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who helped a lot in the English revision of the text.

iii

DOI:10.15774/PPKE.ITK.2012.003



The Operational Program for Economic Competitiveness (GVOP KMA),

The office of Naval Research (ONR) and the Hiteles Ember Foundation

for their support are greatfully acknowledged.

For the outstanding support of bringing the CAD models into real-

ity with 3D printing technology I would like to thank to VARINEX

Informatikai Zrt.

The loving support of all my family and my wife Bernadett helped me

through the hardest moments of this period.

iv

DOI:10.15774/PPKE.ITK.2012.003



List of Figures

2.1 A photograph of the sensor array . . . . . . . . . . . . . . . . . . . 8

2.2 Schematic diagram of the infrared LED control . . . . . . . . . . . 9

2.3 Schematic diagram of the photodiode readout circuit . . . . . . . . 10

2.4 The two experimental setup groups where the sensor array was tested 12

2.5 Distance measurement method, theory of operation . . . . . . . . . 15

2.6 Difference between the real θ and estimated θ′ values at different

number of iterations . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Measurement and simulation result of the sensor array of an object

placed 20 cm above, with and without angle of incidence correction 19

2.8 Scanning result of different kind of objects (cube, U-shape and H-

shape) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 Test case where the previous version of the sensor array was attached

on a bipedal robot feet in order to detect obstacles . . . . . . . . . 22

2.10 Scan result of different landmarks. On the top are the pictures of

the used landmarks and on the bottom the images created with the

sensor array attached on a mobile robot. . . . . . . . . . . . . . . . 23

2.11 Experimental result of a door-step detailed detection with a Power-

Bot type mobile robot, where the sensor was mounted on the front

bumper of the robot and was directed to the ground. . . . . . . . . 25

2.12 Localization experiment with the PowerBot type mobile robot . . . 26

3.1 Schematic drawing of the tactile sensor . . . . . . . . . . . . . . . . 33

3.2 The data acquisition board and a connected tactile sensor prototype. 34

3.3 Shematic drawing of the reflected lighs . . . . . . . . . . . . . . . . 35

3.4 Deformation of the semicircle . . . . . . . . . . . . . . . . . . . . . 37

3.5 Experimental setup to measure the tactile sensor pressure profile

along an axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Setups for measuring noise, impact and stroke . . . . . . . . . . . . 40

v

DOI:10.15774/PPKE.ITK.2012.003



LIST OF FIGURES

3.7 Static load response of the tactile sensor . . . . . . . . . . . . . . . 42

3.8 Maximal load measurement . . . . . . . . . . . . . . . . . . . . . . 43

3.9 Sensor output characteristic . . . . . . . . . . . . . . . . . . . . . . 44

3.10 Error between the real and calculated force incidence angle . . . . . 45

3.11 Calibrated tactile sensor output . . . . . . . . . . . . . . . . . . . . 46

3.12 Force measurement form different directions . . . . . . . . . . . . . 46

3.13 Noise, hammer impact, and brush stroke measurement . . . . . . . 47

3.14 Pulse shape measurement . . . . . . . . . . . . . . . . . . . . . . . 48

3.15 Measurement of the realaxation characteristic at different load levels. 49

3.16 Relaxation characterictic after the load was removed. At 0.25 s all

signal value dropped at least 86% and after a certain time returned

to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.17 The three layered sensor structure. . . . . . . . . . . . . . . . . . . 50

3.18 The moulding process of the elastic cover . . . . . . . . . . . . . . . 53

4.1 Current vs. voltage characteristics of the Chua’s diode . . . . . . . 57

4.2 Chua’s Circuit Schematic . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Snapshot of the Chua kit . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Snapshot of the second version of the Chua kit . . . . . . . . . . . . 61

4.5 Chua kit with the extension borad . . . . . . . . . . . . . . . . . . . 62

4.6 General architecture of programmable logic layer . . . . . . . . . . . 63

4.7 Coupling grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.8 The topologies and the weights, which were used in the experiments 65

4.9 Two connected Chua’s circuit at 0 Ω and at 10 K Ω . . . . . . . . . 66

4.10 The Chua’s circuits moves from de-synchronization to synchronization 66

4.11 SPICE simulation of two connected Chua’s circuits at 10 KΩ . . . . 67

4.12 SPICE simulation of two connected Chua’s circuits at 1 KΩ . . . . 67

4.13 SPICE simulation of two connected Chua’s circuits at 6.5 KΩ . . . 68

4.14 Simulation of the phase transition . . . . . . . . . . . . . . . . . . 68

4.15 Ten Chua’s Circuits were connected in 3D in a cross like topology . 70

4.16 Connecting 3x3 Chua’s circuits . . . . . . . . . . . . . . . . . . . . 71

4.17 A picture of the experimental setup where eight Chua’s circuits were

connected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vi

DOI:10.15774/PPKE.ITK.2012.003



DOI:10.15774/PPKE.ITK.2012.003



Summary of abbreviations

Abbreviation Concept

SLAM Simultaneous Localization And Mapping

PSD Position Sensing Device

US Ultrasound Sensor

ToF Time of Flight

LED Light Emitting Diode

DAC Digital to Analog Converter

ADC Analog to Digital Converter

SPI Serial Peripheral Interface

PC Personal Computer

LIPA Large Infrared Proximity Array

MEMS Microelectromechanical Systems

FSR Force Sensing Resistor

DOF Degree Of Freedom

PCB Printed Circuit Board

LUT Look Up Table

MSB Most Significant Bit

LSB Least Significant Bit

CAD Computer Aided Design

EEG Electroencephalography

CNN Cellular Neural Network

MUX Multiplexer

SPICE Simulation Program with Integrated Circuit Emphasis

DOI:10.15774/PPKE.ITK.2012.003



Contents

Acknowledgement i

List of Figures v

Summary of abbreviations viii

Contents ix

1 Introduction 1

1.1 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Infrared Sensor Array 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 General description of the sensor array . . . . . . . . . . . . . . . . 8

2.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Object scanning experiment . . . . . . . . . . . . . . . . . . 11

2.3.2 Mobile robot experiment . . . . . . . . . . . . . . . . . . . . 13

2.4 Signal post processing . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Sensor model . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Edge reconstruction and object outline detection . . . . . . . 16

2.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Measuring the angle of incidence . . . . . . . . . . . . . . . 18

2.5.2 Object scanning experiments . . . . . . . . . . . . . . . . . . 18

2.5.2.1 Edge reconstruction and object outline detection . 18

2.5.2.2 Surface trace . . . . . . . . . . . . . . . . . . . . . 20

2.5.2.3 Image registration . . . . . . . . . . . . . . . . . . 21

2.5.3 Mobile robot experiments . . . . . . . . . . . . . . . . . . . 22

2.5.3.1 Landmark detection . . . . . . . . . . . . . . . . . 22

2.5.3.2 Door-step detection . . . . . . . . . . . . . . . . . 24

ix

DOI:10.15774/PPKE.ITK.2012.003



CONTENTS

2.5.3.3 Map building (SLAM) . . . . . . . . . . . . . . . . 24

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Complaint 3D Tactile Sensor 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Design concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Sensor description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Theory of operation . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Static calibration of the sensor . . . . . . . . . . . . . . . . . 38

3.4.2 Characterization of the sensor . . . . . . . . . . . . . . . . . 38

3.4.3 Sensor capabilities . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Signal post processing . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.1 Static calibration of the sensor . . . . . . . . . . . . . . . . . 42

3.6.2 Characterization of the sensor . . . . . . . . . . . . . . . . . 43

3.6.3 Measuring the force incidence angle . . . . . . . . . . . . . . 43

3.6.4 Calibrated sensor output . . . . . . . . . . . . . . . . . . . . 44

3.7 Sensor capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7.1 Force directions . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7.2 Noise performance . . . . . . . . . . . . . . . . . . . . . . . 45

3.7.3 Hammer impact . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7.4 Brush stroke . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7.5 Pulse measurement . . . . . . . . . . . . . . . . . . . . . . . 47

3.7.6 Relaxation time . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 Layered structure of the elastic cover . . . . . . . . . . . . . . . . . 50

3.9 Sensor prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Studying Synchronization Phenomenon in Oscillatory and Chaotic

Networks 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Chua’s circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Chua’s circuit kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Chua’s circuit grid - general architecture . . . . . . . . . . . . . . . 59

4.5 Architecture implementation . . . . . . . . . . . . . . . . . . . . . . 61

x

DOI:10.15774/PPKE.ITK.2012.003



CONTENTS

4.5.1 Interconnecting interface . . . . . . . . . . . . . . . . . . . . 61

4.5.2 Programmable logic . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.3 Coupling grid . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6.1 Case 1. one dimensional coupled Chua’s circuits . . . . . . 65

4.6.2 Case 2. two dimensional coupled Chua’s circuits . . . . . . 68

4.6.3 Case 3. three dimensional coupled Chua’s circuits . . . . . . 69

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Summary 75

5.1 Main findings and results . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 New scientific results . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Application of the results . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography 81

xi

DOI:10.15774/PPKE.ITK.2012.003



CONTENTS

xii

DOI:10.15774/PPKE.ITK.2012.003



Chapter 1

Introduction

Emergence is a prevalent phenomenon in nature, when the cooperation in a simple

ruled system results the arise of a new feature or a new behavior (e.g.: cells form

organs). It is also interesting from an engineer point of view, where the interaction

of each element in a system could improve the overall performance (e.g: interpo-

lation) or new features can arise (e.g: robot cooperation). Therefore during my

research I aimed to use topologies where the interaction of the cells enhanced the

overall system performance.

The two main research fields:

• Novel sensor technology to improve the environment recognition

in robotics

• Synchronization in coupled oscillatory networks

The presence of robotics made the first breakthrough in the industry. Their

accuracy, workload capacity, reliability, have allowed high-quality and low cost

mass production. Since then, of course, big variety of size, shape and structure

robots has been developed. Due to the technological developments and research

robots are getting very common. There are plenty of solutions, which have been

trying to ease our ordinary life. Their appearance is tending to be more human

like as in a man-made word, a humanoid robot can adopt to the human made

tools and devices much more easily. For a humanoid robot, it is essential to walk.

This is a very interesting and intensively researched field, but we are still far from

the robust and stable walking. Although much progress has been made, there

are already statically stable walking robots [8, 9, 10] and there are some good

examples of dynamic walking [11, 12, 13].

1

DOI:10.15774/PPKE.ITK.2012.003



1. INTRODUCTION

Despite all this for the widespread use of robots we still have to wait. In a well

modeled environment even without sensorial feedback, they can already execute

a number of tasks [14], but they cannot adopt to a dynamic environment. The

problem is that robots must sense their environment, they must be connected with

the surroundings.

Humans during walking preidentify the obstacles ahead, their size, position, ori-

entation with the aid of vision (contactless sensing), and we can immediately mod-

ify our walking in order to avoid the obstacles with the lowest energy. Researchers

tried to use vision systems to do the same with humanoid robots [15, 16, 17] and

also equip with basic reflexes using contact based sensing [18]. However due to the

high computation power (object classification, image registration, 3D vision) it is

hard to make real time control. Furthermore, today robots cannot divide their vi-

sual attention between navigation or detecting interactions from the environment,

thus usually separate camera systems are used to each task [8].

This is why it is essential to use such a sensor (sensor systems) that produces

reliable and substantial information at low computation power. An other solution

cold be to use many sensors as a distributed system. Use separate sensor or sensors

(even in a reflex level) for example for obstacle detection that can provoke the

visual attention for identification and to make the necessary avoidance manoeuvres.

During our MSc studies with my collage József Veres we build a bipedal robot [3].

Our experimental results also demonstrated that in order to achieve stable and

robust walking it is crucial to connect the sensed environment into the control

(e.g: how the robot is standing respect to the ground).

Hence during my research I tried to create hardware implemented

contact base and contactless sensors (than can be used in any field of

robotics) wherewith the perception of the environment can be improved

at low computation power.

The other interesting research field is the coupled oscillatory arrays whose syn-

chronization is a prevalent phenomenon in nature [19]. Within this the chaotic

systems are already well-known for strange patterns in their phase space, which

has always attracted the research community [20, 21]. Even more stranger pat-

terns can be observed in case of two or more chaotic system connected in different

topologies [22]. Researchers already showed chaotic behavior in the brain using

EEG [23, 24]. Experimental results demonstrated formation of chaotic oscillation

in some part of the brain before an epileptic shock, where the propagation of the

spiking can be blocked with in-depth brain stimulation [25]. The same phenomena

2
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was also detected in case of arrhythmia [26]. To understand this kind of patterns

and phenomenons it is essential in order to create new cure or medical treatments.

However, until now most of the studies are based on only software simulations.

Therefor during my research I investigated an implementation where

oscillators (even chaotic oscillators) can be connected with variable

weights and topology.

With this tool, the software simulations could be validated or with using dif-

ferent topology and coupling weights new phenomenons may be observed or even

the real time behavior of simple (chaotic) oscillatory systems could be modeled.

1.1 Research Goals

The aim of my research was to create sensors (sensor arrays) to improve the today

robots’ capabilities to sense the environment. It was divided into two parts contact-

less and a contact based sensing. Contactless sensing is used to detect obstacles,

distances, outlines, occupied areas during the robot motion remotely. Contact

based information is more connected with the sensed object physical properties

where the stiffness, weight (forces), or even force distribution for balancing must

be detected.

Another goal was to create such a hardware implemented flexible architecture,

where interconnected oscillators behavior can be examined in real time in case of

different topology using several types of interconnection elements.

