0 0 0

A B z

 
 = = = 
  

LSE:

0 0 0 0 0 0

0 1 0 , 0 1 0 , 3

0 0 0 1 1 1

A B z

   
   = = = −   
   − − −   

LNE: Same as LSE, but the B matrix must be rotated around the center element by 180°

VCCD:

0 1 0 0 0 0

0 2 0 , 0 0 0 , 0

0 1 0 0 0 0

A B z

   
   = = =   
   −   

CONN4SE:

0 0 0 0 0 0

0 3 0 , 0 1 1 , 3

0 0 0 0 1 1

A B z

   
   = = = −   
   − −   

CONN4SW, CONN4NW, CONN4NE: Same as CONN4SW, but the B matrix must be

rotated around the center element by 90°, 180° and 270°

TOPEP:

0 0 0 0 0 0

0 1 0 , 1 1 1 , 5.5

0 0 0 1 1 1

A B z

   
   = = − − = −   
   − − −   

BOTEP:

0 0 0 1 1 1

0 1 0 , 1 1 1 , 5.5

0 0 0 0 0 0

A B z

− − −   
   = = − − = −   
      

SKELE1:

0 0 0 1 1 0

0 1 0 , 1 7 1 , 3

0 0 0 0 1 0

A B z

   
   = = − = −   
   −   

SKELE2:

Appendix

101

0 0 0 1 1 1

0 1 0 , 0 7 0 , 3.4

0 0 0 0.5 1 0.5

A B z

   
   = = = −   
   − − −   

SKELE3:

0 0 0 0 1 1

0 1 0 , 1 7 1 , 3

0 0 0 0 1 0

A B z

   
   = = − = −   
   −   

SKELE4:

0 0 0 0.5 0 1

0 1 0 , 1 7 1 , 3.4

0 0 0 0.5 0 1

A B z

−   
   = = − = −   
   −   

SKELE5:

0 0 0 0 1 0

0 1 0 , 1 7 1 , 3

0 0 0 0 1 1

A B z

−   
   = = − = −   
      

SKELE6:

0 0 0 0.5 1 0.5

0 1 0 , 0 7 0 , 3.4

0 0 0 1 1 1

A B z

− − −   
   = = = −   
      

SKELE7:

0 0 0 0 1 0

0 1 0 , 1 7 1 , 3

0 0 0 1 1 0

A B z

−   
   = = − = −   
      

SKELE8:

0 0 0 1 0 0.5

0 1 0 , 1 7 1 , 3.4

0 0 0 1 0 0.5

A B z

−   
   = = − = −   
   −   

SKLHV1:

0 0 0 1 1 0

0 1 0 , 1 7 1 , 2

0 0 0 0 1 1

A B z

− −   
   = = − = −   
      

SKLHV2 … SKLHV8: Same as SklHV1, but the B matrix must be rotated around the

center element one by one