3
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Chapter 2

Infrared Sensor Array

2.1 Introduction

An essential function of mobile robots is to navigate safely around their environ-

ment. This function is necessary regardless of their main objective, be it pure

obstacle avoidance, object picking and placing, or in a more complex case, simul-

taneous localization and mapping (SLAM). Since mobile robots are often placed in

unknown environments, the use of sensor-based data to achieve object detection,

classification and localization is often a challenging problem. The more quickly and

precisely the robot can obtain sensorial information about its vicinity, the faster

and more reliably it can react. Assuming that contact with unwanted objects

should be minimized, all of the above tasks rely on distance measurement sensors.

Robots often need to know how far an object is, what it looks like and what

its orientation is. Camera systems are already used for creating 3D images of the

environment [27, 28], but mobile robots seldom use the data provided by cameras

for low level obstacle avoidance due to high computation power requirements. More

often, 2D laser scanners are used with a tilt mechanism to create the 3D scan

of the environment [29]. Despite their accuracy, their size and price present a

serious drawback. Traditional distance measurement sensors such as ultrasonic

and infrared Position Sensing Devices could also be used for creating 3D images of

an object [30],[31].

Ultrasonic (US) and offset-based infrared Position Sensing Devices (PSD) are

widely used in order to determine the distance of an object. US sensors measure the

time of flight (ToF) of the ultrasound signal emitted and reflected to the receiver.

A typical single data acquisition time for an object placed 50 cm away from the

5
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2. INFRARED SENSOR ARRAY

sensor is 3 ms. The main disadvantage of this kind of sensor is the poor angular

resolution. The detected object could be anywhere along the perimeter of the US

beam due to the wide (typically 35◦) angular sensitivity of the receiver. Because

of their relatively large size (of the order of d = 15 mm), dense arrays cannot be

constructed.

Offset-based infrared technology uses much narrower beams, both in the case of

measuring amplitude response and the offset of the reflected light. The most com-

mon offset-type infrared sensors are the Sharp GP series. They are very compact

(with a surface area of 44 mm × 13 mm), and have a low cost (∼10 US dollars).

These analog sensors are available in various measurement ranges, the shortest

sensing distance being 4 cm (Model GP2D120, range 4 – 30 cm), and the maxi-

mum being 5.5 m (Model GP2Y0A700K, range 1 – 5.5 m). In some applications,

even these compact dimensions and measurement ranges are not adequate. To fur-

ther complicate matters, the sensor has a maximum readout speed of 26 Hz (38 ms)

and the output signal varies nonlinearly with distance. Researchers already proved

it to be useful for object detection [32] and for creating surface-traces of various

objects [30], and for localization purposes [33, 34], but because of the sensor speed,

real time operation cannot be achieved in many applications.

In this chapter a new reflective type infrared LED and photodiode based dis-

tance measurement array is demonstrated as well as its potential usage for tracing

object outlines, surfaces and SLAM. The advantage of using a sensor array in the

detection of the angle of the reflected light and in increasing the pixel resolution

will also be demonstrated.

Although using the amount of reflected infrared light to measure distance is

a well-established method, its current applications are mainly restricted to object

avoidance, object detection and docking guidance [35]. In these applications, only

one LED-photodiode pair is used. The reconstruction of object outlines or surfaces

with many LED-photodiode pairs has not been studied yet. The main reasons for

this lack of research are the limitations of such detectors, namely the nonlinear

output characteristic and the high dependence of the received light on the reflective

properties of the object.

Despite the above limitations, the inherent high spatiotemporal resolution and

compact dimensions of infrared LED-photodiode pairs make them an important

competitor to other distance measurement methods. In contrast to other previously

mentioned methods such as ultrasound, the readout speed can be of the order of

MHz, and the analogue nature of the signal guarantees a high spatial resolution,

6

DOI:10.15774/PPKE.ITK.2012.003



with the readout circuitry and analog-to-digital conversion being the main limiting

factors. Indeed, it has been shown that LED-photodiode pairs are a viable way to

measure distances in the submicron [36] as well as decimeter [37] range.

There are some outstanding articles that utilize infrared sensors for distance

estimation ([36, 38, 39, 40]) and for localization purposes ([41, 42, 43]). The key is

if a prior assumptions about the given object distance (based on a US, PSD sensor)

or reflective properties of the object is given then the reflective type infrared sensors

can be used responsibly, or another good method is to try to find the maximum

energy of the reflective light [44]. However, with such knowledge distance cannot

be measured accurately since the sensor gives the same result if the sensed object

is close or it is white. It should also be noted that in the articles mentioned

previously, typically only a few infrared sensors are used on the robots (1 or 2

on each side), each sensor is independent, and the infrared LED control is an on-

off type. In [45] infrared sensors are used for creating analogue bumpers for a

mobile robot and for detecting whether an object is within range or not. As a

precursor to the method applied here, two infrared transceivers were used in [46]

to detect object orientation. Here, a more accurate iterative method will be shown

to calculate the object orientation. Pavlov et al. [47] showed how cylindrical object

location, trajectory and velocity of motion can be determined with 3 pairs of highly

directional infrared LED and photodiodes.

Building on our previous work Á. Tar et al. [4], a better sensor model and an

iterative method is given to calculate the angle of incidence, thus achieving a more

precise distance measurements with improved electronics.

7
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2. INFRARED SENSOR ARRAY

2.2 General description of the sensor array

Reflective type infrared sensors that have a coupled optical pair mounted in a re-

flective configuration are readily available (e.g. Model TCRT1000, Vishay Ltd,

US). These compact sensors only have one separator (between the infrared LED

and receiver) which could cause crosstalk in the array. In order to maintain maxi-

mal flexibility in the design and in order to be able to equally space the emitters

and the detectors in the array, the current work uses individual infrared LEDs and

photodiodes.

The infrared sensor array considered in this work consists of 8 infrared LEDs

and 8 photodiodes equally spaced in a 120 mm wide row, giving an 8 mm separation

distance (see Fig. 2.1). The infrared LEDs (Model TSHF5210, Vishay Ltd, US,

5 mm wide) was chosen to be highly directional with a narrow ±10◦ angle of

half intensity. Its peak wavelength is 890 nm, with a typical operating current of

100 mA producing a radiant intensity of 180 mW/sr. By using only short 100 µs

pulses, a current of 1 A may be used, which provides an intensity of 1800 mW/sr.

Figure 2.1: A photograph of the sensor array. The infrared LEDs (L) and pho-
todiodes (D) are mounted on a regular grid of 8 mm cells. The middle black
part acts as a separator between the infrared LEDs and photodiodes. On the top,
the number of the measured pixels (measured distance) are indicated and the way
they are measured is shown. Data is gathered from photodiodes on either side of
each LED, so the first pixel is measured with the first photodiode while the first
infrared LED is on, the second pixel is measured with the first photodiode but
using the second infrared LED illumination and so on. The array layout and this
measurement method will also help to determine the angle of incidence.

Each infrared LED in the row is switched independently with a PMOS tran-
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sistor and only one LED state is on at a time. A dynamic current control is also

implemented, using another PMOS transistor the gate of which is driven by a

16-bit resolution Digital Analog Converter (DAC). As the DAC output voltage is

decreased the transistor drain-source resistance (Rds) also decreases. Hence, the

current that flows through the LED can be controlled precisely. The schematic

diagram of the LED control is shown in Fig. 2.2.

Figure 2.2: Schematic diagram of the infrared LED control. The infrared LED
is switched ON if 0 voltage is applied on the PMOS transistor gate labeled with
LED. The second transistor limits the maximal forward current. Its resistance
(Rds) is proportional to the voltage applied on its gate with a 16-bit resolution
Digital Analog Converter (DAC).

The light received by the photodiode generates a photo-electric current that

is converted and amplified with a rail-to-rail amplifier. The output changes from

0 V (no reflection) to 5 V (saturation). In our experimental setup, this creates an

effective distance measurement range of 30 cm at 250 mA. The circuit schematic

is shown in Fig. 2.3. The anode of the photodiode (Model BPW34, Vishay Ltd,

US, 5.4 mm long, 4.3 mm wide) is connected to −5 V. This improves the sensor’s

transient behavior. Although the photodiode packaging is different from the in-

frared LED, this is because the photodiodes in the 5 mm diameter packaging have

a much smaller radiant sensitive area. This version has a 2.65 × 2.65 mm radiant

sensitive area with a 0.65 A/W spectral sensitivity at 850 nm.

Each sensor output is directly connected to a 24-bit resolution ADC (Model

ADS1258, Texas Instruments, US). The ADC has a built-in 16 channel analog

multiplexer and an 8-bit general purpose I/O register. The ADC sampling rate

with auto scan (through the 16 channels) is 23.7 kSPS per channel. This module

is configured via Serial Peripheral Interface (SPI) and its general purpose I/O

port is also accessed in this way. The 8-bit general purpose I/O port is used to

9
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2. INFRARED SENSOR ARRAY

Figure 2.3: Schematic diagram of the photodiode readout circuit. The photo-
electric current generated by the reflected amount of light is converted to voltage
and amplified with a precise amplifier.

control the infrared LED on/off state in the row. The DAC shares the same SPI

port with the ADC that is driven by a microcontroller running on 64 MHz (Model

dsPIC30F4013, Microchip, US). It is also responsible for the communication to the

PC via a USB port. In the test environment a PC was used to process the sensor

data as the aim was to demonstrate the capabilities of the sensor array in general

and not limited by the computation power. Nevertheless, efforts had been made to

use those methods that can also be implemented on a microcontroller. It should

also be noted that the ADC and DAC devices have higher accuracies than were

needed in the experiments, so the infrared LED current was quantized to 10 mA

steps and only 16-bit sampling was used at the sensor readout.
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2.3 Experimental setup

The capabilities of the infrared sensor array were tested in two different setups. In

the first setup the movement of the production line or mobile robot (including sen-

sor guided wheelchairs) was simulated, where the motion in x, y, z direction could

be measured based on sensorial data (e.g odometry) and straight line movements

were expected. In the second setup a PowerBot type mobile robot [48] was used.

2.3.1 Object scanning experiment

In this setup (Fig. 2.4/I.) a wooden cube, U-shape and a LEGO H-shape was

measured (Fig. 2.4/a,b,c). These objects were chosen as their dimensions are

comparable with the sensor array resolution. The sensor array was placed on the z

axis of an x, y, z table that was capable of moving with 10 µm precision. The sensor

array was moved only in the y direction and no movement was made in the x and z

axes. Since an 8×8 sensor array was tried to be modeled, the incrementation step

in the y direction was set to 8 mm. The angle of incidence was only approximated

in the x direction based on the measured pixels values in the array. In the scanning

procedure 3 different resolutions could be distinguished. The resolution in:

• x - the distance between the infrared LEDs and photodiodes in the array

(pixel resolution)

• y - the incrementation step that the table was moved (array resolution)

• z - the used measurement range and the used data converter (in depth-

resolution)

The scanning process was as follows:

1. The x, y, z table was moved to the starting position

2. Measurements were taken with the sensor array, which included offset and

ambient light cancellation

3. The table was moved 8 mm in the y direction

4. The measured data was sent to the PC

5. The binary output of the sensors was converted to distance on the PC
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Figure 2.4: Two experimental setup was made. In the first the sensor array was
attached on the z axis of an x, y, z table that was capable of moving with a10 µm
precision. The sensor array (SA) was moved only in the y direction, and each
scanned object (a,b,c) was placed on the xy plane. Simulating a bipedal robot
motion (i) an obstacle detection experiment was made with the previous version
of the sensor array [4]. In the second setup the sensor array was attached onto
the rear bumper of a PowerBot type mobile robot. The robot was driven with a
constant speed of 0.2 m/s on a smooth flat surface. The sensor array was at a
distance of 65 mm from the ground and looking down to the floor. The sensor
array was tested for detecting on-road landmarks for localization purposes (d,e,f),
door-step detection (g) and also a potential usage as supplementary sensor for
SLAM was tested (h).
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An additional experiment (Fig. 2.4/i) with the previous version of the sensor

array [4] was made. A case were the LIPA (Large Infrared Proximity Array)was

mounted on a bipedal robot feet was tried to be modeled. During the robot motion

the feet position of the swing phase leg can be calculated thus the appropriate

sensor output at each position can be registered and a higher resolution image can

be generated. To validate this theory this sensor array was also mounted on the

plotter table in the same configuration but it was also moved in the x direction.

2.3.2 Mobile robot experiment

The sensor array was attached onto the rear bumper of a PowerBot type mobile

robot. The robot was driven with a constant speed of 0.2 m/s on a flat surface.

The sensor array was at a distance of 65 mm from the ground and looking down to

the floor (Fig. 2.4/II.). As the robot was moving, several measurements were taken

with the sensor array: the sensor array was tested for on-road landmark detection

for localization purposes (Fig. 2.4/d,e,f), door-step detection (Fig. 2.4/g) and also

a potential usage as a supplementary sensor for SLAM (Fig. 2.4/h).
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2.4 Signal post processing

2.4.1 Sensor model

A general description of the sensor model will now be given, including a method

to obtain the angle of incidence. As has been mentioned, the current work uses

a linear array of 8 LED and photodiode pairs. The central idea of this section is

that by combining emitters and receivers across pairs, a resolution greater than

the spacing between LED and photodiode pairs can be achieved. The method

of building up an image pixel by pixel is now described. Data is gathered from

photodiodes on either side of each LED. The value of the first image pixel is

generated by measuring with the first photodiode during the first infrared LED

emitting, the second pixel is obtained with the first photodiode and the second

infrared LED and so on. This method results in 15 pixels in the array as can be

seen in Fig. 2.1. The array layout and the described pixel measurement method

will also help to determine the angle of incidence. A pioneering work by G. Benet

et al. [36] introduced the concept of using the inverse square law to determine the

distance of an object instead of the Phong illumination model. In keeping with

this law, Eq. (2.1) describes the dependence of the sensor output y(x, θ), on x and

θ, where x is the distance of the object and θ is the angle of incidence.

y(x, θ) =
αi · α0 · cosθ

x2
+ β (2.1)

where αi is the reflective properties of the sensed object at the viewing area, α0 is

constant (accounting for the radiant intensity of the used infrared LED, spectral

sensitivity of the photodiode, and the amplification), and β accounts for the level

of ambient light and the offset voltage of the amplifier. Because the photodiodes do

not have daylight filter attached, a measurement is taken without infrared emission

to obtain β due to ambient light and the offset voltage of the amplifier.

The αi parameter is usually obtained by using other distance calibration with

another distance measurement method such as US [49] (a distance measurement

is made with US and using Eq. 2.1 αi can be calculated).

An iterative solution to estimating the angle θ is presented. From Fig. 2.5, it

can be seen that
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Figure 2.5: This figure shows part of the sensor array, two photodiodes (D1, D2)
and between them an infrared LED (L1). The infrared LED illuminates the target
surface, which reflects the light to photodiodes with the angle of incidence θ. The
distance based on the first sensor reading is x1, and x2 for the second sensor. The
d parameter indicates the distance between the infrared LED and the photodiode.

θ = arctan(
x2 − x1

d
) (2.2)

where x1 and x2 are the perpendicular distances of object points (see Fig. 2.5)

and d is the spacing distance between photodiodes and LEDs on the sensor board.

Using estimates θ′, x′1, x
′
2 of the true values the following simple iterative steps are

taken:

1. Initialize θ′ to 0◦

2. Calculate x′1, x
′
2 using (1)

3. Calculate θ′ using (2)

4. Go back to (2) until convergence

The process is deemed to converge when the difference between two consecutive

estimates of θ becomes lower than a given threshold, in this case 1◦. Fig. 2.6 shows

the measurement errors at 0, 1 and 2 iterations for a number of angles in the −45◦

to 45◦ range. It can be seen that at every iteration step, the error decreases by
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about 25%. With only two iterations, the maximum error is already less than 0.3◦,

meaning only about ±6 µm uncertainty in the measurement when the angle of

incidence is around 45◦. This iterative process can be done without requiring new

sensorial data so it is implemented very fast, even on a microcontroller. With this

method the iteration number can be dynamically varied based on the requested

precision or on the current value of the angle of incidence.

Figure 2.6: Difference between the real θ and estimated θ′ values obtained with
Eq. 2.2, with different number of iteration used. It can be seen that the error level
after the second iteration process is smaller than 0.3◦ at the angle of incidence 45◦.
This corresponds to a ±6 µm uncertainty in the measurement.

2.4.2 Edge reconstruction and object outline detection

Even though the infrared LEDs are highly directional, some light does get reflected

off the sides of the scanned object, causing blurring along the scanning direction.

To counter this effect, a fourth order polynomial fit is made in the scanning direc-

tion and normalized into a 0-1 range. The image is then scaled using the normalized

polynomial fit. This operation preserves the face of the object while sharpening

the edges. It is emphasized that in the case of a 2D sensor array, the need for

mechanical scanning – and hence the need to deblur – arises less often.

The outline of the object has to be known in order to have safe navigation or

to make interaction. For example, a robotic manipulator has to know the occupied
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areas in its working space at a given height for avoidance or for picking or placing

objects. As the infrared sensor array supplies single view 3D back projection

images of the object by creating a surface cut at a certain threshold, the resulting

images will indicate the occupied areas at the height of the cut. To determine

this threshold one solution could be to make the cut near to the detected ground.

Alternatively the threshold could be determined according to a specific task: for

example, in the case of the robot manipulator, the height of the cut could be the

same height where the end effector is, or in the case of a mobile robot it could be

the height of the maximum object which the robot can drive through without a

problem.
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2.5 Experimental results

The capabilities of the sensor array were tested by measuring the angle of inci-

dence with the proposed method in Section IV. The results of the object scanning

(Fig. 2.4/I.) and mobile robot experiment (Fig. 2.4/II.) are presented.

2.5.1 Measuring the angle of incidence

To validate the proposed method, an experimental setup similar to Fig. 2.5 was

devised. A flat object was placed 20 cm above the sensor array. Only the angle

of incidence was changed between −45◦ to 45◦ and the object distance was fixed.

Fig. 2.7 shows the simulated and the measured distances. It can be seen that

without giving assumption for the angle of incidence, the distance measurement

can have a relatively high error (∼15%).

After using the iterative process described above, the error was substantially

decreased after only three iterations, both in the case of the simulation and mea-

surement. In the case of the real array, a 3 mm error could still be obtained after

three iterations (object 20 cm away, at 45◦). This was caused by the measure-

ment noise; however, the measurement error was decreased by about one order of

magnitude.

2.5.2 Object scanning experiments

2.5.2.1 Edge reconstruction and object outline detection

In the case of the scanning experimental setup (Fig. 2.4/I.) the data was processed

as follows: first the sensor raw output was compensated for offset and ambient

light and converted to distance and labeled as ’original image’, then the angle of

incidence correction method was used, and finally, the image is then scaled us-

ing the normalized polynomial fit to create the ’result image’. After the scanning

process, the outline and the surface of the detected objects was tried to be recre-

ated. The first measured object was a red wooden block cube (Fig. 2.8/a). On

the original image the effect of the smoothing in the scanning direction can be

well distinguished that was much lower in case of the result image. The top view

of the original and result images also can be observed on Fig. 2.8/a where the

threshold function was set to 2 cm and the result is marked with white lines. In

case of the original image it marked a 6×4 pixel sized area and in case of the result

image it marked a 4×4 pixel array, where each pixel size was 8 mm (both in the
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Figure 2.7: Measurement and simulation result of the sensor array of an object
(placed 20 cm above) at different angles of incidence, with the assumption that the
angle of incidence is 0◦ (in Eq. (2.1) cosθ was equal to 1). This could be corrected
with an iterative method where an assumption for the angle of incidence could
be given. As the third and fourth line show the simulated and measured distance
after 3 iterations using this method highly improves the distance measurement.

x, y direction) suggesting that the scanned object dimensions were W = 32 mm,

L = 32 mm.

The second scanned object was a solid wooden U-shaped block (Fig. 2.8/b).

The edges of the U-shape were smoothed because the object was not well aligned

with the sensor grid. The middle curve was measured to be 5 mm smaller than

the actual distance because of the deflection from the inner curve of the U-shape.

On the top view the side edges and the size of the object are visible. To outline

the object, the surface cut was made near the ground at 1 cm. The outline of

the object was marked successfully, as can be seen on the top view in Fig. 2.8/b.

The outline suggests that the dimensions of the object were W = 32 mm and

L = 96 mm.
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Figure 2.8: Results of the experimental setup I. (Fig. 2.4/I.), where the (a),(b),(c),
objects were placed under a x, y, z plotter table. The x axis indicates the number
of the pixels, y is the scanning direction (also marked with an arrow) and the z axis
shows the distance in cm. The original image is made from the sensor row output
after ambient light and offset compensation and conversion to distance. The result
of the angle of incidence correction is presented. During the scanning process, as
the sensor array moved closer to the measured object,light is also reflected from
the side of the object causing false distance estimation and blurring the edges in
the scanning direction. To sharpen these edges the images were scaled by their
normalized polynomial fit creating the result image. The top view of each object
shows the size of the object in case of the original image and result image where a
threshold function was applied and the result is marked with white lines.

2.5.2.2 Surface trace

The sensor array capabilities for object surface-trace reconstruction were also tested

using a shiny object (Fig. 2.4/c). As can be seen in Fig. 2.8/a where a cube was

measured the object flat surface was successfully recreated except near the edges.

Also in Fig. 2.8/b, the real object can be recognized but the edges were blurred.
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As a conclusion this sensor array was capable of creating surface-trace of objects

but only in a limited way. To demonstrate these problems, an H shaped structure

from red LEGO blocks was formed. The result of the scanning process can be seen

in Fig. 2.8/c. Since the surface of the LEGO was shiny, and the small joining parts

on the top were scattering thus false peaks in the distance measurement appear.

Hence, the angle of incidence correction cannot be used as in this case the false

peaks were even more increased. The main problems of the procedure were with

the edges as there were deflection and scattering. As a consequence detailed objects

were hard to capture. Also the surface of the object should be diffuse otherwise

the effect of the scattering was higher. However, the outline of the object could

still be recognized as the top view of the original image demonstrated.

2.5.2.3 Image registration

Three coin batteries (d = 20 mm, h = 5 mm) were placed under the sensor array,

two on each other and one next to those 2.9/(a). If a camera had been mounted

to the robot feet an ideal output image would be 2.9/(b) (note that, from such a

small distance, special fish-eye lenses and correction algorithms would be needed

to produce such an image), where there are no additional information about the

object high. The sensor low resolution image (8x8) can be seen in 2.9/(c). From

such an image hard to make reliable decisions about any of the object’s properties.

By only making eight additional image (during the robot leg in motion) with

the sensor array in each direction a higher resolution image can be created 2.9/(d),

where the object form, hight and width can be more clearly depicted. If a higher

resolution is needed it can be achieved by using more sensors in the array or making

smaller incrementation steps in each direction. Thus the time (how long it takes

to create a registered image) and the number of sensors can be optimised.

With this method by using a low resolution sensor array obstacle detection can

be made. The number of the registered and jointed images can be dynamically set

based on the resolution needed, or it can be based on visual attention (if an object

is detected than the number of images can be increased).
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Figure 2.9: The previous version of the sensor array (describen in [4]) was attached
to a bipedal robot [3] in order to detect obstacles under the robot feet (a). (b)
shows an ideal case when a camera was attached to the robot feet and image
was captured (note that, from such a small distance special fish-eye lenses and
correction algorithms would be needed to produce such an image) (c) is the low
resolution output of the 8x8 sensor array. Simulating the robot feet motion with
the plotter table during its motion an extra 8 sensor measurement was made in
each direction, and these were registered and joint together to produce a higher
resolution image (d) where the object outline and the fact that the second object
was higher can be depicted. 1

2.5.3 Mobile robot experiments

2.5.3.1 Landmark detection

Materials at the same distance but with different reflection properties could be

used to mark objects or to code information, for example different kinds of shapes
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can be drawn on the surface and could be used as landmarks for navigation.

A plus, a triangle, and a square shape were formed on the floor using 1.5 cm

wide and 10 cm long white strips of masking tape. The robot was driven over

each shape and the measurement result can be seen on Fig. 2.10. In case of the

plus shape (Fig. 2.10/a) the edges were blurred but recognizable. The result could

be improved by using wider strips, or by using a color that provides higher contrast

to the background (floor). Fig. 2.10/b shows a triangle; the middle of the triangle

was hardly captured because of the reflection from the side strips. The vertices

of the triangle were missed as they were smaller than the pixel resolution. In the

case of the square (Fig. 2.10/c) the corners gave higher responses than the straight

parts. This was because the used white strip was somewhat transparent and the

more layer were covering the more light was reflected. Thus at the corners where

two strips are overlapping the given landmark reflects more light. This can also be

observed with the other shapes as well.

Figure 2.10: Scan result of different landmarks. On the top are the pictures of
the used landmarks and on the bottom the images created with the sensor array
attached on a mobile robot.

1Image used with permission of Miklós Koller, the image was created as a part of his M.Sc
degree under my supervision
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2.5.3.2 Door-step detection

The PowerBot was driven over on a door step (phase S1 − S2 in Fig. 2.11/c). The

two high responses visible in Fig. 2.11/a,b near to S2 were the highly reflective

metal protectors on the edges, a wooden surface in between.

A longer scanning result (∼4 second) of a drive through process is shown in

Fig. 2.11/b (each main phase is indicated in Fig. 2.11/c).

After the robot started to move the doorstep was detected before the front

wheel reached it. As the front wheels got on the door step the distance between

the ground and the sensor was increased thus less light was reflected to the sensor.

A straight motion was recorded until the rear wheels arrived to the door step and

pushed the robot front down thus the distance between the ground and the sensor

was decreased and more light was reflected to the sensor.

With this method the doorstep (or any obstacle) and each phase of a drive

through process can be detected before the robot reaches, and based on the mea-

sured sensor output it can be decided to stop the mobile robot or increase the

speed to be able to go through the obstacle. It should be noted that precise (ma-

terial independent) measurement could be done by using supplementary distance

measurement sensor (for instance, ultrasound).

2.5.3.3 Map building (SLAM)

In a proof of the concept localization experiment, the PowerBot robot was driven

on the linoleum floor of the laboratory. The measured data (part of a map) can be

seen in Fig. 2.12/a. Shorter straight motion was also made in the same region; the

sensor output is shown in Fig. 2.12/b. It could be easily depicted, with commonly

used SLAM techniques, which part of the previously made motion was repeated

and in this way the location of the robot could be estimated.

It should be noted that seeing the experimental results, the proposed measure-

ment technique might give a possible solution for the problem of low cost SLAM

at home or in industrial robotics. However, creating SLAM with a one row sensor

array pattern matching would be too difficult without knowing the exact speed

and orientation of the robot. This problem probably could be solved by extending

the sensor array into 2D (8×8 or more), but this claim has to be supported by

further experiments in the future.
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Figure 2.11: The sensor array was mounted on a PowerBot type mobile robot front
bumper and was directed to the ground, measurements were taken while the robot
was moving. (a) shows the sensor output of a door-step while the PowerBot is
driven over with a constant speed (phase S1 − S2 in (c)). The high peaks in the
measurements are caused by the metal protectors on the door-step edges, and in
between the wooden surface can be seen. (b) shows a drive through process where
each phase of the drive through process can be recognized (the cross-section for
each sensor value have been plotted on top of each other) and (c) indicates each
phase. The robot started to move after S1, the edge of the door-step is detected
at S2. After the sensor array got through the door-step there was a straight
motion (between S2, S3) indicating higher sensor responses as the floor material
was different in this room. At S3 the distance of the sensor array was increasing
from the ground as the first wheels got on the door-step and lifted the front side
of the mobile robot. S4 indicates when the back wheels reached the door-step and
pushed the robot front down and after a straight motion in the new room could
be observed S5.
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Figure 2.12: (a) shows a scan result of part of a laboratory (covered with linoleum).
The changes in the raw output is caused by the color/contrast change in the ma-
terial.(b) shows the result of a second scanning process on part of the same area.
By comparing the two images it can be identified which part of the motion was
repeated (marked with white dotted line on (a)). This sensorial data could be used
as supplementary data for creating SLAM.
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2.6 Conclusion

In this chapter a novel infrared LED and photodiode based distance measurement

array has been presented. The two main advantages of the system are the fast

readout speed and high resolution in the distance measurement. Additionally, the

array structure helps to improve the pixel resolution and also helps in the calcu-

lation of the angle of incidence. The sensor array capabilities were examined for

outline and surface-trace detection of various objects. The device has proved useful

but with some limitations. One problem is the deflection that smooths the edges.

Furthermore, the reflected amount of light highly depends on the brightness of the

object, but this could be improved by using a supplementary distance measurement

sensor (e.g. US). Measurement results with a mobile robot were also presented. A

door-step was successfully measured and each phase of the drive through process

could be well distinguished. It was also shown that the developed sensor array

was capable of detecting ground landmarks for navigation purposes. The measure-

ment accuracy could be improved by using higher resolution sensor array (smaller

distance between the infrared LED and photodiode) and more directional light

source.

Although the presented solution may not be as accurate as for example laser

scanners or camera systems are, normally low resolution data is enough for object

detection, avoidance and classification tasks. Also in those environments where the

operation speed is crucial and computation power has to be small a compromise has

to be made between resolution and speed. This sensor array could be useful in many

applications, for example in production lines for object classification or orientation

detection, or in robot navigation (landmark detection), obstacle avoidance and

detection and for SLAM in consumer and industrial robotics. The summary of the

contributions are the following:

• a new solution has been given for object outline and surface trace detection

with 8×1 LED-photodiode pair based sensor array

• resolution greater than the spacing between infrared LED and photodiode

pairs has been achieved

• an iterative method has been described to calculate the angle of incidence

for achieving more precise distance measurement

• mobile robot applications (landmark, doorstep (obstacle) detection) has been

examined for localization purposes
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As conclusion the following thesis points can be stated:

Thesis I.:

Object outline and surface trace detection using 3D imaging based a low resolution

proximity array containing infra LEDs - photodiodes.

A: I have designed and implemented a low resolution infra LED - photodiode

based proximity array. Using several photodiodes to detect the reflected light

from each infra LED, an iterative method was developed to calculate the angle

of incidence in case of flat objects with known αi parameters, to achieve more

precise distance measurement.

B: A new method has been given to decrease the smoothing effect at object edges

during the sensor array motion.

C: I have demonstrated in mobile robot experiments that the sensor array is capa-

ble of detecting on road localization landmarks and obstacles before crossing.

Published in: [1]
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Chapter 3

Complaint 3D Tactile Sensor

3.1 Introduction

Robots today are already able to perform various tasks such as walking or dancing.

In a well modeled environment even without external sensorial feedback, they can

already execute a number of tasks [14]. In an unstructured environment however,

they must sense their surroundings and make contact with various objects. Equip

today’s humanoid robots with an advanced grasp and manipulation capabilities

are the ultimate goal. In order to create complicated manipulation tasks, tactile

information is essential. The robot hand equipped with tactile sensors should be

capable of detecting when contact occurred and should be able to identify shapes,

object texture, forces and slippage. There are only a few tactile sensors available

on the market and most of these sensors have a rigid structure. A typical single

sensor type is the Force Sensing Resistor (FSR) available in many shapes and sizes

(d=5 - 50mm). Larger matrix based sensor arrays are available from e.g. Tekscan.

Both of these are only capable of measuring normal forces.

The basic problem with these kind of sensors, as demonstrated by Russell [50],

is that rigid tactile sensors provide little information for all but very flat and hard

objects.

Compliant tactile sensors would allow the sensor surface to deform on the

gripped object thus the contact area increased and the stability of the precision

grip. And in case of power grasping the compliant surface would also help to share

the forces on a bigger area. In many researches a soft material is placed on these

rigid sensors to meet this need [51] but this solution makes the tactile inversion

problem even harder.
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3. COMPLAINT 3D TACTILE SENSOR

A few articles describes compliant tactile sensors which are suitable to use on

a robotic hand. One interesting fingertip tactile sensor is presented by Choi et al.

[52] using polyvinylidene fluoride (PVDF), and pressure variable resistor ink to de-

tect normal forces as well as slip. Hellard et al. [53] shows a sensor array utilizes

the properties of optical dispersion and mechanical compliance of urethane foam.

As a force is applied onto the urethane foam due to the compression the intensity of

scattered radiation is increased and the photodetector output will change accord-

ingly. The greatest advantages of this sensor are the easy manufacturing process,

durability, scalability, low cost and having good sensitivity. However, covering a

larger area with a dense sensor array (e.g 25 sensing points per square cm) on a

robot hand is very hard to achieve. One reason for this is that the data produced

by such an array is hard to process. The physical implementation of the wiring is

even more challenging. Researchers try to create wireless solutions [54] or use op-

tical methods to decrease the number of the wires [55]. Most of the optical tactile

sensors utilize a CCD or CMOS camera to capture the deformation of a surface

caused by external force [56] they are multitouch but their size and computation

power makes it difficult to use on a robot hand yet. Another very clever solution is

to place a six DOF force/torque sensor inside the fingertip [57, 58]. The applied

force can be measured and the point of contact can be calculated on the whole

surface of the fingertip [59].

Tactile sensors placed on a robot hand should not just sense the normal forces,

but should also be able to detect the force incidence angle. Most of 3D sensors are

MEMS based [60] and have already proven to be useful in detecting and identifying

slippage and twisting motion [61]. However covering larger areas would be too

difficult.

In this chapter, an easily scalable (fingertip or palm sized) 3D optical tactile

sensor covered with a compliant surface is presented. The silicone rubber cover

makes it prone to contact and will increase the grasp stability. A layer structured

silicone cover is also presented to increase the noise performance and reduce the

size. The presented sensor prototype is 35 mm in diameter and 30 mm high, and the

point of contact, direction and magnitude of the applied force can be measured on

the whole surface. The sensor output is analog and request only a minimal number

of electrical component to connect to a microcontroller or to a PC. It has a robust

structure with a respectable overload capability, high sensitivity (threshold 2g),

high static load range (≥2000:1), and high speed operation (in KHz range).
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3.2 Design concepts

The elastic deformation of a material is proportional to the applied force. If the

compression of the material is measured and its Young modulus is known than the

applied force can be calculated. In this way, the force measurement problem can

be turned into a distance measurement problem.

To measure distance in a non contact way the traditional methods are the

ultrasonic and optical solutions. The US sensor measures the time of flight (ToF)

of the ultrasound signal emitted and reflected to the receiver. Today’s ultrasonic

sensors have an average diameter of 15 mm and the minimal sensing distance of a

few centimeters (3 cm). The most common offset-based Position Sensing Devices

(PSD) such as Sharp GP series are a size of 44 mm x 13 mm with a minimal

sensing distance of 4 cm (Model GP2D120, range 4-30 cm).

Unfortunately using these sensors would make the tactile sensor too large due

to their dimensions and minimal sensing range. A possible solution could be to

use infrared LED and photodiode pairs, arranged in a reflective configuration. The

reason why this method is not frequently used for accurate distance measurements

is that the reflected amount of light highly depends on the reflective properties

of the sensed object surface thus material independent distance measurement is

difficult to achieve. However, in this case, where the used elastic material properties

are constant it can be used responsibly.

The tactile sensor surface should be prone to contact with any kind of object

at any kind of angle. For this reason, the shape of its surface was chosen to be a

hemisphere like. The sensor should also have a reliable overload capacity before

permanent damage is caused. The dynamic range should be in KHz range in order

to be able to detect vibration. The composed material should be durable and

in-expensive with a repeatable sensor response with no (or minimal) hysteresis.
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3. COMPLAINT 3D TACTILE SENSOR

3.3 Sensor description

The base of the tactile sensor is composed of three photodiodes and an infrared

LED. The photodiodes are placed around a circle at every 120◦ and an infrared

LED is in the middle (Fig. 3.1/a). This is covered with a hollow elastic dome

as a spherical interface, made form silicone rubber (RTV-2 type), that is fixed

to the PCB (Fig. 3.1/b). The thickness of the dome will determine the range

of measurement: the thinner it is, the more it will deform for a given load. The

number of the used components and their size makes the sensor size easily scalable.

The sensor capabilities highly depend on the photodiodes amplification value, the

photodiode sensitivity, infra LED power and the material of the cover to obtain

an optimal solution their relation should be analyzed.

The optical measurement method helps to achieve a high dynamic range both,

in the distance, and in the time domain. The sensor read out speed could be even

in the MHz range, and as the output signal is analog the achieved resolution only

depends on the used Analog to Digital Converter (ADC). The sensor structure is

very durable, if the external force is greater than the maximum desired force applied

onto the elastic dome, it can be deformed until it reaches the PCB level resulting

in a respectable overload capacity. As the silicone cover material has elastic and

viscoelastic properties after the force was released a relaxation period could be

observed, which was proportional with the applied force, however to modell this

phenomena is part of the future researches.

The basic mechanism of the 3D tactile sensor is that the amount of force mea-

sured with the three separated photodiode are used to estimate tridirectional forces

imposed on the sensor. The measurement principle is as follows: the infrared LED

lights illuminate the inner structure of the dome. At no force, the reflected amount

of light to each photodiode is equal. A force applied on the surface will result in

deformation, on this region the surface of the dome will be closer to a given pho-

todiode thus more light will be reflected to that sensor (Fig. 3.1/b).

For practical purposes, only three photo diodes were used in the first prototype.

As a result, the equations (Eq. 3.3) are only approximations as in this case

the origin of the calculated axis is not in the center (on the infra LED), thus

to measure the independent x,y force component, this offset must be taken into

account. However, by using four photo diodes, each axis can be calculated as the

difference of the two opposite photodiodes on one axis and in this case the origin

will be in the middle of the infra LED without having an offset.
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Figure 3.1: Schematic drawing of the tactile sensor, the three photodiodes are
placed around on a circle at every 120◦ and an infrared LED is in the middle
mounted on a PCB board (a). It is covered with an elastic hollow dome. A
force applied on the elastic cover will result deformation (b). This deformation is
proportional to the reflected light to the appropriate photodiode thus the applied
force can be measured. The basic mechanism of the 3D tactile sensor is that the
amount of force measured on the three separated pressure are used to estimate
tridirectional forces imposed on the sensor. The proof of the concept version of the
sensor is presented on (c), with the hollow elastic silicone cover (d) and the PCB
(e).

The measurement of the three photodiodes (S1,S2,S3) could be used to estimate

the normal (Fz) and the tangential force components (Fx,Fy) using the following

equations:

Fx = k(
(S2 − β2) + (S3 − β3)

2
− (S1 − β1)) (3.1)

Fy = k(S2 − β2)− (S3 − β3)) (3.2)
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3. COMPLAINT 3D TACTILE SENSOR

Fz = k(

∑i=1
3 (Si − βi)

3
) (3.3)

where βi is composed of two values namely the sensor output without infrared

light emission (sensor offset) and the sensor output with infrared light emission at

no force applied (calibration value) and k is the spring constant (now it is taken

to be one).

The used infrared LED (Model TSHF5210, Vishay Ltd, US) is driven by a mi-

crocontroller (Model PIC24HJ32GP204, Microchip, US). While the infrared LED

is on the photodiodes (Model BPW34, Vishay Ltd, US) outputs after amplification

are converted to digital with a 24 bit ADC (Model ADS1258, TI, US) (but only

18 bit resolution is used where the two highest MSB is negligate thus the output

representation is 16bit) and are sent to the PC via a USB port (Fig. 3.2).

The photodiode characteristic is non-linear, to be closer to the linear output

in the measurement range the infrared LED current is set based on its output

characteristic. Thus the photodiode output characteristic will have the highest

change at the range where no load or maximal load applied. As the measuring

method is optical the infra light illumination must be very stable. Although the

infra LED is current controlled, illumination change during the system initialization

could be observed, this was because of the temperature changing inside the LED

caused by the current flow. Even so, as soon as the LED crystal reached its working

temperature (∼1 min) the output signal became stable.

Figure 3.2: The data acquisition board and a connected tactile sensor prototype.
The board is capable of processing the signals of two sensors and it sends to the
PC through USB port.
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3.3.1 Theory of operation

In this section a short description will be given about the sensor simplified operation

in 2D case. The inside of the semicircle is illuminated with a point light source

(infra led) with an intensity of L from its middle point (origin), and the reflected

amount of light is measured in two points (photo diodes) equally placed from the

origin with a distance of DS (Fig. 3.4).

Figure 3.3: Schematic drawing of the semicircle where in the origin is the point
source (infra LED) and on two sides are the detectors SL, SR (photo diodes). The
red lines represent the light rays from the point source, and with blue and black
lines the reflected ray to the detectors are marked, r is the radius of the semicircle
and DS is the detector distance of the origin.

Based on the inverse square law the light intensity at each point of the semicircle

can be calculated:

LC(r) =
L

πr
(3.4)

where r is the radius of the semicircle, C is the circumference and s is the length of

the arc. Each point on the semicircle is taken as a new light source so to calculate

the reflected amount of light to each photo diode (SL: photo diode left, SR: photo

diode right). The inverse square low is used as well. The distance between the
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3. COMPLAINT 3D TACTILE SENSOR

photo diode and semicircle points can be expressed as:

DSR(α) =
√

(r cos(α)−DS)2 + (r sin(α))2, α ∈ [0, π] (3.5)

DSL(α) =
√

(r cos(α) +DS)2 + (r sin(α))2, α ∈ [0, π], (3.6)

where α is calculated in radian and can be expressed based on the length of the

arc:

α =
s

r
(3.7)

Thus by using the inverse square low the intensity at each photo diode can be

calculated using the following equations:

LSR =

∫ C
2

0

L

πr

1

π
√

(r cos( s
r
)−DS)2 + (r sin( s

r
))2
ds (3.8)

LSL =

∫ C
2

0

L

πr

1

π
√

(r cos( s
r
) +DS)2 + (r sin( s

r
))2
ds. (3.9)

To simulate this model the equations were solved using numeric approximation

in Matlab. The semicircle radius was set to r=30 mm and the light intensity to

L=10W/sr with N number of rays. The number of rays were set to 18000 as in

this case the simulation error settled at a reasonable level of 0.006%, so in the

simulation αi goes from 0 to π with an increment of π/N but for practical reasons

on the figures only 18 rays are plotted. The deformation was added to the model by

overwriting the semicircle equation between two arbitrary angles. For example, by

setting it from 60◦ to 120◦, the y(αi) = y(αi− 1) (where αi ∈ [0, π]) the semicircle

top will be flat as it can be seen in Fig. 3.4/b. This method results that the original

length of the semicircle arc will be changed, thus Eq. 3.7 is no longer true. In case

of deformation, the circumference can be calculated by summing the length of the

arcs using the following equation:

C =
π∑
i=1

√
(x(αi + 1) + x(αi))2 + (y(αi + 1) + y(αi))2 (3.10)

Using a different deformation factor the light intensity was measured at point

SL and SR as it can be seen in Fig. 3.4/a. Without deformation both intensities
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(LSL,LSR) are the same. If there is a deformation parallel with the ground (x axis),

then the intensity will be increased equally both in SL and SR. In case of side

deformation the light intensity increases on the same side as the deformation was,

thus it can be stated that the degree and direction of deformation is proportional

with the measured light intensity at point SL and SR.

Figure 3.4: Deformation level of the semicircle at different direction of forces.
On the top of each figure, the measured intensity LSL, LSR is shown. (a) shows
the initial state without deformation where LSL and LSR is equal. In (b) the
deformation is parallel with the x axis and both LSL and LSR measures the highest
intensity. (c) and (d) show the deformation from left and from right where the
measured light intensity is higher at the deformation side.
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3. COMPLAINT 3D TACTILE SENSOR

3.4 Experimental setup

To measure the characteristic of the developed sensor, three experimental setups

were made. In the first instance (Static Calibration of the Sensor), different loads

were applied onto the sensor surface to measure the linearity. In the second setup

(Characterization of the Sensor) the sensor output was examined at a given load

at different angles. Finally (Sensor Capabilities) the noise and force measurement

capabilities were tested.

3.4.1 Static calibration of the sensor

The sensor was fixed on a scale (1 g precision, maximum load 5 kg) and static load

was applied on to the center point of the sensor’s surface (∼1 cm2 area). The load

was increased with 10 g precision from 0 g up to 4 kg and the sensor output and

the appropriate scale value were recorded to the PC.

To determinate the maximal load where the sensor output saturates a household

scale was used. The sensor was placed on the scale and was pressed with a plotter

table z axis at a small constant speed (2 mm/s). In this way a linear increasing

tendency in the applied weight can be achieved. The maximal applied load was

limited to 20 kg (limitation of the plotter table).

3.4.2 Characterization of the sensor

Due to the manufacturing process, the silicone dome can have some asymmet-

ric qualities and even a small misalignment on the PCB can lead to errors in

the measurement results. In order to validate the proposed sensor force measur-

ing capabilities at different force incidence angle an experimental setup was made

(Fig. 3.5/a). The sensor was mounted on rotary joint (Fig. 3.5/b) that is capable

of moving from 0◦ to 360◦ in the x axes with the precision of 0.001◦. This rotary

joint was mounted on the z axes of a x, y, z plotter table that is capable of mov-

ing with 10 µm precision. An Andilog precision calibration tool (Fig. 3.5/c) was

used (Model ANDILOG Centor, Fr) to measure the force applied to the sensor

surface. It was placed under the sensor and fixed to the ground (Fig. 3.5/d) and

was equipped with a pointed tip (Fig. 3.5/e with an end diameter of 2 mm).

The calibration process is as follows:

1. The rotary joint was set to the start angel (-60◦)
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Figure 3.5: In the experimental setup the tactile sensor was placed on a rotary
joint which was connected to a x, y, z plotter table (a). The sensor (b) was rotated
around its middle point (p) from -60◦ to 60◦ (d). Under the sensor a calibration
tool (c) was placed (Model ANDILOG Centor, Fr) to measure the force applied on
the sensor surface. The sensor was moved in the z direction with 20 µm steps and
its output and the Andilog output was recorded on a computer.

2. The sensor was moved closer to the Andilog with 20 µm steps in the z axis

until a contact condition measured (applied force grater than 0.02N)

3. The sensor and the Andilog output saved on the computer than the distance

was decreased with 20 µm steps until a threshold value reached (3N)

4. The rotary joint angle increased with five degree

5. If the joint angle was less than 60◦ than go back to (2)

In this way the sensor pressure profile can be measured along an axis.
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3. COMPLAINT 3D TACTILE SENSOR

3.4.3 Sensor capabilities

The tactile sensor capabilities are demonstrated in four experiment regarding to

different quantities:

• force directions

• noise performance

• hammer impact

• brush stroke

• pulse measurement

• relaxation time

In the first test the sensor was pressed from each side to demonstrate its ca-

pabilities to measure different force directions. Then the sensor noise performance

was tested without any external force applied (3.6/a). The sensor sampling rate

was set to a nominal 100 Hz. The end of a hammer (260 g and 25 cm long) was

fixed to a rotational joint and was dropped on the sensor surface (3.6/b). After

the test with the hammer the sensor surface was firmly stroked with a painting

brush (3.6/c) to proof the wide force sensitivity. The sensor was also challenged

to measure the pulse shape and the heart rate by pushing the sensor to the arte-

ria carotis (3.6/d). In the last test, the sensor relaxation time was examined at

different loads.

Figure 3.6: In case of experimental setup (a) the sensor was left untouched in
order to obtain noise, in (b) the sensor was hit with a hammer and than was firmly
stroked with a painting brush (c), in (d) the sensor was pressed to the arteria
charotis to measure pulse.
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3.5 Signal post processing

To calibrate the tactile sensor the Andilog calibration tool output was used as

reference. In case of experimental setup (Characterization of the Sensor) the mea-

surement procedure was repeated 10 times. The maximum deviation in the load

measured, both in case of the Andilog and sensor output, was around ±10 g. The

mean values of the measurements were used for calculating the error rate between

the Andilog and the sensor output. These values were saved into a load Look Up

Table (LUTload(α)) and stored in the local memory, where α is the force incidence

angle. At the next sensor readout, the appropriate value from the LUTload(α) (for

the given angle) was used as a scaling factor to compensate the sensor output. To

calculate the force incidence angle in the x direction the following equations can

be used:

α = arctan(x2/x3) (3.11)

where xi is distance based on the Si-th sensor output.

To calculate the force incidence angle (α) the x1, x2, x3 values are needed thus

the definition is recursive, but an iteration process can be used. Using the measured

force vectors, the force incidence angle can be approximated with Eq. 3.11. The

LUTload(α) value can be used on the force vectors to correct the approximated α.

With this approximated α the force vector can be corrected thus a more accurate

α can be calculated.

Another method for calculating the force incidence angle is to characterize the

error of the force incidence angle measurement and save into a LUTangle(α’).

The calibrated sensor output was constructed in three steps:

1. Based on the sensor raw output (S1, S2, S2) approximation for (x1, x2, x2) was

made and α (α’) was calculated

2. The LUTangle(α’) was used to correct the approximation for α

3. The x1, x2, x2 values were corrected with the LUTload(α) value
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3. COMPLAINT 3D TACTILE SENSOR

3.6 Experimental results

3.6.1 Static calibration of the sensor

At the 4 kg load, the sensor surface deformation was ∼6 mm. This would indicate

a deformation of approximately 2.2 µ at 1 g. The correlation between the sensor

output and the applied load can be examined in Fig. 3.7. The sensor output (mean

value of the photodiodes) was highly linear with an average deviation of ±35 g and

with the maximum difference of 80 g (2 %).

Figure 3.7: Static load response of the tactile sensor. The solid line shows the
sensor output as different weights were placed on the tactile sensor surface from
0 g to 4 kg in 10 g incrementation steps. The dashed line shows a linear fit on the
sensor output.

To determinate the maximal load where the sensor output saturates an exper-

imental setup Fig. 3.8/b was made. Because of the limitation of the plotter table,

the maximal measured weight was around 20 kg, by further increasing the applied

weight by stepping on the sensor its output saturated at around 23 kg.

As it can be seen in Fig. 3.8/a in the higher load range the sensor output shows

nonlinear characteristic versus the linear interpolation value of the applied load.

The high load capacity makes the sensor ideal to use not just in the robotic hand

but also in the feet of a bipedal robot to measure the force distribution or in mobile
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robotic as analog bumpers, etc.

Figure 3.8: Maximal load measurement. (b) shows the experimental setup, where
the sensor was placed on a household scale and was pressed with the z axis of the
plotter table. The maximal applied load was increased in 6 s from 0 to around
20 kg a linear interpolation of the measured weight versus the sensor output can
be seen in (a).

3.6.2 Characterization of the sensor

The sensor load characteristic was measured at every angle as explained in section

IV. The threshold load was set to 2 g and the maximal applied load was 300 g.

The measurement started at -60◦ to 60◦ with the incremental steps of 5◦. During

the measurement process the distance between the sensor surface and the Andilog

was set in 20 µm steps. The Andilog and the sensor output were saved at every

iteration. Because the controlled parameter in the measurement was the position

(distance) of the sensor over shoots at the stop condition occur (due to the incre-

mental steps). The values which were closer to the stop condition were used as the

reference load. The Andilog output and the sensor output value at every rotation

angle can be seen in Fig. 3.9.

The sensor output was non-linear in the angle range and the non-symmetrical

to the 0◦. The non-linearity was caused by that the light distribution was not

homogeneous in the dome due to the small angle of half intensity (±10◦) of the

infrared LED used. The non-symmetricity of the characteristic was due to the

misaligned and asymmetric dome.

3.6.3 Measuring the force incidence angle

To calibrate the tactile sensor output the force incidence angle has to be known in

order to use the appropriate (LUTload(α)) correction value. In the measurement

setup (Fig. 3.5/a) as the sensor was rotated around its middle point the force
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3. COMPLAINT 3D TACTILE SENSOR

Figure 3.9: The Andilog reference value at different sensor rotation angle and the
measured sensor output value can be seen. The sensor output was non-linear in the
angle range and the non-symmetricity to the 0◦ was caused by the non symmetric
and misaligned dome.

incidence angle equals to the sensor rotation angle. The calculated force incidence

angle using Eq. 3.11 and the sensor angle (based on the encoder of the rotation

joint) can be seen in Fig. 3.10 where the error is saved into the LUTangle(α).

3.6.4 Calibrated sensor output

The calibrated sensor output can be seen in Fig. 3.11 at different loads (100 g,

200 g, 300 g). As the Static Calibration of the Sensor experiment showed, the

sensor characteristic was close to linear in the load range, thus the error rate

values stored in LUTload(α) was obtained at a given load at a given force incidence

angle of α. After the calibration steps the sensor and the Andilog output has an

average error rate of 5 g and the maximum deviation of 25 g.
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Figure 3.10: The real and the calculated force incidence angle (α) using Eq. 3.11.
As in the measurement the sensor was rotated around its middle point the force
incidence angle was equal to the angle measured by the encoder in the rotary joint.

3.7 Sensor capabilities

3.7.1 Force directions

As force was applied on the sensor surface from four different directions the force

vector changed accordingly as it can be seen in Fig. 3.12, thus during the force

measurement the x, y, z force components showed independent behavior.

3.7.2 Noise performance

The sensor was left (untouched) on the table, and the (offset compensated) output

was measured. Each sensing element (photodiode) output can be seen in Fig. 3.13.

The sensor noise was around ± 3 LSB (Least Significant Bit) where the overall

range is 16 bits → 65536 LSB meaning a 1/10000 % error in the measurement.
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Figure 3.11: The solid line shows the reference load, measured by the Andilog, and
the dashed line shows the calibrated sensor output at different load and rotation
angle. After the calibration steps the average error was 5 g and the maximum
deviation was 25 g.

Figure 3.12: Force was applied an the sensor surface from four directions ((a)-
north, (b)-south, (c)-west, (d)-east) and the measured force vectors can be seen
accordingly

3.7.3 Hammer impact

The sensor surface was hit with a hammer (260 g and 25 cm long). The high im-

pacts (∼50 N) and its damped oscillation can be seen in Fig. 3.13. This experiment
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demonstrates that the sensor output can follow even the gradient of a high impact

and settles fast enough to detect the next impact. The output after the oscillation

did not returned to the zero level as the the hammer was resting on the surface

thus the sensor was measuring the hammer weight.

3.7.4 Brush stroke

After the test with the hammer, the sensor surface was firmly stroked (∼0.03 N)

with a painting brush, the output of each sensing element can be seen in Fig. 3.13,

this test demonstrates the wide force sensitivity of the proposed sensor.

Figure 3.13: (a) the sensor noise performance, (b) impact measurement of a ham-
mer, (c) firmly stroked by a painting brush

3.7.5 Pulse measurement

In this test, the sensor was pushed to the arteria carotis external on the neck.

From the measurement output the shape of the pulse can be seen in Fig. 3.14.

The heart rate could be calculated by using a peak detection on the derivated

signal (Fig. 3.14/ (dS3)/dt). Here I would like to note that as the sensor was

handhold some disturbance in the measurement can be obtained, but the typical

characteristic of the pulse shape can be well recognized.
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Figure 3.14: Measuring the pulse shape and the heart rate on the arteria carotis
external, where each sensor output (S1,S2,S3) and the derivation of the S3 signal
is presented.

3.7.6 Relaxation time

Due to the viscoelastic property of the used silicone rubber a load dependent relax-

ation can be observed. Different loads (194 g, 873 g, 1405 g) were placed on the top

of the sensor (Fig. 3.15). After the output settled, the load was suddenly removed,

and the output was recorded in order to measure relaxation time (Fig. 3.16).

This viscoelastic property can be improved by using better silicone rubber or

by modelling this effect.
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Figure 3.15: Measurement of the realaxation characteristic at different load levels.
It can be seen as the load level increases the relaxation time also increases.

Figure 3.16: Relaxation characterictic after the load was removed. At 0.25 s all
signal value dropped at least 86% and after a certain time returned to zero.

49

DOI:10.15774/PPKE.ITK.2012.003



3. COMPLAINT 3D TACTILE SENSOR

3.8 Layered structure of the elastic cover

In the first sensor prototype a light green colored Triszil RTV − 2 type silicone

rubber was used. Even though the silicone cover thickness was around 1 cm (inner

dome diameter 1.5 cm) the infra light component of the daylight caused some

disturbance in the measurement.

Figure 3.17: The three layered sensor structure. Where the ”Outer optical blocking
layer” (1) filters the ambient light, the ”Middle reflective layer” (2) reflects the infra
light rays to the photodiodes and the ”Inner transparent layer” (3) increases the
sensor structural stiffness.

Thus a better cover was needed to be designed. The new version has a three

layered structure (3.17) where each layer has its own well defined purposes:

1. Outer optical blocking layer: To increase the noise free resolution of the

sensor extra attention has to be made to prevent the outer light getting into

the photodiodes. One way of the elimination is to make an extra measure-

ment without infra light emission thus the ambient light can be compensated.

As a back draw this would result in a 1/2 reduction in the speed performance.

The thickness of the cover could be increased but the size of the sensor would

be also increased. Another way is to use a colored silicone rubber (e.g: black)

that blocks the incoming light rays 3.17/1. The layer thickness is defined by

the used material light absorbance properties.

2. Middle reflective layer: As the outer colored layer blocks the incoming

light it also blocks the inner infra light rays. So an additional thin layer is

required which reflects the infra light rays to the photodiodes. This layer

(3.17/2) should be diffuse and highly reflective (e.g: white).

3. Inner transparent layer A hallow inner structure during deformation

forces the air to be compressed in the cavity, or as it is hard to perfectly
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seal after the force released a vacuum effect would be created thus the relax-

ation of the covering material is increased. To fill the cavity with an optically

fully transparent silicone (3.17/3) would solve this problem. Furthermore, a

filled cover is harder to compress thus to achieve the same measurable force

range a smaller sensor could be constructed. If the optical layer transparent

material and the photodiode cover material is different (has different scat-

tering factor) after the molding process a lens may be formed so as a plus

feature it may also increase the sensibility.

Over time (months) the silicone rubber’s elastic properties will slightly change

(the silicone will be hardened), depending on the used temperature, applied force

and force duration. Such a wear out parameter is hard to predict so a periodic

calibration test (with e.g. 100g) is recommended to obtain the wear out level.

As design considerations the used materials should meet some specific need:

• the surface material should be smooth, prone to contact and no sticking

• homogeneous and isotropic structure

• durable, low wear out, robust and no permanent deformation caused by

stretching

• fast settling time after force released and minimal viscoelastic effect

• no temperature dependence (or at least not significant in the measurement

range)

• must have high adherence to the sensor board

51

DOI:10.15774/PPKE.ITK.2012.003



3. COMPLAINT 3D TACTILE SENSOR

3.9 Sensor prototyping

In order to create a robust and reliable sensor a moulding procedure was carried

out. On the sensor board 5 mm sized square shaped photodiodes and a 3 mm

diameter infra LED were used (3.18/c). The 3D design of the moulding form can

be seen in 3.18/a, it has two parts the bottom where the silicone is poured and the

top which keeps the sensor in place (3.18/b).

The moulding process starts with the innermost layer. The transparent silicone is

poured into the form (3.18/e) and with the top part with the sensor board inside

(3.18/b) it is squeezed together with a clap (3.18/n). The result can be seen in

3.18/f and the inner layer detailed mechanical properties in (3.18(d)). During the

inner layer moulding bobbles can appear thus special attention must be made to

avoid it, as it would dissolve the light beams.

The next step is similar but the moulding form is slightly larger (3.18/g) and filled

with the reflective silicone, in this case it is light green. Like the previous part

(3.18/f) it is squeezed into the moulding form where the reflective silicone evenly

dissolves on the surface forming the reflective layer (3.18/i).

After creating the final optical blocking layer the sensor has its final look (3.18/(l,o)).

To ensure that light does not go through the bottom of the sensor it is also covered

with a 1 mm thick silicone layer (3.18/m).

These moulding forms were made by 3D rapid prototyping using ABS plastic

building up from 32 µm thick layers and were designed in a CAD software called

Autodesk Inventor.
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Figure 3.18: The moulding process of the elastic cover. (a) shows the moulding
form 3D design, (b) is the top form that keeps the sensor board (c) in place. Each
layer has its separate moulding form (e - inner transparent layer, h -middle reflective
layer, k - outer optical blocking layer) with different mechanical properties (d,g,j).
Each moulding step output is shown in (f,i,l). In the final step a 1 mm thick
silicone layer is added to the sensor board bottom to prevent the incoming light.
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3.10 Conclusion

In this chapter a novel three photodiode, one infrared LED and an elastic hollow

dome based low-cost, compliant, light weight and durable 3D tactile sensor was

presented. The sensor size and measurement range can be easily varied based on

the application requirements. Also new layer structured cover has been presented,

wherewith the sensor noise and size can be decreased.

The results of the verification experiments indicate that the sensor can measure

the triaxial force components.

In the static load test different weights were placed on the sensor surface form

0 g up to 4 kg in 10 g incremental steps where the output of the sensor showed

close to linear behavior, but at higher weight levels (up to 20 kg) it is non-linear.

Furthermore, the sensor showed high force dynamic range from measuring a pulse

shape up to an impact of a hammer. A precise calibration tool (Model ANDILOG

Centor, Fr) was used to measure reference loads. The sensor was mounted onto a

rotational joint in order to measure the sensor pressure profile at different force in-

cidence angle. The sensor output showed non-linear behavior in the force incidence

angle range because of the used infra LED illumination characteristic.

After the calibration process, the sensor has an average error rate of 5 g and the

maximum deviation of 25 g at different load measurement in case of small loads.

As conclusion the following thesis points can be stated:

Thesis II.:

Design of a low cost 3D optical compliant tactile sensor that is capable of measuring

three-axial directional force components and the location of the contact point.

A: I have designed a robust layered structured elastic cover which supports the

realization of small sized sensors (<1cm).

B: I have designed a calibration process to measure the sensor characteristics.

I have shown a method to measure the location point position on the sensor

surface.

Published in: [5], [4]
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Chapter 4

Studying Synchronization

Phenomenon in Oscillatory and

Chaotic Networks

4.1 Introduction

Chaos theory describes the behavior of certain dynamical systems that may exhibit

dynamics that are highly sensitive to initial conditions. Small variations of the

initial condition of a dynamical system may produce large variations in the long

term behavior of the system. As a result of this sensitivity, which manifests itself

as an exponential growth of perturbations in the initial conditions, the behavior of

chaotic systems appears to be random. This happens even though these systems

are deterministic, meaning that their future dynamics are fully defined by their

initial conditions, with no random elements involved. This behavior is known as

deterministic chaos, or simply chaos.

Chaotic systems are well-known for strange patterns in their phase space, which

has always attracted the research community [20, 21]. More bizarre is the behavior

when two chaotic systems are connected together in a specified fashion [62].

Synchronization of oscillator networks is a prevalent phenomenon in nature [19].

Despite its widespread presence, synchronization is used only in a few specific

fields of engineering, e.g. communication with chaotic lasers [63, 64]. Two or more

interconnected chaotic systems have also been shown to produce effects like syn-

chronization, pattern generation or hyperchaos [65, 66].
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Many extensive studies have been performed in understanding the underlying be-

havior of several interconnected chaotic systems [67, 68, 69]. One interesting case

study is to understand the behavior of interconnected chaotic systems connected

to their nearest neighbors dictated by the architecture of a regular autonomous

Cellular Nonlinear Network. Thus an interesting case study may include chaotic

circuits interconnected with each other in one, two or three dimensions [70].

However, so far most of these studies are restricted to either development of math-

ematical concepts or software-based studies. One reason that can be attributed

to the lack of hardware results lies in the non-availability of a robust chaotic circuit.

The aim was to designe a 3-dimensional CNN architecture based test bed with

neighbors interconnected to each other by a programmable digital resistor [6].

This makes it a special case of generalized CNN (defined in [71, 72, 73]) as a pro-

grammable resistive grid based CNN. Even though each cell can be an independent

circuit (discussed later), chaotic Chua’s circuit [74] were the CNN cells.

4.2 Chua’s circuit

As a CNN cell we used a simple electronic circuit developed by Leon Chua [75, 76].

The reason for this is in the easy experimental implementation and the highly

robust quality of the circuit.

Since it only consists of four linear elements (two grounded capacitors, one

grounded inductor and one linear resistor), and one non-linear resistor it makes

the electronic realization very simple. The system is described by the following set

of differential equations:

C1
dv1
dt

= G(v2 − v1)− f(v1) (4.1)

C2
dv2
dt

= G(v1 − v2) + i3 (4.2)

L
di3
dt

= −v2 (4.3)
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Where v1, v2 and i3 denote the voltage across capacitor C1, voltage across C2

and current across inductor L, respectively and

iR = f(vR) = GbvR + 0.5(Ga −Gb)(|vR +Bp| − |vR −Bp|) (4.4)

denotes a 3 segment odd- symmetric voltage current characteristics of a non-

linear resistor, also called Chua’s diode. Here Ga and Gb are the slopes of the

segments and Bp denotes the breakpoint as it is shown on Fig. 4.1.

Figure 4.1: Current vs. voltage characteristics of the Chua’s diode

Fig. 4.2 shows the circuit diagram of the Chua’s circuit, which is an autonomous

dynamical system i.e. even in the absence of any external input the system evolves

through its natural dynamics.

By substituting

x =
v1
Bp

, y =
v2
Bp

, z = i3(
R

Bp

) (4.5)

α =
C2

C1

(4.6)

β =
R2C2

L
(4.7)

k = sgn(RC2) (4.8)

a = RGa, b = RGb (4.9)
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Figure 4.2: Chua’s Circuit Schematic

τ =
t

|RC2|
) (4.10)

Gk =
1

Rk

(4.11)

the equations in dimensionless form can be written as

dx

dτ
= kα(y − x− f(x)) (4.12)

dy

dτ
= k(x− y + z) (4.13)

dz

dτ
= −kβy (4.14)

f(x) = bx+ 0.5(a− b)(|x+ 1| − |x− 1|) (4.15)

Here sgn(x) is a standard sign function [77]. Parameter k, which can take value

1 or −1, specifies the direction of Chua’s circuit dynamics.

These equations, also called Chua’s equations, can be studied either through com-

puter simulation [78] or by different physical electronic implementations [79], [80].
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4.3 Chua’s circuit kit

As a realization of the Chua’s chaotic circuit an easy to use and compact kit was

built , [74]. This kit also can help amateurs in building Chua’s circuit in a few

minutes and can observe chaotic behavior on their personal computer through the

sound card line in port. Being highly robust, this kit was used as a cell for the

CNN grid.

The kit provides four different outputs from the Chua’s circuit as shown in Fig. 4.3.

Here output A and B correspond to the non-grounded node of the two capacitors

of Chua’s circuit while MA and MB correspond to its buffered value. These four

different nodes henceforth referred as A, B, MA and MB respectively are used

as the node for connecting the Chua’s circuit as a cell to the CNN grid. It is the

inherent architecture of both the kit as well as the grid that helps in studying

simple as well as master-slave topologies of interconnected Chua’s circuits.

The image of the assembled Chua’s kit is shown in Fig. 4.3 and the second

version where the amplifiers are hidden Fig. 4.4. The values of the few components

used in the kit are as follows: C1 = 100 nF, C2 = 10 nF, R1 = 2.2KΩ, R2 = 220Ω,

R3 = 220Ω, R4 = 3.3KΩ, R5 = 22KΩ, R6 = 22KΩ and the inductor is 18 mH.

The exact values are also indicated on the PCB board, and connections are made

to be plug-and-play thus the component can be easily changed to explore different

behavior.

4.4 Chua’s circuit grid - general architecture

The designed architecture is aimed for experimental purposes, so efforts were made

to ensure maximal flexibility in the design of the topologies and the joining of the

elements. Topologies are not strictly bound, in a given n × n × n 3D matrix, the

elements can be coupled to each other by the rule of 4-neighborhood (i.e. North,

South, East and West). The architecture allows the possibility to disconnect the

coupling between cells as well, thereby providing the flexibility to explore several

architectures of interconnected chaotic Chua’s circuits. The design can be treated

as a 5 neighborhood anisotropic CNN with autonomous cells. The current designed

system supports a 4× 4× n size 3D matrix.
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Figure 4.3: Snapshot of the kit [74]. Between the inductor and Chua’s diode we
can find the bifurcation variable resistor. The components values are as follows:
C1 = 100 nF, C2 = 10 nF, R1 = 2.2KΩ, R2 = 220Ω, R3 = 220Ω, R4 = 3.3KΩ,
R5 = 22KΩ, R6 = 22KΩ and the inductor is 18 mH. The bottom part contains
the interface circuitry. Outputs: A, B, MA, MB are marked on the panel.

Variable resistors were used as the coupling between the neighboring cells. Note

that since it is a generalized architecture, the hardware is prepared to plug any

capacitive or inductive coupling or a combination of any two-port passive compo-

nents easily. However, that is the task for an extended study.

The core scheme for the entire system can be divided in the following different

modules:

• Interconnecting Interface: Building a plug-and-play standalone robust Chua’s

circuit with an analog variable resistor (acting as a bifurcation parameter).

This Chua’s circuit gives two pairs of different yet similar outputs namely

A,B and their buffered versions MA and MB.
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Figure 4.4: Snapshot of the second version of the Chua kit with the additional
components in a bag, extension cable for connecting the kit to the PC sound card
Line-in port and the two 9V batteries.

• Programmable Logic: An interface circuitry to choose one output from the

four of the Chua’s circuit designed in the previous step. This chosen node

will then be connected to another Chua’s circuit through a coupling resistor.

• Coupling Grid: Here the different coupling components are placed and can

be selected for connection via an appropriate program. As explained, in

the current experiment the coupling component is a programmable/tunable

resistor, though it can be any other two-port passive component.

4.5 Architecture implementation

4.5.1 Interconnecting interface

Since the above designed kit is a standalone kit for Chua’s circuit study and the

current aim is to understand coupled Chua’s circuits, an interconnecting interface

was designed which helps in achieving common power supply to all connected

Chua’s circuits at the same time transferring all four outputs of the Chua’s circuit

to the coupling grid through a single bus.
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Fig. 4.5 shows the interconnecting interface connected to Chua’s circuit kit to

make it suitable for autonomous 3D-CNN.

Figure 4.5: The board, as the tally of the Chua’s panel is joined with the help of
needles to the developed connectors of the Chua’s kit.

4.5.2 Programmable logic

The designed kit acts as a single cell to the core CNN architecture. However,

since there are four different possible channel outputs from the Chua’s circuit, an

interface circuitry is required to select the desired channel. This task is achieved

by efficient usage of analog multiplexers.

A dedicated programmable logic is developed for selecting different signals from

different Chua’s circuits to be coupled to each other. This is done to achieve

maximum flexibility in exploring different possible architectures of interconnecting

Chua’s circuits.

The general architecture for connecting several such layers having a similar

programmable logic is as shown in Fig. 4.6. Herein each MUX receives 4 different

signals (A, B, MA and MB) from a respective Chua’s circuit design and select one

out of them to be put on the general bus as one of the signal to be interconnected.

The output (in the present case of 4 × 4 so the maximum of 16 independent

oscillatiors) is then transferred to a coupling grid, which performs different possible

desired couplings between different cells.

62

DOI:10.15774/PPKE.ITK.2012.003



Figure 4.6: On the left, the general architecture for Programmable Logic can be
seen. Herein each MUX receives 4 different signals (A, B, MA and MB) from
the respective Chua’s circuit design and selects one out of them to be put on the
general bus as one of the signals to be interconnected. The output (in present
case of 4 × 4) is then transferred to a coupling grid, which performs different
possible desired couplings between different cells. On the right is a snapshot of the
programmable logic board.

4.5.3 Coupling grid

The output from the connection matrix board is then fed to the coupling grid that

has the possibility to manually add different passive two-port coupling components

to the design. This provides an interesting opportunity for testing several cases

with different coupling components between different cells of 3D-CNN. These com-

ponents can be different not only in their component values but also their type,

thereby making it suitable for studying different test cases. Fig. 4.7 shows one

such coupling grid with few interconnected variable resistors. A programmable

logic along with a coupling grid constitutes a single layer of autonomous CNN.

4.6 Experimental results

Several experiments with different architectural topologies were performed. One of

the prime tasks was to observe and study the behavior of the coupled chaotic sys-

tem at the edge of synchronization to de-synchronization. The cells are connected
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Figure 4.7: Snapshot of the coupling grid. The input and output parts are marked.
In the middle of the panel different passive two-port coupling components can be
connected. A programmable logic along with a coupling grid constitutes a single
layer of autonomous CNN.

to their nearest neighbors with a coupling weight. Chua’s circuits were set to be

in double scroll chaotic mode (double scroll is one of the attractors that shows two

lobes just like butterfly’s wing in phase space. This is the most commonly known

state of chaos and is observed in Chua’s circuit and Lorentz system). They were

coupled to neighbors at terminal A (i.e. non-grounded inductor node). Up to ten

Chua’s circuits in 1, 2 and 3 dimensions were connected. In each topology the

values of the resistors were varied from 10K to 0 i.e. from less coupled to more

coupled system. These topologies are as shown in the following Fig. 4.8/A.
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Figure 4.8: The topologies and the weights, which were used in the experiments,
can be seen here. ’A’ is 1D in line, ’B’ is 2D, ’C’ is 3D in cross format, ’D’ where
9 elements connected to a common point.

4.6.1 Case 1. one dimensional coupled Chua’s circuits

In the present case, two Chua’s circuits were connected together in the fashion as

shown in Fig. 4.8/A. The equations that govern this dynamics are given by:

ẋ1 = α1(y1 − f1(x1)) +
k

R
(x2 − x1) (4.16)

ẏ1 = x1 − y1 + z1 (4.17)

ż1 = −β1y1 (4.18)

ẋ2 = α2(y2 − f2(x2)) +
k

R
(x1 − x2) (4.19)

ẏ2 = x2 − y2 + z2 (4.20)

ż2 = −β2y2 (4.21)

It was observed that as the value of coupling resistance between Chua’s circuits

was changed from 10 KΩ to 0 Ω, the two moved from de-synchronization to syn-

chronization. The two cases are as shown in Fig. 4.9.

An interesting observation was also made wherein it was found that as the

system moves from de-synchronization to synchronization, there is a value of cou-

pling coefficient, where the two Chua’s circuits are in phase lag with each other.

During this time, neither of the chaotic circuits remain chaotic. The oscilloscope

tracing of such phenomenon is as shown if Fig. 4.10. By further decreasing the

coupling resistors, the system showed chaotic oscillation again and at 0 Ω they got

synchronized.
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Figure 4.9: On the left and right of the picture two states of Chua’s circuit can
be observed. Between them, their correlation is shown. On the top at 10 K Ω
coupling value the system shows de-synchronized behavior, on the bottom at 0 Ω
they are synchronized.

Figure 4.10: The left and right oscilloscopes show the phase portrait of two Chua’s
circuits, in the middle the coupling behavior can be observed (the correlation
between the two circuits connected through terminal A). The system moves from
de-synchronization to synchronization. There is a value of coupling coefficient
where the two Chua’s circuits are in phase lag with each other. During this time
neither of the chaotic circuits remains chaotic.
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These experimenter result were confirmed using SPICE simulation of two con-

nected Chua’s circuit. The following figures shows the SPICE simulation results

for the observed synchronization phenomenon. Figure 4.11 shows the SPICE simu-

lation results for the condition when two Chua’s circuits were connected by 10 KΩ

resistor with other values remaining the same as mentioned earlier.

Figure 4.11: This figure shows the SPICE realization and simulation results for
the condition when two Chua’s circuits were connected by 10 KΩ resistor.

Fig. 4.12 shows the SPICE simulation results for the condition when two Chua’s

circuits were connected by 1 KΩ resistor.

Figure 4.12: This figure shows the SPICE simulation results for the condition when
two Chua’s circuits were connected by 1 KΩ resistor.

Fig. 4.13 shows the SPICE simulation results for the condition when two Chua’s

circuits were connected by 6.5 KΩ resistor.
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Figure 4.13: This figure shows the SPICE simulation results for the condition when
two Chua’s circuits were connected by 6.5 KΩ resistor

At the begining of the simulation both Chua’s circuits were in chaotic oscillation

and only after 56 ms their output suddenly synchronized with a phase shift, the

transient can be seen in Fig. 4.1

Figure 4.14: Simulation resut of two Chua’s circuits where the transient behaviour
can be observed. Both circuit were in chaotic oscillation at the begining and they
output get syncronised with a phase shift at 56 ms.

Thus it is evident from the figures that the coupling of Chua’s circuit un-

dergoes a fast phase transition while moving from complete synchronization to

de-synchronization.

4.6.2 Case 2. two dimensional coupled Chua’s circuits

The 1D case was extended by coupling more Chua’s circuit and similar phenomenon

was observed at different coupling resistance. These values for different size of 1D
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CNN are listed in Table 4.1.

Table 4.1: Copuling ranges where connected Chua’s circuits are in phase lag with
each other for different topologies.

Connected Chua’s circuits

Size 1D 2 3 4 5 6 7 8 9
Resistor (KΩ) 9.2-4.2 5.6-1.3 5.2-3.6 6.1-3.9 5.3-3.5 1.2-0.7 4.7-3 4.7-3.6

Size 2D 2x2 2x3 3x3

Resistor (KΩ) 7.15-5.2 5.6-1.3 8.7-5
6.2-4.1 5.5-0.280

Size 3D 3x3

Resistor (KΩ) 7.2-4.2

In the 2D case, the used topology can be seen in Fig. 4.8/B. Different numbers

of Chua’s circuits were connected and the similar phenomenon also appeared here.

In some cases there were two different coupling regions where a similar phenomenon

appeared. These values for different size of 2D CNN are listed in Table 4.1.

4.6.3 Case 3. three dimensional coupled Chua’s circuits

A specific case of 3D coupled chaotic system, coupled by the scheme as shown in

Fig. 4.8/C, was performed. All the resistors on one layer were kept at zero in order

to keep all Chua’s circuits on a specific layer in synchronized state, whereas the

interconnecting resistors were varied. The phase portrait between the middle cells

of both layers is as shown in Fig. 4.15.

As another experiment, a 3x3 array of Chua’s circuits was built. Each cell was

connected to a common point through its own weight. Therefore the system has

only 9 coupling weights. The connecting topology can be seen on Fig. 4.8/D.

It was observed that when some of the resistors were varied, a specific set of

cells got synchronized while others did not. The results are in line with a similar

work published earlier [22]. Whereas the previous studies were primarily software

simulations, the present case is a hardware implementation of a similar case.

Note that software simulations did not take into account several non-idealities

of the system whereas the test bed is a real-time system. Table 4.2 summarizes
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Figure 4.15: Ten Chua’s Circuits were connected in 3D in a cross like topology
(five-five pieces in each layer, each in double scroll). The coupling weight in the
layers were 0Ω. On the left and right pictures, the two middle cells can be seen
when the coupling was 10 KΩ meaning no synchronization. In the middle column
of the picture, the correlation can be seen between the layers in each coupling
case. Besides, the middle cells showed circles at 7.2 KΩ (left,right) but this also
represents the state of the same layer’s other cells because of the 0Ω coupling. On
the bottom of the picture, the system shows chaotic behavior again at 4.2 KΩ.
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Table 4.2: Synchronization pattern weights [22] and the corresponding resistor
values for 3x3 array.

Cell in the 3x3 array (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

Simulated values 0.31 5.31 0.11 8.77 0.54 25.52 18.35 4.71 6.04
Measured values (KΩ) 0.12 2.08 0.04 3.44 0.21 10 7.19 1.85 2.37

Simulated values 0.34 26.30 20.68 22.05 17.59 12.79 22.35 19.16 0.16
Measured values (KΩ) 0.13 10 7.86 8.38 6.69 4.86 8.5 7.29 0.06

Simulated values 11.24 21.84 12.78 0.09 18.48 0.03 24.48 12.30 17.80
Measured values (KΩ) 4.59 8.92 5.22 0.04 7.55 0.01 10 5.02 7.27

the values of resistances that were taken for performing the present experiment.

The experimental result and the oscillation pattern can be observed in Fig. 4.16.

This in turn proves the usability of the present test bed (Fig. 4.17) as it can help

us visualize the synchronization schemes in real time environment.

Figure 4.16: Connecting 3x3 Chua’s circuits and using the scaled coupling values
of a simulated network [22], the very same oscillation pattern was observed. On
the left picture, an oscillation pattern can be seen. Cells synchronized together are
marked with the same grayscale level. On the right there are snapshots of each
cell’s actual state.
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4. STUDYING SYNCHRONIZATION PHENOMENON IN
OSCILLATORY AND CHAOTIC NETWORKS

Figure 4.17: A picture of the experimental setup where eight Chua’s circuits were
connected and on the oscilloscope an interesting correlation form can be seen.
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4.7 Discussion

Synchronization of oscillatory and chaotic networks have sprung as a completely

new field of nonlinear dynamics. Whereas several studies have been done on the

same field, it lacked a single platform to test several similar or different autonomous

networks connected. The present chapter provides the information about the test

bed that was created to address such need. As a test bed, it was also demonstrated

to observe different interesting phenomena among several interconnected Chua’s

chaotic circuits.

Note that the aim of the research was to develop a hardware test bed which can

connect different kind of oscillators. It was aimed at studying synchronization

phenomena in coupled systems and was in no way aimed at exploring any new re-

sults, though some interesting phenomena were observed. These and many similar

observations are subject for a separate study.

Other than the fact that hardware implementation provides an easy-to-use topol-

ogy, it is the inherent design of the Chua’s circuit kit that helps to have different

parameters for different chaotic cells. This further enhances the flexibility to study

cases having cells with different parameters.

73

DOI:10.15774/PPKE.ITK.2012.003



4. STUDYING SYNCHRONIZATION PHENOMENON IN
OSCILLATORY AND CHAOTIC NETWORKS

4.8 Conclusion

The architecture of a test bed to study several interconnected chaotic Chua’s cir-

cuits is presented. The architecture is based on CNN with four neighbor connec-

tivity. A robust Chua’s circuit kit was also designed, which acts as a cell to the

CNN architecture. Several topologies of resistively coupled CNN were studied and

laboratory results were found to yield several interesting phenomena.

As conclusion the following thesis points can be stated:

Thesis III.:

Design and implementation of an architecture for interconnecting single cell chaotic

oscillators with any active or passive two pole components.

A: I have designed a modular hardware architecture for connecting any kind of

(even chaotic) oscillator in different kinds of topology (practically limited to

4x4xn) with any active or passive two pole component. I have observed a new

phase lag synchronization phenomenon in weakly coupled chaotic oscillators

during the transition from de-synchronization to synchronization in case of

1D, 2D and 3D CNN like topology.

Published in: [2], [6]
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Chapter 5

Summary

5.1 Main findings and results

• I have created a proximity sensor array to create single view 3D back pro-

jection images of the objects. It showed promising results in object outline

surface trace and landmark detection. Test cases also presented in case of

localization and object detection simulating a bipedal robot motion.

• A 3D complaint tactile sensor design is detailed and tested with different

force measurements where the sensor showed high force dynamic range from

measuring the pulse shape up to a impact of a hammer.

• I have created a hardware test bed to studying several interconnected oscil-

lators where a new phase lag phenomena was observed among several inter-

connected Chua’s chaotic circuits.

5.2 New scientific results

Object outline and surface trace detection using 3D imaging based a low resolution

proximity array containing infra LEDs - photodiodes.

• I have designed and implemented a low resolution infra LED - photodiode

based proximity array. Using several photodiodes to detect the reflected light

from each infra LED, an iterative method was developed to calculate the angle

of incidence in case of flat objects with known αi parameters, for achieving

more precise distance measurement.
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5. SUMMARY

• A new method has been given to decrease the smoothing effect at object edges

during the sensor array motion.

• I have demonstrated in mobile robot experiments that the sensor array is capa-

ble of detecting on road localization landmarks and obstacles before crossing.

Design of a low cost 3D optical compliant tactile sensor that is capable of

measuring three-axial directional force components and the location of the contact

point.

• I have designed a robust layered structured elastic cover, which supports the

realization of small sized sensors (<1cm).

• I have designed a calibration process to measure the sensor characteristics.

I have shown a method to measure the location point position on the sensor

surface.

Design and implementation of an architecture for interconnecting single cell

chaotic oscillators with any active or passive two pole components.

• I have designed a modular hardware architecture for connecting any kind of

(even chaotic) oscillator in different kind of topology (practically limited to

4x4xn) with any active or passive two pole component. I have observed a new

phase lag synchronization phenomenon in weakly coupled chaotic oscillators

during the transition from de-synchronization to synchronization in case of

1D, 2D and 3D CNN like topology.

5.3 Application of the results

During my work, all the algorithms and hardware realizations I made give a possible

solution for real and up to date problems.

The first results of the thesis group will hopefully offer a solution for creating

obstacle detection, avoidance and SLAM using low cost sensors. For example, for

vacuum cleaner robots where without a global map the successful and optimal

work hardly can be guaranteed but using the described sensor array (by extending

to 2D) a map can be created based on the floor pattern.
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In the second thesis group, a new type of sensor is presented that could be

used even in the industry due to its high force measurement range, dynamics and

robustness. It has already shown promising results in the medical field to measure

blood pressure and pulse shape in a non-invasive way. The presented sensor also

could be used as high precision tactile sensor in many fields of robotics as it can

detect forces from firmly stroke up to a hammer impact.

The results of the third thesis group could be used as an experimental hard-

ware kit, where the results of the software simulation could be validated or new

phenomenons could be observed in real time.
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5. SUMMARY
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[7] N. Sárkány, Gy. Cserey, Á. Tar, and J. Veres, “ Design of a biomechatronic

hand actuated by the flexor-extensor mechanism,” in International Conference

on Advanced Intelligent Mechatronics (AIM), IEEE, 2011.

DOI:10.15774/PPKE.ITK.2012.003



DOI:10.15774/PPKE.ITK.2012.003



Bibliography

[8] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development of honda

humanoid robot,” in International Conference on Robotics and Automation,

vol. 2, pp. 1321–1326, IEEE, 1998. 1, 2

[9] F. Plestan, J. Grizzle, E. Westervelt, and G. Abba, “Stable walking of a 7-

dof biped robot,” Transactions on Robotics and Automation, vol. 19, no. 4,

pp. 653–668, 2003. 1

[10] M. Morisawa, K. Harada, S. Kajita, S. Nakaoka, K. Fujiwara, F. Kanehiro,

K. Kaneko, and H. Hirukawa, “Experimentation of humanoid walking allowing

immediate modification of foot place based on analytical solution,” in Inter-

national Conference on Robotics and Automation, pp. 3989–3994, IEEE, 2007.

1

[11] J. Yamaguchi, E. Soga, S. Inoue, and A. Takanishi, “Development of a bipedal

humanoid robot-control method of whole body cooperative dynamic biped

walking,” in International Conference on Robotics and Automation, vol. 1,

pp. 368–374, IEEE, 1999. 1

[12] S. Collins and A. Ruina, “A bipedal walking robot with efficient and human-

like gait,” in International Conference on Robotics and Automation (ICRA),

pp. 1983–1988, IEEE, 2005. 1

[13] J. Pratt and G. Pratt, “Exploiting natural dynamics in the control of a planar

bipedal walking robot,” in Annual Allerton Conference on Communications,

Control and Computing, vol. 36, pp. 739–748, Citeseer, 1998. 1

[14] M. Lee, “Tactile sensing: new directions, new challenges,” The International

Journal of Robotics Research, vol. 19, no. 7, p. 636, 2000. 2, 29

81

DOI:10.15774/PPKE.ITK.2012.003



BIBLIOGRAPHY

[15] J. Seara, K. Strobl, and G. Schmidt, “Path-dependent gaze control for obstacle

avoidance in vision guided humanoid walking,” in International Conference on

Robotics and Automation (ICRA), vol. 1, pp. 887–892, IEEE, 2003. 2

[16] P. Michel, J. Chestnutt, J. Kuffner, and T. Kanade, “Vision-guided humanoid

footstep planning for dynamic environments,” in The 5th International Con-

ference on Humanoid Robots (RAS), pp. 13–18, IEEE, 2005. 2

[17] Y. Guan, E. Neo, K. Yokoi, and K. Tanie, “Stepping over obstacles with

humanoid robots,” Transactions on Robotics, vol. 22, no. 5, pp. 958–973, 2006.

2

[18] Q. Huang and Y. Nakamura, “Sensory reflex control for humanoid walking,”

Transactions on Robotics, vol. 21, no. 5, pp. 977–984, 2005. 2

[19] M. Barahona and L. M. Pecora, “Synchronization in small-world systems,”

Phys. Rev. Lett., vol. 89, p. 054101, Jul 2002. 2, 55

[20] L. Chen and K. Aihara, “Strange attractors in chaotic neural networks,”

Transactions on Circuits and Systems I: Fundamental Theory and Applica-

tions, vol. 47, no. 10, pp. 1455–1468, 2000. 2, 55

[21] E. Bilotta, P. Pantano, and F. Stranges, “A gallery of chua attractors: Part

II,” International Journal of Bifurcation and Chaos, vol. 17, no. 2, pp. 293–380,

2007. 2, 55

[22] D. Hillier, S. Gunel, J. Suykens, and J. Vandewalle, “Partial synchroniza-

tion in oscillator arrays with asymmetric coupling,” International Journal of

Bifurcation and chaos, vol. 17, no. 11, pp. 4177–4185, 2007. 2, 69, 71

[23] W. Pritchard and D. Duke, “Measuring chaos in the brain-a tutorial review

of eeg dimension estimation,” Brain and Cognition, vol. 27, no. 3, pp. 353–397,

1995. 2

[24] H. Korn and P. Faure, “Is there chaos in the brain? ii. experimental evidence

and related models,” Comptes rendus biologies, vol. 326, no. 9, pp. 787–840,

2003. 2

[25] S. Schiff, K. Jerger, D. Duong, T. Chang, M. Spano, and W. Ditto, “Con-

trolling chaos in the brain,” Nature, vol. 370, no. 6491, pp. 615–620, 1994.

2

82

DOI:10.15774/PPKE.ITK.2012.003



BIBLIOGRAPHY

[26] J. Skinner, A. Goldberger, G. Mayer-Kress, and R. Ideker, “Chaos in the

heart: implications for clinical cardiology,” Nature Biotechnology, vol. 8, no. 11,

pp. 1018–1024, 1990. 3

[27] O. Faugeras and G. Toscani, “Camera calibration for 3d computer vision,” in

International Workshop on Machine Vision and Machine Intelligence, pp. 240–

247, 1987. 5

[28] W. Niem and J. Wingbermuhle, “Automatic reconstruction of 3d objects using

a mobile monoscopic camera,” in 3-D Digital Imaging and Modeling, 1997.

Proceedings., International Conference on Recent Advances in, pp. 173–180,

IEEE, 1999. 5

[29] H. Surmann, K. Lingemann, A. N

”uchter, and J. Hertzberg, “A 3d laser range finder for autonomous mobile

robots,” in Proceedings of the 32nd ISR (International Symposium on Robotics),

vol. 19, pp. 153–158, Citeseer, 2001. 5

[30] Y. Omura, A. Goto, and N. Shidara, “Surface-Trace Feasibility for IR-Based

Position-Sensing Devices,” IEEE Sensors Journal, vol. 9, no. 10, 2009. 5, 6

[31] M. Baba, K. Ohtani, and S. Komatsu, “3D shape recognition system by ultra-

sonic sensor array and genetic algorithms,” in The 21st Instrumentation and

Measurement Technology Conference (IMTC), vol. 3, IEEE, 2004. 5

[32] H. Park, S. Lee, and W. Chung, “Obstacle Detection and Feature Extraction

using 2.5 D Range Sensor System,” in International Joint Conference of SICE-

ICASE,, pp. 2000–2004, 2006. 6

[33] H. Park, S. Baek, and S. Lee, “IR sensor array for a mobile robot,” in Interna-

tional Conference on Advanced Intelligent Mechatronics (ASME), pp. 928–933,

IEEE, 2005. 6

[34] S. Lee and W. Chung, “Rotating IR Sensor System for 2.5 D Sensing,” in

International Conference on Intelligent Robots and Systems (RSJ), pp. 814–

819, IEEE, 2006. 6

[35] P. Vaz, R. Ferreira, V. Grossmann, M. Ribeiro, I. Norte, and A. Pais, “Docking

of a mobile platform based on infrared sensors,” in International Symposium

on Industrial Electronics, Guimaraes, Portugal, IEEE, 1997. 6

83

DOI:10.15774/PPKE.ITK.2012.003



BIBLIOGRAPHY

[36] G. Benet, F. Blanes, J. Simo, and P. Perez, “Using infrared sensors for distance

measurement in mobile robots,” Robotics and autonomous systems, vol. 40,

no. 4, pp. 255–266, 2002. 7, 14

[37] Y. Shan, J. Speich, and K. Leang, “Low-Cost IR Reflective Sensors for Sub-

microlevel Position Measurement and Control,” Transaction on Mechatronics

(ASME), vol. 13, no. 6, 2008. 7

[38] P. Novotny and N. Ferrier, “Using infrared sensors and the Phong illumina-

tion model to measure distances,” in International Conference on Robotics and

Automation, pp. 1644–1649, IEEE, 1999. 7

[39] C. Yuzbasioglu and B. Barshan, “Improved range estimation using simple

infrared sensors,” Measurement Science and Technology, vol. 16, pp. 1395–1409,

2005. 7

[40] Yuzbasioglu, C. and Barshan, B., “A new method for range estimation using

simple infrared sensors,” in International Conference on Intelligent Robots and

Systems,(IROS), pp. 1066–1071, IEEE, 2005. 7
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